Драйвер для светодиодов своими руками 220в: Драйвер для светодиодов из энергосберегающей лампы

Авг 11, 2021 Разное

Драйвер для светодиодов своими руками 220в: Драйвер для светодиодов из энергосберегающей лампы

Содержание

Драйвер для светодиодов из энергосберегающей лампы

Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.

Прогресс не стоит на месте и на смену энергосберегающим люминесцентным лампам приходят светодиодные источники света. Имея большую экономичность, они превосходят энергосберегающие лампы по экологичности, поскольку люминесцентные лампы содержат ядовитую ртуть, а светодиоды абсолютно безопасны (подробнее о вреде светодиодных ламп).

Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.

Использование платы питания энергосберегающей лампы в качестве драйвера для светодиодов

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Практическая реализация идеи

Простейший источник питания светодиодов от сети 220В имеет следующий вид:

Примитивный источник питания для светодиодов от сети 220В

На приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.

Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.

Ниже приведена схема, где вместо резистора используется гасящий конденсатор

Схема с гасящим конденсатором

Использование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.

Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.

Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.

Расчет схемы произведен для светодиодов HL-654h345WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.

Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.

Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.

Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.

Переделка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Советы и предостережения

Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.

Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Как выбрать светодиодный драйвер, led driver

Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.

Содержание

  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют.  LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются  самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие  работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20.000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности;
  6. КПД стабилизатора.

Корпуса для уличного использования  выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов  можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно подключение светодиодов 12 220 от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы  светодиодного драйвера.

RGB драйвер на 220В

Для мощных РГБ диодов 10W, 20W, 30W, 50W, 100W

..

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Для РГБ на 1W, 3W, 5W, 10W

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Если у вас уже есть стабилизатор тока для светодиодов, который не подходит по силе тока, то её можно увеличить или уменьшить. Найдите на плате микросхему ШИМ контроллера, от которого зависят характеристики  led драйвера. На ней указана маркировка, по которой необходимо найти спецификации на неё. В документации будет указана типовая схема включения.   Обычно ток на выходе задаётся одним или несколькими резисторами, подключенными к ножкам микросхемы. Если изменить номинал резисторов или поставить переменное сопротивление согласно информации из спецификаций, то можно будет изменить ток.  Только нельзя превышать начальную мощность, иначе может выйти из строя.

Драйвер для светодиодных светильников

К питанию уличной светотехники предъявляются немного другие требования. При проектировании уличного освещения учитывается, то LED driver будет работать в условиях от -40° до +40° в сухом и влажном воздухе.

Коэффициент пульсаций  для светильников может быть выше, чем при использовании внутри помещения. Для уличного освещения этот показатель становится не важным.

При эксплуатации на улице требуется полная герметичность блока питания. Существует несколько способов защиты от попадания влаги:

  1. заливка всей платы герметиком или компаундом;
  2. сборка блока с использованием силиконовых уплотнителей;
  3. размещение платы светодиодного драйвера в одном объёме со светодиодами.

Максимальный уровень защиты это IP68, обозначается как «Waterproof LED Driver» или «waterproof electronic led driver». У китайцев это не гарантия водонепроницаемости.

По моей практике заявленный уровень защиты от влаги и пыли не всегда соответствует  реальному.  В некоторых местах может не хватать уплотнителей. Обратите внимание на ввод  и вывод кабеля из корпуса, попадаются образцы с отверстием, которое не закрыто герметиком или другим способом. Вода по кабелю сможет затекать в корпус и затем в нём испаряться. Это приведет к возникновению коррозии на плате и открытых частях  проводов. Это многократно сократит срок службы прожектора или светильника.

Блок питания для led ленты

LED лента работает по другому принципу, для неё требуется стабилизированное напряжение. Токозадающий резистор установлен на самой ленте. Это облегчает процесс подключения, подсоединить можно отрезок любой длины начиная от 3см до 100м.

Поэтому питание для светодиодной ленты можно сделать из любого блока питания на 12в от бытовой электроники.

Основные параметры:

  1. количество вольт на выходе;
  2. номинальная мощность;
  3. КПД;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности.

Led драйвер своими руками

Простейший драйвер своими руками можно изготовить за 30 минут, даже если вы не знаете основы электроники. В качестве источника напряжения можно использовать блок питания от бытовой электроники с напряжением от 12В до 37В. Особенно подходит блок питания от ноутбука, у которого 18 – 19В и мощность от 50W до 90W.

Потребуется минимум деталей, все они изображены на картинке. Радиатор для охлаждения мощного светодиода можно позаимствовать из компьютера. Наверняка где-нибудь дома в кладовке у вас пылятся старые запчасти от системного блока. Лучше всего подойдёт от процессора.

Ччто бы узнать номинал требуемого сопротивления, используйте калькулятор расчёта стабилизатора тока для LM317.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с  возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с  током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно.

Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

Правильная схема подключения светодиодов: последовательно или параллельно

Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Источник тока (или генератор тока) — источник электрической энергии, который поддерживает постоянное значение силы тока через нагрузку с помощью изменения напряжения на своем выходе. Если сопротивление нагрузки, например, возрастает, источник тока автоматически повышает напряжение таким образом, чтобы ток через нагрузку остался неизменным и наоборот.

Источники тока, которыми запитывают светодиоды, еще называют драйверами.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожгете его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

UпитILED
5 мА10 мА20 мА30 мА50 мА70 мА100 мА200 мА300 мА
5 вольт340 Ом170 Ом85 Ом57 Ом34 Ом24 Ом17 Ом8.5 Ом5.7 Ом
12 вольт1.74 кОм870 Ом435 Ом290 Ом174 Ом124 Ом87 Ом43 Ом29 Ом
24 вольта4.14 кОм2.07 кОм1.06 кОм690 Ом414 Ом296 Ом207 Ом103 Ом69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Как выбрать нужный драйвер?

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.

Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3…4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

СветодиодыКакой нужен драйвер
60 мА, 0.2 Вт (smd 5050, 2835)см. схему на TL431
150мА, 0.5Вт (smd 2835, 5630, 5730)драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W)драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды)драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6)драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

Источник тока для мощных светодиодов с питанием от сети 220 В 50 Гц

Импульсный блок питания светодиодов представляет собой выпрямитель с фильтром и понижающий преобразователь с обратной связью по току. Для построения источников тока для мощных светодиодов часто используются микросхемы ШИМ-контроллеры Supertex HV9910B, HV9961. Стандартные схемы включения этих микросхем мало отличаются, при некоторых условиях они взаимозаменяемы. HV9961 более дорогая, т.к. обеспечивает контроль среднего тока светодиодов, а не пикового. Есть другие отличия, о которых можно прочесть на сайте производителя, документ AN-H64. Я взял HV9961, говорят, она более живуча.
Расчет, изготовление и тестирование источника на микросхеме HV9961 под катом.

Мне нужен был блок, питающий током 750 мА 10 СИДов Cree XM-L. Оценим выходное напряжение блока: Vout = 10 * Vled при 750 мА = 29 В. Пусть пульсации тока будут меньше +-15% (я не знаю, как их величина влияет на работу светодиодов). Имелся корпус G1022BF, что накладывает ограничения на размер платы блока питания. Таким образом, исходные данные:
напряжение питания: 220 В, 50 Гц;
выходное напряжение: 30 В;
выходной ток: 750 мА;
пульсации тока: менее +-15%;
размер платы: менее 100х60 мм.

За основу берем стандартную схему включения:

Это понижающий преобразователь, для простоты ток измеряется в цепи истока переключающего транзистора и усредняется. На контакт Vin можно подавать высокое напряжение, которое питает встроенный регулятор напряжения 7,5 В, вывод регулятора – Vdd. PWMD и LD служат для плавной регулировки тока светодиодов. Резистор Rt задает частоту переключения (точнее, время паузы), Rcs – ток на СИДах. При питании от сети 220 нужно добавить выпрямитель и фильтр.

Расчет схемы

1. Частота переключения. Частота переключения в схеме не фиксированная, задается только время паузы. Для номинальных напряжений на входе (310 В после выпрямителя) и выходе коэффициент заполнения . С другой стороны, , где tu – время проводимости, tn – время паузы, f – частота переключения. Сопротивление резистора Rt определяется из выражения . Возьмем Rt = 330 кОм, это соответствует времени паузы 13,5 мкс и номинальной частоте 73 кГц. Чем выше частота, тем меньшего размера будет катушка и тем больше потери на переключение на транзисторе.

2. Регулировка тока. Токозадающий резистор. Rcs = 0.272 В / Iled = 0,363 Ом. Я решил взять Rcs = 0,33 Ом, т.е. 3 резистора по 1 Ом в параллель, что соответствует току 824 мА и сделать плавную регулировку тока с помощью вывода LD микросхемы. В описании сказано, что регулировка тока осуществляется, когда на выводе LD напряжение от 0 до 1,5 В. Подключаем делитель напряжения к напряжению 7,5 В. Необходимые сопротивления несложно посчитать, результат показан на окончательной схеме.
Можно проверить, сколько мощности выделяется на токозадающих резисторах: 824 Ма*272 мВ = 224 мВт, на каждом резисторе 75 мВт. Используем типоразмер 0805 (125 мВт).

3. Катушка индуктивности. Для пульсаций тока менее +-15% (полный размах 0,3*750 мА) индуктивность должна быть больше

Пиковый ток на катушке будет 750 мА +15% = 863 мА. Готовые катушки с такими параметрами найти непросто, поэтому придется изготавливать самостоятельно.
Имелся эмальпровод с внешним диаметром 0,7 мм, исходя из этого, по прикидочным расчетам был подобран сердечник КВ10 (аналог RM10), феррит М2500НМС1 (аналог N27).
Кратко опишу расчет дросселя. Чтобы сердечник не насыщался, необходимо ввести зазор. В начале наматываем максимальное число витков, которые влезают в окно сердечника. У меня получилось 6 слоев по 15 витков с запасом для компаунда, всего 90 витков. Далее вводим максимальный зазор для необходимой индуктивности. Можно считать вручную, я считал в программе EPCOS MDT для RM10 N27. Получаем для суммарного зазора 0,6 мм (прокладки между сердечниками по 0,3 мм) значение Al = 200 нГн и L= Al * N^2 = 1,62 мГн. Индуктивность получилась немного меньше, значит пульсации побольше +-15%, что меня устроило.
Теперь надо посчитать индукцию при максимальном токе и убедиться, что сердечник не насыщается. По формуле 8 из [2] и данным из программы (Al = 200 нГн, mui = 71) для тока 1 А (с запасом) получаем индукцию 183 мТл, что меньше 300 мТл и, значит, насыщения нет.
В итоге изготавливаем дроссель на сердечнике КВ10 М2500НМС1 с прокладками 0,3 мм с 90 витками эмальпроводом с внешним диаметром 0,7 мм. Желательно залить клеем или лаком после изготовления.

4. Транзистор. Транзистор должен с запасом выдерживать максимальное входное напряжение 310 В. Выберем транзистор с максимальным напряжением сток-исток 500 В. Максимальный среднеквадратичный ток через транзистор Iout*sqrt(Vout/Vin) = 240 мА. Ток небольшой, его выдержит любой мощный полевик. Главный параметр для выбора – емкость или заряд затвора. Производитель микросхемы рекомендует заряд менее 25 нКл. Я взял IRF830A с максимальным зарядом затвора 24 нКл. Мощность, выделяющуюся на полевике, посчитать непросто, но радиатор явно не помешает.

5. Диод. Для диода те же требования по напряжению, что и для транзистора. Средний ток через диод Iout*(1 – Vout/Vin) = 680 мА. Выбираем SF28 600 В, 2 А. Падение напряжения на нем 1,5 В, значит будет выделяться мощность 1,5 В* 0,68 А = 1 Вт. Я решил использовать диод без радиатора. Для диода еще важным считается параметр время обратного восстановления, от него зависят потери на переключение, но расчет их довольно сложный и я его не проводил.

6. Входной конденсатор. Емкость выбирается исходя из условия, что минимальное напряжение после входного фильтра должно быть больше 2*Vout. В AN-h58 есть формула для расчета:

Для частоты 50 Гц, Vdc = 60 В и КПД 90% получаем С1>6,5 мкФ. Был выбран конденсатор 47 мкФ, 400 В исходя из габаритов и доступности. Параллельно установлен пленочный 0,47 мкФ 450 В для уменьшения ESR.
Замечание от sanmigel:

если внимательно почитать документацию на 9910 то можно увидеть что условие Vout<0.5 Vin имеет значение для режима с постоянной частотой, в этом режиме при коэффициенте заполнения более 0,5 лезут гармоники, поэтому для их снижения рекомендуют его ограничить в 0,5. 9961 работает в режиме констант офф тайм, в таком режиме коэффициент заполнения для 9961 может быть до 0,75 (для 9910 до 0,8). Дока

Окончательная схема:

Схема в пдф
Кратко об остальных элементах схемы:
F1 – предохранитель 2 А, может быть, лучше поставить на меньший ток. С1 – фильтр от помех в сеть, подсмотрено в демоплате Supertex, можно не устанавливать. DB104S – диодный мост 400 В, 1 А. RT1 – NTC термистор, он ограничивает ток при включении источника, подробнее можно почитать здесь. Термистор устанавливать не обязательно. C4 – выходная емкость для уменьшения высокочастотных выбросов на нагрузке. D2 – стабилитрон на 75 В, улучшает тепловой режим микросхемы HV9961. Можно считать, что HV9961 потребляет 2 мА, тогда на стабилитроне выделяется мощность 150 мВт, на микросхеме 600 мВт. P3 – джампер для отключения источника, включенное положение – средний контакт замкнут на питание. С6 обеспечивает мягкий старт, ставить не обязательно. С5 – блокировочнй конденсатор, ставить обязательно, емкость около 0,1 – 2,2 мкФ.

Печатная плата

Трассировка играет важную роль в работе импульсных преобразователей, поэтому печать делалась на основе платы производителя.
Получилась двухсторонняя плата 95 х 55 мм, при желании можно верхнюю сторону сделать двумя перемычками.

Плата в пдф под ЛУТ
Проект Altium Designer
Входной и выходной разъемы с шагом 3,96 мм, джампер с шагом 2,54 мм, подстроечник типа 3296W. Предусмотрено место для радиатора транзистора. Используется держатель для предохранителей 5*20. Конденсатор С2 имеет размер 16*25 мм. Конденсатор C1 тип B32922-A2104-K, конденсаторы С3 и С4 – тип B43828A9476M000.

После сборки:


Плату можно использовать и для HV9910B, но надо будет пересчитать резисторы для плавной регулировки тока, чтобы напряжение на выводе LD было 0-250 мВ и токозадающие резисторы исходя из напряжения 250 мВ на них. Еще одно отличие – резисторами будет устанавливаться пиковый ток, а не средний.

Результаты тестирования.

Схема была подключена к сети 220, в качестве нагрузки были использованы 10 белых светодиодов Cree XR-E, ток был установлен на уровне 840 мА.
Ток (желт., 200 мА/дел) и напряжение (син., 100 В/дел) на входе:

Пиковый ток потребления около 400 мА.

Напряжение на истоке транзистора:


Напряжение на затворе:


Напряжение на стоке:


Ток (желт., 455 мА/дел) и напряжение (син., 10 В/дел) на выходе:

Средний ток около 850 мА, среднее напряжение около 36 В. В данном случае, в выходное напряжение входит также падение напряжения на резисторе 2,2 Ом, который включался для измерения тока.

Пульсации тока (желт., 45,5 мА/дел) и напряжения (син., 500 мВ/дел) на выходе:

Пульсации тока менее 140 мА, т.е. 16%.

Оценка КПД. У меня нет true RMS мультиметра, поэтому точность измерения входного тока под вопросом. Действующее значение входного тока 141 мА, входного напряжения 227 В, входная мощность 32 Вт. Средний выходной ток 840 мА, выходное напряжение 33,5 В, выходная мощность 28 Вт. Получается КПД 87,5%.

Температурный режим. При комнатной температуре 23 С радиатор транзистора разогревается до 67 С, остальные элементы схемы нагреваются меньше. Лучше поставить радиатор побольше.

Я постарался подробно описать процесс расчета схемы импульсного преобразователя, надеюсь, эта информация поможет читателю в его разработках.
Схемы других источников тока для светодиодов можно посмотреть в теме на форуме easyelectronics.ru.
Критикуйте и задавайте вопросы, пожалуйста! 🙂

Литература.
[1] Б. Ю. Семенов — Силовая электроника для любителей и профессионалов.
[2] А. Кузнецов – Трансформаторы и дроссели для импульсных источников питания members.kern.com.au/users/akouz/chokes.html
[3] А. Евстифеев — Практический опыт применения микросхемы Supertex HV9910 www.kit-e.ru/assets/files/pdf/2009_12_78.pdf

Драйвер питания светодиодов 7 х 1 Вт (220 В). Дёшево и качественно?! + Сюрприз от монтажников 🙂

Привет всем!
Поделюсь очередной версией драйвера для питания 1 Вт-ных светодиодов от 220 В.
Это первый заказанный мной драйвер в Китае, поэтому выбирал на пробу самый дешевый и относительно мощный.
А какой он вышел по конструктиву и характеристикам — судить вам.

Описание продавца: ( 4-7 ) х 1 Вт 7 x 1 Вт из светодиодов драйвер 4 Вт 5 Вт 6 Вт 7 Вт лампы драйвер питания освещения трансформатор AC85-265V для из светодиодов газа прожектор.
На страничке товара (идентификатор 32284860572) много фотографий разных драйверов, мне же достался такой:

Производитель — Dark Energy, версия чего-то — 1.6.

Нижняя сторона:

Верхняя сторона:

Схема:

На выход подключил сборку из семи 1-ваттных светодиодов:

Судя по обзорам на mySKU.ru драйверов, на плате установлены входной конденсатор, соответствующий заявленой мощности 7 Вт — 6,8 мкФ х 400 В и конденсатор подавления помех. По крайней мере, приёмник ФМ на работу драйвера никак не реагирует.

Что интересно, драйвер заработал сразу и без всяких неожиданностей (смотри картинку ниже)! Измеренные параметры вышли такие: напряжение на 7-ми светодиодах — 23,45 В, ток через них — 245 мА.
Планка со светодиодами нагрелась через 5 минут выше 70 градусов, поэтому на большее время не включалась.

А сюрпризом оказалась микросхема, которая при внимательном рассмотрении оказалась припаянная мимо контактных площадок:


Мало того, что припаяна криво, так еще и отвалилась, стоило её чуть ковырнуть 🙂
Несмотря на это — схема работала!

После нормальной запайки все параметры остались такими же, как и при первом измерении.
На всякий случай, замерил еще при 5-ти светодиодах:
16,5 В х 250 мА.

П.С. Осталось несколько вопросов к специалистам:
1. Стоит ли менять быстрый диод D2 (ES1D) на диод Шоттки?
2. Стоит ли ставить параллельно выходному конденсатору керамический?
3. Входной конденсатор 6,8 мкФ х 400 В имеет ESR 3,5 Ома. Это нормально, или стоит поискать что-то понадёжней?

Всем пока и спасибо за внимание!

cxema.org — Драйвер светодиода из КЛЛ своими руками

Наверняка у многих без дела лежат сгоревшие компактные люминисцентные лампы (КЛЛ), у которых сгорела нить накала в колбе люминисцентной лампы. Как правило, у таких ламп преобразователь напряжения исправен, и его можно заиспользовать в качестве импульсного блока питания или драйвера светодиода. Типовая схема импульсного преобразователя КЛЛ представлена ниже

Для переделки импульсного преобразователя КЛЛ в драйвер светодиода, достаточно удалить «лишние детали», обведённые красной пунктирной линией. Это цепи запуска лампы.

Повисший в воздухе вывод дросселя L1 подпаять к плюсовой дорожке блока, намотать на него вторичную обмотку, и добавить диодный мост, спаянный из быстродействующих диодов серии HER, FR, UF и им подобных.

Для начала на дроссель наматываем 10 витков провода в лаковой изоляции, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 6,5В. Этого напряжения явно маловато для запитки 10Вт светодиода. Я домотал ещё 10В и подключил светодиод через амперметр, который показал проходящий через светодиод ток в 1А. У моего светодиода рабочий ток равен 900мА. Я отмотал 1 виток с дросселя и получил нужный ток. Собрал диодный мост на плате навесным способом, подпаял 2 провода, удалил стеклянный балон КЛЛ и собрал корпус преобразователя.

В КЛЛ мощность преобразователя ограничено габаритной мощностью сердечника установленного дросселя, и мощностью транзисторов. Для переделки я взял 15Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 15Вт.  Для 10Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.

Светодиод укрепил на радиаторе, предварительно смазав его термопастой.

Радиатор закрепил проволокой к корпусу преобразователя. Таким образом собрал светодиодную лампу, затратив минимум средств.

В результате несложной переделки КЛЛ, мы получили отличный драйвер для мощного светодиода, Продлили жизнь преобразователя КЛЛ.

Лучшая цена светодиодный драйвер своими руками — Отличные предложения на светодиодные драйверы своими руками от глобальных продавцов светодиодных драйверов своими руками

Отличные новости !!! Вы попали в нужное место для самостоятельного изготовления светодиодных драйверов. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот самодельный драйвер с ведущими драйверами вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили светодиодный драйвер своими руками на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы до сих пор не знаете, как сделать светодиодный драйвер, и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести diy led driver по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Лучшие цены на светодиодные драйверы своими руками — отличные предложения на драйверы для светодиодов своими руками от глобальных продавцов светодиодных драйверов своими руками

Отличные новости !!! Вы попали в нужное место для светодиодных драйверов своими руками.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эти лучшие светодиодные драйверы, сделанные своими руками, вскоре станут одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили свои светодиодные драйверы на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не знаете, как сделать драйверы для светодиодов своими руками и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы сможете приобрести diy led drivers по самой выгодной цене в Интернете.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Общие сведения о драйверах светодиодов от LEDSupply

Драйверы светодиодов

могут сбивать с толку светодиодную технологию. Существует так много разных типов и вариаций, что иногда это может показаться немного подавляющим. Вот почему я хотел написать небольшой пост с объяснением разновидностей, их различий и вещей, на которые следует обратить внимание при выборе драйвера (ов) светодиодов для вашего освещения.

Что такое драйвер светодиода, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть светодиодной цепи, и работа без нее приведет к отказу системы.

Использование одного из них очень важно для предотвращения повреждения светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, необходимое светоизлучающему диоду для проведения электричества и зажигания.По мере увеличения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока до тех пор, пока светодиод не перегорит сам себя, это также известно как термический побег. Драйвер светодиодов — это автономный источник питания, выходы которого соответствуют электрическим характеристикам светодиода (-ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода постоянного тока компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток к светодиоду.

На что следует обратить внимание перед выбором драйвера светодиода

  • Какие типы светодиодов используются и сколько?
    • Узнать прямое напряжение, рекомендуемый ток возбуждения и т. Д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравниваем постоянный ток с постоянным напряжением.
  • Какой тип энергии будет использоваться? (DC, AC, батареи и т. Д.)
  • Каковы ограничения по площади?
    • Работаете в ограниченном пространстве? Не слишком много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. Д.
  • Нужны какие-то специальные функции?
    • Диммирование, импульсное, микропроцессорное управление и т. Д.

Прежде всего, вы должны знать…

Существует два основных типа драйверов: те, которые используют входное питание постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входное питание переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, которые используют высокое напряжение переменного тока, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиода низкого напряжения постоянного тока.Даже если ваш вход представляет собой высоковольтный переменный ток, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуются низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов регулировки яркости и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас есть больше возможностей для работы в вашем приложении. Однако если у вас есть большой проект общего освещения для жилого или коммерческого освещения, вы должны увидеть, какие драйверы переменного тока могут быть лучше для этого типа работы.

Вторая вещь, которую вы должны знать

Во-вторых, вам необходимо знать ток возбуждения, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для освещения. Важно знать характеристики своего светодиода, чтобы знать рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или избыточным нагревом. Наконец, хорошо знать, что вы ищете от своего осветительного приложения.Например, если вы хотите регулировать яркость, вам нужно выбрать драйвер с возможностью регулировки яркости.

Немного о затемнении

Регулировка яркости светодиодов зависит от используемой мощности; поэтому я рассмотрю варианты диммирования как постоянного, так и переменного тока, чтобы мы могли лучше понять, как затемнять все приложения, будь то постоянный или переменный ток.

Диммирование постоянного тока

Низковольтные драйверы с питанием от постоянного тока можно легко регулировать несколькими способами. Самым простым решением для этого является использование потенциометра.Это дает полный диапазон затемнения от 0 до 100%.

Потенциометр 20 кОм

Это обычно рекомендуется, когда у вас есть только один драйвер в вашей цепи, но если несколько драйверов диммируются от одного потенциометра, значение потенциометра можно найти из — KΩ / N — где K — значение вашего потенциометра, а N количество используемых вами драйверов. У нас есть подключенные BuckPucks, которые поставляются с потенциометром с поворотной ручкой 5K для регулировки яркости, но у нас также есть потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock.Просто подключите провод заземления затемнения к центральному штырю, а провод затемнения к одной или другой стороне (выбор стороны просто определяет, каким образом вы поворачиваете ручку, чтобы уменьшить яркость).

Второй вариант регулировки яркости — использование настенного светорегулятора 0–10 В, например, нашего низковольтного регулятора яркости A019. Это лучший способ диммирования, если у вас несколько устройств, поскольку диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммерные провода прямо ко входу драйвера, и все готово.

Диммирование переменного тока

Для высоковольтных драйверов переменного тока существует несколько вариантов регулировки яркости в зависимости от вашего драйвера. Многие драйверы переменного тока работают с регулировкой яркости 0-10 В, как мы уже говорили выше. У нас также есть светодиодные драйверы Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими передними и задними диммерами. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами затемнения в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которое вы можете запустить от одного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов.При использовании драйверов LuxDrive вы определяете максимальное выходное напряжение, вычитая 2 вольта из входного напряжения. Это необходимо, потому что драйверы нуждаются в накладных расходах 2 В для питания внутренней схемы. Например, при использовании драйвера Wired 1000mA BuckPuck с входом 24 В у вас будет максимальное выходное напряжение 22 В.

Что мне нужно для питания?

Это приводит нас к определению того, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно максимальному выходному напряжению для нашего драйвера после того, как мы учтем служебное напряжение схемы драйвера.Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы возьмем Wired 1000mA BuckPuck, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

V o + (V f x LED n ) = V дюйм

Где:

В o = Накладные расходы по напряжению для драйверов — 2, если вы используете драйвер DC LuxDrive, или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать

В в = Входное напряжение на драйвер

Технические характеристики продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока, и вы используете проводную BuckPuck, указанную выше, тогда V в должно быть не менее 20 В постоянного тока на основе следующего расчета.

2 + (3,0 х 6) = 20

Определяет минимальное входное напряжение, которое вам необходимо обеспечить. Нет никакого вреда в использовании более высокого напряжения до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания на 20 В постоянного тока, вы, вероятно, будете использовать источники питания 24 В постоянного тока для работы этих светодиодов.

Теперь это помогает нам убедиться, что напряжение работает, но для того, чтобы найти правильный источник питания, нам также необходимо найти мощность всей цепи светодиода.Расчет мощности светодиода:

В f x Управляющий ток (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем определить наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность цепи = 6 x 3 = 18 Вт

При расчете мощности источника питания, подходящей для вашего проекта, важно предусмотреть 20% «амортизации» при расчете мощности. Добавление этой 20% подушки предотвратит перегрузку источника питания.Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному отказу блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего примера выше нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт и выходное напряжение 24 В.

Что делать, если у меня недостаточно напряжения? Использование LED Boost Driver (FlexBlock)

Драйверы светодиодов FlexBlock — это повышающие драйверы, что означает, что они могут выдавать более высокое напряжение, чем то, что на них подается.Это позволяет подключать большее количество светодиодов последовательно с одним драйвером светодиодов. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено и вам нужно получить

FlexBlock На

больше мощности для светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете включить с помощью одного последовательно подключенного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и может варьироваться в зависимости от входного напряжения.В режиме Buck-Boost (стандартный) FlexBlock может обрабатывать светодиодные нагрузки, которые находятся выше, ниже или равны напряжению источника питания. Максимальное выходное напряжение драйвера в этом режиме определяется по формуле:

48 В постоянного тока — В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы могли бы работать с 700 мА FlexBlock? Максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы видим, что этот драйвер может питать 12 светодиодов.В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока от всего лишь 10 В постоянного тока. Таким образом, если вы были в режиме Boost-Only, вы могли включить до 16 светодиодов (48 / 2,9). Здесь мы рассмотрим использование повышающего драйвера FlexBlock для более глубокого питания ваших светодиодов.

Проверка мощности для входных драйверов переменного тока большой мощности

Теперь с драйверами входа переменного тока они выделяют определенное количество ватт для работы, поэтому вам нужно определить мощность ваших светодиодов. Вы можете сделать это по следующей формуле:

[Vf x ток (в амперах)] x LEDn = мощность

Итак, если мы пытаемся запитать те же 6 светодиодов Cree XPG2 на 700 мА, ваша мощность будет…

[2.9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, как наш светодиодный драйвер Phihong 15 Вт.

ПРИМЕЧАНИЕ: При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 В. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), для работы с этим конкретным драйвером вам потребуется подключить не менее 6 из них последовательно.

Инструменты для понимания и поиска правильного драйвера светодиода

Итак, теперь у вас должно быть довольно хорошее представление о том, что такое драйвер светодиода и на что нужно обратить внимание при выборе драйвера с источником питания, достаточным для вашего приложения. Я знаю, что вопросы по-прежнему будут, и для этого вы можете связаться с нами по телефону (802) 728-6031 или [email protected].

У нас также есть этот инструмент выбора драйверов, который помогает рассчитать, какой драйвер будет лучшим, путем ввода характеристик вашей схемы.

Если ваше приложение требует нестандартного размера и вывода, обратитесь в LEDdynamics. Их подразделение LUXdrive быстро разработает и изготовит нестандартные светодиодные драйверы прямо здесь, в Соединенных Штатах.

По

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *