Как получить водород из воды: пошаговая инструкция. Как получить водород в домашних условиях


Как получить водород в домашних условиях | В домашних условиях

Главная » В домашних условиях

Как получить водород?

Производство водорода – одна из главных образующих цепочек водородной энергетики. Водород в чистом виде, практически не встречается в природе, поэтому он должен извлекаться из других химических веществ различными методами и способами.

Как получить водород: методы

  • Паровая конверсия метана и природного газа: водяной пар при высокой температуре (700 – 1000 градусов Цельсия) смешивается с метаном под давлением, в присутствии катализирующего вещества.
  • Газификация угля: один из старейших способов получения водорода. Без доступа воздуха, при температуре 800 – 1300 градусов Цельсия нагревают уголь вместе с водяным паром, при этом из воды уголь вытесняет кислород. На выходе получается углекислый газ и водород.
  • Электролиз воды. очень простой способ получения водорода. В емкость наливается раствор соды, в который помещается 2 электрических элемента, один соответствует минусу – катод, другой плюсу – анод. В данный раствор подается электричество, которое разлаживает воду на составляющие – водород выделяется на катоде, а кислород на аноде.
  • Пиролиз: разложение воды на водород и кислород без доступа воздуха и при высокой температуре.
  • Частичное окисление: сплав металлов алюминия и галлия формируют в специальные брикеты, которые помещают в емкость с водой, в результате химической реакции образуется водород и окись алюминия. Галлий используется в сплаве для предотвращения окисления алюминия.
  • Биотехнологии: еще в 20 веке было обнаружено, что если водорослям хламидомонадам не будет хватать кислорода и серы в процессе жизнедеятельности, то они бурно начнут выделять водород.
  • Глубинный газ планеты: в недрах земли водород может находится в чистом газообразном виде, но его выработка оттуда не целесообразна.

Как из воды получить водород

Наиболее простым способом получения водорода из воды является электролиз. Электролиз — химический процесс, при котором раствор электролита, под воздействием электрического тока, разделяется на составные части, то есть в нашем случае вода разделяется на водород и кислород. Для этого используется раствор соды в воде и два элемента – катод и анод, на которых и будут выделятся газы. На элементы подается напряжение, на аноде выделяется кислород, а на катоде водород.

Как получить водород в домашних условиях

Реактивы используются довольно простые – купорос (медный), поваренная соль, алюминий и вода. Алюминий можно взять из под пивных банок, но прежде, его нужно обжечь, чтобы избавится от пластиковой пленки, которая мешает реакции.

Потом отдельно готовится раствор купороса, и раствор соли, раствор купороса голубого цвета, смешивается с раствором соли, в итоге получается раствор зеленого цвета. Затем в этот зеленый раствор бросаем кусочек алюминиевой фольги, вокруг него появляются пузырьки – это водород. Также замечаем, что фольга покрылась красным налетом, это алюминий вытеснил медь из раствора. Для того, чтобы собрать водород для личных целей, используйте бутылку с пробкой, в которую заранее вставлена не широкая трубка, через которую и будет выходить газ.

А теперь, внимание! Меры предосторожности. Поскольку водород взрывоопасный газ, опыты с ним нужно проводить на улице, а во-вторых реакция получения водорода проходит с большим выделением тепла, раствор может разбрызгиваться и вас попросту обжечь.

Как получить перекись водорода

  • В лаборатории перекись водорода получают с помощью реакции: ВаО2 + Н2 SО4 = BaSO4 + h3 O2 .
  • В промышленных масштабах ее получают с помощью электролиза серной кислоты, в процессе которого образуется надсерная кислота, которую, в итоге, разлаживают на серную кислоту и перекись водорода.
  • Как получают водород в лаборатории еще: часто водород в лаборатории получают взаимодействием цинка и соляной кислоты: Zn + 2HCl = h3 + ZnCl2 . 

Надеюсь, с этой статьи вы вынесли ту информацию, которая вам была необходима, и еще раз предупреждаю – будьте осторожны с любыми опытами и экспериментами с водородом!

Как быстро и легко получить водород в домашних условиях

  • Кое что из школьного курса химии.
  • Позвонил знакомый,и попросил меня изготовить или дать реальный рецепт химической реакции,позволяющей легко и безопасно получить водород в домашних условиях.

Не зная истинных целей применения водорода, я придумал,вернее вспомнил из школьного урока химии ,реакцию получения водорода ,достаточного для того, чтобы надуть несколько детских воздушных шариков Заранее хочу предупредить - делать это нужно на открытом воздухе и помнить что водород - очень опасный газ. Даже с несколькими литрами, оказавшимися в резиновой оболочке нужно обращаться очень осторожно. А в помещении с ним возиться не стоит, так как он легче воздуха и, улетев в достаточном количестве, стремится образовать под потолком слой гремучего газа.

Учтя эти меры предосторожности, приступаем. Реактивы самые простые, доступные и относительно безвредные - медный купорос из хозяйственного магазина, поваренная соль, алюминий и вода. Алюминий я взял из использованных пивных банок. Правда, их пришлось обжечь чтобы избавиться от пластиковой плёнки, которая не даёт алюминию реагировать с содержимым банки. Первый эффектный фокус можно посмотреть, если отдельно приготовить раствор медного купороса (голубой) и раствор поваренной соли (бесцветный). Сливаем в одну банку - раствор стал зелёным. Если теперь в него бросить кусочек алюминевой фольги, увидим как раствор вокруг него вспенивается - это выделяется водород, а сам кусочек фольги покрывается красным налётом - алюминий вытеснил из раствора медь. Кроме того, алюминий окислился - появилась белая взвесь. Ещё одно предупреждение - процесс экзотермический. Иначе говоря, идёт с выделением тепла. Т.е. раствор с течением времени разогревается. А если учесть то, что скорость этой реакции увеличивается с ростом температуры, очень легко получить реакцию идущую вразнос . Как у меня и вышло. Первый результат - гейзер, который стоя на улице, плевался бурым кипятком. Но вот концентрация подобрана, подобрана начальная температура и можно видеть результат:

Берете бутылку из под шампанского и закрываете пробкой с заранее вставленой в неё трубкой диаметром 5-8мм.С трубки выходит водород,которым вы можете надуть красивые воздушные шары,а потом ,гуляя с ребенком вместе с ним отпустите их в небо.Поверте:-восторг и смех вашего ребенка стоит этих несложных действий.

Новая дешевая технология получения водорода в домашних условиях

Водородные топливные элементы могут стать еще одной альтернативой традиционным аккумуляторным батареям, используемым в электрических автомобилях. Уже существуют прототипы авто, которые работают на водороде. Но сложность получения этого вещества в домашних условиях пока тормозит развитие этого экологически чистого источника энергии.

Подвинуть прогресс в этом направлении смогли ученые из Стэндфордского университета. Они создали портативный электронный сплиттер, который расщепляет воду на кислород и водород, получая питание всего от одной 1,5-вольтовой батарейки. Сплиттер состоит из никелевого и железного электродов. Он эффективно функционирует даже при комнатной температуре.

Новая технология уникальна тем, что в процессе выработки водорода не участвуют дорогие материалы, как это происходит в промышленных расщепителях воды. К тому же устройство использует крайне мало электрической энергии.

Катализатор на основе никеля и железа был изобретен аспирантом Стэндфордского университета Мин Гуном. Следующим шагом в исследовании будет использование вместо батарейки солнечного фотоэлемента. Это еще больше удешевит добычу водорода.

Первые разработки автомобилей на топливных элементах начались еще в 60-х годах прошлого столетия. Но это в основном были лишь прототипы. Однако уже в следующем году такие автопроизводители как Toyota, Honda и Hyundai планируют запустить в производство серийные модели автомобилей на водородных топливных элементах. И разработка ученых из Стэнфорда им как раз на руку.

Источники: http://elhow.ru/ucheba/himija/himicheskie-reakcii/kak-poluchit-vodorod, http://blog.i.ua/user/669719/377589/, http://scsiexplorer.com.ua/index.php/novie-razrabotki/energetika/1589-novaja-deshevaja-tehnologija-poluchenija-vodoroda-v-domashnih-uslovijah.html

Комментариев пока нет!

restart24.ru

Получение водорода химическим способом в домашних условиях |

Самый первый элемент, который вы встретите, открыв периодическую таблицу Менделеева это водород.  Весьма простое вещество водород  (h3) представляет собой бесцветный газ. Водород, сам по себе, горючь и взрывоопасен. Водород нетоксичен, но практически не встречается в природе в чистой виде – его, как правило, извлекают из других веществ разнообразными способами. В этой статье описано простой и доступный рецепт получения водорода химическим способом.

Получение водорода в домашних условиях:

Получить водород в домашних условиях, на пример, для того что бы надуть воздушный шарик или просто из любопытства. Можно достаточно быстро и просто, с минимальными затратами времени и денег – вам для этого не нужны редкие химические реактивы.

Предупреждение:

Водород — бесцветный газ, который горюч и взрывоопасен –   проводите свои опыты, соблюдая все правила техники безопасности!!!

Рецепт первый, не проверенный:

Вам понадобится поваренная соль, медный купорос и алюминиевая фольга или проволока (алюминиевая стружка), вода и стеклянные ёмкости для смешивани.

Насыпьте в отдельный одноразовый стаканчик медный купорос (количество выбирайте сами), а в другой стаканчик поваренную соль в таком же количестве (купорос и соль пропорция один к одному)  После вам необходимо растворить в стеклянной банкевашу смесь. Далее вам необходимо высыпать в раствор соли и медного купороса алюминиевую стружку и можете наблюдать выделение водорода.

Рецепт второй, проверенный нами:

Я делал так: взял медный купорос и каустическую соду (средство для прочистки труб типа крот), по чайной ложке (пропорция 1:1) и растворил в ста миллилитрах воды. После чего высыпал туда мелко нарезанную алюминиевую проволоку. Смесь аж забурлила, очень активно начал выделятся водород, и выделялся до того момента пока смесь была голубого цвета. Когда смесь стала белой, водород уже не выделялся, хотя бурление продолжалось. Видимо медный купорос весь прореагировал и его необходимо туда добавлять снова и снова. Я поджигал смесь и она горела оранжевым пламенем пока была синей и  выделялся водород, как побелела — гореть перестала. Если вы начинающий химик и не знаете всех правил техники безопасности, то поджигать смесь я вам не советую — это взрывоопасно!!!

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт http://bip-mip.com/

bip-mip.com

Как получить водород из воды: методы

#1

Всем еще со школы известно, что водород в таблице Менделеева занимает самое первое место и обозначается символом Н. Но, невзирая на эти знания, мало кто слышал о том, что получение водорода из воды можно без проблем выполнить в домашних условиях. Кроме того, стоит заметить тот факт, что на сегодняшний день этот химический элемент активно используется в качестве автомобильного топлива, поскольку он при сгорании не попадает в окружающую среду. Кстати, промышленным путем водород получают при помощи реакции водяного пара с разогретым углеродом (коксом), электролизом раствора хлористого натрия и т.д. Одним словом, существует огромное количество способов, благодаря которым вещество можно получить в лабораторных условиях. Но, а используя ниже описанные методы, можно провести эксперимент по получению водорода дома. Вот только в этом случае не стоит забывать об осторожности при работе с горючими веществами.

#2

Изначально следует позаботиться о наличии под рукой всего необходимого для химического эксперимента. Во-первых, нужно убедиться в том, что пробирка для сбора водорода является полностью целой (даже самая маленькая трещинка может испортить весь процесс). Кроме того, перед проведением опыта с тлеющей лучиной, пробирку для предосторожности рекомендовано обмотать с помощью плотной ткани. После подготовительного процесса можно смело переходить к практике и, взяв в руки колбу, немного наполнить ее водой. Далее в воду помещается кусочек кальция, и емкость сразу же плотно закупоривается при помощи пробки. «Колено» трубки, что изогнуто и проходит через пробку, должно быть в емкости с водой («гидрозатворе»), а кончики трубки – слегка выглядывать из воды. Торчащий конец нужно очень быстро накрыть пробиркой, перевернутой верх дном. В итоге эта пробирка должна будет наполниться водородом (край пробирки держат в воде).

#3

Как только в колбе полностью завершится реакция, пробирку надо сразу же закрыть очень плотной пробкой, которая держится верх дном, что поможет предотвратить улетучивание более легкого водорода. Кстати, лучше всего это проделать, продолжая ее край держать под водой. А вот для того чтобы проверить наличие водорода, необходимо вытащить пробку, а затем к краю пробирки поднести тлеющую лучинку. В итоге должен раздастся специфический хлопок. К месту будет напомнить о том, что кальций по сравнению со щелочными металлами, хоть и менее активный, но тоже опасен, поэтому работать с ним нужно все равно осторожно. Хранить его рекомендовано в емкости из стекла под пленкой из жидкого парафина, или керосина. Извлекать элемент следует непосредственно уже перед самим опытом при помощи длинного пинцета. Также по возможности лучше всего обзавестись резиновыми перчатками!

#4

Также водород из воды в домашних условиях можно получить следующим весьма не сложным методом. Изначально в бутылку из пластика объемом в 1,5 литра набирается вода. После чего в этой воде растворяют едкий калий (примерно 15 грамм) или каустическую соль. Далее бутылку нужно поместить в кастрюлю, в которую предварительно набирают воду. Теперь необходимо взять 40 сантиметровую алюминиевую проволоку и порезать ее на кусочки, длина которых должна ровняться 5 сантиметрам. Порезанная проволока кидается в бутылку, а на ее горловину надевается заранее подготовленный резиновый шарик. Водород, что выделяется в ходе реакции между алюминием и щелочью, будет собираться в резиновом шарике. Поскольку данная реакция осуществляется с активным выделением тепла – нужно непременно соблюдать правила безопасности и действовать осторожно!

#5

И наконец-то, водород из воды получают при помощи обычной поваренной соли. Для этого в стеклянную емкость с узким горлышком засыпают соль в размере пяти больших ложек и хорошо размешивают. После чего берется провод из меди и просовывается в шприц со стороны поршня. Этот участок необходимо хорошо герметизировать при помощи клея. Далее шприц опускают в емкость с соляным раствором и постепенно заполняют его. Медный провод надо подключить к отрицательному выводу аккумулятора 12 Вольт. В итоге реакции электролиза, возле проводка начнет выделяться водород, который вытесняется из шприца соляным раствором. Как только медный провод перестанет контактировать с соленой водой, реакция полностью завершиться. Вот так можно с помощью довольно простых методов самостоятельно получить водород из воды. Кстати, в ходе использования любого из методов необходимо помнить, что водород при смешивании с кислородом становится взрывоопасным!

uznay-kak.ru

Как получить водород?

Производство водорода – одна из главных образующих цепочек водородной энергетики. Водород в чистом виде, практически не встречается в природе, поэтому он должен извлекаться из других химических веществ различными методами и способами.

Как получить водород: методы

  • Паровая конверсия метана и природного газа: водяной пар при высокой температуре (700 – 1000 градусов Цельсия) смешивается с метаном под давлением, в присутствии катализирующего вещества.
  • Газификация угля: один из старейших способов получения водорода. Без доступа воздуха, при температуре 800 – 1300 градусов Цельсия нагревают уголь вместе с водяным паром, при этом из воды уголь вытесняет кислород. На выходе получается углекислый газ и водород.
  • Электролиз воды.: очень простой способ получения водорода. В емкость наливается раствор соды, в который помещается 2 электрических элемента, один соответствует минусу – катод, другой плюсу – анод. В данный раствор подается электричество, которое разлаживает воду на составляющие – водород выделяется на катоде, а кислород на аноде.
  • Пиролиз: разложение воды на водород и кислород без доступа воздуха и при высокой температуре.
  • Частичное окисление: сплав металлов алюминия и галлия формируют в специальные брикеты, которые помещают в емкость с водой, в результате химической реакции образуется водород и окись алюминия. Галлий используется в сплаве для предотвращения окисления алюминия.
  • Биотехнологии: еще в 20 веке было обнаружено, что если водорослям хламидомонадам не будет хватать кислорода и серы в процессе жизнедеятельности, то они бурно начнут выделять водород.
  • Глубинный газ планеты: в недрах земли водород может находится в чистом газообразном виде, но его выработка оттуда не целесообразна.

Как из воды получить водород

Наиболее простым способом получения водорода из воды является электролиз. Электролиз — химический процесс, при котором раствор электролита, под воздействием электрического тока, разделяется на составные части, то есть в нашем случае вода разделяется на водород и кислород. Для этого используется раствор соды в воде и два элемента – катод и анод, на которых и будут выделятся газы. На элементы подается напряжение, на аноде выделяется кислород, а на катоде водород.

Как получить водород в домашних условиях

Реактивы используются довольно простые – купорос (медный), поваренная соль, алюминий и вода. Алюминий можно взять из под пивных банок, но прежде, его нужно обжечь, чтобы избавится от пластиковой пленки, которая мешает реакции.

Потом отдельно готовится раствор купороса, и раствор соли, раствор купороса голубого цвета, смешивается с раствором соли, в итоге получается раствор зеленого цвета. Затем в этот зеленый раствор бросаем кусочек алюми

elhow.ru

Как добыть водород в домашних условиях?

Электролиз воды – это самый старый способ получения водорода. Пропуская постоянный ток через воду, на катоде накапливается — водород, а на аноде – кислород. Получение водорода электролизом очень энергозатратный производство, поэтому используется исключительно в тех областях, где данный газ достаточно ценен и необходим.

Получение водорода в домашних условиях достаточно легкий процесс и есть несколько способов сделать это:

1. Нам понадобится раствор щелочи не пугайтесь этих названий т.к. все это есть в свободном доступе.

Например, средство для очистки труб «крот» отлично подойдет по составу. Насыпаем  в колбу немного щелочи и заливаем 100 мл воды;

Тщательно перемешиваем для полного растворения кристаллов;

Добавляем несколько небольших кусочков алюминия;

Ждем около 3-5 минут, пока реакция будет проходить максимально быстро;

Добавляем дополнительно несколько кусочков алюминия и 10-20 грамм щелочи;

Закрываем резервуар специальной колбой с трубкой, которая ведет в резервуар для сбора газа и ждем несколько минут пока воздух не выйдет под давлением водорода из сосуда.

2. Выделение водорода из алюминия, пищевой соли и сульфата меди.

В колбу насыпаем сульфат меди и чуть больше соли;

Разбавляем все водой и хорошо перемешиваем;

Ставим колбу в резервуар с водой, так как при реакции будет выделяться много тепла;

В остальном все нужно делать так же как в первом способе.

3. Получение водорода из воды путем пропускания тока в 12В через раствор соли в воде. Это самый простой способ и больше всего подходит для домашних условий. Единственный минус этого способа в том, что водорода выделяется сравнительно мало.

Итак. Теперь вы знаете, как получить водород из воды и не только. Вы можете проводить очень много экспериментов. Не забывайте придерживаться правил безопасности во избежание травм.

Получение водорода в домашних условиях

В данной статье описаны наиболее популярные способы получения дешевого водорода в домашних условиях.

Способ 1. Водород из алюминия и щелочи.

Используемый раствор щелочи – едкого кали, либо едкого натра. Выделяемый водород более чистый, чем при реакции кислот с активными металлами.

Насыпаем в колбу небольшое количество едкого кали либо натра и заливаем 50 -100 мл воды, перемешиваем раствор до полного растворения кристаллов. Далее добавляем несколько кусочков алюминия. Сразу же начнется реакция с выделением водорода и тепла, сначала слабая, но постоянно усиливающаяся.

Дождавшись пока реакция будет происходить более активно, аккуратно добавим еще 10г. щелочи и несколько кусочком алюминия. Так мы значительно усилим процесс.

Закупориваем колбу, пробиркой с трубкой ведущей сосуд для сбора газа. Ждем примерно 3 -5 мин. пока водород вытеснит воздух из сосуда.

Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.

2Al + 2NaOH + 6h4O → 2Na + 3h4↑

Способ 2. Водород из алюминия, сульфата меди и пищевой соли.

В колбу насыпаем немного сульфата меди, и соли. Добавляем воду и перемешиваем до полного растворения. Раствор должен, окрасится в зеленый цвет, если этого не произошло, добавьте еще небольшое количество соли.

Колбу необходимо поставить в чашку наполненной холодной водой, т.к. при реакции, будет выделятся большое количество тепла.

Добавляем в раствор несколько кусочков алюминия. Начнется реакция.

Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.

Способ 3. Водород из цинка и соляной кислоты.

Помещаем в пробирку кусочки цинка и заливаем их соляной кислотой.

Являясь активным металлом цинк, взаимодействуя с кислотой, вытесняет из нее водород.

Zn + 2HCl → ZnCl2 + h4↑

Способ 4. Производство водорода электролизом.

Пропускаем через раствор воды и проваренной соли электрический ток. При реакции, будет выделятся водород и кислород.

Получение водорода электролизом воды.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось. Итак для электродов я решил применить графит.

Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов. К электродам прикрепляются провода. Провода должны быть тщательно изолированы. Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов. Все тщательно промазывается герметиком.

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок. Их необходимо соединить вместе и оплавить шов. Гайки делаются из бутылочных крышек. В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.

Под диодный мост необходимо подложить несколько слоев картона. В крышке распаячной коробки делаются необходимые отверстия. Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет.

Получение водорода в домашних условиях

Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.

Место подсоединения трубки к шарику хорошо снабдить краником. Продаются в зоомагазинах в отделе для аквариумов.

Основные знания по классическому электролизу.

Принцип экономичности электролизёра для получения газа h4 и O2.

Наверняка все знают, если опустить два гвоздя в раствор питьевой соды и подать на один гвоздь плюс, а на другой минус, то на минусе будет выделяться Водород, а на плюсе Кислород.

Теперь наша задача найти такой подход, чтобы получить как можно больше этого газа и потратить при этом минимальное количество электроэнергии.

Урок 1. Напряжение

Разложение воды начинается при подаче на электроды чуть больше 1,8 вольта. Если подавать 1 вольт, то ток практически не идёт и не выделяется газ, а вот когда напряжение подходит к значению 1,8 вольта, то ток резко начинает расти. Это называется минимальный электродный потенциал при котором начинается электролиз. Поэтому- если мы подадим 12 вольт на эти 2 гвоздя — то такой электролизёр будет жрать много электроэнергии, а газу будет мало.

Вся энергия уйдёт в нагрев электролита.

Для того. чтобы наш электролизёр был экономичным — надо подавать не более 2-х вольт на ячейку. Поэтому, если у нас 12 вольт — мы делим их на 6 ячеек и получаем на каждой по 2 вольта. 

А теперь упрощаем — просто разделим ёмкость на 6 частей пластинами- в результате получится 6 ячеек, соединённых последовательно на каждой ячейке будет по 2 вольта каждая внутренняя пластина с одной стороны будет плюсом, а с другой минусом. Итак — урок номер 1 усвоили = подавать маленькое напряжение.

Теперь 2-ой урок экономичности: Расстояние между пластинами

Чем больше расстояние — тем больше сопротивление, тем больше потратим тока для получения литра газа. Чем меньше расстояние — тем меньше потратим Ватт в Час на Литр газа. Далее буду пользоваться именно этим термином — показатель экономичности электролизёра / Из графика видно, что чем ближе находятся пластины друг к другу — тем меньше напряжение требуется для прохождения одного и того же тока. А как известно выход газа прямо пропорционален количеству тока прошедшего через электролит.

Перемножая более маленькое напряжение на ток — мы получим меньше ватт на то же количество газа.

Теперь 3-й урок. Площадь пластин

Если мы возьмём 2 гвоздя и используя первые два правила расположим их близко и подадим на них 2 вольта — то газу получится совсем мало, так как они пропустят очень мало тока. Попробуем при тех же условиях взять две пластины. Теперь количество тока и газа будет увеличено прямо пропорционально площади этих пластин.

Теперь 4-й урок: Концентрация электролита

Используя первые 3 правила возьмём большие железные пластины на маленьком расстоянии друг от друга и подадим на них 2 вольта. И опустим их в водичку, добавив одну щепотку соды. Электролиз пойдёт, но очень вяло, вода будет нагреваться. Ионов в растворе много будет, сопротивление будет маленькое, нагрев уменьшится а количество газа увеличится

Источники: 505sovetov.ru, all-he.ru, zabatsay.ru, xn—-dtbbgbt6ann0jm3a.xn--p1ai, domashnih-usloviyah.ru

Это интересно

Приключения на чужбине

После длительной охоты, голодный и уставший, даен Варрунна вернулся домой.

Он попросил у матери лепешек из …

Суд богов

Бог огня Локи и гном Синдри поспорили между собой, заложив свои головы. Чтобы разрешить спор они решили …

Новые сварочные технологии

Более 60-ти лет компания Fronius производит сварочное оборудование высочайшего класса и неоспоримого качества. Изобретатель Гюнтер Фрониус …

Индра и Вишварупа

Тваштар был известен среди индийских богов, как творец, искусный мастер. Именно  ему принадлежит сотворение тел людей и …

stroyvolga.ru

Получение водорода в домашних условиях

 

На Земле водород в чистом виде почти не встречается, и в повседневной жизни мы с ним не сталкиваемся. Но в соединениях — это второй по количеству атомов элемент в земной коре после кислорода. Все живые существа на Земле, включая нас с вами, примерно на 2/3 состоят из водорода.

Ключевые слова: водород, получение водорода.

 

Так что же такое водород? Каковы его свойства? Как его получают и применяют в земных условиях? Можно ли получить водород в домашних условиях, и как это делать лучше всего? На эти и другие вопросы мы постараемся ответить в ходе нашей научной работы.

Водород — это самый простой элемент в природе, состоящий из одного протона и вращающегося вокруг него электрона. Впервые получение водорода упоминается у английского учёного Роберта Бойля, который в 1671 году проводил реакцию между железными стружками и разбавленными кислотами. Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии с «кислородом» М. В. Ломоносова. Официальное латинское название водорода «Hydrogenium».

В промышленности водород получают в основном из ископаемого топлива. В первую очередь это природный газ, метан, с которым большинство из нас может встретится на кухне, если вас есть газовая плита. Водород получают из лёгких фракций нефти. Третий по популярности источник водорода — это уголь.

Наиболее доступным для повторения в домашних условиях является разложение воды электрическим током (электролиз).

Для проведения нашего эксперимента мы взяли старую зарядку на 5 В 750мА и угольные электроды, извлечённые из обычных солевых батареек. Для измерения протекающего тока использовался мультиметр.

Для сбора и измерения получающихся газов, в бутылки налили воды, и закрепили их на основной ёмкости горлышком вниз, погрузив его при этом в электролит. Таким образом, чтобы воздух в бутылку попадать не смог. Всего в ёмкости и бутылках получилось около 1,5 литров воды. Как и ожидалось, с чистой водой, после подачи напряжения с зарядного устройства ничего не произошло. Мультиметр показывал почти нулевой ток. Но, когда в воду добавили две чайные ложки соды, электролиз пошёл бодрее, на обоих электродах начали появляться пузырьки газа, а мультиметр показал ток 15 мА. С таким маленьким током за сутки (24 часа) удалось собрать только 0,11 литра водорода (примерно полстакана). Во второй бутылке при этом собралось примерно в 2 раза меньше кислорода. Это означает, что в воде водорода в два раза больше, чем кислорода.

Наблюдение выделения водорода в результате взаимодействия металлов с разбавленными кислотами было самых первым в истории химии. И его относительно просто повторить в домашних условиях. Для этого нам понадобится металл, желательно поактивнее и кислота. В нашем эксперименте мы выбрали электролит для свинцовых аккумуляторов, который можно найти в ближайшем автомобильном магазине и цинк из использованных солевых батареек. Для сбора водорода, как и в случае электролиза, использовали перевёрнутую бутылку с опущенным в воду горлышком. Электролит дополнительно развели водой в пропорции 50 мл раствора серной кислоты на 150 мл. воды. Цинка из батарейки получилось примерно 1 г. За 12 часов весь металл растворился и мы получили 0.7 литра водорода.

Другой популярный метод — взаимодействие металлов с щелочами. Для эксперимента мы выбрали два варианта, которые были под рукой — кусочки провода и фольгу для запекания. Щёлочь (гидроксид натрия) можно найти в бытовых магазинах как средство для прочистки канализационных труб (КРОТ, например). Установку для получения использовали почти такую же, что и в опыте с кислотой и цинком. Раствор в обоих опытах был одинаковым: 20 мл щёлочи и 200 мл воды. В первом опыте использовали проволоку диаметром 1.5 мм, во втором — кусочки фольги. В обоих случаях масса алюминия была 1 г. В первом опыте удалось получить 1.2 л водорода, заняло это 34 часа. Во втором опыте фольга растворилась за 1 час 20 минут, выделив 1.4 л водорода. Из этих опытов можно сделать вывод, что скорость реакции сильно зависит от площади поверхности, на которой она происходит. В опыте с фольгой площадь поверхности была во много раз выше, чем в опыте с проволокой. Ещё большей скорости можно добиться, если взять алюминий в порошке. В этом случае соотношение площади поверхности к массе будет наибольшим.

Таким образом, в экспериментах по получению водорода наиболее быстрым и доступным способом оказался вариант взаимодействия алюминиевой фольги со щёлочью. Но если необходимо получать водород регулярно и в больших количествах, то на первое место должен выйти электролиз, так как он не требует никаких расходных материалов кроме воды. Правда для этого понадобится более серьёзная установка, чем зарядка от телефона и пара бутылок.

В ходе научной работы мы познакомились с самым распространённым, но таким редким в быту веществом, как водород. Научились получать его различными способами и выбрали наиболее удобный для осуществления в домашних условиях — воздействие средства для прочистки труб, содержащего щёлочь, на алюминиевую фольгу.

Так же мы на собственном опыте убедились, что водород — горючий и взрывоопасный газ, но им вполне можно наполнять воздушные шарики, чтобы они летали. Правда при этом стоит держать их подальше от открытого огня.

yun.moluch.ru

Мой водородный шарльер или как получить водород в домашних условиях

Информация предоставлена исключительно в образовательных целях!Администратор сайта не несет ответственности за возможные последствия использования предоставленной информации.

У меня есть мечта - запустить высотный шарльер - "воздушный" шар, наполненный водородом.  Далее я подробно опишу, как мне таки удалось ее реализовать.

Классификация высотных шаров

Высотные любительские шары (свободные аэростаты) делятся на три класса:шарльеры - оболочка наполнена газом легче воздуха;монгольфьеры - оболочка наполнена горячим воздухом;розьеры - оболочка содержит две камеры - одна наполнена газом легче воздуха, а вторая - подогретым воздухом. Это позволяет контролировать подъемную силу, но с намного меньшим расходом топлива, чем у монгольфьера.

История шарльеров

Сейчас для высотных любительских шаров широко используется гелий (ранее применялся водород).

Впервые водород для воздухоплавания использовал в 1783 году французским профессор физики Жаком Шарлем (Jacques Alexandre César Charles):Шарль

Водород поступал по шлангу из бочек с железными опилками и серной кислотой, шар диаметром 9 метров заполнялся 4 дня. Его шар, который исследователь назвал "La Charlière" (отсюда и название "шарльер"), достиг высоты 550 м:шарльер

В журнале "Природа" №10 за 1912 год описано применение водородных шаров в метеорологии:привязной шар - круглый шелковый пролакированный шар, наполняемый водородом объемом до 20 м3; подобные шары поднимались на высоту 9650 м:привязной шар

баллон-зонд - гуттаперчевый баллон, вмещающий 3-4 м3 водорода; к такому баллону прикрепляют парашют и метеограф; при достижении верхних слоев атмосферы баллон лопается, а парашют с метеографом спускаются на землю; такие шары достигли высоты 29040 м:баллон-зонд

пилот-баллон - небольшой (объемом 0,1 - 0,2 м3) гуттаперчевый шар, наполненный водородом и летящий свободно без метеографа, наблюдение за таким шаром позволяет определить направления и скорости воздушных течений в атмосфере на различных высотах; такие шары достигли 25000 м.

Гелиевый шар, запущенный 1 ноября 2002 года, достиг высоты 79 809 футов http://vpizza.org/~jmeehan/balloon/#launchАлексей Карпенко из Канады в октябре 2007 года запустил самодельный воздушный шар с бортовым компьютером, фото и видео камерой на высоту больше 30 километров http://www.natrium42.com/halo/flight2/Гелиевый шар, запущенный Robert Harrison (UK) 17 октября 2008 года, достиг высоты 35 015 метров (проект Icarus) http://www.robertharrison.org/icarus/wordpress/28/icarus-i-launch-3/Greg Klein, Alex Martin и Tim Wheeler запустили в сентябре 2009 года гелиевый шар, достигший высоты 90 000 футов http://apteryx.hibal.org/

Юридические аспекты запуска высотных шаровТакие воздушные шары относятся к летательным аппаратам класса A (свободные аэростаты) подкласса  AA (свободные аэростаты, подъемная сила которых создается газом легче воздуха, без бортового подогревателя воздуха и без наддува оболочки) в соответствии со спортивным кодексом Международной авиационной федерации (FAI).

В Республике Беларусь Указом Главы государства от 25 февраля 2016 г. № 81 определено, что под авиамоделью понимается летательный аппарат без человека на борту, управление полетом которого возможно только при условии визуального контакта с ним, а также неуправляемый свободнолетающий аппарат. Таким образом, воздушный шар относится к авиамоделям. Постановлением Совета Министров Республики Беларусь от 16.08.2016 №636 утверждены Правила использования авиамоделей в Республике Беларусь.  Согласно правилам, авиамодели не подлежат государственной регистрации. Однако их использование запрещено на высоте, превышающей 100 метров от уровня земной или водной поверхности. Использование авиамоделей запрещается в пределах запретных зон, установленных Министерством обороны и Министерством транспорта и коммуникаций, и в случаях, определяемых Службой безопасности Президента Республики Беларусь; Авиамодели общей массой более 0,5 килограмма подлежат обязательной маркировке с указанием данных владельца.

Согласно пункту Федеральных правил использования воздушного пространства Российской Федерации для пользователей воздушного пространства, выполняющих полеты в воздушном пространстве классов A и C, устанавливается разрешительный порядок использования воздушного пространства - на основании плана использования воздушного пространства при наличии разрешения на использование воздушного пространства.

Получение водорода в домашних условиях

Я решил построить шарльер, так как получить гелий в домашних условиях весьма проблематично, а покупать - слишком просто и неинтересно.

опасность водорода   опасностьОПЫТЫ С ВОДОРОДОМ ОЧЕНЬ ОПАСНЫ! Водород пожароопасен и в смеси с воздухом взрывоопасен. Водород - наименее плотный из всех известных газов и дешевле сейчас широко используемого для пилотируемого воздухоплавания гелия в 40-50 раз. Его плотность 90 г/м3 (у воздуха для сравнения 1,23 кг/м3). Подъемная сила водородного шарльера равна разнице в весе между воздухом и водородом в одном и том же объеме. Если шар объемом 1 м3 наполнен водородом, то его подъемная сила будет равна 1,2 кг (масса 1 м3 воздуха) - 0,09 кг (масса 1 м3 водорода) = 1,01 кг. Таким образом 1 литр водорода поднимает около 1 грамма полезной нагрузки.

Как же добыть водород???

Реакция с каустической содой

Самым безопасным способом получения водорода является реакция алюминия с водой:2 Al + 6 h3O = 2 Al(OH)3 + 3 h3

Но ходу этой реакции препятствует оксидная пленка на поверхности алюминия. Ее можно удалить с помощью хлорида ртути HgCl2. Но в домашних условиях более простым способом получения водорода является реакция алюминия с водой и гидроксидом натрия (ионы  OH-) разрушают оксидную пленку на поверхности алюминия и начинается реакция):

2 Al + 6 NaOH = 3 h3 + 2 Na3AlO3

(альтернативное описание этой реакции - 2 Al + 2 NaOH + 6 Н2О = 2 Na[Al(OH)4] + 3 Н2)

54 грамма алюминия (2 моля) + 240 грамм едкого натра (6 молей) = 6 грамм водорода (3 моля).

Реакция идет с нагреванием (экзотермическая), вода при этом может закипеть!!!

Гидроксид натрия NaOH (каустическая сода, каустик, едкий натрий, едкий натр, едкая щелочь) (англ. sodium hydroxide, caustic soda, lye) широко распространена в природе.

Каустическая сода разъедает органические вещества. Относится к высокоопасным веществам 2 класса опасности. При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги. При контакте слизистых поверхностей с едкой щёлочью необходимо промыть поражённый участок струей воды, а при попадании на кожу слабым раствором уксусной кислоты. Нельзя допускать попадания гидроксида натрия внутрь организма человека или животного!

Плотность гидроксида натрия (кристаллы) составляет 1,59 грамма в см3, растворимость в воде 108,7 грамма в 100 миллилитрах воды. Таким образом, 240 грамм занимают объем приблизительно 150 см3, и требуют для полного растворения 220 мл воды. Если воды недостаточно, то будет образовываться пена.

Достать гидроксид натрия можно в магазине бытовой химии - средство для чистки канализации:NaOHTytan

В качестве источника алюминия можно использовать фольгу или проволоку. Плотность алюминия равна 2,7 грамма в куб. см. Для проволоки диаметром 2 мм масса 10 см проволоки равна 0,85 грамма, а 1 грамм проволоки имеет длину 11,8 см.Al

При нормальном давлении 6 грамм водорода занимают объем 67,2 литра (из-за давления оболочки шара объем будет меньше).

Для водорода в шарике справедлив закон Шарля (назван в честь упомянутого выше французского ученого) - "объем газа при постоянном давлении пропорционален его температуре":${P = const} \to {{T_1} \over {V_1}} = {{T_2} \over {V_2}} = {const}$Водород в завязанном воздушном шарике находится при атмосферном давлении и, как следствие, объем шарика возрастает при нагреве и уменьшается при охлаждении.

Подходящим сосудом для смешивания реактивов является бутылка из-под шампанского, выдерживающая давление до 6 атм.Сначала наливаем в бутылку 500 мл воды, добавляем 100 грамм гидроксида натрия, размешиваем до растворения, а затем бросаем внутрь бутылки нарезанную на кусочки по несколько см алюминиевую проволоку (30 грамм). Реакция сначала протекает медленно, но затем ускоряется. Бутылка при этом заметно нагревается.водородный шарикУказанного количества реактивов должно хватить для выработки более 30 литров водорода. Одеваем шарик на горлышко бутылки и наблюдаем, как он наполняется водородом:водородный шарик

При первом успешном запуске 4 августа 2012 года объем надутого шарика составил более 25 литров. Использованный большой детский воздушный шарик весил около 8 грамм. Таким образом, "чистая" подъемная сила составила около 25-8 = 16 грамм.

Также можно использовать цинк Zn вместо алюминия Al, а вместо гидроксида натрия NaOH - гидроксид калия KOH (едкое кали, каустический поташ).

Альтернативными вариантами добычи водорода "на дому" являются реакция с медным купоросом и электролиз раствора.

Реакция с медным купоросом

Медный купорос CuSO4 является сульфатом меди (медной солью серной кислоты).

Медный купорос ядовит, относится к третьему классу опасности - оказывает отравляющее действие при попадании на слизистые оболочки или при приеме внутрь.

Необходимо смешать несколько ложек медного купороса с немного большим количеством поваренной соли. Затем в емкость с полученной смесью добавить воды. После полного растворения раствор должен окраситься в зеленый цвет (если этого не произошло, то следует добавить еще соли). Затем добавляем кусочки алюминия и начинается реакция - образовавшийся в растворе хлорид меди смывает с поверхности алюминия оксидную пленку и алюминий вступает в реакцию, при которой восстанавливается медь и выделяется водород.

Реакция протекает с выделением тепла, поэтому целесообразно поместить емкость с реагентами в холодную воду.

Электролиз

Электролиз раствора каустической соды

Также водород выделяется при электролизе разбавленного раствора каустической соды в дистиллированной воде, причем электроды должны быть железными ("железный" аппарат). Реакция идет с выделением тепла, поэтому необходимо предусмотреть отвод тепла от емкости, например, поместить деревянную емкость в песок (например, рекомендуется температура около 70° C). При необходимости можно подливать в раствор дистиллированную воду. Чистота получаемого водорода при этом достигает 97 % (по информации "Британской энциклопедии" за 1911 год). В журнале "Природа" за 1922 год указывается, что такой способ наполнения воздушных шаров водородом применялся во время Первой мировой войны.

Электролиз раствора поваренной соли

При электролизе водного раствора поваренной соли (англ. brine) вблизи одного из электродов (катода) выделяется водород, вблизи другого (анода) - хлор, и образуется щелочь - гидроксид натрия:2 NaCl + 2 h3O = 2NaOH + h3 + Cl2

Лакмусовая бумажка синеет, показывая щелочную реакцию:электролиз хлорида натрияТакже на аноде выделяется в небольших количествах кислород из-за разложения гидроксид-ионов и молекул воды.В качестве анода и катода целесообразно использовать инертные графитовые электроды, например, стержни, извлеченные из солевых (с надписью Heavy Duty) батареек:графитовые электроды из батареек

Как показал проведенный мной эксперимент, выход водорода в этом случае невелик.

Тест на водород

Смесь водорода и кислорода воздуха (гремучий газ) взрывоопасна, и это ее свойство можно использовать как тест на наличие водорода. К пробирке с исследуемым газом нужно поднести заженную лучину, и если в пробирке накопился водород, то произойдет громкий хлопок (смесь водорода и кислорода сгорает со взрывом):Чем меньше в пробирке кислорода, тем тише будет хлопок. Чистый водород даст лишь легкую вспышку - он горит без взрыва.

Запуск шарльера

Горлышко надувшегося шарика завязывается сложенной в несколько раз нитью, эта нить затем привязывается к нитке, намотанной на катушку:водородный шарик

Шарик взлетает очень резво, катушка ниток быстро разматывается.Нижеприведенные снимки шарика в небе сделаны с четырехкратным увеличением.водородный шарик водородный шарик

При запуске 4 августа 2012 года была размотана почти целая катушка ниток длиной 200 м (но нить провисала). При наблюдении шара в подзорную трубу угловые размеры шарика составили примерно десятую часть поля зрения. Подзорная труба "Турист-3" обладает увеличением 20 крат и углом поля зрения 2 градуса. Таким образом, угловые размеры шара составили около 0,2 градуса. Учитывая, что диаметр шара составил при запуске 37 см (пренебрегаем расширением шара), расстояние до него составило около 100 м.

Продолжение следует 

acdc.foxylab.com


.