Основные моменты, которые нужно знать о драйверах светодиодов. Схема драйвера для светодиодов 220


Источник тока для мощных светодиодов с питанием от сети 220 В 50 Гц

Импульсный блок питания светодиодов представляет собой выпрямитель с фильтром и понижающий преобразователь с обратной связью по току. Для построения источников тока для мощных светодиодов часто используются микросхемы ШИМ-контроллеры Supertex HV9910B, HV9961. Стандартные схемы включения этих микросхем мало отличаются, при некоторых условиях они взаимозаменяемы. HV9961 более дорогая, т.к. обеспечивает контроль среднего тока светодиодов, а не пикового. Есть другие отличия, о которых можно прочесть на сайте производителя, документ AN-H64. Я взял HV9961, говорят, она более живуча. Расчет, изготовление и тестирование источника на микросхеме HV9961 под катом. Мне нужен был блок, питающий током 750 мА 10 СИДов Cree XM-L. Оценим выходное напряжение блока: Vout = 10 * Vled при 750 мА = 29 В. Пусть пульсации тока будут меньше +-15% (я не знаю, как их величина влияет на работу светодиодов). Имелся корпус G1022BF, что накладывает ограничения на размер платы блока питания. Таким образом, исходные данные: напряжение питания: 220 В, 50 Гц; выходное напряжение: 30 В; выходной ток: 750 мА; пульсации тока: менее +-15%; размер платы: менее 100х60 мм.

За основу берем стандартную схему включения:

Это понижающий преобразователь, для простоты ток измеряется в цепи истока переключающего транзистора и усредняется. На контакт Vin можно подавать высокое напряжение, которое питает встроенный регулятор напряжения 7,5 В, вывод регулятора – Vdd. PWMD и LD служат для плавной регулировки тока светодиодов. Резистор Rt задает частоту переключения (точнее, время паузы), Rcs – ток на СИДах. При питании от сети 220 нужно добавить выпрямитель и фильтр.

Расчет схемы

1. Частота переключения. Частота переключения в схеме не фиксированная, задается только время паузы. Для номинальных напряжений на входе (310 В после выпрямителя) и выходе коэффициент заполнения . С другой стороны, , где tu – время проводимости, tn – время паузы, f – частота переключения. Сопротивление резистора Rt определяется из выражения . Возьмем Rt = 330 кОм, это соответствует времени паузы 13,5 мкс и номинальной частоте 73 кГц. Чем выше частота, тем меньшего размера будет катушка и тем больше потери на переключение на транзисторе.

2. Регулировка тока. Токозадающий резистор. Rcs = 0.272 В / Iled = 0,363 Ом. Я решил взять Rcs = 0,33 Ом, т.е. 3 резистора по 1 Ом в параллель, что соответствует току 824 мА и сделать плавную регулировку тока с помощью вывода LD микросхемы. В описании сказано, что регулировка тока осуществляется, когда на выводе LD напряжение от 0 до 1,5 В. Подключаем делитель напряжения к напряжению 7,5 В. Необходимые сопротивления несложно посчитать, результат показан на окончательной схеме. Можно проверить, сколько мощности выделяется на токозадающих резисторах: 824 Ма*272 мВ = 224 мВт, на каждом резисторе 75 мВт. Используем типоразмер 0805 (125 мВт).

3. Катушка индуктивности. Для пульсаций тока менее +-15% (полный размах 0,3*750 мА) индуктивность должна быть больше Пиковый ток на катушке будет 750 мА +15% = 863 мА. Готовые катушки с такими параметрами найти непросто, поэтому придется изготавливать самостоятельно. Имелся эмальпровод с внешним диаметром 0,7 мм, исходя из этого, по прикидочным расчетам был подобран сердечник КВ10 (аналог RM10), феррит М2500НМС1 (аналог N27). Кратко опишу расчет дросселя. Чтобы сердечник не насыщался, необходимо ввести зазор. В начале наматываем максимальное число витков, которые влезают в окно сердечника. У меня получилось 6 слоев по 15 витков с запасом для компаунда, всего 90 витков. Далее вводим максимальный зазор для необходимой индуктивности. Можно считать вручную, я считал в программе EPCOS MDT для RM10 N27. Получаем для суммарного зазора 0,6 мм (прокладки между сердечниками по 0,3 мм) значение Al = 200 нГн и L= Al * N^2 = 1,62 мГн. Индуктивность получилась немного меньше, значит пульсации побольше +-15%, что меня устроило. Теперь надо посчитать индукцию при максимальном токе и убедиться, что сердечник не насыщается. По формуле 8 из [2] и данным из программы (Al = 200 нГн, mui = 71) для тока 1 А (с запасом) получаем индукцию 183 мТл, что меньше 300 мТл и, значит, насыщения нет. В итоге изготавливаем дроссель на сердечнике КВ10 М2500НМС1 с прокладками 0,3 мм с 90 витками эмальпроводом с внешним диаметром 0,7 мм. Желательно залить клеем или лаком после изготовления.

4. Транзистор. Транзистор должен с запасом выдерживать максимальное входное напряжение 310 В. Выберем транзистор с максимальным напряжением сток-исток 500 В. Максимальный среднеквадратичный ток через транзистор Iout*sqrt(Vout/Vin) = 240 мА. Ток небольшой, его выдержит любой мощный полевик. Главный параметр для выбора – емкость или заряд затвора. Производитель микросхемы рекомендует заряд менее 25 нКл. Я взял IRF830A с максимальным зарядом затвора 24 нКл. Мощность, выделяющуюся на полевике, посчитать непросто, но радиатор явно не помешает.

5. Диод. Для диода те же требования по напряжению, что и для транзистора. Средний ток через диод Iout*(1 – Vout/Vin) = 680 мА. Выбираем SF28 600 В, 2 А. Падение напряжения на нем 1,5 В, значит будет выделяться мощность 1,5 В* 0,68 А = 1 Вт. Я решил использовать диод без радиатора. Для диода еще важным считается параметр время обратного восстановления, от него зависят потери на переключение, но расчет их довольно сложный и я его не проводил.

6. Входной конденсатор. Емкость выбирается исходя из условия, что минимальное напряжение после входного фильтра должно быть больше 2*Vout. В AN-h58 есть формула для расчета: Для частоты 50 Гц, Vdc = 60 В и КПД 90% получаем С1>6,5 мкФ. Был выбран конденсатор 47 мкФ, 400 В исходя из габаритов и доступности. Параллельно установлен пленочный 0,47 мкФ 450 В для уменьшения ESR. Замечание от sanmigel:

если внимательно почитать документацию на 9910 то можно увидеть что условие Vout<0.5 Vin имеет значение для режима с постоянной частотой, в этом режиме при коэффициенте заполнения более 0,5 лезут гармоники, поэтому для их снижения рекомендуют его ограничить в 0,5. 9961 работает в режиме констант офф тайм, в таком режиме коэффициент заполнения для 9961 может быть до 0,75 (для 9910 до 0,8). Дока Окончательная схема:Схема в пдф Кратко об остальных элементах схемы: F1 – предохранитель 2 А, может быть, лучше поставить на меньший ток. С1 – фильтр от помех в сеть, подсмотрено в демоплате Supertex, можно не устанавливать. DB104S – диодный мост 400 В, 1 А. RT1 – NTC термистор, он ограничивает ток при включении источника, подробнее можно почитать здесь. Термистор устанавливать не обязательно. C4 – выходная емкость для уменьшения высокочастотных выбросов на нагрузке. D2 – стабилитрон на 75 В, улучшает тепловой режим микросхемы HV9961. Можно считать, что HV9961 потребляет 2 мА, тогда на стабилитроне выделяется мощность 150 мВт, на микросхеме 600 мВт. P3 – джампер для отключения источника, включенное положение – средний контакт замкнут на питание. С6 обеспечивает мягкий старт, ставить не обязательно. С5 – блокировочнй конденсатор, ставить обязательно, емкость около 0,1 – 2,2 мкФ.

Печатная плата

Трассировка играет важную роль в работе импульсных преобразователей, поэтому печать делалась на основе платы производителя. Получилась двухсторонняя плата 95 х 55 мм, при желании можно верхнюю сторону сделать двумя перемычками.Плата в пдф под ЛУТ Проект Altium Designer Входной и выходной разъемы с шагом 3,96 мм, джампер с шагом 2,54 мм, подстроечник типа 3296W. Предусмотрено место для радиатора транзистора. Используется держатель для предохранителей 5*20. Конденсатор С2 имеет размер 16*25 мм. Конденсатор C1 тип B32922-A2104-K, конденсаторы С3 и С4 – тип B43828A9476M000.

После сборки:

Плату можно использовать и для HV9910B, но надо будет пересчитать резисторы для плавной регулировки тока, чтобы напряжение на выводе LD было 0-250 мВ и токозадающие резисторы исходя из напряжения 250 мВ на них. Еще одно отличие – резисторами будет устанавливаться пиковый ток, а не средний.

Результаты тестирования.

Схема была подключена к сети 220, в качестве нагрузки были использованы 10 белых светодиодов Cree XR-E, ток был установлен на уровне 840 мА. Ток (желт., 200 мА/дел) и напряжение (син., 100 В/дел) на входе: Пиковый ток потребления около 400 мА.

Напряжение на истоке транзистора: Напряжение на затворе: Напряжение на стоке: Ток (желт., 455 мА/дел) и напряжение (син., 10 В/дел) на выходе: Средний ток около 850 мА, среднее напряжение около 36 В. В данном случае, в выходное напряжение входит также падение напряжения на резисторе 2,2 Ом, который включался для измерения тока.

Пульсации тока (желт., 45,5 мА/дел) и напряжения (син., 500 мВ/дел) на выходе: Пульсации тока менее 140 мА, т.е. 16%.

Оценка КПД. У меня нет true RMS мультиметра, поэтому точность измерения входного тока под вопросом. Действующее значение входного тока 141 мА, входного напряжения 227 В, входная мощность 32 Вт. Средний выходной ток 840 мА, выходное напряжение 33,5 В, выходная мощность 28 Вт. Получается КПД 87,5%.

Температурный режим. При комнатной температуре 23 С радиатор транзистора разогревается до 67 С, остальные элементы схемы нагреваются меньше. Лучше поставить радиатор побольше.

Я постарался подробно описать процесс расчета схемы импульсного преобразователя, надеюсь, эта информация поможет читателю в его разработках. Схемы других источников тока для светодиодов можно посмотреть в теме на форуме easyelectronics.ru. Критикуйте и задавайте вопросы, пожалуйста! :)

Литература. [1] Б. Ю. Семенов — Силовая электроника для любителей и профессионалов. [2] А. Кузнецов – Трансформаторы и дроссели для импульсных источников питания members.kern.com.au/users/akouz/chokes.html [3] А. Евстифеев — Практический опыт применения микросхемы Supertex HV9910 www.kit-e.ru/assets/files/pdf/2009_12_78.pdf

we.easyelectronics.ru

Драйвер для светодиодов: назначение, выбор, подключение, схемы

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное  количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax   — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением. 
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой. 
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

 

ledno.ru

Схема драйвера для светодиодов 220

Технологии 5 октября 2017

Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Видео по теме

Мощность драйвера

Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт – мощность драйвера;

Р(св), Вт – мощность одного светодиода;

N – количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Регулирование яркости.
  2. Напряжение питания – 6-30 В.
  3. Выходной ток – 1,2 А.
  4. Допустимая погрешность при стабилизации тока – не более 5%.
  5. Защита от отключения нагрузки.
  6. Выводы для диммирования.
  7. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Источник: fb.ru Бизнес Функциональная схема автоматизации. Для чего она нужна?

За последние годы процессы автоматизации на производстве стали невероятно актуальными с все больше и больше вводится новых методов, устройств и систем, позволяющих снизить нагрузку на человека, переложив ее на технику...

Домашний уют Алюминиевый радиатор для светодиодов

Известно, что продолжительность службы светодиодов напрямую зависит от качества материала, используемого в полупроводнике, а также соотношения тока устройства к количеству выделяемого тепла. Отдача света постепенно по...

Домашний уют Схема терморегулятора для инкубатора своими руками. Терморегулятор для инкубатора на микроконтороллере

Современные инкубаторы производятся с качественными терморегуляторами. Некоторые из них имеют микроконтроллеры. Для обычного инкубатора терморегулятор можно сделать самостоятельно. Однако в данном случае многое зависи...

Домашний уют Ванна ультразвуковая своими руками: схема. Жидкость для ультразвуковой ванны

На протяжении всего развития человечества регулярно появлялись те или иные изобретения, призванные упростить и улучшить жизнь людей. Технический прогресс никогда не стоит на месте, поэтому развитие научной сферы &ndas...

Компьютеры Как найти драйвер для неизвестного устройства? Способы поиска драйверов для различных ОС

Компьютер - сложная штука. Для его нормальной работы нужно, чтобы все драйвера компонентов были установлены как положено. Однако нередко бывает, что устройство установлено неправильно, либо отсутствует драйвер, а в ар...

Компьютеры Ноутбук HP Pavilion G6: характеристики, обзор и отзывы владельцев. Драйвера для ноутбука HP Pavilion G6

Представитель бюджетного класса ноутбук HP Pavilion G6 призван удовлетворить пользователя, ориентирующегося в первую очередь при покупке на критерий «цена-качество». Доступность покупки обусловлена низкой ...

Компьютеры Его Величество - драйвер для сетевой карты

Современным владельцам персональных компьютеров сложно представить, что всего каких-то 5-10 лет назад материнская плата с интегрированной сетевой картой была скорее диковинкой, чем правилом. В настоящее время ситуация...

Новости и общество Трофическая цепь: схема, характерная для тундры. Цепи питания в зоне тундры

Это понятие можно называть разными именами: трофическая цепь, пищевая цепочка, цепь питания, экологические связи – суть от этого не меняется. Меняются климатические зоны, меняется флора и фауна, но смысл остаетс...

Спорт и Фитнес Прокачка бицепса: схема, упражнения для прокачки бицепса

Начинающие спортсмены всегда стремятся к накачке объемных рук, желая похвастаться перед друзьями и коллегами «играющими» бицепсами и трицепсами. В этой статье мы подробно расскажем, как же должна выглядеть...

Спорт и Фитнес Эффективная схема приседаний для подтянутой фигуры

Многие девушки ошибочно думают, что для подтянутых и упругих ягодиц нужно изнурять себя многочасовыми тренировками в тренажерном зале. Однако добиться желаемого результата поможет простая схема приседаний, которую мож...

monateka.com

Самодельный драйвер для светодиодов: простая схема

Самый простой драйвер для питания светодиодов, который может сделать каждый своими руками, схема драйвера с описанием изготовления.

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо, для питания светодиодов следует использовать драйвер.

Довольно часто для подключения светодиодов в автомобиле, тех же «ангельских глазок» на COB кольцах, требуется драйвер, сделать его можно самостоятельно и обойдётся он вам сущие копейки.

У нас есть автомобильная сеть 12 V, считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.Потребляемый ток равен мощности деленной на напряжение в сети.COB кольцо потребляет 5 Вт.

Напряжение в автомобиле 12 Вольт.Получаем 420 милиампер потребляемого тока таким колечком.Дальше на любом онлайн калькуляторе, как вот этом — ledcalc.ru/lm317

рассчитаем:

  • Расчетное сопротивление.
  • Ближайшее стандартное.
  • Ток при стандартном резисторе.
  • Мощность резистора.

Вводим требуемый ток 420 милиампер и получаем:

  • Расчетное сопротивление: 2.98 ОмБлижайшее стандартное: 3.30 ОмТок при стандартном резисторе: 379 мАМощность резистора: 0.582 Вт.

ЭТО РАСЧЕТ РАБОТАЕТ, КОГДА ВЫ ТОЧНО УВЕРЕНЫ В ХАРАКТЕРИСТИКАХ СВЕТОДИОДА, ЕСЛИ НЕТ, ТО ДЕЛАЕМ ЗАМЕР ПОТРЕБЛЕНИЯ ТОКА МУЛЬТИМЕТРОМ!

К слову, выше расчет, где я взял спецификацию диода от китайца, является неверным, ибо при замере фактическое потребление тока оказалось не 420 мА, а 300мА. Потому сразу можно сделать вывод, что пятью ваттами там и не пахнет 🙂

Дальше идем в магазин и покупаем:-LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.

Его распиновка.

Резистор, который посчитали выше, и подключаем это всё дело в режиме токового стабилизатора.

В итоге получили на выходе стабилизированный ток.

Но это для идеального случая. Что касается случая с реальным автомобилем, где скачки до 14 Вольт с копейками бывают, то рассчитывайте резистор для худшего случая с запасом.

Видео обзор схемы светодиодного драйвера на LM317, включенной по схеме с ограничением тока.

Похожие статьи

Поделиться в соц. сетях

led-lampu.ru

ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ

   Как известно, светодиод питается постоянным током и требует напряжение в пределах 3-х вольт. Естественно современные мощные светодиоды могут быть расчитаны и на более высокие значения - до 35В. Существует масса различных схем для питания светодиодов от пониженного напряжения. Условно все эти драйверы можно разделить на простые: выполненные на одном - трёх транзисторах, и сложные - с применением специализированных микросхем ШИМ конроллеров. 

   Простые драйверы для светодиодов имеют лишь одно достоинство - низкая себестоимость. Что касается параметров стабилизации, то здесь ток и напряжение выхода может гулять в широких пределах, а по сложности настройки такие схемы не уступают и стабилизаторам на констроллерах. К тому же мощность такого преобразователя будет достаточной максимум для питания 3-х обычных пятимиллиметровых светодиодов (около 50мА) что конечно мало.

   Драйверы на специализированных микросхемах не так капризны в работе, не требовательны к номиналам деталей и позволяют отдавать в нагрузку токи в несколько ампер. Это при том, что габариты такого драйвера те-же самые, что и в транзисторных. Чаще всего используются ZSCT1555D8, ZRC250F01TA, ZLLS2000TA, ZTX651, FZT653 и другие.

   Единственная проблема - высокая цена самих микросхем и часто отсутствие их в продаже. Поэтому представляется вполне логичным покупка готового драйвера на радиорынке или интернет-магазинах. Самое удивительное - цена отдельно микросхемы будет выше, чем цена всего готового устройства! Например недавно заказал из китая несколько миниатюрных преобразователей для светодиодов всего по 2 доллара.

   Первый драйвер предназначен для работы со входным напряжением 2,4-4,5В и обеспечивает на выходе стабильный ток 1А при напряжении 3В. Такой драйвер идеально подходит для питания 5-ти ваттного светодиода от двух пальчиковых батареек или литий-ионного аккумулятора. Любой фонарь с обычной лампой накаливания за пол-часа переделывается в мощный LED фонарь с высочайшей яркостью.

   Второй драйвер расчитан на подключение на выход аналогичного светодиода, только входное напряжение варьируется в более широких преелах: 5-18В. Ниже приводятся вольт-амперные параметры драйвера при подключенном светодиоде потребляющим ток 1А.

   Как видно по фотографиям, питая драйвер от 5-ти вольт, ток составляет около 0,8А. А подавая на преобразователь максимальные 16 вольт, ток падает до 0,3А. Потребляемая от батареи мощность будет в обеих случаях одинакова. Поэтому данный драйвер можно рекомендовать для использования в автомобилях в светодиодной подсветке салона или тюнинга разноцветными LED элементами.

   Отдельной группой стоят мощные LED драйверы, специально предназначенные для питания мощных и сверхмощных светодиодов от сети, но об этом будет рассказано в следующих материалах.

   Форум по светодиодным драйверам

   Обсудить статью ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ

radioskot.ru

Драйвер для светодиодов HV9910

ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ HV9910

    Немного ниже будет статья с расчетами элементов для светодиодного драйвера на основе ШИМ контроллера HV9910, а пока немного информации для размышления и личные впечатления... Покупались данные драйвера ЗДЕСЬ.    Драйвер весьма и весьма не плох, но имеет недостатки - рекомендованную довольно большую частоту и не возможность использовать его с транзисторами, у которых затворы имеют довольно большую запасенную энергию. При использовании IRF740 от Вишай Силиконикс драйвер сохраняет работоспособность до напряжения питания 100...130 вольт. При питании от сети управляющий вывод драйвера попросту отгорает, причем у меня даже убился светодиод на 100 Вт. Использование резистора в цепи затвора не помогло. Опыты по созданию самодельного драйвера на базе этой микросхемы пока отложены - транзисторов с легкими затворами у меня нет, да и в продаже они не частые гости.    Из доступных остается не такой уж большой выбор:     STD7NM50N - 550 V, 5 А, Qg 12nC, корпус TO-252. Есть такой же в корпусе ТО-220, именуется как STF7NM50N, но цена сильно завышена, видимо как раз из за популярности в светодиодных драйверах.    Мелькает схема в котрой используется IRFL014, но тут следует обратить внимание на то, что это просто взрыв-пакет:

 

    Дело в том, что рисовальщик данной схемы ОЧЕНЬ грубо ошибся - это повышающий преобразователь и надпись возле входного напряжения 8-300 В является ГРУБЕЙШЕЙ ОШИБКОЙ. При подаче напряжения выше 40 вольт первым естественно разорвет транзистор, поскольку IRFL014 имеет максимальное напряжение 60 вольт, следом рванут электролиты питания - 10 мкФ на 25 В как то маловато. Данная схема будет прекрасно работать на напряжениях не выше 20 вольт и яркость светодиодов не будет изменятся до снижения напряжения питания до 8 вольт. Данный вариант удобно использовать для создания фонариков с аккумуляторами на 12 вольт.    Самой правильной схемой является схема из даташита, поскольку использует даже некую пародию на компенсатор коэффициента мощности

 

    Так же выпускается, но найти в продаже демонстрационную плату не удалось. В ней используется HV9910 в корпусе с 16 ногами и данная плата обеспечивает ток 350 мА с напряжением от 10 до 40 вольт. Входное напржение от 90 до 265 вольт. Как раз именно в этой плате и используются транзисторы STD7NM50N.

    Принципиальная схема этого демонстрационного драйвера с регулировкой яркости приведена ниже:

 

    Разумеется, что далеко не всем захочется заморачиваться с пайкой, да еще SMD компонентов, поэтому перед статьей с подробным описание работы HV9910 дам ссылочку на уже готовые драйвера:    ДРАЙВЕРЫ ДЛЯ СВЕТОДИОДОВ - отсортированы по количеству заказов.

   

УНИВЕРСАЛЬНАЯ ИМС ШИМ – КОНТРОЛЛЕРА HV9910ДЛЯ ПОСТРОЕНИЯ ДРАЙВЕРОВ СВЕРХЯРКИХ СВЕТОДИОДОВ

    Развитие источников света на полупроводниковых светодиодах привело к тому, что в настоящее время возникла потребность в устройствах - драйверах, обеспечивающих управление такими источниками освещения. И здесь, наряду с драйверами на дискретных компонентах начинают широко применяться драйверы, построенные на специализированных микросхемах [1]. Такие ИМС представляют собой, как правило, ШИМ-контроллеры, работающие как по «прямоходовому» алгоритму, так и по «обратноходовому» алгоритму.   Преимущества применения специализированных ИМС в драйверах светодиодных источников освещения очевидны - малые габариты, простота настройки, высокая надёжность, низкая себестоимость. Тенденция такова, что многие известные зарубежные электронные компании налаживают серийный выпуск специализированных ИМС драйверов для светодиодных источников освещения.   В этом отношении перспективной будет разработка отечественной ИМС ШИМ-контроллера для построения драйверов управления источниками освещения на сверхярких светодиодах.   Многие производители электронной компонентной базы, среди которых в первую очередь следует отметить Infineon, NXP Semiconductors, STMicroelectronics, Linear Technology, International Rectifier, Texas Instruments предлагают широкую и разнообразную номенклатуру специализированных ИМС ШИМ-контроллеров для светодиодных источников освещения Наряду с ними менее известные фирмы, такие как Melexis и Supertex предлагают не менее интересные решения в части специализированных ИМС ШИМ- контроллеров. В этом отношении следует отметить ИМС ШИМ-контроллера HV9910 фирмы Supertex [2]. Данная ИМС интересна тем, что может работать как в режиме «прямоходового» преобразователя, так и в режиме «обратноходового» преобразователя. обеспечивает построение драйвера с минимальным числом навесных компонентов и может работать в диапазоне питающих напряжений от 8,0 В до 450 В (рис. 1).    Драйверы, построенные на ИМС HV9910 или MLX10803 [3] существенно упрощают конструкцию и повышают надежность устройств управления светодиодными источниками света, а также обеспечивают их высокие технико-экономические показатели, что немаловажно в условиях жёсткой конкуренции на данном сегменте рынка. Таким образом, ИМС ШИМ-контроллера должна быть разработана так, чтобы обеспечивать построение схем драйверов светодиодов как в виде схемы без гальванической развязки (рис. 1), так и в виде схемы с гальванической развязкой светодиодов (рис. 2). В первом случае, в качестве управляющего элемента используется n-МОП транзистор, выполняющий функцию источника стабильного тока в цепи последовательно включенных светодиодов (рис. 1).

 

Рис.1 Типовая схема применения ИМС ШИМ-контроллера HV9910в схеме без гальванической развязки светодиодов

    Таким образом, при разработке ИМС ШИМ-контроллера, для обеспечения нормальной работы в течение всего срока службы должны быть учтены и реализованы многие факторы, а именно: БиКМОП технология с процессом жёсткой высоковольтной изоляции элементов (rugged high voltage junction isolated process), обеспечивающая работу ИМС с напряжением питания до 450 В (целесообразно). Возможны и другие варианты: стандартные КМОП и биполярные технологии, обеспечивающие максимальные пробивные напряжения до 60 В. С точки зрения системотехники и схемотехники в ИМС ШИМ-контроллера должны быть предусмотрены функции, обеспечивающие высокий к.п.д. и cos  драйвера, а также функции защиты - защиту от электростатического потенциала, защиту от короткого замыкания нагрузки и т. п. Также необходимо обеспечить возможность программирования некоторыхфункций, в частности функцию настройки внутреннего ШИМ-компаратора.

 

Рис.2 Типовая схема применения ИМС ШИМ-контроллера в схеме с гальванической развязкой светодиодов

    С учётом таких требований структурная схема ИМС ШИМ-контроллера для управления сверхяркими светодиодами представлена на рис. 3.   Питающее напряжение поступает на внутренний стабилизатор напряжения, формирующий внутренне стабильное напряжение 7 В и которое поступает на выход VDD. От этого напряжения запитывается внутренний стабилизатор напряжения, формирующий рабочее напряжение логики.

Рис. 3. Структурная схема универсальной ИМС ШИМ-контроллера

    На ШИМ-компаратор, выполненный на двух дифференциальных каскадах DA1 и DA2, поступает управляющий сигнал SC (например, с датчика тока R6 – рис. 1), обеспечивающий управление скважностью выходного сигнала ШИМ-компаратора. Нижний порог работы ШИМ-компаратора задаётся напряжением 250 мВ, формируемым внутренним источником опорного напряжения. Верхний порог работы ШИМ-компаратора задаётся внешним напряжением по входу LD. С выхода ШИМ-компаратора импульсный сигнал с нормированной скважностью поступает на блок компенсации.   Поступающий на этот же блок сигнал внутреннего генератора, позволяет исключить влияние помех и паразитных колебаний. С выхода блока компенсаций импульсный сигнал поступает на бистабильную RS-ячейку DD2.   С её выхода Q через элемент 2И-НЕ DD3, сигнал через буферный каскад DD4 поступает на выход GATE для управления током мощного внешнего n-МОП транзистора. Логический элемент DD3 служит для того, чтобы через вход PWMD можно было использовать внешний ШИМ-сигнал.   Данный вариант реализации ИМС ШИМ-контроллера позволяет эффективно управлять внешним n-МОП транзистором с частотой переключения до 300 кГц. При этом частота задаётся внешним резистором, подключаемым к выводу RT в соответствии со следующим соотношением:

fOSC(кГц) = 25000 / (RT(кОм) + 22).

    В варианте реализации драйвера без гальванической развязки светодиодов (рисунок 1), цепь последовательно включенных светодиодов управляется током, а не напряжением, что позволяет обеспечивать стабильную яркость свечения светодиодов и повышенную надёжность их работы. Величина индуктивности дросселя L1 может быть рассчитана при помощи соотношения.

L = (UCC × ULED) × TON / (0,3 × ILED)

    где UCC – напряжение питания ИМС, ULED – падение напряжения на цепи последовательно включенных светодиодах, ILED – ток светодиодов (номинальное значение – 350 мА), TON – время нахождения внешнего n-МОП транзистора в открытом состоянии и рассчитывается в соответствии с формулой:

TON = D / fOSC

    где fOSC – частота внутреннего генератора ИМС, D – коэффициент, равный отношению падения напряжения на цепи последовательно включенных светодиодах к напряжению питания ИМС:

D = ULED / UCC

    Подключаемый к выводу GATE внешний n-МОП транзистор должен иметь время переключения не более 25 нс при частоте работы ШИМ менее 100 кГц и не более 15 нс при частоте работы ШИМ более 100 кГц. Вход PWMD может служить как для управления защитой ИМС ШИМ- контроллера, так и для маскирования внутреннего ШИМ-сигнала внешним сигналом. При нулевом уровне сигнала на входе PWMD, на выходе GATE, будет также присутствовать сигнал нулевого уровня. При высоком уровне сигнала на входе PWMD, на выходе GATE ИМС установится сигнал, формируемый внутренним ШИМ-компаратором.   Данная ИМС ШИМ-контроллера может быть изготовлена на базе отечественных технологий, таких как стандртная эпитаксиально-планарная технология, а также БиКМОП технология, имеющаяся в ОАО «Микрон». (Наверное мечты автора статьи).    Данная ИМС ШИМ-контроллера может быть изготовлена в корпусе DIP- 8 или SOIC-8. Кроме применения в драйверах светодиодов, эта ИМС позволяет разрабатывать схемы импульсных источников питания и линейных стабилизаторов напряжения.

Сурайкин Александр Иванович, к.т.н., доцент кафедры микроэлектроники

   

    Разумеется, что 1 А для светодиодов может быть маловато, поэтому немного поразмышляв и покопавшись в своих загажниках был собран стабилизатор тока для мощных светодиодов, пичем мощность драйвера зависит только от габаритной мощности трансформатора и максимальных токов силовых ключей и может достигать 500-600 Вт. Принципиальная схема мощного драйвера для светодиодов приведена ниже:

 

    Использование трансформатора тока тут не совсем случайно - немного позже будет опробовано мощное зарядной устройство, работающее по такому же принципу. Здесь же просто отработка технологии и схемотехники. Данный драйвер показал весьма не плохие результаты, правда запас по напряжению я сделал слишком больши и пришлось немного повозится с дросселем расеивания.    Если нужен не очень мощный драйвер, то можно отказаться от трансформатора тока, воспользовавшись обычным измерительным резистором, работающим на транзистор управления оптроном:

 

    Разумеется, что приведенной информации для сборки не достаточно, поэтому чтобы не повторяться и понять как изготовить оптрон и какие компоненты можно использовать можно посмотреть видео на эту тему:

   

  Архив на схемы и плату драйвера на 100 и более Вт ЗДЕСЬ.

   

Адрес администрации сайта: [email protected]   

 

soundbarrel.ru

Драйвер для светодиодов своими руками: диммируемый драйвер, схема

Светодиоды на современном строительном рынке занимают лидирующие позиции по продаже. Данные осветительные приборы имеют широкое применение.

Их используют в освещении:

  • помещений жилых домов,
  • офисов,
  • автомобилей,
  • прочее.

Также популярным и востребованным есть драйвер, предназначенный для питания светодиодов от электричества (переменного тока 220 В и частоты 50 Гц. Чтобы осветительные приборы (на 1 w,10 w и больше) имели хорошую яркость, не мигали во время работы и не перегорали раньше времени, для их питания нужен постоянный ток (350, 500, 700, 1000 мА).

Для этого изготавливают специальные модули. Они бывают разных типов. Драйвер может быть встроен в сам светодиодный прибор, а также подключаться отдельно. Сделать самодельный драйвер для мощного светодиода можно собственными руками. Есть устройства специального назначения, например те, которые используют в rgp пикселях. Их называют rgp led pixel. Такие схемы также можно собрать своими силами или заказать у специалистов.

Эксплуатационные характеристики драйверов для светодиода

Светодиодные осветительные приборы (на 1 w, 10 w и больше) достаточно эффективны. С их помощью можно хорошо сэкономить на электричестве. Светодиоды в 8-9 раз эффективнее, чем обычные лампы накаливания (на 1 w, 10 w и больше). В случаях, когда драйвер установлен рядом с группой светодиодных приборов, он имеет хорошие технические показатели. Прибор будет работать даже в самых жарких условиях. Он выдерживает температуру окружающей среды до 800С. Также устройство имеет различные режимы работы. С его помощью можно регулировать яркость освещения в помещении, машине, улице прочее.

Для питания светодиодной ленты часто используют диммируемый драйвер. Устройство идеально подходит для регулировки яркости осветительных приборов. Диммируемый драйвер обеспечивает настраивание выходной мощности плавно и без фликкерного шума. Собрать схему драйвера для светодиодов своими руками можно без проблем.

Схема подключения

Есть случаи, когда нет необходимости регулировать яркость осветительных приборов в помещении или другом пространстве. Тогда схема подключения драйвера достаточно проста. Светодиоды подключаются последовательно. В одной цепочке может быть от 1 до 8 штук осветительных приборов. Она подключается к одному выходу драйвера. Такая схема самая оптимальная. Любой повышающий драйвер для светодиода, будь он самодельный или нет, служит источником постоянного тока, но не напряжения. Это значит, что включать в схему специальный резистор, который будет ограничивать поступление тока, нет необходимости. На выходе драйвера устанавливается определенное напряжение (В) и мощность (Вт). Их величина зависит от количества подключенных осветительных приборов в цепочке.

Токоограничиющий резистор включается в схему, если светодиоды подключены и последовательно, и параллельно. Такие случаи бывают, когда нужно подключить более 8 осветительных приборов. Так светодиоды подсоединяют последовательно в отдельные цепи, которые связаны между собой параллельным подключением. Входное напряжение драйвера может быть в диапазоне от 2 до 18 В. А выходное – на 0,5 вольт меньше, чем изначальное. Напряжение падает на полевом транзисторе.

Важные моменты, которые стоит учитывать при выборе драйверов

Вольт – амперная характеристика у осветительных приборов, таких как светодиоды, под воздействием температуры изменяется. У разных моделей она имеет свои незначительные отличия. Стоит это учитывать при подключении схемы собственными руками. Повышающий яркость драйвер осветительных приборов должен давать постоянный ток в различных случаях. То есть его функции должны выполняться независимо от того, изменились ли характеристики светодиодов или произошел скачок входного напряжения. Любой драйвер (диммируемый, из специальным стабилизатором прочее), должен обеспечивать поступление тока к осветительному прибору согласно его эксплуатационным характеристикам.

Простыми драйверами для светодиодов (на 10 w и больше) есть такие микросхемы, как LM 317. Они имеют свои отличие от резисторов. Микросхемы данного типа надежны в эксплуатации, их производство не занимает много времени и требует больших затрат расходного материала. Но все же они имеют недостатки. Микросхемы LM 317 отличаются низким КПД. Для них характерно малое входное напряжение.

Питание светодиодов от сети 220 В с помощью шим – стабилизаторов тока более практичное в эксплуатации. Активная мощность на драйвере минимальная. Шим – стабилизатор – это электронная схема специального назначения. Ее разработали для того, чтобы производить постоянный ток для питания осветительных приборов наилучшим способом. Такие драйверы используют в rgp пикселях. Шим – стабилизаторы дают дополнительные функции в управлении. С помощью драйверов можно регулировать питание от сети 220 В, яркость и цвет rgp пикселя. Управление осуществляется с помощью, подключенных к шим – стабилизаторов, микроконтроллеров. Такие драйвера, как WS2801 или LDP8806, можно наблюдать на каждом rgp пикселе светодиодной ленты с управлением.

Так, как технологии прогрессируют стоимость мощных светодиодов (1 Вт и больше) уже достаточно доступная. Исходя из этого, приборы все чаще используют для освещения. Чтобы эффективность мощных светодиодов была высокой, их нужно правильно запитать, можно от сети 220 В. Самодельный драйвер, повышающий яркость освещения, можно собрать по простой схеме, основанной на дискретных элементах. Выходная мощность – 15 Вт, резервная – 0,5 Вт. Схема защищает от короткого замыкания.

le-diod.ru


Карта Сайта