Простые и сложные белки. Строение, функции, свойства, характеристика, примеры сложных белков. Белки простые и сложные
Раздел 1 Аминокислоты, простые и сложные белки.
Белки – это высокомолекулярные соединения, молекулы которых построены из остатков аминокислот, составляют основу структурных элементов клеток и тканей, а также выполняют многообразные жизненно важные функции (транспортные, защитные, регуляторные, каталитические), обусловленные способностью за счет своей уникальной пространственной структуры распознавать другие молекулы и взаимодействовать с ними.
Аминокислоты в молекуле белка соединены между собой пептидными связями (-CO-NH-), образуя полипептидные цепи. Пептидная связь возникает между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты, при этом отщепляется молекула воды.
Аминокислоты, кодируемые генетическим кодом и включающиеся в процессе трансляции в белки, называют протеиногенными. В основу современной классификации аминокислот положено химическое строение их радикалов. Каждая аминокислота имеет не только своё название (тривиальное и химическое), но и принятое трехбуквенное сокращение, а также латинский однобуквенный символ.
Следует отметить, что аминокислоты являются не только структурными элементами пептидов и белков, но и входят в состав других природных соединений (коферментов, конъюгированных желчных кислот, антибиотиков). Некоторые аминокислоты являются предшественниками биологически активных веществ (гормонов, биогенных аминов) или важнейшими метаболитами (глюконеогенез, биосинтез и деградация протеиногенных аминокислот, цикл мочевинообразования).
В белках различают несколько уровней структурной организации: первичную, вторичную, третичную и четвертичную структуры. Первичная структура определяется числом и последовательностью аминокислотных остатков, соединённых между собой пептидными связями. Вторичная структура возникает за счёт образования водородных связей между группами >N-H и O=C< данной полипептидной цепи, что приводит к упорядоченному расположению отдельных участков полипептидной цепи в виде α-спиральной или β-складчатой структуры. Третичная структура белков образуется за счёт взаимодействия радикалов аминокислот (водородные связи, ионные связи, дисульфидные мостики, гидрофобные взаимодействия). Четвертичная структура некоторых белков образуется при взаимодействии отдельных полипептидных цепей, обладающих вторичной и третичной структурой.
Белки условно делят на простые (при гидролизе образуют смесь аминокислот) и сложные, или конъюгированные (состоят из белкового и небелкового компонентов). В качестве небелковой части (простетической группы) конъюгированных белков могут выступать нуклеиновые кислоты, углеводы, липиды, металлы, пигменты, а также фосфорная кислота и коферменты, что находит отражение в классификации данной группы биологических соединений:
Хромопротеины
Нуклеопротеины
Липопротеины
Фосфопротеины
Гликопротеины
Металлопротеины
Хромопротеины содержат окрашенную простетическую группу, например, красные белки - гемопротеины (гемоглобин, миоглобин, цитохромы, каталаза, пероксидаза), желтые белки - флавопротеины (ферменты класса оксидоредуктаз, содержащие производные рибофлавина).
Нуклеопротеины в качестве простетической группы содержат ДНК или РНК, что объясняет их участие в экспрессии генов и биосинтезе белка.
Липопротеины содержат такие липиды как триацилглицеролы, свободные жирные кислоты, эфиры холестерина, фосфолипиды и отличаются друг от друга процентным содержанием белка и плотностью. Липопротеины встречаются как в свободном виде (ЛП плазмы крови), так и в структурированном (в составе клеточных и внутриклеточных биомембран).
Фосфопротеины участвуют в процессе эмбриогенеза. Это такие белки как казеиноген молока, вителлин и фосвитин куриного желтка, ихтулин икры рыб. Известно, что фосфорилирование-дефосфорилирование белков и ферментов – способ изменения их функциональной активности.
Гликопротеины являются объектом интенсивного исследования, что объясняется многообразием их строения и выполняемых функций. Это гликоконъюгаты, к котрым относят большинство белковых гормонов, антитела (иммуноглобулины), белки плазмы крови и молока, интерфероны, факторы комплемента, рецепторные белки.
Металлопротеины представляют белки, содержащие в своей структуре ионы металлов (железа, меди, кобальта, марганца, молибдена, цинка, магния, кальция и др.). Типичные представители металлопротеинов, содержащих негемовое железо, – это ферритин, трансферрин, гемосидерин.
Большинство методов анализа белков и аминокислот связаны с их физико-химическим свойствами, например, с наличием определенных функциональных групп, размером и формой молекул, подвижностью в электрическом поле, различным распределением в системе подвижной и неподвижной фазы при разных видах хроматографии, способностью к поглощению в ультрафиолетовой области спектра.
В данном разделе предлагается провести цветные реакции, доказывающие разнообразную химическую природу аминокислот и белков.
studfiles.net
Простые и сложные белки
Все белки разделяют на две большие группы — простые и сложные белки. Простые белки содержат только аминокислоты, сложные белки имеют также неаминокислотные группы. Эти дополнительные группы в составе сложных белков называются «простетическими группами». Примерами простетических групп в составе белков служат гем (в составе гемоглобина), витамины тиамин и биотин. Неорганические простетические группы состоят из ионов металлов — цинка, магния и молибдена .
Структура белка
Схематическое изображение образования пептидной связи (справа). Подобная реакция происходит в молекулярной машине по образованию белка — рибосоме
Молекулы белков представляют собой линейные полимеры, состоящие из α-L-аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот (правда, модификации происходят уже после синтеза белка на рибосоме). Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белковых структур, на самом деле количество вариантов трудно переоценить: для цепочки всего из 5 аминокислот оно составляет уже более 3 миллионов, а цепочка из 100 аминокислот (небольшой белок) может быть представлена более чем в 10130вариантах. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называютпептидами, при большей степени полимеризации —белками, хотя это деление весьма условно.
При образовании белка в результате взаимодействия α-аминогруппы (-Nh3) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты образуются пептидные связи. Концы белка называют С- и N- концом (в зависимости от того, какая из групп концевой аминокислоты свободна: -COOH или -Nh3, соответственно). При синтезе белка на рибосоме новые аминокислоты присоединяются к C-концу, поэтому название пептида или белка даётся путём перечисления аминокислотных остатков начиная с N-конца.
Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде последовательности нуклеотидов, причём одной аминокислоте соответствует в ДНК последовательность из трёх нуклеотидов — так называемый триплет или кодон. То, какая аминокислота соответствует данному кодону в мРНК, определяется генетическим кодом, который может несколько отличаться у разных организмов. Так как аминокислоты синтезируются на рибосомах из 20-ти аминокислот, а триплетов, которыми они закодированы в ДНК, у разных организмов от 61 до 63, то большинство аминокислот может быть закодировано разными триплетами (генетический код вырожденный, или избыточный).
Сравнение аминокислотных последовательностей белков (в данном случае — гемоглобинов) из разных организмов позволяет определять участки, важные для функционирования белков, а также эволюционную историю сравниваемых видов
Гомологичные белки (предположительно имеющие общее эволюционное происхождение и нередко выполняющие одну и ту же функцию), например, гемоглобины разных организмов, имеют во многих местах цепи идентичные, консервативныеостатки аминокислот. В других местах находятся различные аминокислотные остатки, называемыевариабельными. По степени гомологии (сходства аминокислотной последовательности) возможна оценка эволюционного расстояния между таксонами, к которым принадлежат сравниваемые организмы.
studfiles.net
Простые и сложные белки
80
Пятигорский филиал Государственного бюджетного образовательного учреждения высшего профессионального образования
«Волгоградский государственный медицинский университет» Министерства здравоохранения РФ
Кафедра биологической химии и микробиологии
Ю.К. Василенко, Л.А. Саджая, Е.О.Сергеева, И.В. Скульте, С.Ю. Маширова
Простые и сложные белки: структура и функции. Ферменты и витамины как их кофакторы. Строение, свойства, механизм действия, номенклатура и классификация ферментов
Методические рекомендации для самоконтроля знаний студентов 2-ого курса очного отделения по биологической химии
С.2.Б.13.
Пятигорск 2013
УДК 577.112’16(076)
ббк 28.072 я 73
П 24
Рецензент: доцент кафедры фармакологии и патологии Пятигорского филиала ГБОУ ВПО ВолгГМУ, канд. фармац. наук А.Ю. Терехов
Ю.К. Василенко, Л.А. Саджая, Е.О. Сергеева, И.В. Скульте, С.Ю. Маширова
П 24. Простые и сложные белки: структура и функции. Ферменты и витамины как их кофакторы. Строение, свойства, механизм действия, номенклатура и классификация ферментов: методические рекомендации для самоконтроля знаний студентов 2-го курса очного отделения по биологической химии (С.2.Б.13) ./ Ю.К. Василенко [и др.]. – Пятигорск: Пятигорский филиал ГБОУ ВПО ВолгГМУ, 2013. – 74 с.
Методические рекомедации составлены в соответствии с примерной Программой по биохимии, утверждённой в соответствии с ФГОС ВПО - 3 для студентов 2-го курса очной формы обучения. Методические указания составлены в виде билетов, содержащих по пять вопросов, и правильных ответов на них. Методические рекомедации предназначены для самоконтроля знаний студентов при подготовке к занятиям.
УДК 577.112’16(076)
ббк 28.072 я 73
Печатается по решению ЦМК
Пятигорского филиала ГБОУ ВПО «ВолгГМУ» Минздрава РФ
© Пятигорский филиал ГБОУ ВПО ВолгГМУ, 2013 г.
Пятигорский филиал Государственного бюджетного образовательного учреждения высшего профессионального образования
«Волгоградский государственный медицинский университет» Министерства здравоохранения РФ
Кафедра биологической химии и микробиологии
Методические рекомендации для самоконтроля знаний студентов 2-ого курса очного отделения по биологической химии
С.2.Б.13.
Курс II
Семестр 4
Раздел «Введение в биохимию. Структура и биологические функции белков. Аминокислоты, простые и сложные белки. Иммуноглобулины. Биомембраны. Нуклеино-вые кислоты. Ферменты и витамины как их кофакторы»
К занятиям:2, 3, 5,8,9,10 Объем в часах: лабораторные занятия 15
Пятигорск 2013
Занятие № 2
Тема: химическое строение белков. Качественные реакции на функциональные группы белков и аминокислот. Качетвенный и количественный анализ некоторых белковых препаратов.
Вопросы для самоконтроля усвоения основных понятий темы
№1. Напишите недостающие формулы, названия аминокислот и пептидов.
№2. Напишите недостающие формулы, названия аминокислот и пептидов.
№3. Напишите недостающие формулы, названия аминокислот и пептидов.
№4. Напишите недостающие формулы, названия аминокислот и пептидов.
№5. Напишите недостающие формулы, названия аминокислот и пептидов.
№6. Напишите недостающие формулы, названия аминокислот и пептидов.
№7. Напишите недостающие формулы, названия аминокислот и пептидов.
№8. Напишите недостающие формулы, названия аминокислот и пептидов.
№9. Напишите недостающие формулы, названия аминокислот и пептидов.
№10. Напишите недостающие формулы, названия аминокислот и пептидов.
№11. Напишите недостающие формулы, названия аминокислот и пептидов.
№12. Напишите недостающие формулы, названия аминокислот и пептидов.
13. Напишите недостающие формулы, названия аминокислот и пептидов.
№14. Напишите недостающие формулы, названия аминокислот и пептидов.
№15. Напишите недостающие формулы, названия аминокислот и пептидов.
№16. Напишите недостающие формулы, названия аминокислот и пептидов.
№17. Напишите недостающие формулы, названия аминокислот и пептидов.
Ответы на контрольные вопросы
ОТВЕТЫ НА БИЛЕТ № 1
ОТВЕТЫ НА БИЛЕТ № 2
ОТВЕТЫ НА БИЛЕТ № 3
ОТВЕТЫ НА БИЛЕТ № 4
ОТВЕТЫ НА БИЛЕТ № 5
ОТВЕТЫ НА БИЛЕТ № 6
ОТВЕТЫ НА БИЛЕТ №7
ОТВЕТЫ НА БИЛЕТ № 8
ОТВЕТЫ НА БИЛЕТ № 9
ОТВЕТЫ НА БИЛЕТ № 10
ОТВЕТЫ НА БИЛЕТ № 11
ОТВЕТЫ НА БИЛЕТ № 12
ОТВЕТЫ НА БИЛЕТ № 13
ОТВЕТЫ НА БИЛЕТ № 14
ОТВЕТЫ НА БИЛЕТ № 15
ОТВЕТЫ НА БИЛЕТ № 16
ОТВЕТЫ НА БИЛЕТ № 17
Занятие № 3
Тема: Физико-химические свойства и структура белков. Диализ белков. Исследования денатурации белков. Хроматография аминокислот.
Вопросы для самоконтроля усвоения основных понятий темы
Билет №1
Что такое белки?
Что называется альфа - аминокислотами?
Какого рода химические связи имеются в нативных белках?
Что представляет собой вторичная структура белка?
Что такое диализ? Для чего он применяется?
Билет №2
Перечислите основные физиологические функции белков в организме.
Почему аминокислоты являются амфотерными электролитами (полиэлектролитами)?
Перечислите аминокислоты с полярными незаряженными радикалами и напишите структурные формулы глицина, цистеина и серина.
Какие связи стабилизируют вторичную структуру белка?
Что такое обратимое осаждение белков?
Билет № 3
Назовите белки и пептиды, применяемые в медицине в качестве лекарственных препаратов.
В виде каких ионов аминокислоты присутствуют в сильнокислых растворах?
Перечислите аминокислоты с неполярными радикалами и напишите структурные формулы валина и лейцина.
Какие Вы знаете типы белковых молекул, различных по конформации?
На какие группы классифицируются простые белки?
Билет № 4
Каков элементарный химический состав белков? Напишите процентное соотношение макроэлементов.
В виде каких ионов аминокислоты присутствуют в сильнощелочных растворах?
Что такое пептидная связь в белках? Дайте ее характеристику.
Как образуются водородные связи, стабилизирующие вторичную структуру белка?
Перечислите наиболее характерные признаки протаминов и гистонов.
Билет № 5
Чему равна молекулярная масса белков? Перечислите методы определения молекулярной массы.
Сколько аминокислот из числа протеиногенных обладают оптической активностью?
Изобразите пептидную связь в виде пограничных мезомерных структур.
Что такое первичная структура белка?
Перечислите наиболее характерные признаки альбуминов и глобулинов.
Билет № 6
Чем объясняется коллоидный характер водных растворов белка?
Сколько лево – и сколько правовращающих аминокислот из 18 оптически активных?
Какие стереоизомеры (D – или L - ) находятся в природных белках ?
Какие типы вторичной структуры белка вы знаете?
В каком биологическом материале содержится больше всего протаминов и гистонов?
Билет № 7
Какое физическое явление подтверждает коллоидный характер водных растворов белков?
Какие оптические изомеры аминокислот чаще всего встречаются в природе?
Что такое «мезомерная форма» пептидной связи и какие следствия вытекают из ее существования ?
Что собой представляет третичная структура белка?
Какова физиологическая функция альбуминов?
Билет № 8
Что такое белки?
Напишите схему изменения заряда кислого белка в зависимости от изменения рН раствора.
Что такое дисульфидная связь в белковой молекуле и как она построена?
Какие связи участвуют в поддержании третичной структуры белка?
Какова физиологическая функция глобулинов?
Билет № 9
Каков характер водных растворов белка? Укажите фактор стабильности водных растворов.
Каков принцип современной рациональной классификации природных аминокислот ?
Какие вы знаете нековалентные связи в белковой молекуле ?
Что собой представляет четвертичная структура белка?
Дайте характеристику глютелинам.
Билет № 10
Что такое первичная структура белка?
Перечислите четыре класса в классификации аминокислот, основанной на полярности радикалов (с примерами)?
Как возникает водородная связь во вторичной структуре ?
Все ли белки обладают четвертичной структурой?
Назовите представителей растительных белков глютелинов и проламинов.
Билет № 11
Изобразите молекулу белка в диссоциированном виде.
Перечислите аминокислоты с неполярными радикалами и напишите структурные формулы изолейцина, фенилаланина и метионина.
Могут ли возникнуть водородные связи между радикалами аминокислот ?
Какие Вы знаете белки, обладающие четвертичной структурой?
Дайте характеристику растительным белкам проламинов.
Билет № 12
Какого типа ионы получаются при диссоциации белков в растворе?
Перечислите аминокислоты с полярными незаряженными радикалами. Напишите структурные формулы треонина и цистеина.
Приведите пример образования ионной связи в белковой молекуле
Что такое денатурация белка?
Что такое «протеиноиды» ?
Билет № 13
Что такое изоэлектрическая точка раствора белка?
Перечислите и напишите структурные формулы аминокислоты с отрицательно заряженными радикалами.
Приведите пример образования неполярной связи в молекуле белка.
Какие изменения структуры белка происходят при денатурации?
Какова отличительная физико – химическая особенность протеиноидов?
Билет № 14
Что такое изоэлектрическая точка раствора белка?
Перечислите и напишите структурные формулы аминокислот с положительно заряженными радикалами.
Что определяет конформацию полипептидных цепей в молекуле белка?
Перечислите основные денатурирующие агенты.
Назовите представителей белков - протеиноидов.
Билет № 15
Перечислите факторы, приводящие к нарушению гидратации молекул белка в растворе
Назовите аминокислоты, редко встречающиеся в белках
Что определяет конформацию полипептидных цепей в молекуле белка?
Перечислите основные денатурирующие агенты.
Назовите представителей белков - протеиноидов.
Билет № 16
Перечислите основные физиологические функции белков в организме.
Какими веществами можно обратимо осаждать белки?
Какова физиологическая функция альбуминов?
Укажите факторы стабилизации водных растворов белков.
Назовите и напишите формулы аминокислот с отрицательно заряженными радикалами.
Ответы на контрольные вопросы
ОТВЕТЫ НА БИЛЕТ № 1
Белки - это высокомолекулярные природные соединения, построенные из альфа-аминокислот, соединенных пептидными связями.
Альфа-аминокислоты - это карбоновые кислоты, имеющие в альфа-положении аминогруппу.
Ковалентные (пептидные и дисульфидные) и нековалентные (водородные, ионные, неполярные).
(Вторичная структура белка - это регулярная пространственная конфигурация полипептидной цепи в виде альфа-спирали или бета - структуры.
Диализ - метод разделения веществ с помощью мембран, неспособных пропускать сквозь свои поры высокомолекулярные коллоидные частицы. Применяется для освобождения белков от низкомолекулярных соединений.
ОТВЕТЫ НА БИЛЕТ № 2
Структурная, каталитическая, защитная, опорная, сократительная, репродуктивная, транспортная, регуляторная, поддержания кислотно -щелочного равновесии и осмотического давления.
Аминокислоты одновременно содержат две группы, способные к ионизации: карбоксильную, обладающую кислотными свойствами и аминогруппу, обладающую основными свойствами
Глицин, серии, треонин, цистеин, тирозин, аспарагин, глютамини.
глицин цистеин серин
Водородные связи. Каждый кислород карбонильной группы аминокислотного остатка связан с азотом иминогруппы четвертого аминокислотного остатка, считая вдоль полипептидной цепи назад.
Осаждение, при котором возможно полностью вернуть осажденный белок к исходному нативному состоянию.
ОТВЕТЫ НА БИЛЕТ № 3.
Инсулин, соматотропный гормон, АКТГ (адренокортикотропный гормон), окситоцин, вазопрессин, гастрин, пепсин, трипсин и др.
В виде положительно заряженных ионов
Аланин, валин, лейцин, изолейцин, фенилаланин, триптофан, метионин, пролин:
валин лейцин
Глобулярные и фибриллярные.
| 5.Глютелины |
| 6.Проламины |
3.Альбумины | 7.Протеиноиды |
4.Глобулины |
ОТВЕТЫ НА БИЛЕТ № 4
Углерод - 50%, Водород - 7%, Кислород - 23%, Азот - 16%,Сера-3%.
В виде отрицательно заряженных ионов.
Пептидная (амидная) связь является основной, сильной ковалентной связью, соединяющей альфа-карбоксильную и альфа-аминогруппы соседних аминокислот.
Каждый атом кислорода карбонильной группы аминокислотного остатка связывается с атомом азота иминогруппы четвертого аминокислотного остатка, считая вдоль полипептидной цепи назад.
Выраженные щелочные свойства за счет большого содержания основных аминокислот (лизин, гистидин, аргинин). Сравнительно небольшая молекулярная масса (10-20 тыс.).
ОТВЕТЫ НА БИЛЕТ №5
Молекулярная масса белков колеблется от 6000 до нескольких миллионов углеродных единиц. Методы определения молекулярного веса: аналитический, электронномикроскопический, измерение осмотического давления, диффузный метод, измерение скорости седиментации, метод гель-фильтрации, электрофоретический.
Восемнадцать.
Специфическая последовательность расположения аминокислотных остатков и определенное их количество в полипептидной цепи белковой молекулы.
Составляют основную массу белков крови, избирательно осаждаются раствором сернокислого аммония, разделяются при электрофорезе на фракции: альбумины, α1-, α2-, β-, γ -глобулины.
ОТВЕТЫ НА БИЛЕТ № 6
Коллоидный характер белковых растворов объясняется огромными размерами белковых молекул.
10 - правовращающих аминокислот, 8 – левовращающих аминокислот.
L-ряда
Альфа-спираль и бета-структура
Протамины - сперма и молоки рыб (сальмин, скумбрии, клупеин), гистоны - в ядерном веществе, зобной железе, в белках эритроцитов (глобин).
ОТВЕТЫ НА БИЛЕТ № 7
Явление Тиндаля.
L -аминокислоты.
Связь между С- и N-атомами в пептидной связи занимает промежуточное положение между одинарной и двойной типами связи за счет сопряжения электронов и отличается повышенной cстабильностью. Вследствие этого:
иминогруппа (- NН -) пептидной связи не может отщеплять (или присоединять протон в диапазоне рН от 0 до 14.
отсутствует свободное вращение атомов вокруг -С-N- связи, поэтому атомы пептидной связи лежат в одной плоскости, образуя цис- или транс-формы.
Это пространственная упаковка чередующихся спиральных и линейных участков полипептидной цепи в компактное тело.
Принимают участие в осмотическом давлении крови и транспортировке различных веществ.
ОТВЕТЫ НА БИЛЕТ № 8.
Белки - высокомолекулярные природные соединения, построенные из альфа-аминокислот, соединенных пептидными связями.
кислый нейтральный щелочной
белок белок белок
Дисульфидная связь - это прочная ковалентная связь, которая образуется в результате отщепления водорода от SН - группы двух цистеиновых остатков в молекуле белка.
Водородные связи между пептидными группами, водородные связи между боковыми цепями аминокислотных остатков, ионные связи, дисульфидные связи, неполярные (гидрофобные) связи.
Глобулины участвуют в образовании иммунных веществ: антител и антитоксинов, и выполняют транспортную функцию.
ОТВЕТЫ НА БИЛЕТ № 9
Коллоидные растворы. Одноименный заряд частиц белка в растворе.
Принцип классификации основан на различиях полярности радикалов при физиологическом значении рН (рН=7).
Водородные, ионные, полярные.
Взаимное пространственное расположение субъединиц белка-олигомера связанных нековалентными связями в белковой молекуле и представляющих единое образование в функциональном и структурном отношении.
Это белки растительного происхождения. Нерастворимы в воде и нейтральных солевых растворах, растворимы в разбавленных щелочах. Входят в состав клейковины зерна.
ОТВЕТЫ НА БИЛЕТ № 10.
Специфическая последовательность расположения аминокислотных остатков в полипептидной цепи белковых молекул.
1. аминокислоты с неполярными радикалами;
2.аминокислоты с полярными незаряженными радикалами;
3. с отрицательно заряженными полярными радикалами;
4.с положительно заряженными полярными радикалами
3.Водородная связь в структуре белка создается за счет повышенной электроотрицательности СО-групп пептидной связи и усиленной электроположительности МН-группы. Водородный атом NН-группы одной пептидной связи притягивается атомом кислорода четвертой по счету пептидной связи, образуя водородную связь.
4.Нет.
5.Оризеин (из риса), глютенин (из пшеницы), глиадин (из пшеничных ядер), гордеин (из ячменя), зеин (из кукурузы).
ОТВЕТЫ НА БИЛЕТ № 11.
Алании, валин, лейцин, изолейцин, фенилаланин, триптофан, метионин, пролин:
изолейцин фенилаланин метионин
Да. Например, между тирозином и карбоксильной группой глутаминовой кислоты.
Гемоглобин, лактатдегидрогеназа.
Нерастворимы в воде и солевых растворах, растворяются в 70% спирте. Содержат большое количество аминокислоты пролина.
ОТВЕТЫ НА БИЛЕТ № 12.
Амфионы.
Глицин, серии, треонин, цистеин, тирозин, аспарагин, глютамин:
треонин цистеин
Ионная связь образована между аминогруппой в радикале лизина и карбоксильной группой в радикале аспарагиновой кислоты.
Превращение биологически активного нативного белка в форму, теряющую естественные свойства (растворимость, электрофоретическую подвижность, ферментативную активность).
Это белковоподобные вещества, включающие белки опорных тканей (костей, хрящей, сухожилий).
ОТВЕТЫ НА БИЛЕТ № 13.
Изоэлектрической точкой называется то значение рН, при котором суммарный заряд белка равен нулю.
Аспарагиновая кислота, глутаминовая кислота.
Неполярная связь образуется между неполярными радикалами аминокислот, например фенилаланина и аланина.
Нарушение третичной структуры и частично вторичной при отсутствии изменения первичной структуры.
Их полная нерастворимость в воде, солевых растворах, разведенных кислотах и щелочах, неперевариваемость пищеварительными ферментами.
ОТВЕТЫ НА БИЛЕТ № 14.
То значение рН, при котором суммарный заряд белка в растворе равен нулю.
Гистидин, лизин, аргинин.
studfiles.net
Из чего состоит белок? Примеры простых и сложных белков
Чтобы представить, какое значение имеют белки, достаточно вспомнить широко известную фразу Фридриха Энгельса: «Жизнь – есть способ существования белковых тел». На самом деле на Земле эти вещества наряду с нуклеиновыми кислотами обуславливают все проявления живой материи. В данной работе мы выясним, из чего состоит белок, изучим, какую функцию он выполняет, а также определим особенности строения различных видов.
Пептиды – высокоорганизованные полимеры
Действительно, в живой клетке как растительной, так и животной, белки количественно преобладают над другими органическими веществами, а также выполняют наибольшее количество разнообразных функций. Они участвуют во множестве различных очень важных клеточных процессов, таких как движение, защита, сигнальная функция и так далее. Например, в мышечной ткани животных и человека пептиды составляют до 85 % от массы сухого вещества, а в костной и дерме – от 15-50 %.
Все клеточные и тканевые белки состоят из аминокислот (20 видов). Их количество в живых организмах всегда равно двадцати видам. Различные комбинации мономеров пептидов образуют разнообразие белков в природе. Оно исчисляется астрономическим числом 2х1018 возможных видов. В биохимии полипептиды называют высокомолекулярными биологическими полимерами – макромолекулами.
Аминокислоты – мономеры протеинов
Все 20 видов этих химических соединений являются структурными единицами белков и имеют общую формулу Nh3-R-COOH. Они являются амфотерными органическими веществами, способными проявлять как основные, так и кислотные свойства. Не только простые белки, но и сложные, содержат так называемые заменимые аминокислоты. А вот незаменимых мономеров, например, таких как, валин, лизин, метионин можно встретить только в некоторых видах белков.Такие протеины именуют полноценными.
Поэтому, характеризуя полимер учитывают не только из скольких аминокислот состоит белок, но и какие именно мономеры соединяются пептидными связями в макромолекулу. Добавим еще, что заменимые аминокислоты, такие как аспарагин, глютаминовая кислота, цистеин могут самостоятельно синтезироваться в клетках человека и животных. Незаменимые мономеры белков образуются в клетках бактерий, растений и грибов. Они поступают в гетеротрофные организмы только с пищей.
Как образуется полипептид
Как известно, 20 различных аминокислот могут соединяться во множество всевозможных белковых молекул. Как же происходит связывание мономеров между собой? Оказывается, что карбоксильные и аминные группы рядом лежащих аминокислот взаимодействуют между собой. Образуются так называемые пептидные связи, а молекулы воды выделяются как побочный продукт реакции поликонденсации. Образовавшиеся молекулы белков состоят из остатков аминокислот и многократно повторяющихся пептидных связей. Поэтому их еще называют полипептидами.
Часто протеины могут содержать не одну, а сразу несколько полипептидных цепей и состоять из многих тысяч аминокислотных остатков. Более того, простые белки, а также протеиды способны усложнять свою пространственную конфигурацию. При этом создается не только первичная, но и вторичная, третичная и даже четвертичная структура. Рассмотрим этот процесс более детально. Продолжая изучать вопрос: из чего состоит белок, выясним какую же конфигурацию имеет эта макромолекула. Выше мы установили, что полипептидная цепь содержит множество ковалентных химических связей. Именно такая структура называется первичной.
В ней важную роль играет количественный и качественный состав аминокислот, а также последовательности их соединения. Вторичная структура возникает в момент образования спирали. Она стабилизируется многими вновь возникающими водородными связями.
Высшие уровни организации белков
Третичная структура появляется в результате упаковывания спирали в виде шара – глобулы, например, белок мышечной ткани миоглобин имеет именно такую пространственную структуру. Она поддерживается, как вновь образующимися водородными связями, так и дисульфидными мостиками (если в молекулу белка входит несколько остатков цистеина). Четвертичная форма – это результат объединения в единую структуру сразу нескольких белковых глобул посредством новых видов взаимодействий, например, гидрофобных или электростатических. Наряду с пептидами в четвертичную структуру входят и небелковые части. Ими могут быть ионы магния, железа, меди или же остатки ортофосфатной или нуклеиновых кислот, а также липиды.
Особенности биосинтеза протеинов
Ранее нами было выяснено из чего состоит белок. Он построен из последовательности аминокислот. Их сборка в полипептидную цепь происходит в рибосомах – немембранных органеллах растительных и животных клеток. В самом процессе биосинтеза также принимают участие молекулы информационной и транспортных РНК. Первые являются матрицей для сборки белка, а вторые транспортируют различные аминокислоты. В процессе клеточного биосинтеза возникает дилемма, а именно, белок состоит из нуклеотидов или аминокислот? Ответ однозначный – полипептиды как простые, так и сложные состоят из амфотерных органических соединений – аминокислот. В жизненном цикле клетки существуют периоды её деятельности, когда синтез белков происходит особенно активно. Это так называемые стадии J1 и J2 интерфазы. В это время клетка активно растет и нуждается в большом количестве строительного материала, которым и является белок. Кроме того, в результате митоза, заканчивающегося образованием двух дочерних клеток, каждая из них нуждается в большом количестве органических веществ, поэтому на каналах гладкой эндоплазматической сети идет активный синтез липидов и углеводов, а на гранулярной ЭПС происходит биосинтез белков.
Функции белков
Зная из чего состоит белок, можно объяснить как огромное разнообразие их видов, так и уникальные свойства, присущие эти веществам. Белки выполняют в клетке самые разнообразные функции, например, строительную, так как входят в состав мембран всех клеток и органоидов: митохондрий, хлоропластов, лизосом, комплекса Гольджи и так далее. Такие пептиды, как гамоглобулины или антитела – это примеры простых белков, выполняющих защитную функцию. Иными словами, клеточный иммунитет – это результат действия данных веществ. Сложный белок – гемоцианин, наряду с гемоглобином, выполняет у животных транспортную функцию, то есть переносит кислород в крови. Сигнальные белки, входящие в состав клеточных мембран, обеспечивают информирование самой клетки о веществах, пытающихся попасть в её цитоплазму. Пептид альбумин отвечает за основные показатели крови, например, за её способность к свертыванию. Белок куриных яиц овальбумин запасется в клетке и служит основным источником питательных веществ.
Белки – основа цитосклета клетки
Одна из важных функций пептидов – опорная. Она очень важна для сохранения формы и объема живых клеток. Так называемые подмембранные структуры – микротрубочки и микронити переплетаясь образуют внутренний скелет клетки. Белки, входящие в их состав, например, тубулин, способны легко сжиматься и растягиваться. Это помогает клетке сохранить свою форму при различных механических деформациях.
В растительных клетках, наряду с белками гиалоплазмы, опорную функцию выполняют также тяжи цитоплазмы – плазмодесмы. Проходя через поры в клеточной стенке, они обуславливают взаимосвязь между рядом лежащими клеточными структурами, образующими растительную ткань.
Ферменты – вещества белковой природы
Одно из важнейших свойств протеинов – их влияние на скорость протекания химических реакций. Основные белки способны к частичной денатурации – процессу раскручивания макромолекулы в третичной или четвертичной структуре. Сама же полипептидная цепь при этом не разрушается. Частичная денатурация лежит в основе как сигнальной, так и каталитической функций белка. Последнее свойство представляет собой способность ферментов влиять на скорость протекания биохимических реакций в ядре и цитоплазме клетки. Пептиды, которые, наоборот, снижают скорость химических процессов принято называть не ферментами, а ингибиторами. Например, простой белок каталаза является ферментом, который ускоряет процесс расщепления токсического вещества пероксида водорода. Оно образуется как конечный продукт многих химических реакций. Каталаза ускоряет его утилизацию до нейтральных веществ: воды и кислорода.
Свойства белков
Пептиды классифицируют по многим признакам. Например, по отношению к воде их можно разделить на гидрофильные и гидрофобные. Температура также по-разному влияет на структуру и свойства белковых молекул. К примеру, белок кератин – компонент ногтей и волос может выдерживать как низкую, так и высокую температуру, то есть является термолабильным. А вот белок овальбумин, уже упоминающийся ранее, при нагревании до 80-100 °С полностью разрушается. Это значит, что его первичная структура расщепляется на остатки аминокислот. Такой процесс называется деструкцией. Какие бы условия мы не создавали, в нативную форму белок возвратится уже не может. Двигательные белки – актин и милозин присутствуют в мышечных волокнах. Их поочередное сокращение и расслабление лежит в основе работы мышечной ткани.
fb.ru
КЛАССИФИКАЦИЯ БЕЛКОВ. ПРОСТЫЕ И СЛОЖНЫЕ БЕЛКИ — КиберПедия
Тесты
1. Присутствие глобулинов в растворе можно доказать:
Электрофорезом.Колоночной гель -фильтрацией.Высаливанием при 50% насыщении сульфатом аммония. Высаливанием при 100% насыщении сульфатом аммония. Денатурацией мочевиной.
2. Простые белки должны отвечать требованию:
Иметь маленькую молекулярную массу. Иметь однообразный аминокислотный состав. Состоять только из аминокислот. Не обладать четвертичной структурой. Иметь фибриллярное строение.
3. Сложные белки должны отвечать требованию:
Иметь большую молекулярную массу. Иметь олигомерное строение. Иметь разнообразный аминокислотный состав. Содержать в составе помимо аминокислот другие компоненты. Обладать способностью к кооперативным изменениям конформации.
4. Простыми белками являются:
Сывороточный альбумин. Миоглобин. Гемоглобин. Казеиноген. Эластин.Кератин.
5. Сложными белками являются:
Каталаза.Сукцинатдегидрогеназа. Эластин. Кератин. Сывороточный альбумин. Гемоглобин.Миоглобин.
6. С помощью высаливания из смеси белков можно выделить:
Оваальбумин. Гамма-глобулин. Сывороточный альбумин.
7. К гемопротеидам не относятся:
Миоглобин. Цитохром С. Трансферрин. Каталаза
8.Муцин слюны относится к классу белков:
Гликопротеиды. Хромопротеиды. Фосфопротеиды. Липопротеиды
9. Иммуноглобулины мигрируют в составе фракции белков плазмы крови:
Альфа 1. Альфа 2. Бета. Гамма – глобулины
10. Овоальбумин куриного яйца является составной частью:
Гликопротеидов. Фосфопротеидов. Липопротеидов. Нуклеопротеидов
11. Альбумин сыворотки крови человека характеризуется:
Высоким содержанием аргинина и лизина. Отрицательным зарядом при рН =7. Молекулярной массой 100 кДа
12. Гистоны характеризуются следующими свойствами:
Имеют отрицательный заряд. Стабилизируют молекулу ДНК. Являются низкомолекулярными белками. Несут положительный заряд
13. Альбумины характеризуются следующими свойствами:
Имеют отрицательный заряд в нейтральной среде. Гидрофильны. Легко высаливаются из растворов. Бедны по аминокислотному составу
Ситуационные задачи
1. Гистоны – небольшие по молекулярной массе основные белки, связывающиеся с ДНК в хроматине. Докажите, какие аминокислоты, определяющие суммарный положительный заряд, должны преобладать в гистонах.
2. При употреблении большого количества сырого яичного белка, богатого гликопротеидом авидином, образующим с биотином в желудочно-кишечном тракте нерастворимый комплекс, у детей может развиться гиповитаминоз биотина. Почему варёные яйца такого эффекта не вызывают?
Вопросы к итоговому занятию по теме «Введение в биохимию», «Химия белков»
1. Предмет и задачи биологической химии. Краткая история её развития. Роль отечественных и зарубежных учёных в развитии биологической химии. Значение биологической химии для биологии и медицины.
2. Белки как особый класс полимерных высокомолекулярных органических соединений. Содержание белков в органах и тканях человека. Общебиологические функции белков. Многообразие белков в структурно-функциональном отношении. Элементарный и аминокислотный состав белков. Изменение белкового состава тканей в онтогенезе.
3. Типы связей аминокислот в молекулах белков и их роль в стабилизации белковой структуры. Пептиды. Номенклатура пептидов, их свойства. Физиологически активные пептиды крови и других тканей человека.
4. Физико-химические свойства белков: молекулярная масса, формы белковых молекул, растворимость, способность к гидратации. Ионизация белков в водных растворах, их оптические свойства. Практическое применение указанных физико-химических свойств.
5. Общие принципы выделения белков из тканей. Очистка и фракционирование. Обнаружение белков в растворах. Цветные и осадочные реакции на белки. Определение содержания белков в тканях и биологических жидкостях.
6. Современные представления о структуре молекул белков. Первичная структура белков. Зависимость биологических свойств белков от первичной структуры. Видовая специфичность белков. Наследственные изменения первичной структуры. Наследственные протеинопатии: серповидно-клеточная анемия и другие примеры.
7. Вторичная и третичная структуры белковых молекул. Конформация белков. Роль конформационных изменений в функционировании белков. Денатурация белков: физико-химическая сущность этого явления и его практическое значение.
8. Четвертичная структура белков. Олигомерные белки, их преимущества по сравнению с мономерными. Кооперативные изменения конформации протомеров в олигомерных белках. Примеры строения и функционирования олигомерных белков: гемоглобин (в сравнении с миоглобином), аллостерические ферменты, полиферментные комплексы. Принцип самосборки в формировании сложной структуры белковых молекул.
9. Классификация белков. Основные группы простых и сложных белков и их характеристика.
cyberpedia.su
Простые и сложные белки. Строение, функции, свойства, характеристика, примеры сложных белков
Одно из определений жизни звучит следующим образом: «Жизнь есть способ существования белковых тел». На нашей планете все без исключения организмы содержат такие органические вещества, как протеины. В данной статье будут описаны простые и сложные белки, определены различия в молекулярном строении, а также рассмотрены их функции в клетке.
Что такое белки
С точки зрения биохимии - это высокомолекулярные органические полимеры, мономерами которых являются 20 видов различных аминокислот. Они соединяются между собой ковалентными химическими связями, иначе называемые пептидными. Так как мономеры белка являются амфотерными соединениями, они содержат как аминогруппу, так и карбоксильную функциональную группы. Химическая связь СО-NH возникает между ними.
Если полипептид состоит из остатков аминокислотных звеньев, он образует простой белок. Молекулы полимера, дополнительно содержащие ионы металлов, витамины, нуклеотиды, углеводы - это сложные белки. Далее мы рассмотрим пространственное строение полипептидов.
Уровни организации белковых молекул
Они представлены четырьмя различными конфигурациями. Первая структура - линейная, она наиболее проста и имеет вид полипептидной цепи, во время её спирализации происходит образование дополнительных водородных связей. Они стабилизируют спираль, которая называется вторичной структурой. Третичный уровень организации имеют простые и сложные белки, большинство растительных и животных клеток. Последняя конфигурация - четвертичная, возникает при взаимодействии нескольких молекул нативной структуры, объединенных коферментами, именно такое строение имеют сложные белки, выполняющие в организме разнообразные функции.
Разнообразие простых белков
Эта группа полипептидов немногочисленна. Их молекулы состоят только из аминокислотных остатков. К протеинам относятся, например, гистоны и глобулины. Первые представлены в структуре ядра и объединены с молекулами ДНК. Вторая группа - глобулины - считаются главными компонентами плазмы крови. Такой белок, как гамма-глобулин, выполняет функции иммунной защиты и является антителом. Эти соединения могут образовывать комплексы, в состав которых входят сложные углеводы и белки. Такие фибриллярные простые белки, как коллаген и эластин, входят в состав соединительной ткани, хрящей, сухожилий, кожи. Их главные функции - строительная и опорная.
Белок тубулин входит в состав микротрубочек, которые являются компонентами ресничек и жгутиков таких одноклеточных организмов, как инфузории, эвглены, паразитические жгутиконосцы. Этот же белок входит в состав многоклеточных организмов (жгутики сперматозоидов, реснички яйцеклеток, реснитчатый эпителий тонкого кишечника).
Белок альбумин выполняет запасающую функцию (например, белок куриных яиц). В эндосперме семян злаковых растений – ржи, риса, пшеницы - накапливаются молекулы белков. Они называются клеточными включениями. Эти вещества использует зародыш семени в начале своего развития. Кроме того, высокое содержание белка в зерновках пшеницы является очень важным показателем качества муки. Хлеб, испеченный из муки богатой клейковиной, имеет высокие вкусовые качества и более полезен. Клейковину содержат так называемые твердые сорта пшеницы. В плазме крови глубоководных рыб содержатся белки, препятствующие их гибели от холода. Они обладают свойствами антифриза, предотвращая гибель организма при низких температурах воды. С другой стороны, в составе клеточной стенки термофильных бактерий, живущих в геотермальных источниках, содержатся белки, способные сохранять свою природную конфигурацию (третичную или четвертичную структуру) и не денатурировать в интервале температур от +50 до + 90 °С.
Протеиды
Это сложные белки, для которых характерно большое разнообразие в связи с различными функциями, выполняемыми ими. Как отмечалось ранее, эта группа полипептидов, кроме белковой части, содержит простетическую группу. Под влиянием различных факторов, таких как высокая температура, соли тяжелых металлов, концентрированные щелочи и кислоты, сложные белки могут изменять свою пространственную форму, упрощая её. Это явление называется денатурацией. Строение сложных белков нарушается, водородные связи рвутся, а молекулы теряют свои свойства и функции. Как правило, денатурация носит необратимый характер. Но у некоторых полипептидов, выполняющих каталитическую, двигательную и сигнальную функции, возможна ренатурация - восстановление природной структуры протеида.
Если действие дестабилизирующего фактора происходит продолжительное время, белковая молекула разрушается полностью. Это приводит к разрыву пептидных связей первичной структуры. Восстановить протеин и его функции уже невозможно. Такое явление называется деструкцией. Примером может служить варка куриных яиц: жидкий белок – альбумин, находящийся в третичной структуре, полностью разрушается.
Биосинтез белков
Еще раз напомним, что в состав полипептидов живых организмов входит 20 аминокислот, среди которых есть незаменимые. Это лизин, метионин, фенилаланин и т. д. Они поступают в кровь из отделов тонкой кишки после расщепления в ней белковых продуктов. Чтобы синтезировать заменимые аминокислоты (аланин, пролин, серин), грибы и животные используют азотсодержащие соединения. Растения, являясь автотрофами, самостоятельно образуют все необходимые составные мономеры, представляющие сложные белки. Для этого в реакциях ассимиляции у них используются нитраты, аммиак или свободный азот. У микроорганизмов некоторые виды обеспечивают себя полным аминокислотным набором, а у других синтезируются только некоторые мономеры. Этапы биосинтеза белков протекают в клетках всех живых организмов. В ядре происходит транскрипция, а в цитоплазме клетки - трансляция.
Первый этап – синтез предшественника иРНК происходит при участии фермента РНК-полимеразы. Он разрывает водородные связи между цепями ДНК, и на одной из них по принципу комплиментарности собирает молекулу пре-иРНК. Она подвергается слайсингу, то есть созревает, и далее выходит из ядра в цитоплазму, образуя матричную рибонуклеиновую кислоту.
Для осуществления второго этапа необходимо наличие специальных органелл – рибосом, а также молекул информационных и транспортных рибонуклеиновых кислот. Еще одним важным условием является наличие молекул АТФ, так как реакции пластического обмена, к которым принадлежит биосинтез белков, происходят с поглощением энергии.
Ферменты, их строение и функции
Это большая группа белков (около 2000), выполняющих роль веществ, влияющих на скорость протекания биохимических реакций в клетках. Они могут быть простыми (трепсин, пепсин) или сложными. Сложные белки состоят из кофермента и апофермента. Специфичность самого белка относительно соединений, на которые он воздействует, определяет кофермент, а активность протеидов наблюдается только в том случае, когда белковый компонент связан с апоферментом. Каталитическая активность фермента зависит не от всей молекулы, а только от активного центра. Его строение соответствует химической структуре катализируемого вещества по принципу «ключ-замок», поэтому действие ферментов строго специфично. Функции сложных белков заключаются как в участии в метаболических процессах, так и в использовании их в качестве акцепторов.
Классы сложных белков
Они были разработаны биохимиками, исходя из 3 критериев: физико-химических свойств, функциональных особенностей и специфики структурных признаков протеидов. К первой группе относятся полипептиды, различающиеся электрохимическими свойствами. Они делятся на основные, нейтральные и кислые. По отношению к воде белки могут быть гидрофильными, амфифильными и гидрофобными. Ко второй группе относятся ферменты, которые были рассмотрены нами ранее. Третья группа включает полипептиды, различающиеся химическим составом простетических групп (это хромопротеиды, нуклеопротеиды, металлопротеиды).
Рассмотрим свойства сложных белков более подробно. Так, например, кислый белок, входящий в состав рибосом, содержит 120 аминокислот и является универсальным. Он находится в белоксинтезирующих органеллах, как прокариотических, так и эукариотических клеток. Еще один представитель этой группы - белок S-100, состоит из двух цепей, связанных ионом кальция. Он входит в состав нейронов и нейроглии - опорной ткани нервной системы. Общее свойство всех кислых белков - это высокое содержание двухосновных карбоновых кислот: глутаминовой и аспарагиновой. К щелочным белкам относятся гистоны - протеины, входящие в состав нуклеиновых кислот ДНК и РНК. Особенностью их химического состава является большое количество лизина и аргинина. Гистоны вместе с хроматином ядра образуют хромосомы - важнейшие структуры наследственности клеток. Эти белки участвуют в процессах транскрипции и трансляции. Амфифильные протеины широко представлены в клеточных мембранах, образуя липопротеиновый бислой. Таким образом, изучив выше рассмотренные группы сложных белков, мы убедились в том, что их физико-химические свойства обусловлены строением белкового компонента и простетических групп.
Некоторые сложные белки клеточных мембран способны узнавать различные химические соединения, например антигены, и реагировать на них. Это сигнальная функция протеидов, она очень важна для процессов избирательного поглощения веществ, поступающих из внешней среды, и для её защиты.
Гликопротеины и протеогликаны
Они являются сложными белками, отличающимися между собой биохимическим составом простетических групп. Если химические связи между белковым компонентом и углеводной частью - ковалентно-гликозидные, такие вещества называются гликопротеинами. Апофермент у них представлен молекулами моно- и олигосахаридов, примерами таких белков служат протромбин, фибриноген (белки, участвующие в свертывании крови). Кортико- и гонадотропные гормоны, интерфероны, мембранные ферменты также являются гликопротеинами. В молекулах протеогликанов белковая часть составляет всего 5%, остальное приходится на простетическую группу (гетерополитсахарид). Обе части соединены гликозидной связью группы ОН-треонина и аргинина и группы NH₂-глутамина и лизина. Молекулы протеогликанов играют очень важную роль в водно-солевом обмене клетки. Ниже представлена таблица сложных белков, изученных нами.
Гликопротеины | Протеогликаны |
Структурные компоненты простетических групп | |
1. Моносахариды (глюкоза, галактоза, манноза) | 1. Гиалуроновая кислота |
2. Олигосахариды (мальтоза, лактоза, сахароза) | 2. Хондроитиновая кислота. |
3. Ацетилированные аминопроизводные моносахаридов | 3. Гепарин |
4. Дезоксисахариды | |
5. Нейраминовые и сиаловые кислоты |
Металлопротеиды
Эти вещества содержат в составе своих молекул ионы одного или нескольких металлов. Рассмотрим примеры сложных белков, относящихся к вышеназванной группе. Это прежде всего ферменты, такие как цитохромоксидаза. Она располагается на кристах митохондрий и активизирует синтез АТФ. Феррин и трансферрин - протеиды, содержащие ионы железа. Первый депонирует их в клетках, а второй является транспортным белком крови. Еще один металлопротеид - альфаамелаза, она содержит ионы кальция, входит в состав слюны и сока поджелудочной железы, участвуя в расщеплении крахмала. Гемоглобин является как металлопротеидом, так и хромопротеидом. Он выполняет функции транспортного белка, перенося кислород. В результате образуется соединение оксигемоглобин. При вдыхании монооксида карбона, иначе называемого угарным газом, его молекулы образуют с гемоглобином эритроцитов очень стойкое соединение. Оно быстро разносится по органам и тканям, вызывая отравление клеток. В итоге при длительном вдыхании угарного газа наступает смерть от удушья. Гемоглобин частично переносит и углекислый газ, образовавшийся в процессах катаболизма. С током крови диоксид карбона поступает в легкие и почки, а из них - во внешнюю среду. У некоторых ракообразных и моллюсков транспортным белком, переносящим кислород, служит гемоцианин. Вместо железа он содержит ионы меди, поэтому кровь животных имеет не красный, а голубой цвет.
Функции хлорофилла
Как мы уже упоминали ранее, сложные белки могут образовывать комплексы с пигментами – окрашенными органическими веществами. Их цвет зависит от хромоформных групп, которые избирательно поглощают определённые спектры солнечного света. В клетках растений есть зеленые пластиды – хлоропласты, содержащие пигмент хлорофилл. В его состав входят атомы магния и многоатомный спирт фитол. Они связаны с белковыми молекулами, а сами хлоропласты содержат тилакоиды (пластинки), или мембраны, связанные в стопки – граны. В них находятся фотосинтезирующие пигменты – хлорофиллы - и дополнительные каротиноиды. Здесь же находятся все ферменты, используемые в фотосинтетических реакциях. Таким образом, хромопротеиды, к которым относится и хлорофилл, выполняют важнейшие функции в обмене веществ, а именно в реакциях ассимиляции и диссимиляции.
Вирусные белки
Их содержат представители неклеточных форм жизни, входящие в Царство Вира. Вирусы не имеют собственного белоксинтезирующего аппарата. Нуклеиновые кислоты, ДНК или РНК, могут вызывать синтез собственных частиц самой клеткой, инфицированной вирусом. Простые вирусы состоят только из белковых молекул, компактно собранных в структуры спиральной или многогранной формы, как, например, вирус табачной мозаики. Сложные вирусы имеют дополнительную мембрану, составляющую часть плазматической оболочки клетки-хозяина. В неё могут входить гликопротеиды (вирус гепатита В, вирус оспы). Основная функция гликопротеидов — это узнавание специфических рецепторов на мембране клетки хозяина. В состав дополнительных вирусных оболочек входят и белки-ферменты, обеспечивающие редупликацию ДНК или транскрипцию РНК. Исходя из вышесказанного, можно сделать следующий вывод: белки оболочек вирусных частиц имеют специфическое строение, зависящее от мембранных белков клетки-хозяина.
В данной статье нами была дана характеристика сложных белков, изучены их строение и функции в клетках различных живых организмов.
загрузка...
worldfb.ru
Простые и сложные белки. Строение, функции, свойства, характеристика, примеры сложных белков
Одно из определений жизни звучит следующим образом: «Жизнь есть способ существования белковых тел». На нашей планете все без исключения организмы содержат такие органические вещества, как протеины. В данной статье будут описаны простые и сложные белки, определены различия в молекулярном строении, а также рассмотрены их функции в клетке.
Что такое белки
С точки зрения биохимии - это высокомолекулярные органические полимеры, мономерами которых являются 20 видов различных аминокислот. Они соединяются между собой ковалентными химическими связями, иначе называемые пептидными. Так как мономеры белка являются амфотерными соединениями, они содержат как аминогруппу, так и карбоксильную функциональную группы. Химическая связь СО-NH возникает между ними.
Если полипептид состоит из остатков аминокислотных звеньев, он образует простой белок. Молекулы полимера, дополнительно содержащие ионы металлов, витамины, нуклеотиды, углеводы - это сложные белки. Далее мы рассмотрим пространственное строение полипептидов.
Уровни организации белковых молекул
Они представлены четырьмя различными конфигурациями. Первая структура - линейная, она наиболее проста и имеет вид полипептидной цепи, во время её спирализации происходит образование дополнительных водородных связей. Они стабилизируют спираль, которая называется вторичной структурой. Третичный уровень организации имеют простые и сложные белки, большинство растительных и животных клеток. Последняя конфигурация - четвертичная, возникает при взаимодействии нескольких молекул нативной структуры, объединенных коферментами, именно такое строение имеют сложные белки, выполняющие в организме разнообразные функции.
Разнообразие простых белков
Эта группа полипептидов немногочисленна. Их молекулы состоят только из аминокислотных остатков. К протеинам относятся, например, гистоны и глобулины. Первые представлены в структуре ядра и объединены с молекулами ДНК. Вторая группа - глобулины - считаются главными компонентами плазмы крови. Такой белок, как гамма-глобулин, выполняет функции иммунной защиты и является антителом. Эти соединения могут образовывать комплексы, в состав которых входят сложные углеводы и белки. Такие фибриллярные простые белки, как коллаген и эластин, входят в состав соединительной ткани, хрящей, сухожилий, кожи. Их главные функции - строительная и опорная.
Белок тубулин входит в состав микротрубочек, которые являются компонентами ресничек и жгутиков таких одноклеточных организмов, как инфузории, эвглены, паразитические жгутиконосцы. Этот же белок входит в состав многоклеточных организмов (жгутики сперматозоидов, реснички яйцеклеток, реснитчатый эпителий тонкого кишечника).
Белок альбумин выполняет запасающую функцию (например, белок куриных яиц). В эндосперме семян злаковых растений – ржи, риса, пшеницы - накапливаются молекулы белков. Они называются клеточными включениями. Эти вещества использует зародыш семени в начале своего развития. Кроме того, высокое содержание белка в зерновках пшеницы является очень важным показателем качества муки. Хлеб, испеченный из муки богатой клейковиной, имеет высокие вкусовые качества и более полезен. Клейковину содержат так называемые твердые сорта пшеницы. В плазме крови глубоководных рыб содержатся белки, препятствующие их гибели от холода. Они обладают свойствами антифриза, предотвращая гибель организма при низких температурах воды. С другой стороны, в составе клеточной стенки термофильных бактерий, живущих в геотермальных источниках, содержатся белки, способные сохранять свою природную конфигурацию (третичную или четвертичную структуру) и не денатурировать в интервале температур от +50 до + 90 °С.
Протеиды
Это сложные белки, для которых характерно большое разнообразие в связи с различными функциями, выполняемыми ими. Как отмечалось ранее, эта группа полипептидов, кроме белковой части, содержит простетическую группу. Под влиянием различных факторов, таких как высокая температура, соли тяжелых металлов, концентрированные щелочи и кислоты, сложные белки могут изменять свою пространственную форму, упрощая её. Это явление называется денатурацией. Строение сложных белков нарушается, водородные связи рвутся, а молекулы теряют свои свойства и функции. Как правило, денатурация носит необратимый характер. Но у некоторых полипептидов, выполняющих каталитическую, двигательную и сигнальную функции, возможна ренатурация - восстановление природной структуры протеида.
Если действие дестабилизирующего фактора происходит продолжительное время, белковая молекула разрушается полностью. Это приводит к разрыву пептидных связей первичной структуры. Восстановить протеин и его функции уже невозможно. Такое явление называется деструкцией. Примером может служить варка куриных яиц: жидкий белок – альбумин, находящийся в третичной структуре, полностью разрушается.
Биосинтез белков
Еще раз напомним, что в состав полипептидов живых организмов входит 20 аминокислот, среди которых есть незаменимые. Это лизин, метионин, фенилаланин и т. д. Они поступают в кровь из отделов тонкой кишки после расщепления в ней белковых продуктов. Чтобы синтезировать заменимые аминокислоты (аланин, пролин, серин), грибы и животные используют азотсодержащие соединения. Растения, являясь автотрофами, самостоятельно образуют все необходимые составные мономеры, представляющие сложные белки. Для этого в реакциях ассимиляции у них используются нитраты, аммиак или свободный азот. У микроорганизмов некоторые виды обеспечивают себя полным аминокислотным набором, а у других синтезируются только некоторые мономеры. Этапы биосинтеза белков протекают в клетках всех живых организмов. В ядре происходит транскрипция, а в цитоплазме клетки - трансляция.
Первый этап – синтез предшественника иРНК происходит при участии фермента РНК-полимеразы. Он разрывает водородные связи между цепями ДНК, и на одной из них по принципу комплиментарности собирает молекулу пре-иРНК. Она подвергается слайсингу, то есть созревает, и далее выходит из ядра в цитоплазму, образуя матричную рибонуклеиновую кислоту.
Для осуществления второго этапа необходимо наличие специальных органелл – рибосом, а также молекул информационных и транспортных рибонуклеиновых кислот. Еще одним важным условием является наличие молекул АТФ, так как реакции пластического обмена, к которым принадлежит биосинтез белков, происходят с поглощением энергии.
Ферменты, их строение и функции
Это большая группа белков (около 2000), выполняющих роль веществ, влияющих на скорость протекания биохимических реакций в клетках. Они могут быть простыми (трепсин, пепсин) или сложными. Сложные белки состоят из кофермента и апофермента. Специфичность самого белка относительно соединений, на которые он воздействует, определяет кофермент, а активность протеидов наблюдается только в том случае, когда белковый компонент связан с апоферментом. Каталитическая активность фермента зависит не от всей молекулы, а только от активного центра. Его строение соответствует химической структуре катализируемого вещества по принципу «ключ-замок», поэтому действие ферментов строго специфично. Функции сложных белков заключаются как в участии в метаболических процессах, так и в использовании их в качестве акцепторов.
Классы сложных белков
Они были разработаны биохимиками, исходя из 3 критериев: физико-химических свойств, функциональных особенностей и специфики структурных признаков протеидов. К первой группе относятся полипептиды, различающиеся электрохимическими свойствами. Они делятся на основные, нейтральные и кислые. По отношению к воде белки могут быть гидрофильными, амфифильными и гидрофобными. Ко второй группе относятся ферменты, которые были рассмотрены нами ранее. Третья группа включает полипептиды, различающиеся химическим составом простетических групп (это хромопротеиды, нуклеопротеиды, металлопротеиды).
Рассмотрим свойства сложных белков более подробно. Так, например, кислый белок, входящий в состав рибосом, содержит 120 аминокислот и является универсальным. Он находится в белоксинтезирующих органеллах, как прокариотических, так и эукариотических клеток. Еще один представитель этой группы - белок S-100, состоит из двух цепей, связанных ионом кальция. Он входит в состав нейронов и нейроглии - опорной ткани нервной системы. Общее свойство всех кислых белков - это высокое содержание двухосновных карбоновых кислот: глутаминовой и аспарагиновой. К щелочным белкам относятся гистоны - протеины, входящие в состав нуклеиновых кислот ДНК и РНК. Особенностью их химического состава является большое количество лизина и аргинина. Гистоны вместе с хроматином ядра образуют хромосомы - важнейшие структуры наследственности клеток. Эти белки участвуют в процессах транскрипции и трансляции. Амфифильные протеины широко представлены в клеточных мембранах, образуя липопротеиновый бислой. Таким образом, изучив выше рассмотренные группы сложных белков, мы убедились в том, что их физико-химические свойства обусловлены строением белкового компонента и простетических групп.
Некоторые сложные белки клеточных мембран способны узнавать различные химические соединения, например антигены, и реагировать на них. Это сигнальная функция протеидов, она очень важна для процессов избирательного поглощения веществ, поступающих из внешней среды, и для её защиты.
Гликопротеины и протеогликаны
Они являются сложными белками, отличающимися между собой биохимическим составом простетических групп. Если химические связи между белковым компонентом и углеводной частью - ковалентно-гликозидные, такие вещества называются гликопротеинами. Апофермент у них представлен молекулами моно- и олигосахаридов, примерами таких белков служат протромбин, фибриноген (белки, участвующие в свертывании крови). Кортико- и гонадотропные гормоны, интерфероны, мембранные ферменты также являются гликопротеинами. В молекулах протеогликанов белковая часть составляет всего 5%, остальное приходится на простетическую группу (гетерополитсахарид). Обе части соединены гликозидной связью группы ОН-треонина и аргинина и группы NH₂-глутамина и лизина. Молекулы протеогликанов играют очень важную роль в водно-солевом обмене клетки. Ниже представлена таблица сложных белков, изученных нами.
Гликопротеины | Протеогликаны |
Структурные компоненты простетических групп | |
1. Моносахариды (глюкоза, галактоза, манноза) | 1. Гиалуроновая кислота |
2. Олигосахариды (мальтоза, лактоза, сахароза) | 2. Хондроитиновая кислота. |
3. Ацетилированные аминопроизводные моносахаридов | 3. Гепарин |
4. Дезоксисахариды | |
5. Нейраминовые и сиаловые кислоты |
Металлопротеиды
Эти вещества содержат в составе своих молекул ионы одного или нескольких металлов. Рассмотрим примеры сложных белков, относящихся к вышеназванной группе. Это прежде всего ферменты, такие как цитохромоксидаза. Она располагается на кристах митохондрий и активизирует синтез АТФ. Феррин и трансферрин - протеиды, содержащие ионы железа. Первый депонирует их в клетках, а второй является транспортным белком крови. Еще один металлопротеид - альфаамелаза, она содержит ионы кальция, входит в состав слюны и сока поджелудочной железы, участвуя в расщеплении крахмала. Гемоглобин является как металлопротеидом, так и хромопротеидом. Он выполняет функции транспортного белка, перенося кислород. В результате образуется соединение оксигемоглобин. При вдыхании монооксида карбона, иначе называемого угарным газом, его молекулы образуют с гемоглобином эритроцитов очень стойкое соединение. Оно быстро разносится по органам и тканям, вызывая отравление клеток. В итоге при длительном вдыхании угарного газа наступает смерть от удушья. Гемоглобин частично переносит и углекислый газ, образовавшийся в процессах катаболизма. С током крови диоксид карбона поступает в легкие и почки, а из них - во внешнюю среду. У некоторых ракообразных и моллюсков транспортным белком, переносящим кислород, служит гемоцианин. Вместо железа он содержит ионы меди, поэтому кровь животных имеет не красный, а голубой цвет.
Функции хлорофилла
Как мы уже упоминали ранее, сложные белки могут образовывать комплексы с пигментами – окрашенными органическими веществами. Их цвет зависит от хромоформных групп, которые избирательно поглощают определённые спектры солнечного света. В клетках растений есть зеленые пластиды – хлоропласты, содержащие пигмент хлорофилл. В его состав входят атомы магния и многоатомный спирт фитол. Они связаны с белковыми молекулами, а сами хлоропласты содержат тилакоиды (пластинки), или мембраны, связанные в стопки – граны. В них находятся фотосинтезирующие пигменты – хлорофиллы - и дополнительные каротиноиды. Здесь же находятся все ферменты, используемые в фотосинтетических реакциях. Таким образом, хромопротеиды, к которым относится и хлорофилл, выполняют важнейшие функции в обмене веществ, а именно в реакциях ассимиляции и диссимиляции.
Вирусные белки
Их содержат представители неклеточных форм жизни, входящие в Царство Вира. Вирусы не имеют собственного белоксинтезирующего аппарата. Нуклеиновые кислоты, ДНК или РНК, могут вызывать синтез собственных частиц самой клеткой, инфицированной вирусом. Простые вирусы состоят только из белковых молекул, компактно собранных в структуры спиральной или многогранной формы, как, например, вирус табачной мозаики. Сложные вирусы имеют дополнительную мембрану, составляющую часть плазматической оболочки клетки-хозяина. В неё могут входить гликопротеиды (вирус гепатита В, вирус оспы). Основная функция гликопротеидов — это узнавание специфических рецепторов на мембране клетки хозяина. В состав дополнительных вирусных оболочек входят и белки-ферменты, обеспечивающие редупликацию ДНК или транскрипцию РНК. Исходя из вышесказанного, можно сделать следующий вывод: белки оболочек вирусных частиц имеют специфическое строение, зависящее от мембранных белков клетки-хозяина.
В данной статье нами была дана характеристика сложных белков, изучены их строение и функции в клетках различных живых организмов.
загрузка...
fjord12.ru