Тепловая нагрузка на отопление и прочие расчетные параметры: методики и примеры расчетов. Расчетные тепловые нагрузки на отопление


Расчет тепловой нагрузки на отопление

Как рассчитать тепловую нагрузку

Спросите у любого специалиста, как правильно организовать систему отопления в здании. При этом не важно — жилой это объект или промышленный. И профессионал ответит, что главное — это точно составить расчеты и грамотно выполнить проектирование. Речь, в частности, идет о расчете тепловой нагрузки на отопление. От этого показателя зависит объем потребления тепловой энергии, а значит, и топлива. То есть экономические показатели стоят рядом с техническими характеристиками.

Выполнение точных расчетов позволяет получить не только полный список необходимой для проведения монтажных работ документации, но и подобрать нужное оборудование, дополнительные узлы и материалы.

Тепловые нагрузки — определение и характеристики

Что обычно подразумевают под термином «тепловая нагрузка на отопление»? Это количество теплоты, которое отдают все приборы отопления, установленные в здании. Чтобы избежать лишних трат на производство работ, а также покупку ненужных приборов и материалов, и необходим предварительный расчет. С его помощью можно отрегулировать правила установки и распределения теплоты по всем помещениям, причем сделать это можно экономично и равномерно.

Но и это еще не все. Очень часто специалисты проводят расчеты, полагаясь на точные показатели. Они касаются размеров дома и нюансов строительства, где учитывается разнообразие элементов здания и их соответствие требованиям теплоизоляции и прочего. Именно точные показатели дают возможность правильно сделать расчеты и, соответственно, получить максимально приближенные к идеалу варианты распределения тепловой энергии по помещениям.

Но нередко случаются ошибки в расчетах, что приводит к неэффективной работе отопления в целом. Подчас приходится переделывать в ходе эксплуатации не только схемы, но и участки системы, что приводит к дополнительным расходам.

Какие же параметры влияют на расчет тепловой нагрузки в целом? Здесь необходимо разделить нагрузку на несколько позиций, куда входят:

  • Система центрального отопления.
  • Система теплый пол, если таковой установлен в доме.
  • Система вентиляции — как принудительной, так и естественной.
  • Горячее водоснабжение здания.
  • Ответвления на дополнительные бытовые нужды. К примеру, на сауну или баню, на бассейн или душ.

Основные характеристики

Профессионалы не упускают из виду ни одну мелочь, которая может повлиять на правильность расчета. Отсюда и достаточно больший список характеристик системы отопления, которые следует принимать во внимание. Вот только некоторые из них:

  1. Назначение объекта недвижимости или его тип. Это может быть жилое здание или промышленное. У поставщиков тепловой энергии есть нормы, которые распределяются по типу зданий. Именно они часто становятся основополагающими при проведении расчетов.
  2. Архитектурная часть здания. Сюда можно включить ограждающие элементы (стены, кровля, перекрытия, полы), их габаритные размеры, толщину. Обязательно учитываются всевозможные проемы — балконы, окна, двери и прочее. Очень важно принять во внимание наличие подвалов и чердаков.
  3. Температурный режим для каждого помещения в отдельности. Это очень важно, потому что общие требования к температуре в доме не дают точной картины распределения тепла.
  4. Назначение помещений. В основном это относится к производственным цехам, в которых необходимо более строгое соблюдение температурного режима.
  5. Наличие специальных помещений. К примеру, в жилых частных домах это могут быть бани или сауны.
  6. Степень технического оснащения. Учитывается наличие системы вентиляции и кондиционирования, горячего водоснабжения, тип используемого отопления.
  7. Количество точек, через которые проводится отбор горячей воды. И чем больше таких точек, тем большей тепловой нагрузке подвергается система отопления.
  8. Количество находящихся на объекте людей. От этого показателя зависят такие критерии, как влажность внутри помещений и температура.
  9. Дополнительные показатели. В жилых помещениях можно выделить количество санузлов, отдельных комнат, балконов. В промышленных зданиях — количество смен работающих, число дней в году, когда работает сам цех в технологической цепочке.

Что включают в расчет нагрузок

Схема отопления

Расчет тепловых нагрузок на отопление проводят еще на стадии проектирования здания. Но при этом обязательно учитывают нормы и требования различных стандартов.

К примеру, теплопотери ограждающих элементов здания. Причем в расчет берутся все помещения в отдельности. Далее, это мощность, которая необходима для нагрева теплоносителя. Приплюсуем сюда количество тепловой энергии, требующейся для нагрева приточной вентиляции. Без этого расчет будет не очень точным. Прибавим также энергию, которая затрачивается на обогрев воды для бани или бассейна. Специалисты обязательно принимают во внимание и дальнейшее развитие теплосистемы. Вдруг через несколько лет вам вздумается устроить в собственном частном доме турецкий хамам. Поэтому необходимо прибавить к нагрузкам несколько процентов — обычно до 10%.

Рекомендация! Рассчитывать тепловые нагрузки с «запасом» необходимо для загородных домов. Именно запас позволит в будущем избежать дополнительных финансовых затрат, которые часто определяются суммами в несколько нулей.

Особенности расчета тепловой нагрузки

Параметры воздуха, а точнее, его температура берутся из ГОСТов и СНиПов. Здесь же подбираются коэффициенты теплопередачи. Кстати, паспортные данные всех видов оборудования (котлы, радиаторы отопления и прочее) берутся в расчет обязательно.

Что обычно включают в традиционный расчет нагрузки тепла?

  • Во-первых, максимальный поток тепловой энергии, исходящей от приборов отопления (радиаторов).
  • Во-вторых, максимальный расход тепла за 1 час эксплуатации отопительной системы.
  • В-третьих, общие тепловые затраты за определенный период времени. Обычно подсчитывают сезонный период.

Если все эти расчеты соизмерить и сопоставить с площадью теплоотдачи системы в целом, то получится достаточно точный показатель эффективности обогрева дома. Но придется учитывать и небольшие отклонения. К примеру, снижение потребления тепла в ночное время. Для промышленных объектов также придется учитывать выходные и праздничные дни.

Методы определения тепловых нагрузок

Проектирование теплого пола

В настоящее время специалисты пользуются тремя основными способами расчета тепловых нагрузок:

  1. Расчет основных теплопотерь, где учитываются только укрупненные показатели.
  2. Учитываются показатели, основанные на параметрах ограждающих конструкций. Сюда обычно добавляются потери на нагрев внутреннего воздуха.
  3. Производится расчет всех систем, которые входят в отопительные сети. Это и отопление, и вентиляция.

Есть еще один вариант, который называется укрупненным расчетом. Его обычно применяют в том случае, когда отсутствуют какие-либо основные показатели и параметры здания, необходимые для стандартного расчета. То есть фактические характеристики могут отличаться от проектных.

Для этого специалисты используют очень простую формулу:

Q max от.=α x V x q0 x (tв-tн.р.) x 10 -6

α — это поправочный коэффициент, зависящий от региона строительства (табличная величина)V — объем здания по наружным плоскостямq0 — характеристика отопительной системы по удельному показателю, обычно определяется по самым холодным дням в году

Виды тепловых нагрузок

Тепловые нагрузки, которые используются в расчетах системы отопления и подборе оборудования, имеют несколько разновидностей. К примеру, сезонные нагрузки, для которых присущи следующие особенности:

  1. Изменение температуры снаружи помещений в течение всего отопительного сезона.
  2. Метеорологические особенности региона, где построен дом.
  3. Скачки нагрузки на систему отопления в течение суток. Этот показатель обычно проходит по категории «незначительные нагрузки», потому что ограждающие элементы предотвращают большое давление на отопление в целом.
  4. Все, что касается тепловой энергии, связанной с системой вентиляции здания.
  5. Тепловые нагрузки, которые определяются в течение всего года. Например, потребление горячей воды в летней сезон снижается всего лишь на 30-40%, если сравнивать его с зимним временем года.
  6. Сухое тепло. Эта особенность присуща именно отечественным отопительным системам, где учитывается достаточно большой ряд показателей. К примеру, количество оконных и дверных проемов, количество проживающих или находящихся постоянно в доме людей, вентиляция, воздухообмен через всевозможные щели и зазоры. Для определения этой величины используют сухой термометр.
  7. Скрытая тепловая энергия. Существует и такой термин, который определяется испарениями, конденсацией и так далее. Для определения показателя используют влажный термометр.

Регуляторы тепловых нагрузок

Программируемый контроллер, диапазон температур — 5-50 C

Современные отопительные агрегаты и приборы обеспечиваются комплектом разных регуляторов, с помощью которых можно изменять тепловые нагрузки, чтобы тем самым избежать провалов и скачков тепловой энергии в системе. Практика показала, что с помощью регуляторов можно не только снизить нагрузки, но и привести систему отопления к рациональному использованию топлива. А это уже чисто экономическая сторона вопроса. Особенно это относится к промышленным объектам, где за перерасход топлива приходится выплачивать достаточно большие штрафы.

Если же вы не уверены в правильности своих расчетов, то воспользуйтесь услугами специалистов.

Давайте рассмотрим еще пару формул, которые касаются разных систем. К примеру, системы вентиляции и горячего водоснабжения. Здесь вам потребуются две формулы:

Qв.=qв.V(tн.-tв.) — это касается вентиляции.Здесь:tн. и tв — температура воздуха снаружи и внутриqв. — удельный показательV — внешний объем здания

Qгвс.=0,042rв(tг.-tх.)Пgср — для горячего водоснабжения, где

tг.-tх — температура горячей и холодной водыr — плотность водыв — отношение максимальной нагрузки к средней, которая определяется ГОСТамиП — количество потребителейGср — средний показатель расхода горячей воды

Комплексный расчет

В комплексе с расчетными вопросами обязательно проводят исследования теплотехнического порядка. Для этого применяют различные приборы, которые выдают точные показатели для расчетов. К примеру, для этого обследуют оконные и дверные проемы, перекрытия, стены и так далее.

Именно такое обследование помогает определить нюансы и факторы, которые могут оказать существенное влияние на теплопотери. К примеру, тепловизорная диагностика точно покажет температурный перепад при прохождении определенного количества тепловой энергии через 1 квадратный метр ограждающей конструкции.

Так что практические измерения незаменимы при проведении расчетов. Особенно это касается узких мест в конструкции здания. В этом плане теория не сможет точно показать, где и что не так. А практика укажет, где необходимо применить разные методы защиты от теплопотерь. Да и сами расчеты в этом плане становятся точнее.

Заключение по теме

Расчетная тепловая нагрузка — очень важный показатель, получаемый в процессе проектирования системы отопления дома. Если подойти к делу с умом и провести все необходимые расчеты грамотно, то можно гарантировать, что отопительная система будет работать отлично. И при этом можно будет сэкономить на перегревах и прочих затратах, которых можно просто избежать.

Похожие записи

Комментарии и отзывы к материалу

У вас должен быть включен JavaScript для отображения комментариев.

gidotopleniya.ru

максимальная, часовая, видео-инструкция по монтажу своими руками, определение, фото и цена

Тема этой статьи — определение тепловой нагрузки на отопление и прочих параметров, нуждающихся в расчете, для автономной отопительной системы. Материал ориентирован прежде всего на владельцев частных домов, далеких от теплотехники и нуждающихся в максимально простых формулах и алгоритмах.

Итак, в путь.

Наша задача — научиться рассчитывать основные параметры отопления.

Избыточность и точный расчет

Стоит с самого начала оговорить одну тонкость расчетов: абсолютно точные значения потерь тепла через пол, потолок и стены, которые приходится компенсировать системе отопления, вычислить практически невозможно. Можно говорить лишь о той или иной степени достоверности оценок.

Причина — в том, что на теплопотери влияет слишком много факторов:

  • Тепловое сопротивление капитальных стен и всех слоев отделочных материалов.
  • Наличие или отсутствие мостиков холода.
  • Роза ветров и расположение дома на рельефе местности.
  • Работа вентиляции (которая, в свою очередь, опять-таки зависит от силы и направления ветра).
  • Степень инсоляции окон и стен.

Есть и хорошие новости. Практически все современные отопительные котлы и системы распределенного отопления (теплые полы, электрические и газовые конвектора и т.д.) снабжаются термостатами, дозирующими расход тепла в зависимости от температуры в помещении.

Выносной термостат газового котла.

С практической стороны это означает, что избыточная тепловая мощность повлияет лишь на режим работы отопления: скажем, 5 КВт*ч тепла будут отданы не за один час непрерывной работы с мощностью 5 КВт, а за 50 минут работы с мощностью 6 КВт. Следующие 10 минут котел или другой нагревательный прибор проведет в режиме ожидания, не потребляя электроэнергию или энергоноситель.

Следовательно: в случае вычисления тепловой нагрузки наша задача — определить ее минимально допустимое значение.

Единственное исключение из общего правила связано с работой классических твердотопливных котлов и обусловлено тем, что снижение их тепловой мощности связано с серьезным падением КПД из-за неполного сгорания топлива. Проблема решается установкой в контур теплоаккумулятора и дросселированием отопительных приборов термоголовками.

Простейшая схема отопления с теплоаккумулятором.

Котел после растопки работает на полной мощности и с максимальным КПД до полного прогорания угля или дров; затем накопленное теплоаккумулятором тепло дозировано расходуется на поддержание оптимальной температуры в помещении.

Большая часть прочих нуждающихся в расчете параметров тоже допускает некоторую избыточность. Впрочем, об этом — в соответствующих разделах статьи.

Перечень параметров

Итак, что нам, собственно, предстоит считать?

  • Общую тепловую нагрузку на отопление дома. Она соответствует минимально необходимой мощности котла или суммарной мощности приборов в распределенной системе отопления.
  • Потребность в тепле отдельной комнаты.
  • Количество секций секционного радиатора и размер регистра, соответствующий определенному значению тепловой мощности.

Обратите внимание: для готовых отопительных приборов (конвекторов, пластинчатых радиаторов и т.д.) производители обычно указывают полную тепловую мощность в сопроводительной документации.

На сайтах производителей можно даже найти удобные калькуляторы и таблицы для расчета количества секций.

  • Диаметр трубопровода, способного в случае водяного отопления обеспечить необходимый тепловой поток.
  • Параметры циркуляционного насоса, приводящего в движение теплоноситель в контуре с заданными параметрами.
  • Размер расширительного бака, компенсирующего тепловое расширение теплоносителя.

Перейдем к формулам.

Тепловая нагрузка

Один из основных факторов, влияющих на ее значение — степень утепления дома. СНиП 23-02-2003, регламентирующий тепловую защиту зданий, нормирует этот фактор, выводя рекомендованные значения теплового сопротивления ограждающих конструкций для каждого региона страны.

Мы приведем два способа выполнения подсчетов: для зданий, соответствующих СНиП 23-02-2003, и для домов с ненормированным тепловым сопротивлением.

Нормированное тепловое сопротивление

Инструкция по расчету тепловой мощности в этом случае выглядит так:

  • За базовое значение берутся 60 ватт на 1 м3 полного (включая стены) объема дома.
  • Для каждого из окон к этому значению дополнительно добавляется 100 ватт тепла. Для каждой ведущей на улицу двери — 200 ватт.

На тепловизоре хорошо видны потери тепла через окна.

  • Для компенсации увеличивающихся в холодных регионах потерь используется дополнительный коэффициент.
Регион страны Коэффициент
Краснодар, Ялта, Сочи 0,7 — 0,9
Москва и область, Санкт-Петербург 1,2 — 1,3
Иркутск, Хабаровск 1,5 — 1,6
Чукотка, Якутия 1,8 — 2,0

Давайте в качестве примера выполним расчет для дома размерами 12*12*6 метров с двенадцатью окнами и двумя дверьми на улицу, расположенного в Севастополе (средняя температура января — +3С).

  1. Отапливаемый объем составляет 12*12*6=864 кубометра.
  2. Базовая тепловая мощность составляет 864*60=51840 ватт.
  3. Окна и двери несколько увеличат ее: 51840+(12*100)+(2*200)=53440.
  4. Исключительно мягкий климат, обусловленный близостью моря, заставит нас использовать региональный коэффициент, равный 0,7. 53440*0,7=37408 Вт. Именно на это значение и можно ориентироваться.

Близость моря делает мягкими крымские зимы.

Ненормированное тепловое сопротивление

Что делать, если качество утепления дома заметно лучше или хуже рекомендованного? В этом случае для оценки тепловой нагрузки можно использовать формулу вида Q=V*Dt*K/860.

В ней:

  • Q — заветная тепловая мощность в киловаттах.
  • V — отапливаемый объем в кубометрах.
  • Dt — разница температур между улицей и домом. Обычно берется дельта между рекомендованным СНиП значением для внутренних помещений (+18 — +22С) и средним минимумом уличной температуры в наиболее холодный месяц за последние несколько лет.

Уточним: рассчитывать на абсолютный минимум в принципе правильнее; однако это будет означать избыточные расходы на котел и отопительные приборы, полная мощность которых будет востребована лишь раз в несколько лет. Цена незначительного занижения расчетных параметров — некоторое падение температуры в помещении в пик холодов, которое несложно компенсировать включением дополнительных обогревателей.

  • К — коэффициент утепления, который можно взять из приведенной ниже таблицы. Промежуточные значения коэффициента выводятся аппроксимацией.
Описание здания Коэффициент утепления
3 — 4 Кладка в полкирпича, или дощатая стена, или профлист на каркасе; остекление в одну нитку
2 — 2,9 Кладка в кирпич, остекление в две нитки в деревянных рамах
1 — 1,9 Кладка в полтора кирпича; окна с однокамерными стеклопакетами
0,6 — 0,9 Наружное утепление пенопластом или минватой; двухкамерные энергосберегающие стеклопакеты

Давайте повторим вычисления для нашего дома в Севастополе, уточнив, что его стены представляют собой кладку толщиной 40 см из ракушечника (пористой осадочной породы) без внешней отделки, а остекление выполнено однокамерными стеклопакетами.

Дом из ракушечника без наружной отделки.

  1. Коэффициент утепления примем равным 1,2.
  2. Объем дома мы вычислили ранее; он равен 864 м3.
  3. Внутреннюю температуру примем равной рекомендованным СНиП для регионов с нижним пиком температур выше -31С — +18 градусам. Сведения о среднем минимуме любезно подскажет всемирно известная интернет-энциклопедия: он равен -0,4С.
  4. Расчет, таким образом, будет иметь вид Q = 864 * (18 — -0,4) * 1,2 / 860 = 22,2 КВт.

Как легко заметить, подсчет дал результат, отличающийся от полученного по первому алгоритму в полтора раза. Причина, прежде всего в том, что средний минимум, использованный нами, заметно отличается от абсолютного минимума (около -25С). Увеличение дельты температур в полтора раза ровно во столько же раз увеличит оценочную потребность здания в тепле.

Морозные дни бывают даже в Крыму.

Гигакалории

В расчетах количества тепловой энергии, получаемой зданием или помещением, наряду с киловатт-часами используется еще одна величина — гигакалория. Она соответствует количеству тепла, необходимому для нагрева 1000 тонн воды на 1 градус при давлении в 1 атмосферу.

Как пересчитать киловатты тепловой мощности в гигакалории потребляемого тепла? Все просто: одна гигакалория равна 1162,2 КВт*ч. Таким образом, при пиковой мощности источника тепла в 54 КВт максимальная часовая нагрузка на отопление составит 54/1162,2=0,046 Гкал*час.

Полезно: для каждого региона страны местными властями нормируется потребление тепла в гигакалориях на квадратный метр площади в течение месяца. Среднее по РФ значение  — 0,0342 Гкал/м2 в месяц.

Именно в гигакалориях измеряют затраты тепла современные теплосчетчики.

Комната

Как подсчитать потребность в тепле для отдельной комнаты? Здесь используются те же схемы расчетов, что для дома в целом, с единственной поправкой. Если к комнате примыкает отапливаемое помещение без собственных отопительных приборов, оно включается в расчет.

Так, если к комнате размером 4*5*3 метра  примыкает коридор размером 1,2*4*3 метра, тепловая мощность отопительного прибора рассчитывается для объема в 4*5*3+1,2*4*3=60+14,4=74,4 м3.

Отопительные приборы

Секционные радиаторы

В общем случае информацию о тепловом потоке на одну секцию всегда можно найти на сайте производителя.

Если он неизвестен, можно ориентироваться на следующие приблизительные значения:

  • Чугунная секция — 160 Вт.
  • Биметаллическая секция — 180 Вт.
  • Алюминиевая секция — 200 Вт.

Алюминиевый радиатор лидирует благодаря высокой теплопроводности и развитому оребрению.

Как всегда, есть ряд тонкостей. При боковом подключении радиатора с 10 и более секциями разброс температур между ближними к подводке и концевыми секциями будет весьма значительным.

Впрочем: эффект сведется на нет, если подводки подключить диагонально или снизу вниз.

Кроме того, обычно производители отопительных приборов указывают мощность для вполне конкретной дельты температур между радиатором и воздухом, равной 70 градусам. Зависимость теплового потока от Dt линейна: если батарея на 35 градусов горячее воздуха, тепловая мощность батареи будет ровно вдвое меньше заявленной.

Скажем, при температуре воздуха в комнате, равной +20С, и температуре теплоносителя в +55С мощность алюминиевой секции стандартного размера будет равна 200/(70/35)=100 ваттам. Для того, чтобы обеспечить мощность в 2 КВт, понадобится 2000/100=20 секций.

Регистры

Особняком в списке отопительных приборов стоят самодельные регистры.

На фото — отопительный регистр.

Производители по понятным причинам не могут указать их тепловую мощность; однако ее несложно вычислить своими руками.

  • Для первой секции регистра (горизонтальной трубы известных размеров) мощность равна произведению ее наружного диаметра и длины в метрах, дельты температур между теплоносителем и воздухом в градусах и постоянного коэффициента 36,5356.
  • Для последующих секций, находящихся в восходящем потоке теплого воздуха, используется дополнительный коэффициент 0,9.

Давайте разберем очередной пример — вычислим значение теплового потока для четырехрядного регистра с диаметром секции 159 мм, длиной 4 метра и температурой в 60 градусов в комнате с внутренней температурой +20С.

  1. Дельта температур в нашем случае равна 60-20=40С.
  2. Переводим диаметр трубы в метры. 159 мм = 0,159 м.
  3. Вычисляем тепловую мощность первой секции. Q = 0,159*4*40*36,5356 = 929,46 ватт.
  4. Для каждой последующей секции мощность будет равна 929,46*0,9=836,5 Вт.
  5. Суммарная мощность составит 929,46 + (836,5*3)=3500 (с округлением) ватт.

Диаметр трубопровода

Как определить минимальное значение внутреннего диаметра трубы розлива или подводки к отопительному прибору? Не станем лезть в дебри и воспользуемся таблицей, содержащей готовые результаты для разницы между подачей и обраткой  в 20 градусов. Именно это значение характерно для автономных систем.

Максимальная скорость потока теплоносителя не должна превышать 1,5 м/с во избежание появления шумов; чаще ориентируются на скорость в 1 м/с.

При большой скорости потока вода шумит на фитингах и переходах диаметра. Едва ли этот шум порадует вас ночью.

Внутренний диаметр, мм Тепловая мощность контура, Вт при скорости потока, м/с
0,6 0,8 1
8 2450 3270 4090
10 3830 5110 6390
12 5520 7360 9200
15 8620 11500 14370
20 15330 20440 25550
25 23950 31935 39920
32 39240 52320 65400
40 61315 81750 102190
50 95800 127735 168670

Скажем, для котла мощностью 20 КВт минимальный внутренний диаметр розлива при скорости потока в 0,8 м/с будет равен 20 мм.

Обратите внимание: внутренний диаметр близок к ДУ (условному проходу) стальной трубы. Пластиковые и металлопластиковые трубы обычно маркируются наружным диаметром, который на 6-10 мм больше внутреннего. Так, полипропиленовая труба размером 26 мм имеет внутренний диаметр 20 мм.

Внутренний диаметр пластиковой трубы равен разнице наружного диаметра и удвоенной толщины стенки.

Циркуляционный насос

Нам важны два параметра насоса: его напор и производительность. В частном доме при любой разумной протяженности контура вполне достаточно минимального для наиболее дешевых насосов  напора в 2 метра (0,2 кгс/см2): именно это значение перепада обеспечивает циркуляцию системы отопления многоквартирных домов.

Необходимая производительность вычисляется по формуле G=Q/(1,163*Dt).

В ней:

  • G — производительность (м3/час).
  • Q — мощность контура, в который устанавливается насос (КВт).
  • Dt — перепад температур между прямым и обратным трубопроводами в градусах (в автономной системе типично значение Dt=20С).

Для контура, тепловая нагрузка на который составляет 20 киловатт, при стандартной дельте температур расчетная производительность составит 20/(1,163*20)=0,86 м3/час.

У многих насосов предусмотрена ступенчатая или плавная регулировка производительности.

Расширительный  бак

Один из параметров, нуждающихся в расчете для автономной системы — объем расширительного бачка.

Точный расчет основывается на довольно длинном ряде параметров:

  • Температуре и типе теплоносителя. Коэффициент расширения зависит не только от степени нагрева батарей, но и от того, чем они заполнены: водно-гликолевые смеси расширяются сильнее.
  • Максимально рабочем давлении в системе.
  • Давлении зарядки бачка, зависящем, в свою очередь, от гидростатического давления контура (высоты верхней точки контура над расширительным баком).

Есть, однако, один нюанс, позволяющий сильно упростить расчет. Если занижение объема бачка приведет в лучшем случае к постоянному срабатыванию предохранительного клапана, а в худшем — к разрушению контура, то его избыточный объем ничем не повредит.

Именно поэтому обычно берется бак с литражом, равным 1/10 суммарного количества теплоносителя в системе.

Подсказка: чтобы узнать объем контура, достаточно заполнить его водой и слить ее в мерную посуду.

Расширительный бак может быть установлен в любой точке автономного закрытого контура.

Заключение

Надеемся, что приведенные схемы вычислений упростят жизнь читателю и избавят его от многих проблем. Как обычно, прикрепленное к статье видео предложит его вниманию дополнительную информацию.

Успехов!

gidroguru.com

Как рассчитать тепловую нагрузку на отопление

Расчет тепловой нагрузки на отопление здания: формула, примеры

При проектировании системы отопления, будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой приборами отопления теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

— Назначение здания: жилое или промышленное.

— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

— Наличие комнат специального назначения (баня, сауна и пр.).

— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

teplosten24.ru

Определение тепловых нагрузок на отопление и вентиляцию. Определение тепловых нагрузок на горячее водоснабжение

2. Расчет тепловых нагрузок.

     Потребителей потребляющих тепло от централизованной системы теплоснабжения, называют абонентами этой системы, а расходуемое абонентами тепло – тепловой нагрузкой. По режиму потребления тепла в течение года различают две группы потребителей:

1)  сезонные потребители - нуждающиеся в тепле только в холодный период года;

2)  круглогодовые потребители - нуждающиеся в тепле весь год.

    В зависимости от соотношения и режимов отдельных видов потребления различают три характерные группы абонентов: жилые, общественные и промышленные здания и сооружения. Для жилых зданий характерны сезонные расходы тепла на отопление и круглогодовой расход тепла на горячее водоснабжение. В жилых зданиях не устраивают специальной приточной вентиляции, так как свежий воздух поступает в помещения через окна и не плотности наружных ограждений.  Подогрев вентиляционного воздуха в этом случае возлагается на систему отопления. Для большинства общественных зданий основное значение имеют сезонные расходы тепла на отопление и вентиляцию. Потребность абонентов в тепле не остается постоянной. Расходы тепла на отопление и вентиляцию изменяются в зависимости от температуры наружного воздуха, а расходы тепла на горячее водоснабжение изменяются в зависимости от режима потребления горячей воды населением.       

     Определяющим для проектирования и расчета централизованного теплоснабжения являются максимальные часовые (расчетные) расходы тепла по отдельным видам теплопотребления и суммарные часовые расходы тепла по абоненту в целом с учётом несовпадения часовых максимальных расходов тепла по отдельным видам потребления.

    Для определения потребности в количестве тепла абонентов системы централизованного теплоснабжения используют приближенные методы, в основе которых лежат укрупненные показатели.    

2.1.  Определение тепловых нагрузок на отопление.

    Отопление является сезонной нагрузкой.  Оно предназначено для компенсации тепловых потерь и поддержания в помещении необходимой внутренней температуры.

   Часовые расходы тепла на отопление определяются по укрупненным показателям

q - удельная отопительная характеристика здания, ккал/мч °С принимается по справочнику в зависимости от наружного объема здания.

а – поправочный коэффициент, учитывающий климатические условия района,   для  г. Москва, а = 1,08.

V -    наружный  объем  здания, м определяется по строительным данным.

t -  средняя температура воздуха внутри помещения, °С принимается в зависимости от типа здания.

t -  расчетная температура наружного воздуха для отопления, °С для    г. Москва    t= -28 °С.

1.  Жилой дом  №1

наименование

размерность

значение

наружный объем здания, V

м

37249

средняя температура воздуха внутри здания, t

С°

18

удельная отопительная характеристика здания, q 

ккал/мч С°

0,35

Q от жд1  = 0,35 · 1,08 · 37249 · (18+28) = 647685,6 ккал/ч = 753,3 кВт

2.  Жилой дом  №2

наименование

размерность

значение

наружный объем здания, V

м

37423

средняя температура воздуха внутри здания, t

С°

18

удельная отопительная характеристика здания, q 

ккал/мч С°

0,35

Q от жд2  = 0,35 · 1,08 · 37423 · (18+28) = 650711,1 ккал/ч = 756,8 кВт

3.  Жилой дом  №3

наименование

размерность

значение

наружный объем здания, V

м

38262

средняя температура воздуха внутри здания, t

С°

18

удельная отопительная характеристика здания, q 

ккал/мч С°

0,35

Q от жд3  = 0,35 · 1,08 · 38262 · (18+28) = 665299,7 ккал/ч = 773,7 кВт

3.1.  Магазин

наименование

размерность

значение

наружный объем здания, V

м

1546

средняя температура воздуха внутри здания, t

С°

15

удельная отопительная характеристика здания, q 

ккал/мч С°

0,38

Q от маг   = 0,38 · 1,08 · 1546 · (15+28) = 27282,6 ккал/ч = 31,7 кВт

                                                    4.  Жилой дом №4

наименование

размерность

значение

наружный объем здания, V

м

37066

средняя температура воздуха внутри здания, t

С°

18

удельная отопительная характеристика здания, q 

ккал/мч С°

0,35

Q от жд4  = 0,35 · 1,08 · 37066 · (18+28) = 644503,6 ккал/ч = 749,6 кВт

5. Гостиница

наименование

размерность

значение

наружный объем здания, V

м

2580

средняя температура воздуха внутри здания, t

С°

18

удельная отопительная характеристика здания, q 

ккал/мч С°

0,52

Q от гос   = 0,52 · 1,08 · 2580 · (18+28) = 66651 ккал/ч = 77,5 кВт

6. Поликлиника

наименование

размерность

значение

наружный объем здания, V

м

1960

средняя температура воздуха внутри здания, t

С°

20

удельная отопительная характеристика здания, q 

ккал/мч С°

0,4

Q от пол   = 0,4 · 1,08 · 1960 · (20+28) = 40643 ккал/ч = 47,3 кВт

7.   Суммарная нагрузка на систему отопления.

ΣQ = Q от жд1  + Q от жд2  + Q от жд3  + Q от жд4  + Q от гос  +  Q от маг   + Q от пол  

ΣQ = 753,3 + 756,8 + 773,7 + 749,6 + 77,5 + 31,7 + 47,3 = 3189,9 кВт

2.2.          Определение тепловых нагрузок на вентиляцию.

  Вентиляция является сезонной нагрузкой. Она предназначена для замены загрязненного воздуха на чистый  и нагрева его до  температуры внутри помещения.

Часовые расходы тепла на вентиляцию определяются по формуле

V - наружный объем здания, м определяется по строительным данным.

t - средняя температура воздуха внутри здания, С° принимается в зависимости от типа здания.

t - расчетная температура наружного воздуха для вентиляции, С° для г. Москва t= -26 С°

  Для отопительного периода с температурой ниже t расход тепла на вентиляцию принимается постоянным и равным Q. При этом кратность воздухообмена снижается. В тех случаях, когда снижение кратности воздухообмена не допускается, расчетный расход тепла на вентиляцию определяют по расчетной температуре для отопления.

λ – кратность обмена воздуха.

ρ – плотность воздуха, ρ = 1,2 кг/ м

С - теплоемкость воздуха, С = 1 кДж/ м С°

1. Магазин в жилом доме № 3

наименование

размерность

значение

наружный объем здания, V

м

1546

кратность обмена воздуха, λ

1/ч

2

средняя температура воздуха внутри здания, t

С°

15

                    Qв маг =1546 · 2 · 1,2 · 1 · (15+26) = 152126 кДж/ч = 42,3 кВт

  В магазине имеются тепловые завесы, одна на дебаркадере, мощностью Q=50,0 кВт, и две на входе мощностью по Q=20,0 кВт.

                    Q тз маг = Q тз д · К+  Q тз в · К

                    Q тз маг = 50 · 0,5 + 0,8 · 2 · 20 = 57,0 кВт

К- коэффициент использования тепловых завес.

2. Поликлиника

наименование

размерность

значение

наружный объем здания, V

м

1960

кратность обмена воздуха, λ

1/ч

2

средняя температура воздуха внутри здания, t

С°

20

                   Qв пол = 1960 · 2 · 1,2 · 1 · (20+26) = 216384 кДж/ч = 60,1 кВт

3. Суммарная нагрузка на вентиляцию.

ΣQ = Qв маг  + Q тз маг  + Qв пол 

                                             ΣQ = 42,3 + 57,0 + 60,1 = 159,4 кВт

2.3.           Определение тепловых нагрузок на горячее                              водоснабжение.

  Горячее водоснабжение является круглогодовой тепловой нагрузкой, и отключается только на время планово-предупредительного ремонта источника теплоснабжения или ЦТП.

  Определение тепла на горячее водоснабжение начинают с расчета среднечасового расхода тепла за неделю:

а – норма расхода горячей воды в литрах, на потребителя. Определяется в зависимости от потребителя по СНиП 2.04.01-85. 

u – количество единиц измерения ( для жилых помещений – человек, для коммунально-бытовых – операция, койка, посещение и т.д.)

vunivere.ru

Расчет тепловой нагрузки на отопление помещения. Делаем отопление. mstyle-fur.ru

Как рассчитать отопление производственного помещения?

Для расчета отопления производственного помещения нам нужно вычислить величину тепловой мощности, воспользовавшись следующей формулой:

Qт =V x ∆T x K/860. Символы в данной формуле означают следующее:

Qт – испытываемая помещением в трудовое и нерабочее время тепловая нагрузка, измеряется в кВт/час;

V – объем помещения, которое требуется обогреть, измеряется в метрах кубических, рассчитывается как произведение длины, ширины и высоты объекта;

∆T – разница между величиной температуры воздуха, имеющейся вне помещения, и величиной той температуры, которую нужно создать внутри помещения, измеряется в градусах по Цельсию;

K – специальный коэффициент размера тепловой потери для конкретного здания, в котором находится помещение;

860 – деление на это число позволяет перевести полученную тепловую нагрузку в кВт/час, более удобные для тех расчетов, которые будут производиться впоследствии.

Осуществим в качестве примерного образца расчет отопления производственного помещения

В качестве примера осуществим расчет отопления производственного помещения, которое находится на территории Челябинской области.

Внутренняя температура в рассчитываемом помещении должна составлять +16 градусов по Цельсию, наружная равняется -34 градусам по Цельсию.

Для строительства несущих стен здания использовался 150-миллиметровый «сэндвич», в роли утеплителя выступает минеральная вата.

Обогревать помещение планируется по технологии воздушного отопления, которое будет совмещено с установленной в цеху приточной вентиляцией. Это подводит нас к необходимости определить требуемое число воздухонагревателей.

Исходные данные для вычислений следующие.

Размеры цеха следующие (м): 48 x 84 x 16.

На окна установлен двухкамерный стеклопакет, общая площадь остекления составляет 495 квадратных метров.

Стены изготовлены из 150-миллиметровых сэндвич-панелей, кровля – из 200-миллиметрового «сэндвича».

На кровле установлены зенитные фонари 10-миллиметровой толщиной, изготовленные из сотового поликарбоната.

Подавала нет, пол изготовлен из бетона. Сотрудники предприятия работают в этом помещении круглый год с 08:00 до 18:00.

Воздухообмен цеха составляет 1 крат за 1 час.

Ворота отворяются дважды в день.

Данные для расчета следующие:

Отопительный период на предприятии продолжается 218 дней. Расчетная температура снаружи производственного помещения равняется -34 градусам по Цельсию, средняя --6.5 градусам.

За весь отопительный период на предприятии пройдет 160 рабочих суток.

В рабочее время внутри помещения цеха должна быть установлена температура +17 градусов по Цельсию, в нерабочее -+5 градусов.

Применяем формулу, о которой говорилось выше: Qт =V x ∆T x K/860.

Получаем, что максимально-часовой тепловой расход во время работы цеха равняется 885.8 кВт, а в нерабочие часы – 291.5 кВт.

При этом среднечасовые тепловые потери в трудовое время оцениваются в 476.5 кВт, а во время простоя – 112.3 кВт.

Таким образом, за год в цеху расходуется порядка 1381510 кВт*ч тепла.

Теплопотери для одного квадратного метра пола помещения равняются 76.1 Вт, для всего объекта -около 340548 Вт.

Принимаем окончательное решение. Поскольку расчетная мощность требуемых к установке воздухонагревателей должна равняться 885.8 кВт, эффективнее всего будет применить воздухонагреватели наружного исполнения модели «ЯМАЛ»: 3*300 = 900 кВт.

Если вам необходима консультация по управлению объектами, то обращайтесь в раздел консультационных услуг или звоните в нашу компанию по телефону: +7 (351) 750-49-71.

Определение расчетной тепловой мощности системы отопления

Расчет системы отопления заключается в определении её расчётной тепловой мощности, выбора диаметров всех трубных элементов (гидравлический расчёт), определении размеров отопительных приборов (тепловой расчёт ) и подбора оборудования, используемого в данной системе.

Система отопления для выполнения возложенной на неё задачи должна обладать определённой тепловой мощностью. Расчётная тепловая мощность системы выявляется в результате составления теплового баланса в обогреваемых помещениях при температуре наружного воздуха tн.р, называемой расчётной. равной средней температуре наиболее холодной пятидневки с обеспеченностью 0,92 tн.5 и определяемой для конкретного района строительства по нормам . Расчётная тепловая мощность в течение отопительного сезона используется частично в зависимости от изменения теплопотерь помещений при текущем значении температуры наружного воздуха tн и только при tн.р -полностью.

Тепловой мощностью системы отопления называется количество теплоты, которое должно быть передано зданию в расчетных условиях за один час. Для определения тепловой мощности рассчитываются и суммируются теплопотери каждого из помещений здания.

Расчетная формула тепловой мощности системы :

где ΣQ1 – суммарные теплопотери всех помещений;

β1– коэффициент учета дополнительного теплового потока устанавливаемых отопительных приборов за счет округления сверх расчетной величины;

β2 – коэффициент учета дополнительных потерь теплоты отопительными приборами, расположенными у наружных ограждений.

Коэффициенты β1 и β2 приводятся в справочниках.

Навигация по записям

Упрощенный тепловой расчет электроотопления квартиры, дома

Этот простой расчет отопления дает возможность получить нужные данные для того, чтобы правильно сориентироваться в выборе мощности электрических систем отопления. Нам они нужны, чтобы найти несколько показателей, характеризующих эффективность применения электроотопления.

В качестве примера рассмотрим помещение площадью 60м 2 и высотой 2,7м с двумя наружными стенами. Для дома, в котором:

не выполнялось утепление стен и не устанавливались стеклопакеты, ориентировочная потребность тепловой мощности на 1м 3 объема составляет 41 Ватт. В нашем случае объем всего помещения будет составлять: 60 х 2,7 = 162 м 3. Необходимая тепловая мощность для всего объема: 54 х 41 = 6642 Ватт, или 6,6 кВт.

выполнялись работы по утеплению современными методами и установлены стеклопакеты, ориентировочная потребность тепловой мощности на 1 м 3 объема составляет 30 Ватт. В нашем случае объем всего помещения будет составлять: 60 х 2,7 = 162 м3. Необходимая тепловая мощность для всего объема: 162 х 30 = 4860 Ватт. или 4,9 кВт.

В дальнейшем, чтобы было с чем сравнивать, не лишним будет определить еще и площадь излучающей поверхности отопительного прибора, который должен обеспечить необходимую тепловую мощность для каждого конкретного помещения. Для этого выберем в качестве эталона хорошо известный всем алюминиевый секционный радиатор. Тепловая мощность одной секции такого радиатора составляет 160 Ватт, при регламентируемой температуре теплоносителя 600.

Разделив необходимую тепловую мощность помещения на мощность одной секции можно получить нужное количество секций в радиаторе: 6642: 160 = 42 шт. секций, или 4860: 160 = 30 шт. секций (утепленный вариант). Принимаем 30 секций для утепленного варианта. Необходимая тепловая мощность, расчет которой сделан выше, будет обеспечена радиаторами, состоящими суммарно из 30 секций.

Такое количество необходимо, чтобы в помещении была получена санитарная норма температуры 22-24 ˚Ć. Теперь, исходя из полученных данных, которые нам дал расчет тепловой мощности, определим еще один важный показатель для оценки эффективности и экономичности электрообогрева. Это площадь поверхности теплоизлучения приборов отопления. Радиаторы с 30 секциями. Площадь одной секции радиатора составляет 0,354 м2.

Площадь 30 секций: 30 х 0,354 = 10,62 м 2. Получено — излучающая суммарная площадь с температурой 600.

Мы рассмотрели простую методику расчета необходимой тепловой мощности в зависимости от кон-кретных условий помещения. Как же определить необходимую мощность электрических нагревателей (котла)?

Это зависит от того насколько полно превращается электрическая энергия в тепловую тем или иным электрическим нагревателем, в данном случае электродный котел. Об этом можно судить по коэффициенту полезного действия и эффективности, который есть в характеристиках котла. Этот показатель очень близок к 100% (95-97%). Это значит, что для приблизительных расчетов можно пренебречь этими несколькими процентами и принимать потребность в электрической мощности равной необходимой тепловой мощности. То есть расчетная установочная мощность котла в данном случае соответствует — 4, 8 квт (Галан ОЧАГ-5 ).

Задача любого отопления состоит в том, чтобы компенсировать неизбежные тепловые потери через ограждающие конструкции и окна. Это значит, что расчет будет сводиться к определению этих потерь.

Существует формула, в которой учитываются все факторы, влияющие на величину тепловых потерь.

Она имеет следующий вид:

Qt= 100ватт/м 2 х S х К1 х К2 х К3 х К4 х К5 х К6 х К7

где: ватт/м 2 — удельная величина тепловых потерь (приблизительно принимается равной 90ватт/м 2 ;

S — площадь помещения, для которого выполняется расчет;

К1 — коэффициент, определяющий тип окон. Для окон с тройными стеклопакетами он равен 0,85, с двойным стеклопакетом принимается равным 1, для окон без стеклопакетов — 1,27;

К2 — коэффициент, характеризующий теплоизоляционные свойства стен. За единицу принимается кир-пичная стена в два кирпича, для утепленных стен — 0,85, для стен с плохой теплоизоляцией — 1,27;

К3 — коэффициент, учитывающий в каком процентном соотношении находятся площади пола и окон. Закономерность такая: чем больше процент, тем больше и величина теплопотерь, а значит больше и ко-эффициент.

Источники: http://elitearenda.ru/raschet-otopleniya-proizvodstvennogo-pomeshheniya.htm, http://tgvgos.ru/2017/01/14/opredelenie-raschetnoj-teplovoj-moshhnosti-sistemy-otoplenija/, http://teplodomus.ru/text/charged_and_paid/simple_thermal_design_of_electric_heating_apartments_houses/

Комментариев пока нет!

mstyle-fur.ru

Тепловая нагрузка - Энергосервис

Тепловая нагрузка

Тепловая нагрузка – определенное количество тепловой энергии в единицу времени. Тепловая нагрузка, как правило, характеризует потребность помещения или здания в тепловой энергии на определенные хозяйственные нужды или отражает тепловую мощность, которую способен выдавать отопительный прибор или источник теплоснабжения. Измеряется тепловая нагрузка в Гкал/час.

ООО «НТЦ Энергосервис» осуществляет расчет тепловой нагрузки на отопление, вентиляцию и ГВС для заключения договора теплоснабжения или по требованию теплоснабжающей организации. По всем интересующим вопросам о тепловых нагрузках и стоимости проведения расчета тепловой нагрузки Вы можете узнать по телефону 8(495)921-10-71 или по электронной почте This e-mail address is being protected from spambots. You need JavaScript enabled to view it.

В качестве информации Вы можете ознакомиться с основными понятиями о тепловых нагрузках, видам тепловых нагрузок в представленном ниже материале:

Присоединенная тепловая нагрузка - суммарная проектная максимальная (расчетная) часовая тепловая нагрузка, либо суммарный проектный максимальный (расчетный) часовой расход теплоносителя для всех систем теплопотребления, присоединенных к тепловой сети теплоснабжающей организации.

Установленная тепловая нагрузка – суммарная максимальная величина проектных тепловых нагрузок на тепловом пункте или источнике теплоснабжения, которые они могут обеспечить присоединенным абонентам или потребителям теплоты.

Расчетная часовая тепловая нагрузка потребителя тепловой энергии (расчетное тепловое потребление) - сумма значений часовой тепловой нагрузки по видам теплового потребления (отопление, приточная вентиляция, кондиционирование воздуха, горячее водоснабжение), определенных при расчетных значениях температуры наружного воздуха для каждого из видов теплового потребления, и среднего значения часовой за неделю нагрузки горячего водоснабжения.

Расчетная часовая тепловая нагрузка источника теплоснабжения - сумма расчетных значений часовой тепловой нагрузки всех потребителей тепловой энергии в системе теплоснабжения и тепловых потерь трубопроводами тепловой сети при расчетном значении температуры наружного воздуха

Тепловая нагрузка на отопление – количество тепловой энергии в единицу времени, которое необходимо для покрытия тепловых потерь помещения или здания, обеспечиваемая отопительными приборами (радиаторами, конвекторами и.т.д).

Тепловая нагрузка на вентиляцию - количество тепловой энергии в единицу времени, которое необходимо для покрытия тепловых потерь помещения или здания, обеспечиваемая системой вентиляции. Тепловая нагрузка на вентиляцию используется для отопления больших производственных помещений или больших площадей.

Тепловая нагрузка на горячее водоснабжение или тепловая нагрузка на ГВС – количество тепловой энергии, необходимое для нагрева холодной воды до 60С, перед подачей в «горячий кран» потребителя.

Средняя часовая за неделю тепловая нагрузка горячего водоснабжения - часть тепловой энергии, используемой на горячее водоснабжение за неделю, соответствующая выражению 1/7T, где T - продолжительность функционирования систем горячего водоснабжения, ч.

Основные понятия тепловых нагрузок:

Тепловая нагрузка на отопление

Тепловая нагрузка на вентиляцию

Тепловая нагрузка на ГВС

Тепловая нагрузка установленная

Тепловая нагрузка фактическая

Тепловая нагрузка расчетная

Тепловая нагрузка присоединенная

Тепловая нагрузка по укрупненным показателям

Тепловая нагрузка по данным прибора учета

Тепловая нагрузка для заключения договора теплоснабжения

Тепловая нагрузка проектная

Тепловая нагрузка здания

Тепловая нагрузка помещения

Тепловая нагрузка договорная

Любой потребитель тепловой энергии может осуществить расчет или пересмотр тепловых нагрузок при заключении договора теплоснабжения или при выделении части площади в аренду, или при прочих факторах.

Основанием для проведения экспертизы системы теплопотребления является

приказ Минрегиона РФ от 28.12.2009 № 610 «Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок» по которому документом, подтверждающим изменение тепловой нагрузки, среди прочих является заключение организации - технический расчет, являющейся членом саморегулируемых организаций в области инженерных изысканий, обосновывающие снижение тепловой нагрузки.

Основаниями для изменения (пересмотра) тепловых нагрузок по инициативе потребителя могут являться:

1. Проведение потребителем организационных и технических мероприятий,

ведущих к снижению максимальной тепловой нагрузки используемых или реконструируемых объектов теплопотребления, при условии сохранения качества теплоснабжения и (или) предоставления коммунальных услуг гражданам, в том числе:

- комплексный капитальный ремонт жилого или общественного здания;

- реконструкция внутренних инженерных коммуникаций и связанное с этим изменение значения тепловых потерь;

- конструктивные изменения теплозащиты жилых домов и общественных зданий;

- изменение производственных (технологических) процессов (реконструкция основных производственных фондов), перепрофилирование вида деятельности потребителя, или изменение назначения здания, влияющие на тепловую нагрузку

систем теплопотребления;

- внедрение энергосберегающих мероприятий.

2. Добровольное снижение потребителем качества или количества тепловой энергии, горячей воды или пара по сравнению с параметрами, установленными договором энергоснабжения, в пределах нормативов оказания коммунальных услуг и при условии обеспечения надлежащего качества тепловой энергии (горячего водоснабжения).

www.ntc-eserv.ru

Как рассчитать тепловую нагрузку на отопление

Расчет тепловой нагрузки на отопление здания: формула, примеры

При проектировании системы отопления, будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой приборами отопления теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

— Назначение здания: жилое или промышленное.

— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

— Наличие комнат специального назначения (баня, сауна и пр.).

— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

msklimat.ru


.