Геотермальная энергия: плюсы и минусы. Геотермальные источники энергии. Плюсы и минусы геотермальная энергия
плюсы и минусы. Геотермальные источники энергии :: SYL.ru
Среди альтернативных источников геотермальная энергия занимает значительное место – ее так или иначе используют примерно в 80 странах по всему миру. В большинстве случаев это происходит на уровне строительства теплиц, бассейнов, применения в качестве лечебного средства или отопления.
В нескольких странах – в том числе США, Исландии, Италии, Японии и других - построены и работают электростанции.
Геотермальная энергия в целом подразделяется на две разновидности – петротермальную и гидротермальную. Первый тип использует как источник горячие горные породы. Второй - подземные воды.
Если свести все данные по теме в одну диаграмму, обнаружится, что в 99% случаев используется тепло пород, и только в 1% геотермальная энергия извлекается из подземных вод.
Петротермальная энергетика
На настоящий момент в мире достаточно широко используется тепло земных недр, причем преимущественно это энергия неглубоких скважин – до 1 км. С целью обеспечения электричеством, теплом или ГВС устанавливаются скважинные теплообменники, работающие на жидкостях с низкой температурой кипения (например, на фреоне).
Сейчас использование скважинного теплообменника является наиболее рациональным способом добычи тепла. Выглядит это так: теплоноситель циркулирует в замкнутом контуре. Нагретый поднимается по концентрично опущенной трубе, отдавая свое тепло, после чего, охлажденный, при помощи насоса подается в обсадную.
В основе использования энергии земных недр лежит природное явление – по мере приближения к ядру Земли растет температура земной коры и мантии. На уровне 2-3 км от поверхности планеты она достигает более 100 °С, в среднем увеличиваясь с каждым последующим километром на 20 °С. На глубине 100 км температура достигает уже 1300–1500 ºС.
Гидротермальная энергетика
Вода, циркулирующая на больших глубинах, нагревается до значительных величин. В сейсмически активных районах она поднимается на поверхность по трещинам в земной коре, в спокойных же регионах ее можно вывести с помощью скважин.
Принцип действия тот же: нагретая вода поднимается по скважине вверх, отдает тепло, и возвращается по второй трубе вниз. Цикл практически бесконечен и возобновляем до тех пор, пока в земных недрах остается тепло.
В некоторых сейсмически активных регионах горячие воды лежат так близко к поверхности, что можно воочию наблюдать, как работает геотермальная энергия. Фото окрестностей вулкана Крафла (Исландия) демонстрирует гейзеры, которые передают пар для действующей там ГеоТЭС.
Основные черты геотермальной энергетики
Внимание к альтернативным источникам обусловлено тем, что запасы нефти и газа на планете не бесконечны, и постепенно исчерпываются. Кроме того, они есть не везде, и многие страны зависят от поставок из других регионов. Среди иных важных факторов – негативное влияние ядерной и топливной энергетики на среду обитания человека и дикую природу.
Большое достоинство ГЭ – возобновляемость и универсальность: возможность использовать для водо- и теплоснабжения, или для выработки электроэнергии, или для всех трех целей сразу.
Но главное – это геотермальная энергия, плюсы и минусы которой зависят не столько от местности, сколько от кошелька заказчика.
Достоинства и недостатки ГЭ
В числе преимуществ этого вида энергии следующие:
- она возобновляемая и практически неиссякаемая;
- независима от времени суток, сезона, погоды;
- универсальна - с ее помощью можно обеспечить водо- и теплоснабжение, а также электричество;
- геотермальные источники энергии не загрязняют окружающую среду;
- не вызывают парникового эффекта;
- станции не занимают много места.
Однако имеются и недостатки:
- геотермальная энергия не считается полностью безвредной из-за выбросов пара, в составе которого могут быть сероводород, радон и другие вредные примеси;
- при использовании воды с глубоких горизонтов стоит вопрос ее утилизации после использования – из-за химического состава такую воду нужно сливать либо обратно в глубокие слои, либо в океан;
- постройка станции относительно дорога – это удорожает и стоимость энергии в итоге.
Сферы применения
На сегодняшний день геотермальные ресурсы используются в сельском хозяйстве, садоводстве, аква- и термокультуре, промышленности, сфере жилищно-коммунальных хозяйств. В нескольких странах построены крупные комплексы, обеспечивающие население электроэнергией. Продолжается разработка новых систем.
Сельское хозяйство и садоводство
Чаще всего использование геотермальной энергии в сельском хозяйстве сводится к обогреву и поливу оранжерей, теплиц, установок аква- и гидрокультуры. Подобный подход применяется в нескольких государствах – Кении, Израиле, Мексике, Греции, Гватемале и Теде.
Подземные источники применяются для полива полей, обогрева почвы, поддержания постоянной температуры и влажности в оранжерее или теплице.
Промышленность и ЖКХ
В ноябре 2014 года в Кении начала работать крупнейшая на то время геотермальная электростанция мира. Вторая по размерам находится в Исландии – это Хеллишейди, берущая тепло от источников возле вулкана Хенгидль.
Другие страны, использующие геотермальную энергию в промышленных масштабах: США, Филиппины, Россия, Япония, Коста-Рика, Турция, Новая Зеландия и т. д.
Известны четыре основные схемы добывания энергии на ГеоТЭС:
- прямая, когда пар направляется по трубам в турбины, соединенные с электрогенераторами;
- непрямая, аналогичная предыдущей во всем, за исключением того, что перед попаданием в трубы пар очищается от газов;
- бинарная – в качестве рабочего тепла используется не вода или пар, а другая жидкость, имеющая низкую температуру кипения;
- смешанная – аналогична прямой, но после конденсации здесь удаляют из воды не растворившиеся газы.
В 2009 году группа исследователей, искавшая пригодные к использованию геотермальные ресурсы, достигла расплавленной магмы всего на глубине 2,1 км. Подобное попадание в магму – большая редкость, это всего второй известный случай (предыдущий произошел на Гавайях в 2007 году).
Хотя соединенная с магмой труба ни разу не подключалась к находящейся неподалеку ГеоТЭС Крафла, ученые получили весьма многообещающие результаты. До сих пор все работающие станции брали тепло опосредованно, из земных пород либо из подземных вод.
Частный сектор
Одна из наиболее перспективных сфер – частный сектор, для которого геотермальная энергия – это реальная альтернатива автономного газового отопления. Самая серьезная преграда здесь – при довольно дешевой эксплуатации высокая начальная стоимость оборудования, которая значительно выше, чем цена установки «традиционного» отопления.
Свои разработки для частного сектора предлагают компании MuoviTech, Geodynamics Ltd, Vaillant, Viessmann, Nibe.
Страны, использующие тепло планеты
Безусловным лидером в использовании георесурсов является США – в 2012 году выработка энергии в этой стране достигла отметки 16.792 миллиона мегаватт-часов. В том же году, суммарная мощность всех геотермальных станций на территории Штатов достигала 3386 МВт.
ГеоТЭС на территории США расположены в штатах Калифорния, Невада, Юта, Гавайи, Орегон, Айдахо, Нью-Мехико, Аляска и Вайоминг. Самая крупная группа заводов носит название «Гейзеры» и расположена неподалеку от Сан-Франциско.
Кроме Соединенных Штатов, в первой десятке лидеров (по состоянию на 2013 год) также находятся Филиппины, Индонезия, Италия, Новая Зеландия, Мексика, Исландия, Япония, Кения и Турция. При этом в Исландии геотермальные источники энергии обеспечивают 30% от всей потребности страны, на Филиппинах – 27%, а в США – меньше 1%.
Потенциальные ресурсы
Работающие станции – только начало, отрасль лишь начинает развиваться. Исследования в этом направлении идут постоянно: более чем в 70 странах ведется разведка потенциальных месторождений, в 60 освоено промышленное использование ГЭ.
Перспективными выглядят сейсмически активные районы (как это видно на примере Исландии) – штат Калифорния в США, Новая Зеландия, Япония, страны Центральной Америки, Филиппины, Исландия, Коста-Рика, Турция, Кения. Эти страны имеют потенциально выгодные не исследованные месторождения.
В России это Ставропольский край и Дагестан, остров Сахалин и Курильские о-ва, Камчатка. В Беларуси определенный потенциал есть на юге страны, охватывая города Светлогорск, Гомель, Речица, Калинковичи и Октябрьский.
На Украине перспективными являются Закарпатская, Николаевская, Одесская и Херсонская области.
Достаточно перспективным является полуостров Крым, тем более что большая часть потребляемой им энергии импортируется извне.
www.syl.ru
Геотермальная энергия: плюсы и минусы
Геотермальная энергия: плюсы и минусы. Геотермальные источники энергии
Среди альтернативных источников геотермальная энергия занимает значительное место – ее так или иначе используют примерно в 80 странах по всему миру. В большинстве случаев это происходит на уровне строительства теплиц, бассейнов, применения в качестве лечебного средства или отопления.
В нескольких странах – в том числе США, Исландии, Италии, Японии и других - построены и работают электростанции.
Геотермальная энергия в целом подразделяется на две разновидности – петротермальную и гидротермальную. Первый тип использует как источник горячие горные породы. Второй - подземные воды.
Если свести все данные по теме в одну диаграмму, обнаружится, что в 99% случаев используется тепло пород, и только в 1% геотермальная энергия извлекается из подземных вод.
Петротермальная энергетика
На настоящий момент в мире достаточно широко используется тепло земных недр, причем преимущественно это энергия неглубоких скважин – до 1 км. С целью обеспечения электричеством, теплом или ГВС устанавливаются скважинные теплообменники, работающие на жидкостях с низкой температурой кипения (например, на фреоне).
Сейчас использование скважинного теплообменника является наиболее рациональным способом добычи тепла. Выглядит это так: теплоноситель циркулирует в замкнутом контуре. Нагретый поднимается по концентрично опущенной трубе, отдавая свое тепло, после чего, охлажденный, при помощи насоса подается в обсадную.
В основе использования энергии земных недр лежит природное явление – по мере приближения к ядру Земли растет температура земной коры и мантии. На уровне 2-3 км от поверхности планеты она достигает более 100 °С, в среднем увеличиваясь с каждым последующим километром на 20 °С. На глубине 100 км температура достигает уже 1300–1500 ?С.
Гидротермальная энергетика
Вода, циркулирующая на больших глубинах, нагревается до значительных величин. В сейсмически активных районах она поднимается на поверхность по трещинам в земной коре, в спокойных же регионах ее можно вывести с помощью скважин.
Принцип действия тот же: нагретая вода поднимается по скважине вверх, отдает тепло, и возвращается по второй трубе вниз. Цикл практически бесконечен и возобновляем до тех пор, пока в земных недрах остается тепло.
В некоторых сейсмически активных регионах горячие воды лежат так близко к поверхности, что можно воочию наблюдать, как работает геотермальная энергия. Фото окрестностей вулкана Крафла (Исландия) демонстрирует гейзеры, которые передают пар для действующей там ГеоТЭС.
Основные черты геотермальной энергетики
Внимание к альтернативным источникам обусловлено тем, что запасы нефти и газа на планете не бесконечны, и постепенно исчерпываются. Кроме того, они есть не везде, и многие страны зависят от поставок из других регионов. Среди иных важных факторов – негативное влияние ядерной и топливной энергетики на среду обитания человека и дикую природу.
Большое достоинство ГЭ – возобновляемость и универсальность: возможность использовать для водо- и теплоснабжения, или для выработки электроэнергии, или для всех трех целей сразу.
Но главное – это геотермальная энергия, плюсы и минусы которой зависят не столько от местности, сколько от кошелька заказчика.
Достоинства и недостатки ГЭ
В числе преимуществ этого вида энергии следующие:
- она возобновляемая и практически неиссякаемая;
- независима от времени суток, сезона, погоды;
- универсальна - с ее помощью можно обеспечить водо- и теплоснабжение, а также электричество;
- геотермальные источники энергии не загрязняют окружающую среду;
- не вызывают парникового эффекта ;
- станции не занимают много места.
Однако имеются и недостатки:
- геотермальная энергия не считается полностью безвредной из-за выбросов пара, в составе которого могут быть сероводород, радон и другие вредные примеси;
- при использовании воды с глубоких горизонтов стоит вопрос ее утилизации после использования – из-за химического состава такую воду нужно сливать либо обратно в глубокие слои, либо в океан;
- постройка станции относительно дорога – это удорожает и стоимость энергии в итоге.
Сферы применения
На сегодняшний день геотермальные ресурсы используются в сельском хозяйстве, садоводстве, аква- и термокультуре, промышленности, сфере жилищно-коммунальных хозяйств. В нескольких странах построены крупные комплексы, обеспечивающие население электроэнергией. Продолжается разработка новых систем.
Сельское хозяйство и садоводство
Чаще всего использование геотермальной энергии в сельском хозяйстве сводится к обогреву и поливу оранжерей, теплиц, установок аква- и гидрокультуры. Подобный подход применяется в нескольких государствах – Кении, Израиле, Мексике, Греции, Гватемале и Теде.
Подземные источники применяются для полива полей, обогрева почвы, поддержания постоянной температуры и влажности в оранжерее или теплице.
Промышленность и ЖКХ
В ноябре 2014 года в Кении начала работать крупнейшая на то время геотермальная электростанция мира. Вторая по размерам находится в Исландии – это Хеллишейди, берущая тепло от источников возле вулкана Хенгидль.
Другие страны, использующие геотермальную энергию в промышленных масштабах: США, Филиппины, Россия, Япония, Коста-Рика, Турция, Новая Зеландия и т. д.
Известны четыре основные схемы добывания энергии на ГеоТЭС:
- прямая, когда пар направляется по трубам в турбины, соединенные с электрогенераторами;
- непрямая, аналогичная предыдущей во всем, за исключением того, что перед попаданием в трубы пар очищается от газов;
- бинарная – в качестве рабочего тепла используется не вода или пар, а другая жидкость, имеющая низкую температуру кипения;
- смешанная – аналогична прямой, но после конденсации здесь удаляют из воды не растворившиеся газы.
В 2009 году группа исследователей, искавшая пригодные к использованию геотермальные ресурсы, достигла расплавленной магмы всего на глубине 2,1 км. Подобное попадание в магму – большая редкость, это всего второй известный случай (предыдущий произошел на Гавайях в 2007 году).
Хотя соединенная с магмой труба ни разу не подключалась к находящейся неподалеку ГеоТЭС Крафла, ученые получили весьма многообещающие результаты. До сих пор все работающие станции брали тепло опосредованно, из земных пород либо из подземных вод.
Частный сектор
Одна из наиболее перспективных сфер – частный сектор, для которого геотермальная энергия – это реальная альтернатива автономного газового отопления. Самая серьезная преграда здесь – при довольно дешевой эксплуатации высокая начальная стоимость оборудования, которая значительно выше, чем цена установки «традиционного» отопления.
Свои разработки для частного сектора предлагают компании MuoviTech, Geodynamics Ltd, Vaillant, Viessmann, Nibe.
Страны, использующие тепло планеты
Безусловным лидером в использовании георесурсов является США – в 2012 году выработка энергии в этой стране достигла отметки 16.792 миллиона мегаватт-часов. В том же году, суммарная мощность всех геотермальных станций на территории Штатов достигала 3386 МВт.
ГеоТЭС на территории США расположены в штатах Калифорния, Невада, Юта, Гавайи, Орегон, Айдахо, Нью-Мехико, Аляска и Вайоминг. Самая крупная группа заводов носит название «Гейзеры» и расположена неподалеку от Сан-Франциско.
Кроме Соединенных Штатов, в первой десятке лидеров (по состоянию на 2013 год) также находятся Филиппины, Индонезия, Италия, Новая Зеландия, Мексика, Исландия, Япония, Кения и Турция. При этом в Исландии геотермальные источники энергии обеспечивают 30% от всей потребности страны, на Филиппинах – 27%, а в США – меньше 1%.
Потенциальные ресурсы
Работающие станции – только начало, отрасль лишь начинает развиваться. Исследования в этом направлении идут постоянно: более чем в 70 странах ведется разведка потенциальных месторождений, в 60 освоено промышленное использование ГЭ.
Перспективными выглядят сейсмически активные районы (как это видно на примере Исландии) – штат Калифорния в США, Новая Зеландия, Япония, страны Центральной Америки, Филиппины, Исландия, Коста-Рика, Турция, Кения. Эти страны имеют потенциально выгодные не исследованные месторождения.
В России это Ставропольский край и Дагестан, остров Сахалин и Курильские о-ва, Камчатка. В Беларуси определенный потенциал есть на юге страны, охватывая города Светлогорск, Гомель, Речица, Калинковичи и Октябрьский.
На Украине перспективными являются Закарпатская, Николаевская, Одесская и Херсонская области.
Достаточно перспективным является полуостров Крым, тем более что большая часть потребляемой им энергии импортируется извне.
Добавить комментарий
Рекомендуем ознакомится: http://www.syl.ru
fix-builder.ru
Преимущества и недостатки геотермальных электростанций
Преимущества геотермальных электростанций
- Запасы геотермальной энергии велики, хотя и не бесконечны. Ее можно считать возобновляемым источником энергии — во всяком случае, при условии, что в нагнетательную скважину не закачивается слишком много воды за слишком короткое время.
- Геотермальная электростанция для работы не требует поставок топлива из внешних источников.
- Работа геотермальных электростанций не сопровождается вредными или токсичными выбросами (см., однако, третий недостаток геотермальных электростанций ниже).
- Помимо необходимого для первого старта насоса (или насосов) внешнего источника энергии, геотермальным электростанциям для дальнейшей работы внешняя энергия (топливо) не нужна. С началом работы геотермальной электростанции ее насосы можно запитывать электричеством, которое вырабатывается на самой станции.
- Эксплуатация геотермальной электростанции не требует дополнительных расходов, кроме расходов на профилактическое техобслуживание или ремонт.
- Геотермальные электростанции не портят пейзаж и не требуют значительного землеотвода.
- Обычная геотермальная электростанция, расположенная на берегу моря или океана, может применяться и для опреснения воды, которую затем можно использовать для питья или ирригации. Опреснение происходит естественным путем в результате дистилляции — разогрева воды и охлаждения водяного пара в процессе работы электростанции.
Недостатки геотермальных электростанций
- Найти подходящее место для строительства геотермальной электростанции и получить разрешение местных властей и согласие жителей на ее возведение может быть проблематичным.
- Иногда действующая геотермальная электростанция может остановиться в результате естественных изменений в земной коре. Кроме того, причиной ее остановки может стать плохой выбор места или чрезмерная закачка воды в породу через нагнетательную скважину.
- Через эксплуатационную скважину могут выделяться горючие или токсичные газы или минералы, содержащиеся в породах земной коры. Избавиться от них достаточно сложно. Правда, в некоторых случаях их можно сифонировать (собрать) и переработать в горючее (нефть-сырец или природный газ, например).
Вопрос
Можно ли построить небольшую геотермальную электростанцию, способную обеспечить электричеством дом или небольшой поселок?
Ответ
Это можно осуществить в районах, где не нужно бурить глубокие дорогие скважины. Наиболее показательным примером является, пожалуй, Исландия, которая, по сути, находится на вершине гигантского вулкана. На территории США среди таких районов можно назвать территории вокруг Йеллоустоуна, Термополиса и Саратоги в штате Вайоминг и вокруг города Хот Спрингс в Южной Дакоте (В России наиболее известным регионом с высоким потенциалом для геотермальной энергетики считается Камчатка.).
www.enersy.ru
Геотермальная энергетика - электростанции на вулкане
Стремительный рост энергопотребления, ограниченность невозобновляемых природных богатств и экологические проблемы вынуждают задуматься об использовании альтернативных источников энергии. В этом отношении особого внимания заслуживает применение геотермальных ресурсов.
Источники тепла
Для построения геотермальных электростанций идеальными считаются районы с геологической активностью, где естественное тепло находится на сравнительно небольшой глубине. Сюда относятся области, изобилующие гейзерами, открытыми термальными источниками с водой, разогретой вулканами.
Именно здесь геотермальная энергетика развивается наиболее активно. Однако и в сейсмически неактивных районах имеются пласты земной коры, температура которых составляет более 100 °С, а на каждые 36 метров глубины температурный показатель возрастает еще на 1 °С. В этом случае бурят скважину и закачивают туда воду. На выходе получают кипяток и пар, которые можно использовать как для обогрева помещений, так и для производства электрической энергии. Территорий, где можно таким образом получать энергию, много, поэтому геотермальные электростанции могут функционировать повсеместно.
Добыча естественного тепла может осуществляться разными путями. Так, перспективным источником считается так называемая сухая порода (петротермальные ресурсы, сконцентрированные в горных породах). В этом случае в породе с близкими залежами тепла бурится скважина, в которую закачивают воду под большим давлением. Таким способом происходит расширение существующих изломов, и под землей образуются резервуары пара и кипятка. Подобный опыт проводился в Кабардино-Балкарии. Гидроразрыв гранитной породы осуществляли на глубине около 4 км, где температура составляла 200 °С. Однако авария в скважине стала причиной прекращения эксперимента.
Другой источник тепловой энергии — горячие подземные воды с содержанием метана (гидрогеотермальные запасы). В этом случае попутный газ дополнительно может использоваться в качестве топлива.
Во многих фантастических произведениях в качестве источника тепла для выработки электроэнергии и обогрева используется магма. На самом деле температура верхних слоев этого расплавленного вещества может достигать 1200 °С. На Земле имеются местности, где магма находится на доступной для бурения глубине, но методы практического освоения магматического тепла пока находятся в стадии разработки.
Как работает ГеоЭС?
Сегодня применяется три способа производства электричества с использованием геотермальных средств, зависящих от состояния среды (вода или пар) и температуры породы.
Прямой (использование сухого пара). Пар напрямую воздействует на турбину, питающую генератор. Первые геотермальные электростанции работали на сухом пару.
Непрямой (применение водяного пара). Здесь используется гидротермальный раствор, который закачивается в испаритель. Полученное при снижении давления испарение приводит турбину в действие. Непрямой способ на сегодня считается самым распространенным. Здесь используются подземные воды температурой около 182 °С, которые закачиваются в генераторы, расположенные на поверхности.
Смешанный, или бинарный. В этом случае используется гидротермальная вода и вспомогательная жидкость с низкой точкой кипения, например фреон, который закипает под воздействием горячей воды. Образовавшийся при этом пар от фреона крутит турбину, потом конденсируется и снова возвращается в теплообменник для нагрева. Образуется замкнутая система (контур), практически исключающая вредные выбросы в атмосферу.
Плюсы и минусы геотермальной энергетики
Запасы геотермальных ресурсов считаются возобновляемыми, практически неисчерпаемыми, но при одном условии: в нагнетательную скважину нельзя закачивать большое количество воды в короткий промежуток времени. Для работы станции не требуется внешнее топливо. Установка может работать автономно, на своем вырабатываемом электричестве. Внешний источник энергии необходим лишь для первого запуска насоса. Станция не требует дополнительных вложений, за исключением расходов на техническое обслуживание и ремонтные работы. Геотермальным электрическим станциям не нужны площади для санитарных зон. В случае расположения станции на морском или океаническом берегу, возможно ее использование для естественного опреснения воды. Этот процесс может происходить непосредственно в режиме работы станции — при разогреве воды и охлаждении водяного испарения. Одним из главных минусов геотермальных станций является их дороговизна. Первоначальные вложения в разработку, проектирование и строительство геотермальных станций достаточно велики.
Зачастую проблемы возникают в выборе подходящего места для размещения электростанции и получении разрешения властей и местных жителей.
Через рабочую скважину возможны выбросы горючих и токсичных газов, минералов, которые содержатся в земной коре. Технологии на некоторых современных установках позволяют собирать эти выбросы и перерабатывать в топливо. Бывает, что действующая электростанция останавливается. Это может произойти вследствие естественных процессов в породе либо при чрезмерной закачке воды в скважину.
Мировой опыт геотермальной энергетики
На сегодня в США и на Филиппинах построены самые крупные ГеоЭС. Они представляют собой целые геотермальные комплексы, состоящие из десятков отдельных геотермальных станций. Самым мощным считается комплекс «Гейзеры», расположенный в Калифорнии. Он состоит из 22 станций с суммарной мощностью 725 МВт, достаточной для обеспечения многомиллионного города.
Мощность филиппинской электростанции «Макилинг-Банахау» составляет около 500 МВт. Еще одна филиппинская электростанция с названием «Тиви» имеет мощность 330 МВт. «Долина Империал» в США — комплекс из десяти геотермальных электростанций с совокупной мощностью 327 МВт.
В СССР геотермальная энергетика начала свое развитие с 1954 года, когда было принято решение о создании лаборатории по исследованию естественных тепловых ресурсов на Камчатке. В 1966 году там была запущена Паужетская геотермальная электростанция с традиционным циклом (сухой пар) и мощностью 5 МВт. Через 15 лет ее мощность была доработана до 11 МВт.
В 1967 году, также на Камчатке, начала функционировать Паратунская станция с бинарным циклом. Кстати, уникальная технология бинарного цикла, разработанная и запатентованная советскими учеными С. Кутателадзе и Л. Розенфельдом, была куплена многими странами. В дальнейшем большие уровни добычи углеводородного сырья в 1970-е годы, критическая экономическая и политическая ситуация в 1990-е годы остановили развитие геотермальной энергетики в России. Однако сейчас интерес к ней вновь появился по ряду причин. Наиболее перспективными областями Российской Федерации в части использования тепловой энергии для выработки электричества являются Курильские острова и Камчатка. На Камчатке имеются такие потенциальные геотермальные ресурсы с вулканическими запасами парогидротерм и энергетических термальных вод, которые способны обеспечить потребность края на 100 лет. Многообещающим считается Мутновское месторождение, известные запасы которого могут предоставить до 300 МВт электричества. История освоения этой области началась с георазведки, оценки ресурсов, проектирования и строительства первых камчатских ГеоЭС (Паужетской и Паратунской), а также Верхне-Мутновской геотермальной станции мощностью 12 МВт и Мутновской, имеющей мощность 50 МВт. В сравнении с энергетическими ресурсами отдельных филиппинских и американских ГеоЭС отечественные объекты по производству альтернативной энергии значительно скромнее: их суммарная мощность не превышает и 90 МВт.
Но камчатские электростанции, к примеру, обеспечивают потребности региона в электричестве на 25%, что в случае непредвиденных прекращений поставки топлива не позволит жителям полуострова остаться без электроэнергии.
В России имеются все возможности для разработки геотермальных ресурсов — как петротермальных,так и гидрогеотермальных.
Однако используются они крайне мало, а перспективных областей более чем достаточно. Кроме Курил и Камчатки возможно практическое применение на Северном Кавказе, Западной Сибири, Приморье, Прибайкалье, Охотско-Чукотском вулканическом поясе.
Метки: Энергетика 933mir-znaniy.com
Энергия из земных глубин —
Дата публикации: 4 ноября 2013
С каждым годом добыча углеводородного топлива усложняется все больше: «верховые» запасы практически истощены, а для бурения глубоких скважин требуются не только новые технологии, но и значительные финансовые вложения. Соответственно дорожает и электричество, ведь оно в основном получается за счет переработки углеводородного топлива.
Кроме того, проблема охраны окружающей среды от негативного воздействия промышленности приобретает все большее значение. И уже очевидно: сохраняя традиционные методы получения энергии (с помощью углеводородного топлива) человечество движется к энергетическому кризису в сочетании с экологической катастрофой.
Именно поэтому такое значение приобретают технологии, позволяющие получать тепло и электричество из возобновляемых источников. К таким технологиям относится и геотермальная энергетика, которая позволяет получать электрическую и/или тепловую энергию, используя тепло, содержащееся в земных недрах.
Какими бывают геотермальные источники энергии
Чем глубже в землю – тем теплее. Это аксиома, известная каждому. Земные недра содержат океаны тепла, которым человек может воспользоваться, не нарушая экологию окружающей среды. Современные технологии позволяют эффективно использовать геотермальную энергию либо напрямую (тепловая энергия), либо с преобразованием в электрическую (геотермальная электростанция).
Геотермальные источники энергии подразделяются на два вида: петротермальные и гидротермальные. Петротермальная энергетика основана на использовании разницы температур грунта на поверхности и в глубине, а гидротермальная использует повышенную температуру грунтовых вод.
Сухие высокотемпературные породы распространены более, чем горячие водные источники, но их эксплуатация с целью получения энергии связана с определенными сложностями: в породы необходимо закачивать воду, а затем отбирать тепло у перегретой в высокотемпературных породах воды. Гидротермальные источники сразу «поставляют» перегретую воду, у которой можно взять тепло.
Еще один вариант получения термальной энергии – отбор низкотемпературного тепла на небольших глубинах (тепловые насосы). Принцип работы теплового насоса такой же, как и промышленных установок, работающих в термальных зонах, разница лишь в том, что в качестве теплоносителя в этом виде оборудования используется специальный хладо-агент с низкой температурой кипения, что и позволяет получать тепловую энергию, перераспределяя низкотемпературное тепло.
С помощью тепловых насосов можно получать энергию для отопления небольших домов, коттеджей. Такие устройства практически не используются для промышленного получения тепловой энергии (относительно невысокие температуры препятствуют промышленному использованию), однако, хорошо зарекомендовали себя при организации автономного энергоснабжения частных домов, особенно в местах, где установка линий электропередач затруднительна. При этом для эффективной работы теплового насоса достаточно температуры грунта или грунтовых вод (в зависимости от вида используемого оборудования) около +8°С, то есть, достаточно небольшой глубины для устройства внешнего контура (глубина редко превышает 4 м).
Вид получаемой из геотермального источника энергии зависит от его температуры: из низко- и средне-температурных источников тепло используется в основном для обеспечения горячего водоснабжения (в том числе и для теплоснабжения), а тепло из высоко-температурных источников используется для получения электроэнергии. Также возможно использование тепла высоко-температурных источников для одновременного получения электроэнергии и горячего водоснабжения. Геотермальные электростанции в основном используют гидротермальные источники – температура воды в термальных зонах может значительно превышать точку кипения воды (в некоторых случаях перегрев достигает 400°С – за счет повышенного давления в глубинах), что делает выработку электроэнергии очень эффективной.
Плюсы и минусы геотермальной энергетики
Геотермальные источники энергии представляют огромный интерес в первую очередь из-за того, что являются возобновляемыми ресурсами, то есть, практически неиссякаемыми. А вот углеводородное топливо, которое в настоящее время является основным источником для получения различных видов энергии, является ресурсом не возобновляемым, и по прогнозам весьма даже ограниченным. К тому же, получение геотермальной энергии гораздо более экологично, чем традиционные методы на основе углеводородного топлива.
Если сравнивать геотермальную энергетику с другими альтернативными видами получения энергии, то и здесь имеются преимущества. Так, геотермальная энергия не зависит от внешних условий, на нее не оказывает влияние температура окружающей среды, время суток, время года и так далее. В то же время ветро-, гелио- и гидроэнергетика, так же, как и геотермальная энергетика работающие с возобновляемыми и неиссякаемыми источниками энергии, очень зависимы от окружающей среды. Например, эффективность гелио-станций находится в прямой зависимости от уровня инсоляции на местности, который зависит не только от широты, но и от времени суток и времени года, причем, разница весьма и весьма существенная. То же и с остальными видами альтернативной энергетики. А вот эффективность геотермальной электростанции зависит исключительно от температуры термального источника и остается неизменной, независимо от времени года и погоды за окном.
К плюсам относится и высокий КПД геотермальных станций. Например, при использовании геотермальной энергии для получения тепла, КПД превышает 1.
Одним из основных минусов при получении энергии из гидротермальных источников является необходимость закачки отработанной (охлажденной) воды в подземные горизонты, что снижает эффективность геотермальной электростанции и увеличивает эксплуатационные расходы. Сброс этой воды в приповерхностные и поверхностные воды исключен, так как в ней содержится большое количество токсичных веществ.
Также к недостаткам можно отнести ограниченное количество пригодных к эксплуатации термальных зон. С точки зрения получения недорогой энергии, особенно интересны гидротермальные месторождения, в которых перегретая вода и/или пар находятся достаточно близко к поверхности (глубинное бурение скважин для достижения термальной зоны значительно повышает эксплуатационные расходы и удорожает получаемую энергию). Таких месторождений не так и много. Тем не менее, постоянно ведется активная разведка новых месторождений, открываются новые термальные зоны, и количество энергии, получаемой из геотермальных источников, постоянно увеличивается. В некоторых странах гидротермальная энергетика составляет до 30% всей энергетики (к примеру, Филиппины, Исландия). В России также имеется ряд эксплуатируемых термальных зон, и их количество возрастает.
Перспективы геотермальной энергетики
Ожидать, что промышленная геотермальная энергетика сможет заменить традиционные в настоящий момент источники получения энергии сложно – хотя бы из-за ограниченности термальных зон, сложностей глубинного бурения и так далее. Тем более, что имеются другие альтернативные виды энергии, доступные в любой точке земного шара. Однако, геотермальная энергетика занимает и будет занимать существенное место в способах получения энергии различного вида (электрической и/или тепловой).
При этом, перспектив у геотермальной энергетики, основанной на перераспределении тепла из низкотемпературных источников, гораздо больше. Этот вид геотермальной энергетики не требует наличия термальных зон с перегретой водой, паром или сухой породой. Тепловые насосы все больше входят в моду и активно устанавливаются при строительстве современных коттеджей и так называемых «активных» домов (домов с автономными источниками энергоснабжения). Судя по имеющимся тенденциям, геотермальная энергетика продолжит активное развитие в «малых» формах – для автономного энергоснабжения отдельных домов или хозяйств, наряду с ветро- и гелиоэнергетикой.
София Варган
altenergiya.ru
преимущества и недостатки. Геотермальные электростанции в России :: SYL.ru
Ресурсы нашей планеты не бесконечны. Используя в качестве главного источника энергии природные углеводороды, человечество рискует в один прекрасный момент обнаружить, что они исчерпаны, и прийти к глобальному кризису потребления привычных благ. XX век стал временем масштабных сдвигов в области энергетики. Ученые и экономисты в разных странах всерьез задумались о новых способах получения и возобновляемых источниках электричества и тепла. Наибольший прогресс был достигнут в области ядерных исследований, но появились интересные идеи, касающиеся полезного использования других природных явлений. Ученые давно узнали, что планета наша внутри горяча. Для получения пользы от глубинного тепла созданы геотермальные электростанции. В мире пока их немного, но, возможно, со временем станет больше. Каковы их перспективы, не опасны ли они и можно ли рассчитывать на высокую долю ГТЭС в общем объеме добываемой энергии?
Первые шаги
В дерзновенных поисках новых источников энергии ученые рассматривали множество вариантов. Изучались возможности освоения энергии приливов и отливов Мирового океана, преобразования солнечного света. Вспомнили и о старинных ветряных мельницах, снабдив их вместо каменных жерновов генераторами. Большой интерес представляют и геотермальные электростанции, способные вырабатывать энергию из тепла нижних раскаленных слоев земной коры.
В середине шестидесятых годов СССР не испытывал ресурсного дефицита, но энерговооруженность народного хозяйства, тем не менее, оставляла желать лучшего. Причина отставания от промышленно развитых стран в этой области состояла не в недостатке угля, нефти или мазута. Огромные расстояния от Бреста до Сахалина затрудняли доставку энергии, она становилась очень дорогой. Советские ученые и инженеры предлагали самые смелые решения этой задачи, и некоторые из них воплощались в жизнь.
Первая советская
В 1966 году на Камчатке заработала Паужетская геотермальная электростанция. Ее мощность составила довольно скромную цифру в 5 мегаватт, но этого вполне хватало для снабжения близлежащих населенных пунктов (поселков Озерновского, Шумного, Паужетки, сел Усть-Большерецкого р-на) и промышленных предприятий, главным образом рыбоконсервных заводов. Станция была экспериментальной, и сегодня можно смело утверждать, что опыт удался. В качестве источников тепла используются вулканы Камбальный и Кошелев. Преобразование осуществляли две установки турбогенераторного типа, первоначально по 2,5 МВт. Через четверть века установленную мощность удалось поднять до 11 МВт. Старое оборудование полностью исчерпало свой ресурс только в 2009 году, после чего была произведена полная реконструкция, включавшая и прокладку дополнительных трубопроводов теплоносителя. Опыт успешной эксплуатации побудил энергетиков строить и другие геотермальные электростанции. В России их сегодня пять.
Как работает
Исходные данные: в глубине земной коры есть тепло. Его нужно преобразовать в энергию, например, электрическую. Как это сделать? Принцип работы геотермальной электростанции достаточно прост. Под землю закачивается вода через специальную скважину, называемую входной или нагнетающей (по-английски injection, то есть "впрыск"). Для того чтобы определить подходящую глубину, требуется геологическое исследование. Вблизи нагретых магмой слоев, в конечном счете, должен образоваться подземный проточный бассейн, играющий роль теплообменника. Вода сильно нагревается и превращается в пар, который через другую скважину, (рабочую или эксплуатационную) подается на лопасти турбины, сопряженной с осью генератора. На первый взгляд, все выглядит очень просто, но на практике геотермальные электростанции устроены куда сложнее и имеют различные особенности конструкции, обусловленные эксплуатационными проблемами.
Достоинства геотермальной энергетики
Этот способ получения энергии имеет неоспоримые плюсы. Во-первых, геотермальные электростанции не требуют топлива, запасы которого лимитированы. Во-вторых, эксплуатационные расходы сведены к издержкам на технически регламентированные работы по плановой замене комплектующих изделий и обслуживанию технологического процесса. Срок окупаемости вложений составляет несколько лет. В-третьих, такие станции условно можно считать экологически чистыми. Есть, правда, в этом пункте и острые моменты, но о них позже. В-четвертых, дополнительной энергии для технологических нужд не требуется, насосы и другие приемники энергии запитываются от добываемых ресурсов. В-пятых, установка, помимо работы по прямому назначению, может производить опреснение воды Мирового океана, на берегу которого обычно строятся геотермальные электростанции. Плюсы и минусы присутствуют, однако, и в этом случае.
Недостатки
На фотографиях все выглядит просто чудесно. Корпуса и установки эстетичны, над ними не поднимаются клубы черного дыма, только белый пар. Однако не все так прекрасно, как кажется. Если геотермальные электростанции расположены поблизости населенных пунктов, жителям окрестностей досаждает производимый предприятиями шум. Но это лишь видимая (вернее, слышимая) часть проблемы. При бурении глубоких скважин никогда нельзя предвидеть, что именно из них пойдет. Это может быть токсичный газ, минеральные воды (не всегда лечебные) или даже нефть. Разумеется, если геологи наткнутся на пласт полезных ископаемых, то это даже хорошо, но такое открытие вполне может полностью изменить привычный уклад жизни местных жителей, поэтому разрешение на проведение даже исследовательских работ региональные власти дают крайне неохотно. Вообще выбрать место для ГТЭС довольно сложно, ведь в результате ее эксплуатации вполне может возникнуть провал грунта. Условия внутри земной коры меняются, и если источник тепла утратит со временем свой тепловой потенциал, затраты на строительство окажутся напрасными.
Как выбрать место
Несмотря на многочисленные риски, в разных странах строят геотермальные электростанции. Преимущества и недостатки есть у любого способа получения энергии. Вопрос состоит в том, насколько доступны иные ресурсы. В конце концов, энергетическая независимость является одной из основ государственного суверенитета. Страна может не обладать запасами полезных ископаемых, но иметь множество вулканов, как Исландия, например.
Следует учитывать, что наличие геологически активных зон – непременное условие для развития геотермальной отрасли энергетики. Но при принятии решения о строительстве подобного объекта необходимо брать в расчет и вопросы безопасности, поэтому, как правило, в густонаселенных районах геотермальные электростанции не возводят.
Следующий важный момент – наличие условий для охлаждения рабочей жидкости (воды). В качестве места для ГТЭС вполне подойдет океанское или морское побережье.
Камчатка
Россия богата всеми видами природных ресурсов, но это не означает, что в бережном отношении к ним нет нужды. Геотермальные электростанции в России строят, причем в последние десятилетия все более активно. Они частично обеспечивают потребность энергообеспечения отдаленных районов Камчатки и Курил. Помимо уже упомянутой Паужетской ГТЭС, на Камчатке в эксплуатацию введена 12-мегаваттная Верхне-Мутновская ГТЭС (1999). Намного мощней ее Мутновская геотермальная электростанция (80 МВт), расположенная возле того же вулкана. Вместе они обеспечивают более трети объема энергии, потребляемой регионом.
Курилы
Сахалинская область также пригодна для строительства геотермальных энергопроизводящих предприятий. Здесь их два: Менделеевская и Океанская ГТЭС.
Менделеевская ГТЭС предназначена для решения проблемы энергоснабжения острова Кунашир, на котором расположен поселок городского типа Южно-Курильск. Название свое станция получила не в честь великого русского химика: так называется островной вулкан. Строительство началось в 1993-м, через девять лет предприятие введено в строй. Первоначально мощность составляла 1,8 МВт, но после модернизации и запуска следующих двух очередей достигла пяти.
На Курилах, на острове Итуруп, в том же 1993 году была заложена еще одна ГТЭС, получившая название «Океанская». Заработала она в 2006-м, через год вышла на проектную мощность в 2,5 МВт.
Мировой опыт
Русские ученые и инженеры стали пионерами во многих отраслях прикладной науки, но геотермальные электростанции изобрели все же за рубежом. Первая в мире ГТЭС (250 кВт) была итальянской, начала свою работу в 1904 году, ее турбина вращалась паром, выходящим из природного источника. До этого подобные явления использовались только в лечебно-курортных целях.
В настоящее время позиции России в области использования геотермального тепла также нельзя назвать передовыми: ничтожный процент вырабатываемого в стране электричества приходится на пять станций. Самое большое значение эти альтернативные источники имеют для экономики Филиппин: на них приходится один киловатт из каждых пяти, производимых в республике. Продвинулись вперед и другие страны, в числе которых Мексика, Индонезия и США.
На просторах СНГ
На уровень развития геотермальной энергетики влияет в большей степени не технологическая «продвинутость» той или иной страны, а осознание ее руководством насущной необходимости в альтернативных источниках. Есть, конечно, и «ноу-хау», касающиеся способов борьбы с накипью в теплообменниках, способов управления генераторами и прочей электрической частью системы, но вся эта методология специалистам давно известна. Большую заинтересованность в строительстве ГеоТЭС в последние годы проявляют многие постсоветские республики. В Таджикистане изучают районы, являющие собой геотермальное богатство страны, идет строительство 25-мегаваттной станции «Джермахпюр» в Армении (Сюникская область), соответствующие исследования ведутся в Казахстане. Горячие источники Брестской области стали предметом интереса белорусских геологов: они начали пробные бурения двухкилометровой скважины Вычулковская. В общем, за геоэнергетикой, скорее всего, есть будущее.
Впрочем, и с теплом Земли обращаться нужно бережно. Ограничен и этот природный ресурс.
www.syl.ru
Плюсы и минусы геотермальной электростанции
Человечество не одно тысячелетие стремится найти неиссякаемый источник энергии.Но пока он не был найден, приходится пользоваться чем есть.Очень часто люди обращают внимание на альтернативные источники энергии. Одним из видов таких источников является геотермальная энергия недр земли, которую можно использовать как тепловую, так и электрическую, посредством ее преобразования на геотермальных электростанциях (ГеоЭС).
Какие плюсы и минусы геотермальной электростанции?
Можно выявить определенные плюсы и минусы геотермальной электростанции. При использовании такой энергии уровень воздействия на окружающую среду намного меньший, чем при использовании традиционных источников энергии – так, уровень выбросов углекислого газа в атмосферу, а именно он является главным парниковым газом, снижается в десятки раз.
К сожалению, такое тепло недр, точнее те источники, которые мы можем использовать, очень рассеяны. Существует официальная классификация источников геотермальной энергии в зависимости от вида этого источника. Таким образом, выделяют:
- источники сухого пара. Тут вода находится в парообразном состоянии. Такие источники довольно редки, но легко разрабатываются. Именно они занимают большую часть в числе все геотермальных источников;
- источники влажного пара: тут кроме пара, присутствует еще и вода в жидком состоянии. Такие источники более частые, но и проблем с ними больше: необходимо защищать все оборудование от коррозии и заботиться об утилизации пересоленных вод;
- источники геотермальной воды. Тут, как правило, содержится одна горячая вода. Образуются в пустотах пород при нагревании подземных вод теплом недр;
- горячие горные породы, которые нагреваются магмой. Их потенциал самый значимый;
- магма как источник тепла – расплавленные горные породы. Их температура может достигать и 13000С.
Плюсы и минусы геотермальной электростанции можно использовать и себе во благо.
Тепло от перечисленных источников можно использовать в качестве тепла, либо перерабатывать с помощью ГеоЭС в электричество. Работает такая электростанция по принципу обычной тепловой. Пар вращает лопасти турбины, которая соединена с электрогенератором – вследствие этого образуется электричество. Некоторые ГеоЭС перед направлением пара в турбину очищают его от газов, которые смогут вызвать коррозию оборудования. Возможен еще вариант, когда после конденсации газа в воду из нее удаляю не растворившиеся в ней газы.
Сегодня использование геотермальной энергии становится все более популярным. Ей нашли применение для использования в теплицах, для подогрева бассейнов и даже в лечебных целях. Уже 25 стран мира имеют у себя ГеоЭС, а еще около 80 – тем или иным образом использую геотермальное тепло.
remontdekor.com