АлькаТэк, Закрытое акционерное общество - Официальный сайт -. Котлы на помете
Котел на курином помете

Показатели | Щепа | Куриный помет |
Влажность [%] | 10 – 50 | 10 – 35 |
Горючие вещества [%] | 40 – 90 | 20 – 50 |
Зола [%] | 1 – 5 | 10 – 35 |
Котельные установки от BINDER для сжигания куриного помета или другого низкокачественного топлива предлагаются в 2-х конструктивных размерах и 3-х различных диапазонах мощности.
Размер 1, кВт | 800 | 1000 | 1200 |
Размер 2, кВт | 1600 | 1800 | 2000 |
Пример определения необходимого количества кур-несушек для работы котла на курином помете мощностью 800 кВт. При работе котла BINDER мощностью 800 кВт на курином помете в режиме максимальной мощности в течении около 3.000 часов, происходит выработка тепловой энергии около 2064 Гкал (2,4 ГВтхч). Одна средняя курица-несушка производит около 25 кг помета за год, энергонасыщенность которого составляет 2,4 кВтхч/кг. Для сбора годового количества пометно-сметной массы около 1.000 тонн, необходимой для работы котла на курином помете, требуется около 40.000 кур-несушек.
Дмитрий ДадыкинРуководитель компании «Энерготехника»
Возврат к списку
Please enable JavaScript to view the comments powered by Disqus.Референции с оборудованием «BINDER»

kotel-kotel.com
Технические характеристики котлов типа КВ-Рм-2ПТ | ||
Наименование параметра | КВ-Рм-2ПТ | |
Значение | ||
Номинальная теплопроизводительность, МВт * | 2,0 | |
Рабочее давление, МПа, не более | 0,6 | |
Температура воды на входе в котел, *С, не менее | 70 | |
Температура воды на выходе из котла, *С, не более | 105 | |
Гидравлическое сопротивление, МПа, не более | 0,20 | |
Номинальный расход воды, т/ч | 49,10 | |
Минимальный расход воды, т/ч | 44,20 | |
Аэродинамическое сопротивление, Па, не более ** | 1000 | |
Водяной объем, м3 | 3,20 | |
Диапазон регулирования теплопроизводительности по отношению к номинальной, % | 50~100 | |
Средняя наработка на отказ, ч, не менее | 6000 | |
Поверхность нагрева, м2 | радиационная | 21,40 |
конвективная | 106,00 | |
Масса, кг, не более | 27110 | |
Габаритные размеры, мм, не более | длина | 6265 |
ширина | 2210 | |
высота | 3220 | |
КПД БРУТТО, %, не менее** | 84 | |
Расход топлива (расчетное), кг/ч | 1054 | |
Температура уходящих газов, *С *** | 160±40 | |
Температура наружной поверхности котла,, *С, не более | 45 | |
Полный назначенный срок службы, годы, не менее ** | 10 | |
Норма выброса оксидов азота, мг/м3, не более ** | 600 | |
Норма выброса оксида углерода, мг/м3, не более ** | 2500 | |
Норма выброса оксидов серы, мг/м3, не более ** | 2500 | |
Норма выброса твердых частиц, мг/м3, не более | 300 | |
Разрежение в топке, ПА | 20-50 | |
* Допускается отклонение значений номинальной теплопроизводительности в пределах ± 5 %.** При номинальной теплопроизводительности, сжигании расчетного топлива (пометно-подстилочная масса с низшей теплотой сгорания 7,79 МДж/кг (1860 ккал/кг) и влажностью 43,2 %.) и коэффициенте избытка воздуха 1,4.*** Нижнее предельное отклонение соответствует режиму работы котла с теплопроизводительностью 50 % от номинальной; верхнее – режиму работы с допустимым загрязнением котла нагаром и сажей. |
en.alcatek.ru
«Белкотломаш» изготовит водонагревательные котлы, сжигающие куриный помет птицефабрик
В Беларуси существует поговорка, что из мужика господин такой, как из навоза пуля. А вот отечественные кулибины эту народную мудрость немного подкорректировали. Сейчас акционерное общество «Белкотломаш» стало первым белорусским предприятием, где наладили производство нового перспективного вида продукции: водонагревательных котлов, сжигающих подстилочно-пометную массу.
Подобная утилизация отходов птицеводства позволяет решить сразу две важные для промышленности задачи: экономическую и экологическую. Котел не только производит тепловую энергию, но и сжигает куриный помет, который при ненадлежащих условиях хранения, переработки и утилизации становится опасным.
Известно, что сегодня цыплят-бройлеров выращивают в основном на глубокой подстилке. Преимущество этой технологии состоит в том, что с суточного возраста и до забоя птицу содержат в одном помещении. Глубокая подстилка хорошо поглощает влагу, вредные газы, улучшает санитарное состояние помещения и служит теплоизоляцией. Однако этот способ имеет один серьезный недостаток, так как на одного цыпленка нужно около 2,5-3 килограммов опилок.
В результате на каждой фабрике, которая использует технологию напольного выращивания, каждый день накапливаются десятки тонн использованной подстилочно-пометной массы. Птицефабрика на 400 тысяч несушек получает за год около 30 тысяч тонн помета. При его гниении выделяется около 700 тонн биогаза, в том числе 450 тонн метана, 208 тонн углекислого газа, 35 тонн водорода, сероводорода и аммиака. Ущерб экосистеме от выбросов оценивается в миллионы долларов.
Поэтому для птицефабрик Беларуси и других стран мира утилизация отходов птицеводства является довольно сложной задачей. Такую пометную массу (в натуральном или гранулированном виде) можно использовать в качестве удобрений, но вносить ее в почву нужно в небольшом количестве, так как в противном случае земля надолго выводится из оборота. Если в непосредственной близости друг от друга находится несколько крупных птицефабрик, то утилизация отходов является уже серьезной экологической проблемой.
Небольшие водонагревательные котлы устанавливают непосредственно на территории птицефабрики
Оптимальный выход из ситуации — сжигание помета в котлах, работающих на твердом топливе. Задача эта не из легких. Подстилочная масса содержит соединения серы и фосфора, которые разрушают трубную систему агрегатов и за считанные месяцы выводят ее из строя. Одним из предприятий не только в Беларуси, но и на всем постсоветском пространстве, которое взялось за решение этой проблемы, является «Белкотломаш».
Разработанная им установка может использовать подстилочный помет влажностью до 60%. Тепловая энергия, полученная при сжигании, идет на обогрев и технологические нужды птицефабрики. Помет не требует предварительной сушки или гранулирования, что значительно упрощает весь процесс. Уже сегодня специалисты подсчитали, что использование такого котельного оборудования позволит отечественным бройлерным птицефабрикам получить ряд конкурентных преимуществ. В первую очередь это позволит значительно сократить расходы на закупку газа, которые составляют сотни тысяч долларов ежегодно (для птицефабрик, которые используют газовые котлы), снизить капитальные затраты на строительство хранилищ помета, а также существенно уменьшить экологическую нагрузку на окружающую среду путем утилизации токсичного продукта без необходимости его длительного хранения. Разработчики нового оборудования сообщают, что испытание котла прошло успешно, поэтому в самое ближайшее время оно будет поставляться на птицефабрики Беларуси, России и других заинтересованных стран региона.
Сергей Куркач, [email protected], 19 июня 2015 года. Источник: газета «Звязда», в переводе: http://zviazda.by/2015/06/88371.html
www.bel-jurist.com
Белкотломаш анонсировал водогрейный котел на курином помете
16.06.2015 Завод «Белкотломаш» анонсировал запуск в производство новой модели котлов, ориентированной на использование в птицеводстве.
Новая модель водогрейного котла в качестве топлива использует подстилочно-пометную массу. Подобная утилизация отходов птицеводства позволяет решить сразу две важные для промышленности задачи: экономическую и экологическую. Котел не только производит тепловую энергию, но и сжигает куриный помет, который при ненадлежащих условиях хранения, переработки и утилизации может быть опасен в эпизоотическом и санитарно-эпидемиологическом отношении.
Цыплят-бройлеров выращивают в основном на глубокой подстилке. На каждой фабрике, использующей эту технологию, накапливаются десятки тонн использованной подстилочно-пометной массы. Сжигание помета в котлах, работающих на твердом топливе – один из вариантов решения этой проблемы. Однако обычные установки с задачей по сжиганию помета не справляются: подстилочно-пометная масса содержит соединения серы и фосфора, которые разрушают и выводят из строя трубную систему котлоагрегата.
Разработанная установка может использовать подстилочный помет влажностью до 60%. Тепловая энергия, полученная при сжигании, идет на обогрев и технологические нужды птицефабрики. Помет не требует предварительной сушки или гранулирования, что значительно упрощает и удешевляет весь процесс. Автоматическая топливоподача и золоудаление обеспечивают: постоянство теплопроизводства без применения дополнительного топлива, полное сжигание подстилочного помета высокой зольности и влажности и экологическую безопасность зольных остатков.
Новинка повысит перспективы белорусского птицеводства, поскольку позволит бройлерным птицефабрикам создать безотходное производство, заметно сократит затраты на закупку газа и транспортные расходы по утилизации помета, снизит капитальные затраты на строительство пометохранилищ, уменьшит экологическую нагрузку на окружающую среду.
Как сообщает Белта, экспериментальный образец водогрейного водотрубного котла с механизированной подачей топлива, адаптированный для сжигания отходов птицеводства, уже прошел испытания на фабрике в подмосковном Сергиевом Посаде. В ближайшее время на птицефабрики начнутся поставки серийных образцов .
Научно-производственное предприятие «Белкотломаш» создано 29 декабря 1989 года в горпоселке Бешенковичи Витебской области. Основное направление – разработка и производство котлов для отопления, функционирующих на возобновляемых видах топлива. Предприятие выпускает более 60 наименований котлов, работающих на твердом, жидком и газообразном топливе.
Напомним, что ранее сообщалось о том, что компания Boeing собирается открыть в Китае производство авиатоплива из пищевых отходов.
Источник: http://agriculture.by
agriculture.by
Котельную на курином помете открыли сегодня
Куриный помёт в качестве топлива. Новую технологию запустили на Кузбасской птицефабрике. Теперь биокотельная позволяет и утилизировать остатки жизнедеятельности птиц и отапливать при этом всё предприятие. К тому же этот способ минимизирует количество вредных выбросов и их воздействие на окружающую среду.
Мария КИСЕЛЕВА, корреспондент: "Завершилось строительство новой котельной на Кузбасской птицефабрике. Её мощность 10 мегаватт и она уже отапливает всю территорию предприятия. По словам руководителей, это единственная подобная котельная в России. Её уникальность в том, что топливо на 20% состоит из угля, а на 80% из птичьего помёта".
Смесь компонентов происходит именно в топке. И способ, и цель - исключительны: утилизировать с полезным извлечением тепла. По проекту на котельной используется вихревая технология сжигания. Процессы максимально автоматизированы, поэтому в коллективе здесь всего 12 человек.
Дмитрий ЯЦЕНКО, генеральный директор птицефабрики: "Процесс сжигания с помощью поддува. И вид топлива - подстилочный куриный помёт, то есть это опилки вместе с помётом, на котором осуществляет свою жизнедеятельность бройлер в течение 42 дней. Затем этот подстилочный помёт идёт как топливо".
Такой способ - очень эффективен и в том, что касается экономии для предприятия. Плюс экологически безопасен. Пока это доказано только экспериментально, но руководители предприятия уверены, что и в промышленных объёмах проблем не будет.
Олег ТРЕТЬЯКОВ, начальник Департамента сельского хозяйства и перерабатывающей промышленности Кемеровской области: "Я отмечу очень важный момент, что животноводческие комплексы у нас в первую очередь сталкиваются - это с экологией, самая большая проблема - это утилизация отходов, как раз такая котельная решает эти вопросы. Мало того, что идёт утилизация отходов, получают ещё непосредственно тепло".
Евгений ПУЗЫРЕВ, проектировщик котельной: "Как мы видим, экологически это чистое предприятие, дымовых выбросов почти не заметно. И по измерениям выбросы очень маленькие".
www.tvn-tv.ru
Котельные на биотопливе - ТУРБОПАР
В настоящее время более остро встает проблема поиска отличных от традиционных источников энергии. Запасы традиционных энергоносителей конечны и недешевы, поэтому предпочтение все чаще отдается возобновляемым источникам энергии. Человечество уже использует потенциал воды, ветра, Солнца, но также одним из возобновляемых источников топлива являются продукты жизнедеятельности самого человечества.
Специалисты Турбопар уже более 6-ти лет успешно занимаются проблемами утилизации отходов птицеводства, животноводства и в целом сельского хозяйства.
Далее информация для предприятий, планирующих проектирование технологии, а также проектирование котельных, электростанций и ТЭЦ использующих в качестве топлива биотопливо.
1. Виды биотоплива.
Под биотопливом понимается топливо, получаемое путем переработки побочных продуктов животного или растительного происхождения (биомассы). Это и древесина (щепа), и солома, и жмыхи, и лузга масличных культур, и продукты жизнедеятельности домашних животных и самого человека. И этот источник энергоресурсов будет существовать, пока будет существовать человек и наша планета.Различные виды биотоплива имеют разный энергетический потенциал и, соответственно, требуют различного подхода к извлечению этого потенциала.
2. Методы использования биотоплива (подготовка к использованию в котельной для последующей подачи в котлы).
Существуют различные технологии по использованию биотоплива и приготовлению из него конечного продукта для подачи в топку котла. И подбор конкретной технологии к определенному виду биотоплива зависит от условий Заказчика. Ранее мы рассмотрели вопросы использование щепы, в данном разделе осветим вопросы утилизации других видов биотоплива, а также биоотходов.
В зависимости от влажности исходного топлива, его свойств и происхождения выделяют такие технологии как прямое сжигание, газификацию, либо получение биогаза. Так при влажности исходного топлива более 50%, как правило, целесообразнее использовать технологию получения биогаза, при влажности меньше 50% методы прямого сжигания топлива либо газификацию топлива.Остановимся на общем описании каждого из указанных методов.
Метод с получением биогаза. Сущность данного метода заключается в следующем: биотопливо (биомасса) загружается в биореакторы, где происходит процесс брожения, в ходе которого метановые бактерии вырабатывают собственно первичный биогаз. Требования к данной технологии очень высоки, любое нарушение технологии либо температурных режимов может привести к гибели бактерий, и соответственно к остановке биореактора, для его очистки.
Минусами данного метода являются как дополнительные затраты на увеличение влажности исходного биотоплива (в зависимости от времени года до 92-94%) и подогрев добавляемой воды (если технология применяется в регионах с холодными периодами года), так и довольно долгий срок приготовления непосредственно топлива – биогаза. Также надо учитывать, что при данной технологии общая масса исходного сырья уменьшается на 3-5%, т.е. как способ, в том числе и утилизации отходов, такая технология малоприменима (хотя продукт после брожения в некоторых случаях можно использовать как удобрение). Однако в то же время стоит отметить и такие несомненные плюсы данной технологии, как:- высокая калорийность получаемого топлива (по характеристикам биогаз наиболее приближен к природному газу), - использование полученного биогаза для различных нужд, в том числе для получения биотоплива для автомобилей, - существенная экономия на процессе получения энергии, если влажность исходного топлива высока (от 65%).
Особняком в этой технологии стоит утилизация куриного помета кур-несушек, влажность которого может достигать 90 % и более. Это связанно в первую очередь с высоким содержанием азота в данном виде топлива, что приводит при применении данной технологии к образованию большого количества азотистой воды, которая требует дорогостоящих решений по утилизации.
После этапа приготовления биогаз подается либо на паровые, либо на водогрейные котлы. При данном методе используются стандартные котлы, работающие на природном газе. Никакого дополнительного оборудования не требуется. Также смотрите проектирование биогазовых установок.
Метод газификации. Метод основан на получение генераторного газа. Данная технология применяется при влажности топлива до 50% (даже если производители подобного оборудования и декларируют влажность выше, надо учесть, что они не обманывают, они просто говорят о влажности исходного топлива. В газификатор поступает брикет с максимальной влажностью 50%).Данная технология требует брикетирования, в отличие от технологии, основанной на биогазе (при биогазовой технологии можно ограничиться участком приема топлива и смешения, после чего полученная первичная масса загружается в биореактор). Таким образом, в процессе появляются дополнительные электрические затраты на этот узел. Следует отметить также и требования по зольности исходного топлива, которая не должна превышать 40 % (максимально достижимое значение в ходе экспериментов на сегодняшний день 45% зольности). Связано это требование с тем, что эти технологии основаны на горении с ограниченной подачей воздуха. Топливо с высокой зольностью не будет иметь стабильного горения. Кроме того, потребуются значительные затраты для поддержания этого процесса. Также отметим, что получаемый газ имеет более низкие качественные характеристики в сравнении с биогазом (так калорийность и теплота сгорания генераторного газа может быть в 3-5 раз ниже биогаза). К тому же, если получившийся газ планируется подавать в ГПА, то требуется дополнительная система очистки газа от продуктов горения, а также камера охлаждения. Также следует учесть, что в настоящее время в основном эта технология развита на экспериментальном уровне, по крайней мере, на территории стран СНГ, и существуют сильные ограничения по возможному количеству перерабатываемой биомассы.
Данные технологии имеют и свои уникальные по сравнению с другими методами преимущества. Одно из основных достоинств данной технологии – она применима практически к любому виду топлива. При помощи данной технологии генераторный либо пиролизный газ можно получить не только из биомассы, но и из ТБО (твердо-бытовых отходов), продуктов нефтепереработки (пластмассы, полиэтилен и пр.). Данная технология наиболее стабильна и контролируема. Конечный продукт (генераторный газ) стабилен по составу. По капиталовложениям данный вариант сопоставим с методом прямого сжигания. Происходит значительная утилизация отходов, что тоже дает несомненный плюс данной технологии, также как и то, что продуктами горения при данной технологии являются (при утилизации именно биомассы) высококачественные удобрения. Заметим, что затрачиваемое время на получение конечного продукта в виде генераторного газа значительно ниже, чем при биогазовом методе (при биогазе время получения биогаза в зависимости от типа применяемого первоначального биотоплива может доходить до 12-14 дней), и зависит от мощности брикетера, времени на сушку и времени на газификацию. Напоследок отметим, что при данном методе также отсутствуют вредные выбросы в атмосферу.Полученный генераторный газ подают в стандартные газовые котлы (паровые либо водогрейные), но с переработанными под генераторный газ горелками.
Метод прямого сжигания. Как понятно из названия, суть метода – прямое сжигание биотоплива. При данном методе ключевое значение имеет даже не котельное оборудование, а метод топливоподготовки, хотя существует связь между топливоподготовкой и планируемым способом сжигания (цепная решетка, вихрь, кипящий слой и т.д.).Данная технология требует низкой влажности топлива (45% и ниже), также как и предыдущий метод чувствительна к зольности первичной биомассы. К тому же в зависимости от типа топлива может меняться и сам состав оборудования, причем радикально, как пример, от брикетеров до дробилок. Также не стоит забывать, что в классическом исполнении этой технологии при сжигании есть проблема выбросов дымовых газов, температурой порой до 250 0С, что естественно не способствует экологической обстановке вокруг комплекса мини-ТЭЦ. При этом система требует довольно дорогих систем фильтрации, чтобы уменьшить выбросы в атмосферу вредных веществ.Данная технология является наиболее отработанной, хотя в современном мире с помощью этой технологии пытаются утилизировать все больше видов биотоплива. Технология востребована при переводе котельной в мини-ТЭЦ на местные виды топлива, что позволяет существенно уменьшить первоначальные капитальные вложения (надо понимать, что речь идет о твердотопливных котлах).Может возникнуть вопрос, а какой же метод применим при влажности исходной биомассы 50-65%? И однозначный ответ не будет дан, так как это то пограничное значение, при котором все покажет экономический расчет и сравнение технологий.
Специалисты ТУРБОПАР выполняют:
1. Анализ существующего топлива.
2. Выбор наиболее эффективного сжигания топлива. Подробнее здесь >>
3. Эффект утилизации.Что же дает использование биотоплива?Конечно, самый главный эффект использования данного топлива заключен в существенной экономии денежных средств.Но также немаловажным является тот момент, что в отличие от классических видов энергоресурсов (таких как уголь, газ, мазут), биотопливо возобновляемо. Данный вид топлива не исчерпаем. Рано или поздно человечество будет вынуждено получать энергию именно при помощи возобновляемых источников топлива.
Необходимо отметить, что биотопливом зачастую являются отходы, утилизация которых стоит достаточно дорого, да и что скрывать, данные отходы наносят вред окружающей среде. Таким образом, при использовании биотоплива, помимо экономии на электрической и тепловой энергии за счет собственной выработки, происходит существенная экономия на утилизации отходов, в том числе сельскохозяйственных, происходит экономия на площадях, ранее отводимых под хранение отходов перед их отправкой на утилизацию, поддержание экологии (экономия хотя бы на экологических штрафах).
Итак, подведём итог и выделим плюсы использования биотоплива:1. Биотопливо возобновляемо.2. Себестоимость биотоплива существенно ниже, нежели стоимость классического топлива.3. Исходя из пункта 2 существенно ниже и стоимость получаемой тепловой и электрической энергий.4. В качестве источников топлива можно рассматривать различные отходы, такие как солома, лузга масличных культур, отходы переработки сахара (жом, ботва), навоз/помет и многие другие отходы животного и растительного происхождения.5. Конечным продуктом котельных и мини-ТЭЦ на биотопливе является не только тепловая и электрическая энергии. Очень часто отходы самих котельных и мини-ТЭЦ на биотопливе можно использовать в дальнейшем (удобрения, побочные продукты в виде химических соединений, строительная отрасль и т.д.).6. Улучшение экологической обстановки.7. Экономия, и очень часто существенная, на утилизации отходов, таких как навоз/помет, лузга масличных и т.д.
В данном разделе представлено описание нескольких котельных, учитывая способ приготовления конечного топлива.
Котельная на биогазе.
Как отмечалось выше, в основу положено приготовление биогаза с последующим его использованием. Укрупненный состав оборудования такой котельной: площадка приема топлива, оборудование смешения биотоплива, биореакторы, система подачи топлива в биореакторы, системы очистки биогаза (если требуется). Далее в зависимости от целей котельной можно установить классический газовый котел (водогрейный либо паровой). При необходимости выработки электрической энергии в дополнение к тепловой возможна установка либо ГПА, либо газовой турбины, либо паровой турбины. После газовой турбины устанавливается котел-утилизатор.Такую котельную можно поставить, в том числе и возле очистных сооружений, для утилизации иловых накоплений.
Котельная на генераторном газе.
Укрупненный состав такой котельной: площадка приема исходного топлива, оборудование смешения, оборудование сушки, брикетеры, газогенераторная установка. Полученный генераторный газ далее отправляется либо на котел газовый (водогрейный либо паровой) с адаптированными под этот газ горелками, либо на ГПА (в случае ГПА требуется система очистки генераторного газа). Реализованными на данный момент в странах СНГ являются проекты только на основе получения пиролиза при переработке древесной щепы.
Котельная с применением прямого сжигания.
Состав данной котельной может варьироваться в зависимости от вида биотоплива, планируемого к сжиганию.Так, например, при утилизации лузги масличных культур укрупненный состав оборудования может состоять из: площадки приема биотоплива, транспортеров топлива, бункеров дозаторов топлива и самих котлов (водогрейных либо паровых). При необходимости смешения нескольких видов лузги либо добавления в лузгу других видов растительных отходов устанавливается оборудование смешения, сушки и брикетирования.Далее приведен пример работы Турбопар, разработка предпроектного исследования утилизации куриного помета на Украине в 2010году.
Как выбиралась утилизация куриного помета. Краткое описание проекта.
Заказчиком была поставлена следующая задача: крупной птицефабрике требовалось утилизировать до 200 тонн подстилочного помета в день, с получением тепловой и электрической энергии. Работа мини-ТЭЦ круглосуточная и круглогодичная.На территории стран СНГ подобных проектов нет. Наиболее узким местом в данном проекте является обработка исходной биомассы (подстилочного помета), поскольку ее влажность колеблется в зависимости от поры года. Сам по себе вид топлива, получаемый из данной биомассы, обладает средней теплотой сгорания и содержит много вредных веществ. Были рассмотрены различные варианты приготовления топлива для последующей подачи в котел – от прямой подачи в топку до пылевого метода сжигания (превращение исходного топлива в мелкодисперсную пыль, обладающую более высокими свойствами горения, с последующей подачей этого пылевидного топлива в специальные топки в котлах). В итоге предварительно был принят вариант следующего вида: - устанавливается хранилище первичного топлива с запасом топлива на 7 дней беспрерывной работы ТЭЦ, - после этого устанавливается оборудование смешения с другими видами биотоплива,- оборудование сушки, - измельчения до необходимых размеров частиц - и подача в бункеры-дозаторы перед котлами. Далее осуществляется подача из бункеров-дозаторов непосредственно в паровые котлы. После котлов устанавливается одна или две паровые турбины конденсационного типа с регулируемыми оборами пара. Пар из отборов отправляется на собственные нужды котельной (на участок сушки топлива), и птицекомплекса. Электрическая энергия используется на собственные нужды птицекомбината. Остатки неиспользованной электрической энергии передаются в общегосударственную электрическую сеть. Также данная мини-ТЭЦ помимо электрической и тепловой энергий побочным продуктом будет давать высококачественное удобрение (зола - продукт горения биомассы), которое будет использоваться либо для собственных нужд, либо реализовываться на рынке удобрений (предусмотрен участок пакетирования удобрений). Здесь намеренно не раскрывается способы утилизации дымовых газов мини-ТЭЦ и детального описания систем оборудования. Скажем только, что при реализации проекта предприятие вырабатывать в сутки около 144 МВт электрической энергии, столько же тепловой. Срок окупаемости данного проекта с учетом всех вложений составит три года. Выполняется архитектурная часть проекта Утилизация куриного помета.
паровые котлы, водогрейные котлы, проектирование очистных сооружений
www.turbopar.ru
Способ сжигания птичьего помета и котел для осуществления способа
Изобретение относится к области энергетики и может быть использовано в котельных агрегатах для утилизации птичьего помета, в том числе непосредственно на птицефабриках с целью выработки тепловой и электрической энергии, а также получения золы как ценного минерального удобрения. Техническим результатом является сжигание птичьего помета с полным дожигом вредных и зловонных газов. Способ предусматривает подачу птичьего помета в топочную камеру с организацией процесса сжигания в ее нижней слоевой части и дожигом генераторного газа и летучих в ее верхней части. При этом птичий помет подают в верхнюю вихревую часть топочной камеры с последующей его подсушкой при движении через данную часть под действием силы тяжести, а затем в последовательно расположенные слои (зоны) кипы нижней слоевой части топочной камеры: слой сушки и выделения летучих, слой раскаленного инертного кокса, восстановительный слой, окислительный слой выгорания кокса, слой охлаждения, грануляции и выгрузки золы, перемешиваемый шурующей планкой с подачей подогретого первичного воздуха через колосниковую решетку, на которой размещены перечисленные выше слои, с последующим дожигом генераторного газа и летучих в верхней вихревой части топочной камеры. 2 н. и 3 з.п. ф-лы, 1 ил.
Предлагаемое изобретение относится к области энергетики. Более конкретной областью использования изобретения будет топочная техника, например котельные агрегаты, в том числе мобильные, утилизирующие птичий, например куриный, помет непосредственно на птицефабриках с целью выработки тепловой и электрической энергии, а также получения золы как ценного минерального удобрения.
В качестве аналогов предлагаемого изобретения могут быть выбраны следующие технические решения.
Известен факельный способ сжигания твердого топлива в пылевидном состоянии в камерной гамма-топке с пересекающимися струями (Котлер В.Р. Специальные топки энергетических котлов, М.: Энергоатомиздат, 1990, стр.18, рис.8). В такой топке обеспечивается высокая теплонапряженность топочного объема, хорошее удержание частиц топлива в топочном объеме вследствие создания вихревого движения газов с горизонтальной осью вращения, обеспечивающее высокую полноту сгорания. Недостатком данного способа является нестабильность топочного процесса при колебаниях нагрузки по расходу и влажности топлива, высокая температура, приводящая к образованию вредных окислов NOx, неприспособленность для сжигания крупнофракционных высоковлажных топлив, к которым относится птичий помет.
Известен способ сжигания измельченного топлива, описанный в патенте RU 2127399, опубликованном 10.03.1999, при котором температуру в предтопке поддерживают на уровне, не превышающем температуру размягчения золы. Недостатком данного способа применительно к задаче сжигания птичьего помета является невозможность термического разложения вредных продуктов газификации птичьего помета вследствие относительно низкой температуры топочного процесса и отсутствие возможности предварительной подсушки топлива внутри самой топки вследствие циклонного принципа сжигания.
В качестве ближайшего аналога предлагаемого изобретения может быть выбрано устройство для сжигания смеси углеродосодержащих материалов и помета по патенту RU 2375637, опубликованному 10.12.2009, и соответственно способ сжигания помета, описанный в данном источнике. Предложенное устройство включает топку для сжигания птичьего помета, содержащую радиационную камеру с дутьевыми соплами. Способ сжигания птичьего помета в известном устройстве предусматривает подачу птичьего помета в радиационную камеру с организацией процесса сжигания топлива в ее нижней слоевой части и дожитом генераторного газа и летучих в ее верхней части. Известное из RU 2375637 устройство предназначено непосредственно для сжигания подстилочно-пометной массы, однако для данного устройства будут характерны все недостатки, перечисленные выше для способа по патенту RU 2127399. То есть также невозможно термическое разложения вредных и зловонных продуктов газификации птичьего помета и отсутствует возможность предварительной подсушки топлива внутри самой топки вследствие отсутствия механизма подачи топлива. Кроме того, устройство по RU 2375637 достаточно сложно по конструкции, включающей систему перегородок между массой сжигаемого помета и топливом для сжигания, расположенную в радиационной камере топке (очевидна их низкая надежность), а также предусматривающей необходимость отдельного узла для очистки уходящих газов.
В свою очередь предлагаемое изобретение позволит устранить указанные выше недостатки и позволит предложить способ для сжигания птичьего помета, а также топку для осуществления способа, которые позволят сжигать птичий помет с полным дожигом вредных и зловонных газов. Указанный технический результат достигается при использовании предложенного способа сжигания птичьего помета, а также котла для осуществления способа.
Предложенный способ сжигания птичьего помета предусматривает подачу птичьего помета в топочную камеру с организацией процесса сжигания топлива в ее нижней топочной части и дожигом генераторного газа и летучих в ее верхней части. В отличие от аналога птичий помет подают в верхнюю вихревую часть топочной камеры с его подсушкой при движении через упомянутую часть под действием силы тяжести. В нижней слоевой части топочной камеры организуют полугазогенерационный процесс сжигания в перемешиваемой кипе, содержащей слой раскаленного инертного кокса с последующим дожигом генераторного газа и летучих в верхней вихревой части топочной камеры. При этом в вихревую часть топочной камеры вдувают струи подогретого вторичного воздуха, направленные навстречу друг другу. В нижнюю слоевую часть топочной камеры подают подогретый первичный воздух. Упомянутую кипу перемешивают шурующей планкой. Уходящие газы из топочной камеры попадают в радиационную камеру.
Предложенный котел для сжигания птичьего помета представляет собой топочную камеру, разделенную на верхнюю вихревую часть с, по меньшей мере, одним окном выгрузки птичьего помета и дутьевыми соплами вторичного воздуха и нижнюю слоевую часть, оборудованную средствами организации полугазогенерационного процесса сжигания в перемешиваемой кипе, содержащей слой раскаленного инертного кокса. В нижней слоевой части топочной камеры расположена колосниковая решетка, на которой снизу вверх размещены слои кипы: зона охлаждения, грануляции и выгрузки золы, в которой перемещается шурующая планка; окислительная зона выгорания кокса; восстановительная зона; зона инертного кокса; зона сушки и выделения летучих. В колосниковой решетке исполнены дутьевые сопла первичного воздуха. В самом верху топочной камеры встроены сопловые насадки, через которые в котел вдувается вторичный воздух, образующий вихревую зону горения. С верхней вихревой частью топочной камеры связана радиационная камера. Стены топочной камеры и радиационной камеры экранированы трубами циркуляционного контура котельной установки.
Птичий помет является особым и специфическим топливом, затрудняющим его сжигание в традиционных топочных устройствах, предназначенных для утилизации древесных отходов и других продуктов растительного происхождения. Основными особенностями птичьего помета является относительно высокая исходная влажность, относительно высокая зольность, низкая температура плавления золы, что обусловливает повышенную склонность к шлакообразованию, высокое содержание в продуктах газификации топлива вредных для окружающей среды и зловонных для человека веществ: аммиака, сероводорода, меркаптанов и др.
Соответственно технология сжигания птичьего помета должна отвечать следующим основным требованиям:
- обеспечение возможности предварительной подсушки топлива в слое до влажности, соответствующей условиям ведения топочного процесса;
- обеспечение возможности термического разложения в топочной камере вредных и зловонных газов, таких как аммиак, сероводород, меркаптаны, во избежание их попадания в составе дымовых газов в окружающую среду;
- исключение возможности зашлаковывания колосниковой решетки топки и теплообменных поверхностей трубного пучка котла;
- обеспечение, по возможности, улавливания мелкофракционных частиц зольного остатка и недогоревших частиц топлива, уносимых топочными газами, до их попадания в газоходы теплообменных поверхностей котельного агрегата.
Соответственно целью при создании способа сжигания птичьего помета и соответствующей топки будет
- обеспечение возможности сжигания птичьего помета при условии твердого золоудаления;
- исключение возможности шлакования колосниковой решетки топки и трубного пучка котельного агрегата;
- нейтрализация вредных газов, выделяющихся при сгорании помета;
- очистка дымовых газов от мелкофракционных частиц золы до попадания на теплообменные поверхности конвективного трубного пучка котельного агрегата;
- исключение возможности образования вредных окислов азота NOx;
- улучшение условий зажигания высоковлажного разнофракционного топлива;
- повышение стабильности процесса горения и полноты сгорания.
Для достижения поставленной цели котел разделяется пережимом 2 на две камеры: топочную 3 и радиационную (конвективную) 4. Топочная камера 3 по высоте условно разделена на две части: нижнюю слоевую и верхнюю вихревую. В нижней слоевой части на колосниковой решетке в кипе (то есть в неподвижном слое топлива) высотой не менее 300 мм реализуется полугазогенерационный процесс сжигания, включающий подсушку свежего топлива, выделение из него летучих компонентов с образованием кокса, образование генераторного газа в восстановительной зоне и выжигание кокса в окислительной зоне кипы. Подсушке свежего влажного топлива, эффективному зажиганию топлива и повышению стабильности горения способствует наличие в кипе стабилизационного зажигательного слоя раскаленного инертного кокса. Для поддержания газогенераторного процесса горения первичный воздух в количестве 70% от теоретически необходимого подается в газогенераторную зону снизу через каналы в колосниковой решетке.
В окислительной зоне кипы температура достаточно высока, что приводит к оплавлению наружной поверхности частиц золы и их размягчению. Однако зашлаковывания колосниковой решетки не происходит вследствие того, что при гравитационном опускании золы вниз происходит конвективное охлаждение зольных частиц потоком первичного воздуха, подаваемого снизу через каналы колосниковой решетки, а также кондуктивное охлаждение посредством отвода теплоты от размягченных и оплавленных зольных частиц к более холодным твердым частицам в нижнем слое золы, образующим защитный слой, отделяющий зону оплавленных частиц от поверхности колосниковой решетки. Часть теплоты, выделяющейся в зоне окисления, посредством кондуктивного теплообмена передается в верхнюю более холодную восстановительную зону, где идет реакция восстановления CO2 до CO с поглощением теплоты. В результате охлаждения происходит кристаллизация пленки жидкого шлака на поверхности зольных частиц, что приводит к их грануляции и превращению в малоразмерные гранулы, пригодные для твердого золоудаления. Доступ охлаждающего воздуха к зольным частицам и активное перемешивание оплавляемых частиц золы с более холодными частицами твердой золы обеспечивается возвратно-поступательным движением по колосниковой решетке шурующей планки 7. Скорость шуровки слоя и удаления твердой золы таковы, чтобы согласно тепловому балансу зольного слоя из него обеспечивался отвод избыточной теплоты, а также поддерживался защитный слой твердой золы достаточной толщины, чтобы в нем происходил процесс охлаждения и кристаллизации оплавленных зольных частиц, с целью защиты решетки от зашлаковывания и обеспечения твердого золоудаления. Кроме того, охлаждение зольного слоя также осуществляется за счет отвода части теплоты к экранным трубам 9 циркуляционного контура котла, размещенным по боковой поверхности топочной камеры.
В верхней части топочной камеры 3 реализуется вихревое сжигание образовавшегося генераторного газа и летучих, дожиг выносимых из слоя мелких частиц топлива и возврат в слой частиц золы, частичная подсушка свежего топлива, а также термическая нейтрализация вредных и зловонных газов. Для этого в вихревую зону топочной камеры 3 через сопла 5, расположенные напротив друг друга в области пережима 2 и направленные вниз под углом 30…60° к горизонту, вдувается острыми струями со скоростью 100…140 м/с подогретый до 250-350°C вторичный воздух. Количество вторичного воздуха составляет 45-50% от общего количества воздуха, необходимого для горения. Направление движения струй встречно-направленное вследствие того, что сопла 5 на стенках топки напротив друг друга установлены с определенным шагом в горизонтальной плоскости. Встречная компоновка сопел способствует стабилизации очага горения и выравниванию температурного поля в вихревой зоне. Благодаря такой аэродинамике в надслоевом пространстве топки ниже пережима 2 в результате ударного взаимодействия струй образуются два крупных вихря с горизонтальной осью вращения. В центре топки траектории движения вихрей имеют нисходящий характер, а вблизи стенок топки - восходящий.
Топки с пережимом исторически были разработаны, как форсированные топки полуоткрытого типа, имеющие высокое теплонапряжение топочного объема. Обычно их используют для реализации жидкого шлакоудаления, так как в них развивается высокая температура. Однако в данном случае благодаря экранированию топочной камеры трубами циркуляционного контура котла из зоны горения отводится избыточная теплота, что позволяет организовать процесс сжигания, обеспечивая снижение температуры топочного объема до уровня, исключающего шлакование топки и образование вредных окислов азота NOx. Вследствие подачи острого дутья и завихрению потока осуществляется активное смесеобразование генераторного газа и подогретого вторичного воздуха, благодаря чему в области соударения струй в центре топки поддерживается достаточно высокая температура, необходимая для термической нейтрализации вредных и зловонных газов.
Окно выгрузки свежего топлива 1 конструктивно расположено так, что при выгрузке топливо попадает в наиболее высокотемпературную зону вихря, направленную вниз к слою, за счет чего в процессе падения в слой происходит частичная подсушка влажного топлива и сокращается вынос мелких частиц с высокой парусностью вследствие эжектирующего действия скоростных струй. За счет организации многократной циркуляции топочных газов в вихре достигается удержание в радиационной камере ниже пережима мелких твердых частиц топлива, выносимых из слоя до их полного сгорания. Этим обеспечивается повышение полноты сгорания топлива и снижение потерь теплоты с механическим недожогом. За счет пересечения в области выхода из сопел 5 медленных струй восходящих потоков, обладающих низкой кинетической энергией, с высокоскоростными наклонными струями из сопел 5, обладающими высокой кинетической энергией, происходит перехват из восходящего потока и сепарация в нисходящую скоростную струю мелких частиц твердого зольного остатка. Благодаря приобретенной кинетической энергии при обратном развороте над слоем направленных вниз вихревых струй под действием силы инерции происходит вынос зольных частиц из струи и падение в слой. Таким образом, реализуется очистка дымовых газов от мелкофракционных частиц золы и не допускается их вынос в конвективную часть.
Предложенная технология сжигания птичьего помета осуществляется следующим образом. Птичий помет через окно (питатель) 1 попадает в высокотемпературную часть вихревой зоны топочной камеры 3, где в процессе падения на слой происходит его частичное подсушивание. На колосниковой решетке 6 расположен слой топлива толщиной не менее 300 мм (кипа), в котором реализуется полугазогенерационный процесс. В кипе, как показано, последовательно сверху вниз расположены: зона сушки и выделения летучих, зона инертного кокса, восстановительная зона, в которой происходит образование генераторного газа, окислительная зона выгорания кокса, зона охлаждения, грануляции и выгрузки золы. Сама кипа неподвижно расположена на колосниковой решетке, но внутри нее происходит гравитационное опускание топлива, проходящего последовательно все стадии процесса. Нижняя часть кипы (зона охлаждения, грануляции и выгрузки золы) подвергается непрерывной шуровке посредством шурующей планки 7, с помощью которой осуществляется выгрузка золы в золосборник 8. Для поддержания процесса в кипе и охлаждения шлака снизу через отверстия в колосниковой решетке 6 подается подогретый до температуры 250-350°C первичный воздух в количестве 70% от теоретически необходимого.
В вихревую зону радиационной камеры 3 через встречно-наклонные сопла 5, расположенные в области пережима 2 между топочной 3 и радиацинной 4 камерами, вдувается подогретый до 250-350°C вторичный воздух в количестве 70% от потребного со скоростью 100…140 м/с. В результате встречного взаимодействия струй образуются вихри, в которых происходит активное смесеобразование с генераторным газом и его сгорание, сжигание выносимых из слоя мелкофракционных твердых частиц топлива, термическая нейтрализация вредных и зловонных газов, выделившихся из птичьего помета. В результате поперечного взаимодействия струй с различной кинетической энергией при их взаимном пересечении из потока восходящих дымовых газов происходит сепарация твердых частиц зольного остатка и возврат их в слой. Для предотвращения создания в топочной камере слишком высоких температур, создающих угрозу плавления золы и зашлаковывания топки, боковые поверхности топочной камеры экранированы трубами 9, включенными в состав циркуляционного контура котла, к которым отводится теплота.
Как и было показано выше, устройство для реализации предлагаемого способа представляет топку, разделенную пережимом 2 на две камеры: топочную 3 и радиационную 4. Топочная 3 в свою очередь разделена на две зоны: слоевого горения и вихревого горения. На колосниковой решетке 6 располагается неподвижная кипа топлива высотой не менее 300 мм, в которой реализуются все стадии газогенераторного процесса. Для его поддержания через отверстия в колосниковой решетке 6 подается подогретый первичный воздух. Нижняя часть слоя подвергается непрерывной шуровке посредством возвратно-поступательного движения шурующей планки 7, которая осуществляет золоудаление в золосборник 8. В зоне вихревого горения в области пережима 2 встречно-наклонно в горизонтальной плоскости относительно друг друга расположены дутьевые сопла 5 для подачи подогретого вторичного воздуха. Окно выгрузки в топку свежего топлива расположено так, чтобы выгрузка свежего топлива производилась по линии пересечения осей встречных струй, чтобы обеспечить попутное со струями нисходящее движение топлива вниз в слой. Благодаря эжектирующему эффекту струй это уменьшает вынос мелкофракционных частиц топлива с высокой парусностью, а высокая температура в очаге горения в месте соударения струй обеспечивает частичную подсушку влажного топлива еще в процессе его падения в слой. При поперечном пересечении струй в области устья сопел происходит сепарация струей высокой энергии твердых частиц зольного остатка из восходящих струй топочных газов с более низкой энергией и возвращение этих частиц в слой.
Таким образом, предложен эффективный способ для сжигания птичьего помета, а также топка для его осуществления, который позволит сжигать птичий помет с полным дожигом вредных и зловонных газов.
1. Способ сжигания птичьего помета, предусматривающий подачу птичьего помета в топочную камерус организацией процесса сжигания в ее нижней слоевой части и дожигом генераторного газа и летучих в ее верхней части, отличающийся тем, чтоптичий помет подаютв верхнюю вихревую часть топочной камеры с последующей его подсушкой при движении через данную часть под действием силы тяжести,а затем в последовательно расположенные слои (зоны) кипы нижней слоевой части топочной камеры:слой сушки и выделения летучих,слой раскаленного инертного кокса,восстановительный слой,окислительный слой выгорания кокса,слой охлаждения, грануляции и выгрузки золы, перемешиваемый шурующей планкой с подачей подогретого первичного воздуха через колосниковую решетку, на которой размещены перечисленные выше слои,с последующим дожигом генераторного газа и летучих в верхней вихревой части топочной камеры.
2. Способ по п.1, отличающийся тем, что в верхнюю вихревую часть топочной камеры вдувают струи подогретого вторичного воздуха, направленные навстречу друг другу.
3. Способ по п.1, отличающийся тем, что уходящие газы из топочной камеры подают в радиационную камеру.
4. Котел для сжигания птичьего помета, содержащий топочную камеру с дутьевыми соплами, отличающийся тем, чтотопочная камера разделена наверхнюю вихревую часть с, по меньшей мере, одним окном выгрузки птичьего помета и дутьевыми соплами вторичного воздуха, инижнюю слоевую часть для организации процесса сжигания птичьего помета в соответствии с любым из пп.1-3.
5. Котел по п.1, отличающийся тем, что стены топочной и радиационной камер экранированы трубами циркуляционного контура котельной установки.
www.findpatent.ru