Регулятор давления прямого действия. Регулятор давления теплоносителя


Регулятор давления прямого действия

Регуляторами прямого действия называются устройства, которые осуществляют регулирование рабочих параметров среды, используя при этом энергию самой регулируемой среды. То есть, для работы таких устройств не требуются никакие источники энергии. Название «регулятор давления прямого действия» на самом деле объединяет целый класс разных регуляторов. К ним относятся устройства, регулирующие давление «до себя», осуществляющие регулирование «после себя», а также те приборы, которые регулируют перепад давления. В городских центральных отопительных системах, регуляторы давления обычно устанавливаются в центральных отопительных пунктах (ЦТП), крупных индивидуальных отопительных пунктах (ИТП), гораздо реже их применяют в тепловых узлах домов и коттеджей.

Описание и конструкция

Конструкция регуляторов, предназначенных для установки в ЦТП и ИТП, обычно представляет собой фланцевый корпус, отлитый из чугуна. Внутри корпуса расположен главный регулирующий элемент устройства – стальной седельный клапан. Клапан приводится в действие штоком, соединяющим клапан с мембраной, которая находится в мембранной камере. Мембрана герметично делит камеру на две части. Каждая из частей камеры имеет специальные штуцеры для присоединения тонких импульсных линий. Посредством этих линий, камера соединяется с точками тепловой сети, в которых контролируется давление. Точки подключения импульсных линий и место установки самого корпуса регулятора зависит от функционала, который на него возложен в данной схеме. Рассмотрим разные варианты использования регуляторов давления прямого действия:

  • Регулятор давления прямого действия регулирует давление до себя. В этом варианте, регулятор врезается в трубопровод, который шунтирует сети потребителя в ЦТП. Одна из частей мембранной камеры соединена с атмосферой, вторая, посредством импульсной линии, с подающим трубопроводом до регулятора. В начальном состоянии клапан закрыт, и весь поток теплоносителя проходит по сетям потребителя. Закрытое положение клапана обеспечено прижимной силой регулировочной пружины, усилие которой регулируется посредством затягивания или отпускания гайки. При превышении давления в контролируемой точке установленного уровня, мембрана, под воздействием давления теплоносителя, преодолевая воздействие пружины, начинает открывать клапан, двигая шток. Часть потока сетевой воды устремляется по короткому пути через приоткрытый клапан, минуя сети потребителя. При этом, давление в контролируемой точке падает. Если давление будет уменьшаться, произойдет обратный процесс, и клапан будет закрываться.
  • Осуществление регулирования давления после себя. Фланцевый корпус регулятора врезается в прямой трубопровод. Мембранная камера соединена с атмосферой и с прямым трубопроводом после регулятора. Изначально клапан открыт. При превышении давления в контролируемой точке, мембрана начинает закрывать клапан, что сопровождается падением давления за регулятором. Когда давление начнет уменьшаться, клапан начнет открываться.
  • Регулирование перепада давления. Регулятор устанавливается в прямой или в обратный трубопровод. Мембранная камера подключена к точкам прямого и обратного трубопроводов, разность давления между которыми является регулируемой величиной. Таким образом, на мембрану с двух сторон воздействуют силы, обусловленные давлением воды в прямом и обратном трубопроводах. Разность этих сил уравновешивается пружиной. При повышении или понижении значения перепада давления, мембрана начинает двигаться в одну или другую сторону, открывая, или закрывая клапан. Перепад давления при этом, стремится вернуться к установленной пружиной величине.

Основные преимущества регулятора давления прямого действия

Главное преимущество устройств регулирования давления прямого действия заключается в том, что регулирование осуществляется за счет энергии самого теплоносителя. Не требуется подвод энергии для питания устройства от посторонних источников. Также следует отметить простоту монтажа, не требующую от монтажного персонала более высокой квалификации, чем та, что необходима при строительстве обычного теплового пункта. Применение такого автоматического устройства, как регулятор давления прямого действия, позволяет оптимизировать параметры теплоносителя перед отпуском потребителям, уменьшить потери тепла и общие расходы в сети, улучшить условия работы сетевых насосов.

Технические характеристики

Основные технические параметры регулятора прямого действия:

  • Условный проход Ду.
  • Условное давление Ру.
  • Диапазон настройки.
  • Максимальное значение температуры регулируемой среды.
  • Присоединительные и габаритные размеры.

Если Вам требуются регуляторы давления и регулирующая арматура для отопления и теплоснабжения, обращайтесь к профессионалам

по бесплатному телефону: 8-800-77-55-449

или по электронной почте на сайте

www.gardarikamarket.ru

31.03.2017

bookshunt.ru

Регулятор расхода и давления

Для того чтобы в отопительных системах была возможность изменять или создать оптимальное давление и расход, ориентируясь на заданные параметры, устанавливают соответствующие регуляторы. Такие устройства могут быть электрическими и гидравлическими. При этом данные регулирующие изделия еще подразделяются на приборы прямого и непрямого действия.

Регуляторы давления и расхода гидравлического типа прямого действия

Сегодня на рынке доступны несколько типов приборов, которые монтируются в разных местах отопительных систем. Они имеют свои конструктивные особенности и выполняют регулирование различных параметров:

  • расход теплоносителя;

  • давление на выходе;

  • давление на входе.

Регулирующие приборы «до себя» и «после себя»

Устройства, которые контролируют давление в отопительной системе до точки, где они установлены, называются регуляторами «до себя». Благодаря таким приборам рабочие параметры в контуре отопления определенного объекта удается поддерживать на необходимом уровне. Их значения будут более высокими, чем в наружной системе.

Устройства, контролирующие давление в системе отопления за местом, где выполнена их установка, называются регуляторами «после себя». Они также поддерживают параметры отопительного контура конкретного объекта на заданном уровне. Если давление в системе отопления повышается, то в регуляторе срабатывает механизм, изменяющий его проходное сечение. В результате такого действия происходит снижение напора до расчетного значения.

Регулирующие устройства расхода и комбинированные приборы

Чтобы в теплоиспользующей установке была возможность поддерживать стабильный расход, устанавливается соответствующий регулятор давления и расхода. Его работа осуществляется за счет изменения перепада давления. Такое устройство, монтируемое на подающем трубопроводе, имеет расходомерную диафрагму. Импульсы давления поступают на прибор с участка, расположенного как передней, так и после нее. Это позволяет регулятору расхода изменить количество теплоносителя в системе.

В настоящее время имеется возможность приобрести и установить в отопительной системе универсальный регулятор расхода и давления. Такой прибор может выполнять функцию регулирующей арматуры для устройств непрямого действия. К главным преимуществам всех универсальных регуляторов относится:

  • ремонтнопригодность;

  • легкость монтажа;

  • большая производительность;

  • высокая точность регулирования;

  • отсутствие необходимости в постоянном обслуживании.

Устройства регулирования давления и расхода непрямого действия

Данный вид приборов оснащается регулирующим клапаном, который имеет мембрану. Также в состав устройств входит реле давления. Такие регуляторы позволяют контролировать и изменять давление, расход и уровень теплоносителя. Помимо этого, данные устройства защищают как самих потребителей, так и отопительное оборудование от аварийных ситуаций. Сегодня на рынке имеется возможность приобрести такие приборы, которые предназначены для использования в открытых и закрытых системах.

Когда выбирается регулятор расхода и давления, всегда необходимо учитывайте его параметры. В первую очередь — это рабочее давление прибора. Также нужно обратить внимание, каким образом выполняется его соединения с трубопроводами. Помимо этого, важно знать диапазон регулировки устройства.

 

Более подробно информацию по регулирующей арматуре Вы можете найти на сайте: www.ldmvalves.ru

или задать по телефону: (499) 343-27-26  

Звоните!

vash-remontik.ru

Регуляторы давления и расхода | Tesrf.ru

Регуляторы давления (РД) предназначены для поддержания давления до регулировочного клапана («до себя»), а регуляторы расхода (РР) — для поддержания постоянства расхода воды в отопительной системе (или перепада давления).

Регуляторы рассчитаны на рабочее давление до 1,6 МПа при температуре 150 °С. Расчетная площадь затвора (золотника клапана) подобрана примерно равной эффективной площади сильфона, вследствие чего силы от давления жидкости, действующие на сильфон и золотник клапана, уравновешиваются. Таким образом, на шток подвижной системы регулятора РР действует с одной стороны сила, возникающая от разности давлений за клапаном РГ и в сильфонной камере Ру с другой — сила натяжения пружины. Действие взаим-нопротивоположных сил уравновешивается. Регулируемое давление Р1изменяется натяжением пружины.

Регулятор давления (РД) и расхода (РР)

А — регулятор РР

Б — регулятор РД

В конструктивном отношении регулятор расхода РР (перепада) отличается от рассмотренного выше регулятора РД только положением плунжера. В регуляторе РД он является “нормально закрытым”, а в регуляторе РР — “нормально открытым”. Номинальный регулируемый перепад давления всех типоразмеров регуляторов РР составляет Р = 0,2 МПа (при среднем расходе для каждого типоразмера). При повышенных расходах воды регулируемый перепад снижается примерно до 0,18 МПа. В связи с этим не рекомендуется в зависимости от величины регулируемого перепада регулятор РР присоединять при Р < 0,2 МПапо схеме а, при Р > 0,2 МПа — по схеме б и в.

Схемы присоединения регулятора расхода РР

а — при перепаде давления менее 0,2 МПа;

б — при перепаде давления более 0,2 МПа;

в — то же путем присоединения импульсной линии за дроссельной шайбой;

1 — регулятор РР;

2 — импульсная линия;

3 — элеватор;

4 — регулятор РД;

5 — фильтр;

6, 7 — дроссельные шайбы диаметром d1 и d2;

8 — манометр;

9 — дроссельная шайба на трубопроводе dT

Технические характеристики регуляторов РД и РР

Диаметр дроссельной шайбы dШ схемы в определяется по формуле:

G — расход, м3/ч;

?Н — потери напора, м

Диаметр дроссельных шайб 6, 7 определяют по таблице.

Диаметр дроссельных шайб на импульсной линии регулятора РР

Регулятор РР применяют для регулирования температуры на горячее водоснабжение с биметаллическим датчиком ТРБ, ТМП, а в установках приточной вентиляции — с датчиком ТРБ-В. При работе регулятора в качестве регулирующего клапана его перемещение зависит от величины давления Ру. При снижении Ру до 0 регулятор полностью закрывается, при увеличении Ру до давления перед регулятором Р1 регулятор полностью открывается.

Регулятор УРРД — универсальный регулятор, предназначен для регулирования постоянства расхода давления (“до себя” и “после себя”). Регулятор односильфонный, разгруженный. Он может быть собран по схеме “нормально открыт” или “нормально закрыт”. Регулятор прямого действия состоит из односедельного регулирующего органа, разгруженного сильфонным узлом, и мембранно-пружинного исполнительного механизма. Импульс регулируемого давления подводится: к верхней полости мембранного привода — при регулировании давления “после себя”; к нижней полости — при регулировании давления “до себя”; к обеим полостям мембранного привода — при регулировании перепада (расхода).

Регулятор УРРД

1 — корпус

2 — сборка золотника при регулировании подпора (давления “до себя”)

3 — сборка золотника при регулировании расхода и давления “после себя”

4 — соединительная шпилька

5 — сильфон разгрузки золотника

6 — дополнительная пружина

7 — штуцер для присоединения второго импульса от шайбы или обратной линии

8 — мембранный сервомотор

9 — заглушка

10 — манометр

11 — штуцер для присоединения импульса давления

12 — колпачок

13 — настроечный винт

14 — настроечная пружина

Величину регулируемого давления устанавливают за счет напряжения пружины настройки с помощью винта, а также за счет применения пружин различной жесткости. Регулятор может применяться в качестве исполнительного механизма и регулировочного клапана с регулирующим приборомРД-3а (РД-3б) и датчиком температуры ТМП. В качестве регулирующей (рабочей) среды применяют воду давлением 0,1—1 Мпа, температурой до 70 0С.

Технические характеристики регулятора УРРД

— условное давление регулируемой среды, Мпа — 1,6

— температура регулируемой среды, 0С — до 180

— пределы настройки, Мпа:

1) 0,06—0,1

2) 0,1—0,25

3) 0,16—0,4

4) 0,25—0,6.

— зона пропорциональности, % от верхнего предела настройки — 12—20

— условный диаметр, мм — 25, 05, 80

— коэффициент пропускной способности Kw, м3/ч — 6, 25, 60

— размеры (соответственно H, h, L), мм

1) при Dу = 25 — 650, 400, 160

2) при Dy = 50 — 715, 471, 230

3) при Dy = 80 — 715, 471, 310

— Масса, кг:

1) при Dу = 25 — 28

2) при Dy = 50 — 29

3) при Dy = 80 — 52

Схема сборки и присоединения регулятора УРРД

а — при регулировании давления “до себя”

б — то же “после себя”

в — при регулировании расхода (перепада давлений)

Регулятор давления с грузом и мембранным приводом типа 21ч10нж поддерживает давление за регулятором (“после себя”). Регулятор 21ч12нж поддерживает давление перед регулятором (“до себя”). На рисунке показана сборка регулятора “после себя” (21ч10нж) (при опускании штока клапан закрывается). В регуляторе “до себя” (21 ч 12нж) при опускании штока клапан должен открываться.

Регулятор давления прямого действия типа 21ч10вж и 21ч12нж

1 — корпус

2 — золотник

3 — шток

4 — рычаг

5 — мембранная головка

Технические характеристики регуляторов 21ч10нж и 21ч12нж

Величина регулируемого давления определяется площадью мембранной головки и массой груза.

Размеры мембранной головки и масса грузов регуляторов 21ч10нж и 21ч12нж

Подрегулировка давления может быть произведена изменением значения и положения груза. При установке регулятора 21ч10нж импульсную линию, связывающую мембрану с трубопроводом, присоединяют к трубопроводу за регулятором. При установке регулятора 21ч 12нж импульсную линию присоединяют к трубопро­воду до регулятора (по ходу движения воды).

Регуляторы температуры прямого действия типов РТ и РПДП предназначены для регулирования температуры воды, нагреваемой в водонагревателях в период горячего водоснабжения. Регуляторы относятся к регуляторам манометрического типа и состоят из термосистемы и регулирующего клапана с сильфонным приводом. В регуляторе РТ применен сильфон разгрузки, разгружающий подвижную систему регулирующего клапана от действия давления до регулятора.

Регуляторы температуры прямого действия

а — типа РТ

б — типа РПДП

1 — золотник

2 — разгрузочный сильфон

3 — импульсная трубка

4 — сильфонный привод

5 — капилляр

6 — сильфон настройки

7 — термобаллон

Термосистема (внутренняя полость термобаллона с сильфоном настройки, капилляром и камерой сильфона исполнительного устройства) заполнена толуолом или ксилолом. Регулятор РТ снабжен узлом защиты термосистемы от повышенной температуры в полости термосистемы. Этот узел защиты конструктивно совмещен с узлом настройки. Допускаемая температура перегрузки по отношению к температуре, установленной на шкале настройки, составляет от 25 до 40 0С в зависимости от типа регулятора.

Регулятор работает следующим образом: при увеличении регулируемой температуры увеличивается объем жидкости в термосистеме (термобаллон опущен в трубопровод регулируемой горячей воды) и возрастает давление этой жидкости, что приводит к перемещению дна сильфона исполнительного устройства вместе с плунжером, вследствие чего снижается расход горячей воды. Перемещение плунжера происходит пропорционально изменению регулируемой температуры. На требуемую температуру регулятор настраивается за счет изменения объема термосистемы при изменении положения сильфона настройки.

Регулятор температуры прямого действия типа РПДП в отличие от регулятора РТ имеет двухседельный клапан. В системах теплопотребления применяют терморегуляторы с прямой характеристикой, когда при увеличении температуры, регулирующей среды клапан регулирующего органа прикрывается. Регулятор РПДП выпускается отрегулированным на рабочий ход в диапазоне температур, указанном в паспорте регулятора. Дополнительная подрегулировка может быть произведена поджатием пружины, подпирающей сильфонный привод регулятора. Регуляторы РТ и РПДП не являются плотно запорными. Следует иметь в виду, что манометрическая схема чувствительна к перегреву.

Технические характеристики регуляторов температуры прямого действия типов РТ и РПДП

Примечание. Пределы настройки для регуляторов типа РТ: 20—60; 40—80; 60—100; 80—120 и т.д. до 180; для регуляторов РПДП: 30—40; 40—50; 60—70; 70—80 и т.п. до 160 0С.

Размеры регулятора температуры прямого действия РТ

Регуляторы температуры прямого действия типа РТК-2216-ДП и РТК-216-ТС предназначены для поддержания в заданных пределах температуры воздуха в помещениях жилых, общественных и производственных зданий. Принцип действия основан на изменении объема термочувствительной жидкости в термобаллонах при изменении температуры регулируемой среды. Изменение объема термочувствительной жидкости вызывает перемещение штока исполнительного механизма термосистемы, воздействующего на шток регулирующего клапана, что ведет к изменению проходного сечения регулирующего органа и, следовательно, к изменению расхода регулируемой среды. Регуляторы состоят из жидкостной манометрической системы и регулирующего органа. Термосистема имеет три датчика (термобаллона): два датчика температуры воздуха в помещениях для установки на этажах и один датчик температуры наружного воздуха (корректирующий).

Регулятор температуры с манометрической системой типа РКТ-22216-ДП (ТС)

1 — датчик наружной температуры

2, 3 — датчики внутренней температуры

4 — капилляры

5 — задатчик

6 — исполнительный механизм

7 — регулирующий клапан ДП

8 — регулирующий клапан ТС

Регулирующий орган выполнен двухходовым ДП и трехходовым ТС. Наличие корректирующего датчика позволяет более эффективно поддерживать в заданных пределах температуру воздуха в отапливаемом здании в переходный период отопительного сезона.

Технические характеристики регуляторов типа РТК

Диаметр условного прохода, м — 25, 32, 40, 50, 60

Пределы настройки, °С — от 18 до 24.

Зона нечувствительности,°С, не более — 0,5.

Длина капилляров, м: — 60;

— наружного датчика — 10, 16;

— внутреннего датчика верхнего этажа — 16, 25;

— то же нижнего этажа — 10, 16;

— от датчика до исполнительного механизма — 3.

Масса, кг:

— РТК-2216-ДП — от 18 до 41;

— РТК-2216-ТС — от 19до 50.

Размеры, мм:

— задатчика — 43×220;

— исполнительного механизма — 22×89;

— регулирующего органа ТС — 623х296х 180;

— регулирующего органа ДП — 649×296 х 180.

Регулятор универсальный прямого действия модернизованный УРРД-М предназначен для поддержания гидравлического режима в теплофикационных системах путем регулирования давления, перепада давлений или расхода теплоносителей. Регулятор применяют как регулятор прямого действия для автоматизации абонентских вводов жилых и общественных зданий, как исполнительное устройство (клапан) в гидравлических регуляторах непрямого действия для регулирования давления, перепада давлении, расхода, уровня или температуры. В корпусе регулятора размещен запорно-регулирующий узел, состоящий из подвижного подпружиненного седла, неподвижного седла и кольцевого разгруженного затвора.

Сверху корпуса размещен мембранный исполнительный механизм (гидропривод), являющийся одновременно чувствительным элементом регулятора. Гидропривод состоит из мембраны жестким центром, зажатой между двумя чашами со штуцерами, и стакана с настроечной пружиной. Один конец пружины соединен с надстроечным винтом, а другой — с жестким центром мембраны.

Регулятор расхода давления модернизированный типа УРРД-М

1 — гидропривод

2 — неподвижное седло

3 — затвор

4 — пружина настройки

5 — винт настройки

Затвор и жесткий цент соединены между собой штоком. Работа регулятора заключается в изменении расхода проходящей через него среды в зависимости от изменения величины регулируемого параметра.

Импульс регулируемого параметра подводится непосредственно в камеру гидропривода. Возникающие при этом на мембране усилия (разность усилий при регулировании расхода или перепада давлений) уравновешивается натяжение настроечной пружины.

Отклонение регулируемого параметра от заданного значения нарушает равновесие действующих на мембрану сил, что приводит к перемещению затвора в сторону восстановления за счет изменения расхода среды и заданного значения регулируемого параметра.

Крепление на трубопроводах регуляторов УРРД-М диаметром 80—150 мм стандартное, фланцевое, а диаметром 25—56 мм — муфтовое.

Основные данные регулятора УРРД-М

tesrf.ru

Регуляторы расхода рабочей жидкости для гидроприводов мобильных машин (Часть 1)

В. Васильченко, канд. техн. наук, ст. научный сотрудник, В. Соболев, руководитель технического отдела ЗАО «ГидраПак Холдинг»

Рабочие органы и исполнительные механизмы мобильных машин и механизмов с гидроприводом, применяемые в промышленном и гражданском строительстве, при ремонте и содержании дорог, в лесозаготовительном производстве, в коммунальном хозяйстве и т. д., приводятся в движение гидроцилиндрами или гидромоторами.

Управление расходом рабочей жидкости

Для изменения скорости движения штоков гидроцилиндров двустороннего действия или частоты вращения приводных валов реверсивных гидромоторов применяют гидроаппараты, управляющие расходом рабочей жидкости (РЖ), которые в зависимости от свойств разделяют на два основных конструктивных исполнения: дросселирующие и регулирующие.

Дросселирующие гидроаппараты предназначены для создания гидравлического сопротивления потоку путем дросселирования расхода РЖ, который в свою очередь зависит от потери давления. К дросселирующим гидроаппаратам относятся синхронизаторы расходов (делители и сумматоры потока) и гидродроссели нерегулируемые и регулируемые, в том числе с обратным клапаном или без него.

Регулирующие гидроаппараты предназначены для поддержания заданного значения расхода независимо от значений перепада давлений в подводимом и отводимом потоках РЖ. К регулирующим гидроаппаратам относятся регуляторы расхода двухлинейные с изменяемым расходом на выходе и со стабилизацией в зависимости от температуры РЖ и трехлинейные с изменяемым расходом на выходе со сливом избыточного расхода в другую гидролинию или в бак гидросистемы.

Большинство дросселирующих гидроаппаратов представляют собой местные гидравлические сопротивления, в которых изменение расхода зависит от площади проходного сечения вследствие потери давления Р из-за деформации потока РЖ.

Дроссельное регулирование

При дроссельном регулировании расхода (обычно в контурах с насосами постоянной подачи) скорость движения исполнительных механизмов регулируют, изменяя проходное сечение дросселей. В этом случае используются три основные схемы установки дросселя в гидросистеме: на входе, на выходе и в ответвлении (рис. 1).

При анализе гидросистем установлено, что при дроссельном регулировании расход меняется в зависимости от давления, создаваемого внешней нагрузкой. Соответственно скорость исполнительного механизма и ΔР также зависит от внешней нагрузки и от формы и длины дросселирующей щели: конический дроссель, продольная канавка треугольной или прямоугольной формы, щелевой дроссель или кольцевой дроссель.

Дроссельные схемы регулирования скорости из-за больших потерь мощности малоэффективны, особенно при эксплуатации гидроприводов большой мощности. Однако дроссельное управление расходом проще и дешевле, поэтому для привода машин небольшой мощности или редко включаемого привода, например для плавного пуска и остановки машины, нередко применяют дроссельное регулирование, при котором часть РЖ сливается в бак, а ее энергия преобразуется в тепло, нагревая РЖ в гидросистеме.

На рис. 2, а, б показаны условное обозначение и продольные сечения двухлинейных регулируемых дросселей, предназначенных для встраивания в трубопроводы гидросистем.

Эти регулируемые дроссели с коническим запорным элементом патронного исполнения предназначены для регулирования расхода РЖ в обоих направлениях. Типичное применение – регулирование скорости движения штоков гидроцилиндров и частоты вращения гидромоторов. Дроссель регулируемый типа 2CR30 имеет встроенный обратный клапан, который свободно пропускает поток РЖ в одном направлении, но с дросселированием потока в обратном направлении. Вращением запорного элемента можно изменять проходное сечение дросселя и регулировать расход РЖ приблизительно пропорционально виткам резьбы, а также использовать дроссель как запорный клапан. На рис. 3 показаны условное обозначение и общие виды регулируемых дросселей с обратными клапанами.

Эти регулируемые дроссели применяют для дросселирования потока в одном направлении и свободного прохода потока в обратном направлении. Дроссели имеют два дросселирующих золотника с регулировочными винтами и два обратных клапана, встроенных в корпус. Поток РЖ от насоса проходит под низким давлением через обратный клапан от входного отверстия V к отверстию Р, соединяемому с гидродвигателем (см. графическое обозначение). Обратный поток РЖ от Р к V проходит при переменном дросселировании в зависимости от регулирования дросселирующим золотником. Примеры применения регулируемых дросселей в типовых гидравлических схемах приведены на рис. 4.

Регуляторы расхода

Эти устройства применяются для поддержания постоянного расхода независимо от изменения давления. Принцип работы регулятора расхода показан на рис. 5. Регулятор расхода состоит из следующих основных элементов: дозирующего дросселя 1 и компенсатора давления 2 с пружиной 3. Изменение температуры и соответственно вязкости РЖ изменяет перепад давления. Чтобы уменьшить влияние этих факторов, применяется специальная форма дросселирующей щели.

Тип регулятора расхода зависит от конструкции компенсатора давления. Если компенсатор давления расположен последовательно с дозирующим дросселем, гидроаппарат является двухлинейным регулятором расхода, если параллельно – трехлинейным регулятором расхода.

В двухлинейных регуляторах расхода дозирующий дроссель и компенсатор давления расположены последовательно. При этом компенсатор давления может располагаться перед дросселем на входе (рис. 6, а) или после него на выходе (рис. 6, б). На рис. 6, а видно, что управляющая А1 и дозирующая А2 дросселирующие щели расположены последовательно. Золотник компенсатора нагружен справа давлением Р2 и слева давлением Р3 и усилием пружины FF.

Перепад давления на регулируемом дросселе в двухлинейном регуляторе расхода является отношением усилия регулируемой пружины регулятора давления FF к торцовой площади золотника АК и не зависит от последовательности расположения компенсатора давления: перед дросселем или после него.

На рис. 7 показаны условное обозначение и принцип работы двухлинейного регулятора расхода с компенсатором давления на выходе. Из рис. 7, б видно, что дозирующий дроссель и компенсатор давления двухлинейного регулятора расхода расположены последовательно. Место расположения компенсатора давления (на входе или на выходе) в двухлинейных регуляторах расхода определяется конструктивными соображениями.

Рассмотрим особенности применения двухлинейных регуляторов расхода при дросселировании потока РЖ: на входе (первичное управление), на выходе (вторичное управление) и в ответвлении.

При управлении расходом РЖ на входе (см. рис. 1, а) регулятор расхода устанавливают в напорной гидролинии насоса после предохранительного клапана, перед гидродвигателем. Эта схема дросселирования рекомендуется для гидросистем, в которых регулируется скорость движения гидродвигателя, преодолевающего противодействующее усилие (положительное сопротивление). В этом случае перед регулятором расхода действует нагрузка, определяемая внешним сопротивлением на гидродвигателе.

Недостатком этой схемы является необходимость настройки предохранительного клапана, установленного перед регулятором расхода, на максимально возможное давление в гидродвигателе. В результате насос постоянно работает под максимальным давлением, даже когда гидродвигатель преодолевает небольшую нагрузку. Кроме этого потери мощности при дросселировании потока превращаются в нагрев РЖ, которую необходимо охлаждать для стабилизации теплового режима.

При управлении расходом РЖ на выходе (см. рис.1, б) регулятор расхода устанавливают на выходе из гидродвигателя перед баком. Такая схема управления расходом рекомендуется для гидросистем с попутной рабочей нагрузкой (отрицательной), которая стремится перемещать шток гидроцилиндра или вращать вал гидромотора быстрей, чем скорость потока РЖ, определяемая подачей насоса. Сохраняется основной недостаток схемы дросселирования – необходимость настройки предохранительного клапана на максимальное давление и воздействие максимального давления на уплотнительные элементы гидроцилиндра даже при холостом ходе, т. е. с более высоким уровнем трения.

При управлении расходом в ответвлении (см. рис. 1, в) регулятор устанавливают паралелльно гидродвигателю. В этой схеме регулятор ограничивает расход РЖ, поступающей в гидродвигатель, путем перепуска части потока, нагнетаемого насосом, в бак гидросистемы. Если рабочий орган доходит до упора, давление в гидросистеме ограничивается настройкой предохранительного клапана, и слив потока РЖ через клапан вновь преобразуется в нагрев.

Преимуществом этой схемы регулирования расхода является ограниченное рабочее давление, которое определяется внешней нагрузкой на рабочем органе или на исполнительном механизме. При этом меньше мощности преобразуется в нагрев РЖ, а выделяемое при дросселировании тепло отводится в бак гидросистемы.

Из приведенного выше сравнения дросселирующих и регулирующих гидроаппаратов управления расходом РЖ следует явное преимущество регуляторов расхода, которые представляют собой комбинацию дросселя с регулятором, поддерживающим постоянный перепад давления на дросселирующей щели.

В отличие от двухлинейных регуляторов расхода, дозирующие А2 и управляющие А1 отверстия в трехлинейных регуляторах расхода расположены не последовательно, а параллельно.

os1.ru

Регулятор давления отопления|Устройство регулятора давления

       Здравствуйте, друзья! Эта статья написана мной в соавторстве с Александром Фокиным, начальником отдела маркетинга ОАО «Теплоконтроль», г.Сафоново, Смоленская область. Александр отлично знаком с устройством и работой регуляторов давления в системе отопления.

      В одной из самых распространенных схем для тепловых пунктов здании – зависимой, с элеваторным смешением, регуляторы давления прямого действия РД «после себя» служат для создания необходимого напора перед элеватором. Рассмотрим немного, что представляет собой регулятор давления прямого действия. Прежде всего, нужно сказать, что регуляторы давления прямого действия не требуют дополнительных источников энергии, и в этом их несомненное достоинство и преимущество.

      Принцип работы регулятора давления состоит в уравновешивании давления пружины настройки и давления теплоносителя, предаваемого через мембрану (мягкую диафрагму). Мембрана воспринимает импульсы давления с обеих сторон и сопоставляет их разницу с заданной, устанавливаемой посредством соответствующего сжатия пружины гайкой настройки. Каждому числу оборотов соответствует автоматически поддерживаемый перепад давлений. Отличительная особенность мембраны в регуляторе давления после себя – это то, что по обе стороны мембраны воздействуют не два импульса давления теплоносителя, как у регулятора перепада давлений (расхода), а один, а со второй стороны мембраны присутствует атмосферное давление.

       Импульс давления РД «после себя» отбирается на выходе из клапана по направлению движения теплоносителя, поддерживая заданное давление постоянным в точке отбора этого импульса.

При увеличении давления на входе в РД, он прикрывается, защищая систему от избыточного давления. Установку РД на требуемое давление осуществляют гайкой настройки.

       Рассмотрим конкретный случай. На входе в ИТП давление 8 кгс/см2, температурный график 150/70 °С, и мы предварительно сделали расчет элеватора и просчитали минимально необходимый располагаемый напор перед элеватором, эта цифра получилась у нас равной 2 кгс/см2. Располагаемый напор — это разница давлений между подачей и обраткой перед элеватором. Для температурного графика 150/70 °C минимально необходимый располагаемый напор, как правило, в результате расчета получается 1,8-2,4 кгс/см2, а для температурного графика 130/70 °С минимально необходимый располагаемый напор обычно составляет 1,4-1,7 кгс/см2. У нас напомню, получилась цифра 2 кгс/см2, и график — 150/70 °С. Давление в обратке — 4 кгс/см2. Следовательно, чтобы добиться необходимого просчитанного нами располагаемого напора, давление перед элеватором должно быть 6 кгс/см2. А на вводе в тепловой пункт, давление у нас, напомню, 8 кгс/см2. Значит, РД у нас должен сработать так, чтобы сбросить давление с 8 до 6 кгс/см2, и держать его постоянным «после себя» равным 6 кгс/см2.

      Подходим к основной теме статьи – как выбрать регулятор давления для данного конкретного случая. Сразу поясню, регулятор давления выбирают по пропускной способности. Пропускная способность обозначается как Kv, реже встречается обозначение KN. Пропускная способность Kv считается по формуле: Kv = G/√∆P. Пропускную способность можно понимать как способность РД пропускать необходимое количество теплоносителя при наличии нужного постоянного перепада давлений. В технической литературе встречается также понятие Kvs – это пропускная способность клапана в максимально открытом положении. На практике зачастую наблюдал и наблюдаю, РД подбирают и затем приобретают по диаметру трубопровода. Это не совсем верно.

       Производим далее наш расчет. Цифру расхода G, м3/час получить несложно. Она рассчитывается из формулы G = Q/((t1-t2)*0,001). Необходимая цифра Q у нас есть обязательно, в договоре теплоснабжения. Примем Q = 0,98 Гкал/час. Температурный график 150/70 С, следовательно t = 150, t2 = 70 °С. В результате расчета у нас получится цифра 12,25 м3/час. Теперь необходимо определить перепад давлений ∆P. Что в общем случае обозначает эта цифра? Это разница между давлением на входе в тепловой пункт (в нашем случае 8 кгс/см2) и необходимым давлением после регулятора (в нашем случае 6 кгс/см2).

Производим расчет.Kv = 12,25/√(8-6) = 8,67 м3/час.В технико — методических пособиях рекомендуют эту цифру умножать еще на 1,2. После умножения на 1,2 получаем 10,404 м3/час.

      Итак, пропускная способность клапана у нас есть. Что необходимо делать дальше? Дальше нужно определиться РД какой фирмы вы будете приобретать, и посмотреть технические данные. Скажем, вы решили приобрести РД-НО от компании ОАО Теплоконтроль. Заходим на сайт компании http://www.tcontrol.ru/ , находим необходимый регулятор РД-НО, смотрим его технические характеристики.

        Видим, что для диаметра dу 32 мм пропускная способность 10 м3/час, а для диаметра dу 40мм пропускная способность 16 м3/час. В нашем случае Kv = 10,404, и следовательно, так как рекомендуется выбирать ближайший больший диаметр, то выбираем — dу 40 мм. На этом расчет и выбор регулятора давления считаем законченным.

        Далее я попросил Александра Фокина рассказать о технических характеристиках регуляторов давления РД НО ОАО «Теплоконтроль» в системе отопления.

         Касаемо, РД-НО нашего производства. Действительно раньше была проблема с мембранами: качество российской резины оставляло желать лучшего. Но уже года 2 с половиной мы делаем мембраны из материала компании EFBE (Франция) — мирового лидера в области производства резинотканных мембранных полотен. Как только заменили материал мембран, так сразу фактически прекратились жалобы на их разрыв.

      При этом хотелось бы отметить один из нюансов конструкции мембранного узла у РД-НО. В отличие от представленных на рынке российских и импортных аналогов мембрана у РД-НО не формованная, а плоская, что позволяет при ее разрыве заменить на любой сходный по эластичности кусок резины (от автомобильной камеры, транспортерной ленты и т.д.). У регуляторов давления других производителей, как правило, необходимо заказывать именно «родную» мембрану. Хотя честно стоит сказать, что разрыв мембраны особенно при работе на воде температурой до 130˚С — это болезнь, как правило, отечественных регуляторов. Зарубежные производители изначально используют высоконадежные материалы при изготовлении мембраны.

Сальники.

       Изначально в конструкции РД-НО было сальниковое уплотнение, представлявшее собой подпружиненные фторопластовые манжеты (3-4 штуки). Несмотря на всю простоту и надежность конструкции, периодически их приходилось поджимать гайкой сальника, чтобы предотвратить утечку среды.

      Вообще, исходя из опыта, любое сальниковое уплотнение имеет склонность к потере герметичности: фторкаучук (EPDM), фторопласт, политетрафторэтилен (PTFE), терморасширенный графит — ил-за попаданий механических частиц в область сальника, из «корявой сборки», недостаточной чистоты обработки штока, термического расширения деталей и т.д. Течет все: и Данфосс (чтобы они не говорили), и Самсон с LDM (хотя здесь это исключение), про отечественную регулирующую арматуру я вообще молчу. Вопрос только в том, когда потечет: в течение первых месяцев эксплуатации или в дальнейшем.

       Поэтому мы приняли стратегическое решение отказаться от традиционного сальникового уплотнения и заменить его сильфоном. Т.е. использовать так называемое «сильфонное уплотнение», дающее абсолютную герметичность сальникового узла. Т.е. герметичность сальникового узла теперь не зависит ни от перепадов температур, ни от попадания механических частиц в область штока и т.д. — она зависит исключительно от ресурса и циклопрочности применяемых сильфонов. Дополнительно, на случай выхода из строя сильфона, предусмотрено дублирующее уплотняющее кольцо из фторопласта.

      Впервые мы применили это решение на регуляторах давления РДПД, а с конца 2013 года начали выпускать и модернизированный РД-НО. При этом нам удалось вместить сильфоны в существующие корпуса. Обычно самым большим (да и по сути единственным минусом) сильфонных клапанов является увеличенные габаритные размеры.

      Хотя, мы считаем, что примененные сильфоны не полностью подходят для решения этих задач: думаем, что их ресурса не хватит на все положенные 10 лет работы регулятора (которые обозначены в ГОСТе). Поэтому сейчас мы пробуем заменить используемые трубчатые сильфоны на новые мембранные (их ещё мало кто использует), которые имеют в несколько раз больший ресурс, меньшие габариты при большей «эластичности» и т.д. Но пока за год выпуска сильфонных РД-НО и за 4 года выпуска РДПД ни одной жалобы на разрыв сильфона и утечку среды не было.

       Ещё хотел бы отметить, разгруженную клеточную конструкцию клапана РД-НО. Благодаря этой конструкции, он имеет почти идеальную линейную характеристику. А так же невозможность перекоса клапана в результате попадания всякого хлама, плавающего в трубах.

teplosniks.ru

Регулятор давления жидкости

Регулятор давления жидкости в отопительной системе применяют для снижения и контроля постоянного давления за клапаном. Без этого устройства очень сложно сохранить систему теплоснабжения в рабочем состоянии и избежать аварий. Такие приборы используются в тепловых пунктах (ИТП, ЦТП, БТП), в источниках отопления и теплоснабжения (котельных, ТЭЦ).
В чем причина необходимости регулятора

В отсутствии теплоносителя отопительная система, в которую входят системы трубопроводов, регулирующая арматура, теплообменники и радиаторы находятся в безопасности, так как показатели значения давления находятся в норме. Как только система заполняется водой, показатели начинают расти, так как воздух из трубопровода вытесняется.

Как только запускается теплонагреватель, картина резко меняется. При повышении температуры воды ее объем увеличивается и напор становится больше. Также растет нагрузка на теплотехническое оборудование и стенки трубопроводов. То есть напор воды зависит от скорости повышения ее температуры. стоит отметить, что давление на всем участке отопительной системы отличается, так как температурные показатели на обратке ниже, чем в подающем трубопроводе.

Чтобы снизить опасное давление и взять его под контроль используют регулятор давления жидкости, который бережет систему от чрезмерного износа и позволяет избежать аварии.

Технические характеристики

Прибор изготавливают из высокопрочных теплоустойчивых материалов, которые переносят резкие перепады температур и напора, и имеют высокую устойчивость к износу. Также регулятор давления жидкости в отопительной системе состоит из следующих элементов:

  • корпуса;
  • уплотняющей прокладки;
  • заглушки;
  • пружины;
  • клапана;
  • мембраны;
  • штока.

Прибор имеет следующий принцип действия: во время повышения давления клапан прикрывается и увеличивает значение расхода через проходное сечение, тем самым выравнивая показатели. Когда показатели приходят в норму клапан приходит в исходное положение .

Поток может пройти через систему только в случае, когда клапан, соединенный с мембраной с помощью штока, открыт. Происходит это в момент снижения давления на выходе, когда натяжение пружины, которая воздействует на диафрагму, ослабевает. После того как давление нормализовалось редуктор полностью открывается.

Настройка редуктора

Регулятор давления жидкости настраивается только при полностью заполненной системе. При помощи рожкового или шестигранного гаечного ключа делают поворотные движения настроечной гайки регулятора, устанавливая требуемое давление после него. Также можно в любой момент времени по показаниям манометра изменить выходное давление, повернув наружный винт по часовой стрелке или против, чтобы сделать его меньше.

Безопасность

Перед тем, как использовать прибор обязательно рекомендую ознакомиться с его техническими рабочими характеристиками и допустимыми нормами работы описанными в инструкции по эксплуатации. Если давление и температура превышают нормы, при которых редуктор может полноценно функционировать, то использовать его не допустимо.

Чтобы избежать несчастных случаев во время установки и использовании рекомендуют придерживаться правил безопасности и не нарушать элементарные требования. Для защиты прибора от загрязнений и засорения необходимо устанавливать специальный сетчатый фильтр с ячейками не больше 0,5 мм. Также, в период использования отопительной системы периодически проводят технический контроль – осмотры.

gardarikamarket.ru

 

Регулятор расхода теплоносителя используется для подачи горячей воды заданных параметров в отопительную сеть зданий, устанавливается в зданиях между тепловой сетью и потребителем тепла. Сущность изобретения состоит в том, что исполнительное устройство в виде электромагнитного клапана, управляемое электронным регулятором, осуществляет подачу горячей воды импульсами. Применяется в коммунальном хозяйстве. 1 н.п.ф., 1 илл.

Полезная модель относится к устройствам, обеспечивающим теплоснабжение зданий, и устанавливаемым в индивидуальных теплопунктах между тепловой сетью и потребителем тепловой энергии. Регуляторы расхода теплоносителя применяются в коммунальном хозяйстве.

Отопление зданий осуществляется от центральных котельных горячей водой, которая подается по тепловой сети в индивидуальные тепловые пункты. Регуляторы расхода теплоносителя являются связующим звеном между тепловой сетью и потребителями теплоты. Регуляторы расхода теплоносителя обеспечивают подачу в здания горячей воды определенных температуры и давления, а также необходимого количества горячей воды для бытовых нужд, которая создает заданный температурный режим в здании.

Необходимое количество воды для отопления здания в индивидуальном тепловом пункте определяет регулятор расхода теплоносителя, который по сигналу датчиков температуры увеличивает подачу горячей воды, когда в здании температура ниже нормы или уменьшает подачу горячей воды, когда в здании температура выше нормы. Для этой цели создается система регулирования подачи воды в здание, которая состоит из трубопроводов, по которым горячая вода транспортируется в здание, а холодная удаляется обратно в тепловую сеть для подогрева, регулятора расхода, вспомогательных клапанов, смесительных устройств циркуляции воды в здании, фильтров, регулятора перепада давления, приборов измерения и учета тепла.

Известен регулятор расхода теплоносителя, применяемого в индивидуальном тепловом пункте, взятого в качестве аналога [1].

Индивидуальный тепловой пункт состоит из трубопроводов, подающего горячую воду и отводящего холодную. На подающем трубопроводе установлен фильтр, регулятор перепада давления, регулирующий клапан с электроприводом, управляемым электронным регулятором, циркуляционного насоса, а между подающим и отводящим трубопроводами установлен обратный клапан.

Работа индивидуального теплового пункта происходит следующим образом. Горячая вода поступает по подающему трубопроводу через фильтр в регулятор перепада давления, который поддерживает постоянным перепад давления на входе теплопункта. Последовательно с ним установлен регулирующий клапан, который пропускает столько горячей воды, сколько необходимо для создания заданной температуры в здании. Далее через циркуляционный насос вода подается в теплообменники здания. Из теплообменников охлажденная вода поступает в тепловую сеть для повторного подогрева. Регулирующий клапан управляется электронным регулятором, который корректирует количество подаваемой горячей воды в теплообменники в зависимости от температуры наружного воздуха, температуры воды и температуры воздуха в здании.

Регулирование в такой системе отопления происходит в пропорциональном режиме, то есть, когда батареи отопления и помещения охлаждаются больше, то постоянно больше все время протекает горячая вода. Скорость воды зависит от температуры горячей воды и температуры воздуха снаружи помещения. Когда скорость воды незначительна, то горячая вода будет в первых по потоку батареях, а в остальных - холодная. Для смешения воды в системе отопления применяют циркуляционный насос, который транспортирует воду по замкнутому кольцу системы отопления здания.

Недостатком этой системы является низкая надежность конструкции в связи с наличием электрического насоса, который может остановиться, когда отключится

электропитание. Кроме того, наличие насоса увеличивает стоимость комплектования теплового пункта и стоимость эксплуатации теплопункта.

Известен регулятор расхода теплоносителя, применяемый в индивидуальном тепловом пункте, взятый в качестве прототипа, схема установки которого в тепловом пункте показана в [2].

Индивидуальный тепловой пункт состоит из подающего горячую воду трубопровода, отводящего холодную воду трубопровода, грязевиков, регулятора расхода, регулятора давления, обратных клапанов, элеватора, приборов измерения температуры и давления, счетчиков расхода воды и тепла.

В индивидуальный тепловой пункт горячая вода поступает из тепловой сети через обратный клапан и грязевик, далее вода поступает в регулятор расхода и через элеватор и обратный клапан к отопительным приборам здания. Из отопительных приборов охлажденная вода выходит последовательно через обратный клапан, грязевик, счетчик воды и тепла. Назначение всех перечисленных приборов и арматуры известно и понятно из их наименования. Установленный регулятор расхода исполняет функцию регулирования в пропорциональном режиме. В пропорциональном режиме регулирования скорость воды в трубах и элеваторе может быть заданной или намного меньше заданной. Если скорость воды в элеваторе меньше заданной, то элеватор практически не смешивает горячую воду, которая поступает из теплосети, с охлажденной в нагревательных батареях водой, и поэтому в первых батареях вода будет горячей, а в остальных - холодной. В этом состоит основной недостаток регулирования расхода теплоносителя в отопительной системе.

В основу разработки полезной модели регулятора расхода теплоносителя поставлена задача повышения качества отопления зданий путем установления управляемого электронным регулятором электромагнитного клапана, осуществляющего подачу горячей воды импульсами максимального расхода.

Поставленная задача и технический результат достигаются тем, что в качестве исполнительного элемента используется электромагнитный клапан нормально открытого

типа, а управление осуществляется электронным регулятором посредством подачи горячей воды импульсами максимального расхода.

Общие с прототипом существенные признаки: исполнительное устройство и управляющий электронный регулятор.

Существенные отличительные признаки заявляемой полезной модели регулятора расхода теплоносителя, обеспечивающие получение технического результата, следующие:

- управляемый электронным регулятором электромагнитный клапан нормально открытого типа, осуществляющий регулирующие воздействия регулятора посредством подачи горячей воды импульсами максимального расхода.

Указанные существенные отличительные признаки обеспечивают следующий результат.

Подача горячей воды в отопительную систему здания импульсами максимального расхода обеспечивает за счет сильного подмеса равномерное смешивание горячей и охлажденной воды, порция которой поступает в отопительную систему. В паузе между импульсами происходит охлаждение смешанной воды во всей системе. Следующий импульс также обеспечивает как подачу горячей воды так и равномерное ее смешивание с охлажденной. В результате в отопительную систему поступает всегда равномерно смешанная горячая и охлажденная вода независимо от средней скорости воды в отопительной системе и в сопле элеватора. Этот режим регулирования создает равномерный нагрев батарей отопления по всему зданию.

На фиг.1 показана схема заявляемого регулятора расхода теплоносителя, смонтированного в индивидуальном тепловом пункте.

Индивидуальный тепловой пункт состоит из трубы 1 подвода горячей воды и трубы 2 отвода обратной, на которых установлены обратные клапаны 3, 4, 5 и 6 для предотвращения обратных потоков воды. На трубе 1 последовательно установлены фильтр

7, счетчик 8 тепла и воды, регулятор, состоящий из электронного регулятора 9 и электромагнитного клапана 9а, узел смешения 10 (элеватор). На трубе 2 установлены регулятор подпора 11, счетчик тепла и воды 12 и фильтр 13. Кроме того, на трубе 1 установлены термометр 14, манометры 15, 16 и 17, а на трубе 2 - термометр 18 и манометр 19.

Процесс регулирования температуры в батареях отопления осуществляется следующим образом. При поступлении воды в теплопункт и включении электронного регулятора 9 последний подает команду на открытие электромагнитного клапана 9а, через который поступает максимальный расход горячей воды. Максимальная скорость воды в сопле элеватора 10 равномерно смешивает холодную воду из обратной магистрали с горячей. В отопительные батареи поступает подогретая вода. Максимальная скорость в сопле элеватора 10 равномерно смешивает холодную воду из обратной магистрали с горячей. Через установленное время по команде электронного регулятора подача горячей воды прекращается и после заданной паузы электронный регулятор опять подает команду на открытие. Чередование импульсов горячей воды и пауз происходит до тех пор, пока датчик температуры 20, установленный в контрольной точке отопительной системы, не выдаст ток, равный току задатчика регулятора 9 и последний изменит частоту и скважность импульсов тока в электромагнитном клапане 9а.

Таким образом, в отопительные батареи здания поступила равномерно размешанная вода по всему объему отопительной системы здания и происходит передача тепла от батарей отопления в пространство здания. Когда температура в обратном трубопроводе понизится до нижнего заданного значения, регулятор опять начнет выдавать импульсы, первоначально заданных частоты и скважности, для подачи горячей воды в отопительную систему.

Как результат, в отопительную систему здания поступает горячая вода со средней скоростью, соответствующей потреблению тепла в зависимости от погодных условий, но равномерно и эффективно смешанная с холодной.

Регуляторы расхода теплоносителя используются главным образом в коммунальном хозяйстве.

Использованные источники:

1. Автоматизация систем теплоснабжения с помощью регуляторов фирмы «Danfoss». Каталог фирмы «Danfoss». VK.00.M3.50, 5/97 стр.95 - аналог.

2. В.П.Витальев, В.Б.Николаев, Н.Н.Сельдин. Эксплуатация тепловых пунктов и систем теплопотребления. Справочник, М., Стройиздат. 1988.

Регулятор расхода теплоносителя, состоящий из исполнительного устройства и электронного регулятора, обеспечивающих функционирование системы отопления, отличающийся тем, что исполнительное устройство выполнено в виде электромагнитного клапана нормально открытого типа, управляемого электронным регулятором температуры, осуществляющим регулирующие воздействия посредством подачи горячей воды импульсами максимального расхода.

poleznayamodel.ru


.