Заземлители заземляющего устройства. Схема заземляющего устройства


Монтаж заземляющих устройств (монтаж заземления). Устройство заземления

Устройство заземления

Защитное заземление — это намеренное соединение с землей железных частей электроустановки, не находящихся под напряжением (рукояток приводов разъединителей, кожухов трансформаторов, фланцев опорных изоляторов, корпусов измерительных трансформаторов и т.п.). Установка заземляющих устройств состоит из последующих операций: установки заземлителей, прокладки заземляющих проводников, соединения заземляющих проводников вместе присоединения заземляющих проводников к заземлителям и электрическому оборудованию.

Вертикальные заземлители из угловой стали и отбракованных труб погружают в грунт забивкой либо вдавливанием, из круглой стали — ввертыванием либо вдавливанием. Эти работы делают при помощи устройств и приспособлений, к примеру: копра (забивка в грунт), приспособления к сверлилке (ввертывание в грунт стержневых электродов), механизма ПЗД-12 (ввертывание в грунт электродов заземления).

Для устройства заземления более распространены электрозаглубители, имеющие стандартную электросверлилку и редуктор, понижающий частоту вращения ниже 100 об/мин и соответственно увеличивающий вращающий момент на ввертываемом электроде. При пользовании этими заглубителями к концу электрода приваривают наконечник-забурник, обеспечивающий рыхление грунта и облегчающий погружение электрода. Выпускаемый индустрией наконечник представляет собой заостренную на конце и изогнутую по винтообразной полосе железную полосу шириной 16 мм. В монтажной практике используются и другие типы наконечников для электродов.

При усановке заземления вертикальные заземлители должны закладываться на глубину 0,5 — 0,6 м от уровня планировочной отметки земли и выступать от дна траншеи на 0,1 — 0,2 м. Расстояние меж электродами 2,5 — 3 м. Горизонтальные заземлители и соединительные полосы меж вертикальными заземлителями укладывают в траншеи глубиной 0,6 — 0,7 м от уровня планировочной отметки земли.

Все соединения в цепях заземлителей соединяют сваркой, места сварки покрывают битумом во избежание коррозии. Траншею копают обычно шириной 0,5 и глубиной 0,7 м. Устройство наружного заземляющего контура и прокладку внутренней заземляющей сети создают по рабочим чертежам проекта электроустановки.

Вводы в здание заземляющих проводников делают более чем в 2-ух местах. После монтажа заземлителей составляют акт на сокрытые работы, указывая на чертежах привязки заземляющих устройств к стационарным ориентирам.

Заземляющие магистральные проводники прокладывают по стенкам на расстоянии 0,5—0,10 м от поверхностей на высоте 0,4—0,6 м от уровня пола. Расстояние меж точками крепления 0,6 —1,0 м. В сухих помещениях и при отсутствии химически активной среды допускается прокладка заземляющих проводников впритирку к стенке.

Заземляющие полосы к стенкам укрепляют дюбелями, которые пристреливают строительно-монтажным пистолетом или конкретно к стенке, или через промежуточные детали. Обширно используют также закладные детали, к которым приваривают полосы заземления. Пистолетом типа ПЦ можно пристреливать детали из листовой либо полосовой стали шириной до 6 мм в основания из бетона (марки до 400), кирпича и др.

В сырых, особо сырых помещениях и в помещениях с едкими испарениями (с опасной средой) заземляющие проводники приваривают к опорам, закрепленным дюбелями-гвоздями. Для создания зазора меж заземляющим проводником и основанием в таких помещениях используют штампованный держатель из полосовой стали шириной 25 — 30 и шириной 4 мм, также кронштейн для прокладки круглых заземляющих проводников поперечником 12 — 19 мм. Длина нахлестки при сварке должна быть равна двойной ширине полосы для прямоугольных полос либо 6 поперечникам для круглой стали.

К трубопроводам заземляющие проводники присоединяют при наличии на трубах задвижек либо болтовых фланцевых соединений делают обходные перемычки.

Части электроустановок, подлежащие заземлению, присоединяют к заземляющим магистралям отдельными ответвлениями. Железные заземляющие проводники присоединяют к металлоконструкциям сваркой, к оборудованию — либо сваркой, либо через заземляющий болт, либо проводники присоединяют медными проводниками с креплением проволочным бандажом и пайкой. Вокруг подстанции обычно делают общий заземляющий контур, к которому приваривают заземляющие проводники внутренней части подстанции. Отдельные элементы электрического оборудования присоединяют к заземляющим проводникам параллельно, а не последовательно, потому что при обрыве заземляющего проводника часть оборудования возможно окажется незаземленной.

На подстанциях заземляют все элементы электрического оборудования и железные конструкции. Силовые трансформаторы заземляют гибкой перемычкой, сделанной из железного троса. Перемычку с одной стороны приваривают к заземляющему проводнику, с другой — присоединяют к трансформатору при помощи болтового соединения. Разъединители заземляют через раму, плиту привода и опорный подшипник; корпус вспомогательных контактов — присоединением к шине заземления.

Если разъединители и приводы смонтированы на железных конструкциях, то заземление делают методом приваривания к ним заземляющего проводника.

Предохранители на 6 — 10 кВ заземляют методом присоединения заземляющего проводника к фланцам опорных изоляторов, раме либо железной конструкции, на которой они установлены.

elektrica.info

Заземляющие устройства - принцип работы, назначение и устройство заземления

 

Заземляющие устройства — основной принцип работы

Защитная функция заземляющего устройства базируется на том принципе, что части электроустановок, прикосновение к которым в случае нарушения изоляционного слоя крайне опасно для человеческой жизни, необходимо соединять с заземляющим устройством. При этом, заземляющие устройства (заземлители) должны находиться непосредственно в грунте.

Таким образом, создается необходимое сопротивление в электропроводящей сети. Оно получается весьма малое, а падение напряжения на нем не будет достигать критического значения. В итоге, удар тока, который получит человек в случае нарушения изоляционного слоя, будет не смертельным. Если человек соприкоснется с данной деталью, он будет в зоне действия пониженного напряжения.

Чем лучше будет изготовлено заземляющие устройство (заземление), тем меньше вероятность того, что на корпусах электроприборов возникнет напряжение. Качество заземляющего устройства зависит, в первую очередь, от того, насколько велико его сопротивление. При этом, чем ниже сопротивление в данной сети, тем заземление качественнее. В этом случае, расходы материалов и труда будут несколько большими, нежели без изготовления заземления, однако безопасность конструкции будет в несколько раз выше.

Из чего состоит заземляющие устройство

Заземляющие устройство представляют собой систему, включающую в себя несколько основных частей:

  1. Естественные заземлители, то есть элементы, которые находятся непосредственно в почве или соприкасаются с ней. Именно через них электрический ток уходит в землю;
  2. Заземляющие проводники — через них заземлители соединяются с заземляемым оборудованием;
  3. Искусственные заземлители. Они схожи с естественными заземлителями, однако их специально размещают в почве для сооружения заземляющей конструкции.

Следует отметить, что каждый из указанных пунктов может быть устроен совершенно по-разному. В общем, заземляющее устройство, это совокупность заземлителя и заземляющего проводника. С его помощью производят заземление элементов или корпусов электроустановок.

Какие дополнительные функции может выполнять заземляющие устройство

Достаточно часто заземляющие устройство выступает в роли грозоотвода, а также может выполнять функцию молниезащиты строения. Если же неподалеку находится вторая электроустановка, мощность которой не превышает 1 кВт, то для ее заземления можно использовать ту же заземляющую систему. С помощью данного решения в значительной степени снижаются расходы на сооружение заземления.

В этом случае нормой будет служить наименьшее значение сопротивления растеканию тока. Вычисляют его, исходя из значений наименьшего сопротивления для каждой из объединенных в одном заземлителе электроустановок, при этом, необходимо взять наименьшее значение.

Что такое рабочее заземление

В процессе изготовления рабочего заземления с заземляющим устройством соединяют какую-нибудь из точек электрической цепи. Сооружают рабочее заземление через специальные устройства, например, через пробивные предохранители, разрядники или резисторы.

podvi.ru

Способы заземления квартиры, частного дома, дачи: обзор схем

Электрическая безопасность жилых помещений является злободневным вопросом, которому хозяин обязан уделять постоянное внимание. Домашняя электропроводка должна быть правильно спроектирована, надежно смонтирована и четко налажена для повседневной эксплуатации.

Вопрос выбора системы заземления и правильного его устройства имеет важное значение. Поэтому ему посвящена эта статья и следующая за ней, объясняющие принципы работы основных систем в нормальном и аварийном режимах, дающие обзор основных конструкций, рассчитанных на длительную работу.

Принципы защиты людей от действия тока

Всем известный с детства пример с птицами, сидящими на проводах высоковольтных воздушных ЛЭП, наглядно демонстрирует факт, что потенциал напряжения, даже высоковольтного, сам по себе не совершает никакой работы. Единичный фазный провод не убивает птиц, выбравших себе удобное место для отдыха, но, опасное, с точки зрения электрической безопасности.

Птицы с малым размахом крыла не могут одновременно коснуться двух фаз или одной из них и заземления. Когда же аист облюбовывает себе подобное место вверху опоры ЛЭП, то часто для него это заканчивается трагедией. Контакт с двумя различными потенциалами создает электрический ток. Именно действие тока, проходящего через тело неудачно расположившейся или пролетающей птицы, как раз и убивает ее.

Если перейти от примера с птицами к жилищу человека, то законы прохождения электрического тока через организм не изменяются. Проводка в домашней сети опасна и может привести к электротравме. Чтобы этого не произошло, все провода и электрические приборы закрываются слоем надежной изоляции. Она защищает нас от прикосновения к потенциалам фазы и нуля.

В большинстве случаев этого бывает достаточным. Только любая техника стареет, а изоляция может потерять свои диэлектрические свойства, особенно при перегреве, вызываемым повышенными токами мощных приборов — перегрузками. Узнать о факте перегрева можно только за счет возникновения несчастного случая или пожара.

Доводить до такого состояния проводку нельзя. В целях повышения безопасности следует применять автоматические защиты и создать в электрической схеме контур заземления.

Основные схемы и принципы работы систем заземления

Для домашнего мастера рекомендуется разобраться в четырех распространенных схемах:

  1. TN-C;
  2. TN-C-S;
  3. TN-S;
  4. TT.

Система заземления TN-C

Раньше, еще несколько десятилетий назад, схема TN-C считалась достаточной. Она применялась для жилых помещений, эксплуатируемых без опасных факторов воздействия среды на электрооборудование. Никакого дополнительного подключения электропроводки комнат к заземлению не делалось.

Схема заземления носила название TN-C. От трансформаторной подстанции энергоснабжающей организации на вводной щит многоэтажного дома приходило четыре провода с тремя фазами и общим нулем, называемым PEN-проводником.

Четвертая жила PEN объединяла в целях экономии контур заземления трансформаторной подстанции РЕ и общий ноль N обмоток схемы звезды, поэтому и называлась таким сочетанием букв.

Эта ситуация долгие годы всех устраивала. Электрических приборов было мало. Нагрузок больших они не создавали. Изоляция при правильной эксплуатации обычно не перегревалась, служила десятилетиями. При небрежном отношении к проводке люди получали удары током, электротравмы. С такими случаями мирились, не придавали им должного внимания.

С интенсивным использованием мощных электрических приборов для бытовых целей провода домашней сети стали нагреваться больше нормы, а их изоляция резко стареть, терять свои диэлектрические свойства. В устаревшей проводке резко возросли несчастные случаи с населением. Система заземления TN-C перестала обеспечивать безопасность.

От нарушенной изоляции бытового прибора на его металлическом корпусе возникал опасный потенциал фазы. А ноль был изолирован от него и часто не создавал отключение автоматического выключателя: не хватало общей нагрузки.

Когда к корпусу дотрагивался человек, имеющий контакт другой частью тела со случайным заземлением, например, водопроводным краном, батареей отопления, газовой трубой, то через его тело создавался путь для прохождения тока по земле к трансформаторной подстанции на ее контур заземления. В итоге пострадавший получал электрическую травму или погибал.

Защитить человека от подобных повреждений электропроводки можно сложным техническим способом, который нашел применение в промышленных помещениях, но не подходит для жилых.

Зануление в системе TN-C

Для исключения защиты от пробоя изоляции на корпус к металлической оболочке прибора подсоединили рабочий ноль.

При коротком замыкании, создаваемым пробоем изоляции фазного провода на корпус, срабатывал защитный автоматический выключатель и снимал напряжение с оборудования.

Для домашней проводки этот способ неприемлем по двум причинам:

  1. ток утечек, создающий не КЗ, а простую перегрузку, вполне может нанести электрическую травму, ибо время его отключения автоматическим выключателем довольно завышено. Читайте объяснение этого вопроса в отдельной статье про устройство автоматического выключателя;
  2. из-за инерционности защит от перегрузов при занулении необходимо пользоваться специальными диэлектрическими перчатками, ковриками и другими защитными средствами.

Для жилых помещений стала применяться другая схема заземления и иные способы защиты.

Заземление зданий по системе TN-S

Идея подключения корпуса бытовых приборов к контуру трансформаторной подстанции осталась. Но путь для прохождения аварийных токов изменен за счет:

  • использования дополнительной пятой жилы РЕ (пятипроводная схема) в кабеле или воздушных проводах между зданием и ТП;
  • подключением корпусов бытовых приборов к этой цепочке — РЕ-проводнику без соединения с рабочим нулем N.

В этой ситуации автоматический выключатель тоже не будет работать при малых электрических токах. Поэтому защита человека осуществляется другими устройствами:

  1. УЗО;
  2. дифавтоматами.

Их использование в этой схеме полностью спасает человека от получения электротравмы. Принцип работы этих защит подробно изложен в статье как работает УЗО в домашней проводке.

Заземление зданий по системе TN-С-S

Схема TN-S требует значительных материальных средств для проведения реконструкции протяженных электрических сетей, отключения потребителей на длительный срок для замены силовых проводов и кабелей линий электропередач.

Такая работа выполняется десятилетиями. Чтобы сократить несчастные случаи в стране создается переход зданий с электропроводкой, разделяющей PEN-проводник внутри вводного щита здания на два потока нуля:

  1. рабочий N;
  2. защитный РЕ.

Владельцы частных домов, дач, коттеджей могут приглашать специалистов для проведения этой работы. Выполнять ее своими руками рекомендуется только в части изготовления дополнительного контура заземления.

Само подключение PEN-проводника и разделение его на составные части должны делать специалисты. Они же выполняют сложные электрические замеры дорогостоящей аппаратурой и на их основе дают заключение о техническом состоянии схемы электропроводки объекта, возможности его безопасной эксплуатации.

Без анализа технических характеристик заземления, изложенных актом с замерами, невозможно судить о правильности выполненных работ, а, следовательно, чувствовать себя полностью защищенным от повреждения изоляции и причинения вреда здоровью неожиданным действием электрического тока.

Заземление зданий по системе ТТ

В этой схеме используется та же трансформаторная подстанция с изолированной нейтралью. На вводной щит дома подается фаза и рабочий ноль от линии электропередачи.

Потенциал нуля ТП используется только в рабочей схеме и обозначается «N».

Защитный РЕ-проводник монтируют отдельно от схемы линии. Он соединяет корпуса всех приборов с индивидуальным контуром заземления, который отделен от нейтрали трансформаторной подстанции, не соединяется с ней жилами, как в системах TN-S и TN-С-S.

Такая схема изначально создавалась для защиты сооружений из металлических листов: гаражей, киосков, бытовок и подобных объектов. Со временем ею стали пользоваться владельцы дач, частных домов.

Система ТТ предотвращает случаи поражения человека действием токов утечек тоже за счет использования УЗО или дифавтоматов. Но, ее недостаток состоит в увеличенном электрическом сопротивлении между рабочим нулем N и защитным РЕ. Ведь они смонтированы различными контурами. Оно может проявиться импульсным пиком повышенного напряжения между ними во время пробоя током молнии, что необходимо учитывать сложной конструкцией молниезащиты.

Поэтому система ТТ используется только там, где линия электропередач не позволяет перейти на систему TN-C-S.

Технические требования к контуру заземления в системе ТТ такие же жесткие, как и в схеме TN-C-S. После его изготовления необходимо выполнять все электрические замеры специалистами электротехнической лаборатории.

Таким образом, электрическую проводку отдельно стоящего дома в целях обеспечения безопасности можно подключить по одной из рассмотренных схем:

Рекомендую к просмотру видеоролик канала “Советы электрика”. Он технически правильно объясняет разницу этих способов и поможет лучше понять прочитанный материал.

Задавайте вопросы по способам защиты от электрического тока и вы получите ответы в комментариях. Вторая часть статьи продолжит эту тему и даст обзор схем основных конструкций контуров заземлений, которые можно применить к системе электроснабжения вашего дома.

Полезные товары

housediz.ru

Заземлители заземляющего устройства | энергетик

 Продолжение — заземляющие устройства (ЗУ): выбор грунта по удельному сопротивлению, материалы для заземлителей (электроды), коэффициенты по глубине промерзания грунта, расчетная часть и схемы заземлений.

 Далее, рассмотрим как правильно выбрать  заземлители (электроды) заземляющего устройства.

Несколько важных выдержек из ПУЭ:

1.7.100. В электроустановках с глухозаземленной нейтралью нейтраль генератора или трансформатора трехфазного переменного тока, средняя точка источника постоянного тока, один из выводов источника однофазного тока должны быть присоединены к заземлителю при помощи заземляющего проводника.

Во всех случаях должны быть приняты меры по обеспечению непрерывности цепи заземления и защите заземляющего проводника от механических повреждений.

1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

  Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN— или PE-проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

При удельном сопротивлении земли r > 100 Ом×м допускается увеличивать указанные нормы в 0,01r раз, но не более десятикратного.

1.7.103. Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

При удельном сопротивлении земли r > 100 Ом×м допускается увеличивать указанные нормы в 0,01r раз, но не более десятикратного.

 

    О чём собственного говоря идёт речь в выше сазаном: первое —  заземляющий проводник  и заземлитель должны глухо соединены, т.е. допускается только сварка или болтовое соединение без разрывов и повреждений; второе — обратите внимание на п.1.7.101, при разных напряжениях допускается разное сопротивления, в этом же пункте указано и разное сопротивление повторных заземлителей воздушных линий ВЛ; третье —  в п.1.7.101. перечислены минимальные сопротивления (2, 4, 8 Ом), пункт для ТП, это если у Вас есть  своя подстанция, (например абонентская ТП 10/0,4 кВ,  ООО / ИП), а для всех повторных заземлителей п.1.7.103., где сопротивление требуется не более 5, 10 и 20 Ом, типичная ошибка при расчёте заземления, берут 4 Ом при 380 В. (это вывод источника напряжения), вместо 10 Ом при 380 В. (ввод источника напряжения).

 

Выбор металлических проводников (электродов):

 

  Для выбора в заземляющем устройстве заземлителя — металлических проводников (электродов), находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземленные части электроустановки с заземлителем, находящихся также в соприкосновении с землей должны иметь размеры не менее приведенных в табл.1: 

* Диаметр каждой проволоки. Заземляющие проводники для повторных заземлений PEN-проводника должны иметь таки еже размеры, как в табл.1.

    Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей (электродов).  В зависимости от используемого материала минимальные размеры для расчёта приведены в таблице 2 (уголок, полоса, круглая сталь), для практического применения рекомендуем выбирать  размеры заземлителей относительно расчётных побольше, это удобней при монтаже и продлевает срок службы заземлителя (по ПУЭ — проверка ЗУ в полном объеме — не реже 1 раза в 12 лет):

  • а) полоса 40 х 4 мм;              S =  160 мм2;
  • б) уголок 35 х 4 мм;              S = 267 мм;
  • в) круглая сталь d 16 мм;    S = 200 мм2;
  • г) стальная труба (h — 3,5 мм. толщина стенки) d 32 мм. 

Таблица 2

   Для расчёта количества вертикальных и горизонтальных заземлителей также используют коэффициент спроса (ηв),  коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних (рис. 1). При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше. Полученное при расчете число заземлителей округляется до ближайшего большего (см. таблицу 3. для выбора коэффициентов представлены два варианта таблиц таб. 3.1 и таб. 3.2).

Таблица 3.1Таблица 3.2

Таблица 3. Значение коэффициентов использования ηВ  и ηГ

Выбор удельного электрического сопротивления земли:

 Очень важным фактором для заземляющего устройства является удельное сопротивление земли. Возможные пределы колебаний удельных электрических сопротивлений различных грунтов и воды приведены в таблице 4:  

    Таблица 4

 Приближенные значения удельных электрических сопротивлений различных грунтов и воды при влажности 10-20  % массы грунта приведены в таблице 5: 

Таблица 5

 

energetik.com.ru

Как выполнить правильно заземление и не ошибиться?

Практически все дома и квартиры сегодня, независимо от своего месторасположения, насыщены разного назначения электроприборами.

В основе электрический ток представляет большую опасность, поэтому требует грамотного обращения с любыми электроприборами.

Все доступные блага цивилизации люди стараются использовать в полной мере. В каждом современном доме имеется большой набор техники для быта, от крупной — холодильники, стиральные машины, бойлеры, кондиционеры, ручные электроинструменты строительного и садового назначения, до мелкой — компьютеры, телевизоры, кухонные электроприборы, аудио-видео техника, лечебные домашние приборы, фены, техника для связи.

Естественно, все перечисленные электрические приборы работают непосредственно от электроэнергии или при помощи зарядных устройств используют ее для того, чтобы поддерживать работоспособное состояние. Электрические приборы окружают нас везде: дома, в общественных местах, на работе. Словом, электроэнергия полностью пронизала наш быт.

Схема заземления.

Однако электрический ток в основе представляет большую опасность, поэтому требует грамотного обращения с любыми электроприборами. Опасность эта — поражение электрическим током. Если случится попадание напряжения, случайно или аварийно, на корпус или иные части устройства, которые в обычном состояние под напряжением не находятся, то такая ситуация может быть смертельно опасной. На предотвращение такой опасности и направлено заземление жилого объекта.

Основным документом, содержащим все требования по защитному заземлению, является Правила устройства электроустановок, или ПУЭ. В данном документе описаны два вида заземления, зависящие от выполняемой функции: защитное и рабочее. Профессиональным видом работ является рабочее заземление, его не требуется выполнять в бытовых условиях. В домах и квартирах необходимо присутствие защитного заземления.

Термины, используемые в схемах по выполнению правильно заземления

Схемы ТN являются соединение заземленных частей потребителей с нейтралью источника питания с помощью нулевых проводников.

Чтобы грамотно проводить работы по выполнению заземления, необходимо знать некоторые термины: заземление, заземляющее устройство, заземлитель, сопротивление заземления, контур заземления, электрод заземлителя, удельное сопротивление грунта.

Заземление представляет собой целенаправленное электрическое соединение определенной точки сети, оборудования или электроустановки с заземляющим устройством. В процессе выполнения заземления используют грунт, которому свойственно «впитывать» электрический ток в себя. В электросхеме его считают некоторой точкой, относительно которой сигнал воспринимается.

Таблицы размеров заземлителей.

Совокупность заземлителя или заземлителей и заземляющих проводников называют заземляющим устройством.

Заземлитель — проводящая часть или сочетание нескольких проводящих частей, связанных между собой и находящихся с грунтом в электрическом контакте. Проводящая часть представляет собой металлический элемент любого профиля, способный проводить электрический ток. Конструкция проводящей части может быть самая разнообразная (штырь, труба, пластина, сетка, ведро, полоса). Она находиться в грунте, туда же по установке стекает электрический ток. Конфигурация заземлителя (расположение электродов, количество, длина) зависит от предъявляемых к нему требований, а также способности грунта «поглощать» в себя идущий от электрических установок ток через эти электроды.

Отношение напряжения на заземляющем устройстве к стекающему в землю току называют сопротивлением заземления. Это показатель является основным для заземляющего устройства, который определяет его качество в целом и способность осуществлять свои функции. Сопротивление заземления зависит от двух величин:

  • площадь электрического контакта заземляющих электродов;
  • удельное электрическое сопротивление земли, в которую смонтирован данный заземлитель.

Запрещается соединение заземляющей жилы и нулевой шины между собой.

Заземляющим электродом называют проводящую часть, которая контактирует с локальной землей. Контур заземления и есть сам заземлитель, состоящий из нескольких электродов, соединенных вместе и смонтированных по периметру вокруг объекта.

Параметр, определяющий уровень «электропроводности» земли как проводника называют удельным электрическим сопротивлением грунта. Другими словами, он показывает, насколько хорошо в конкретном грунте будет растекаться электрический ток, идущий от заземляющего устройства. Эта величина зависит от состава грунта, плотности, температуры и влажности, концентрации в нем химических растворимых веществ (кислотных, щелочных остатков, солей).

Вернуться к оглавлению

Системы заземления дома

Жилые дома обеспечиваются электропитанием с помощью сетей с глухо заземленной нейтралью. Для таких сетей ГОСТ регламентирует использование заземления по системам TN и TT. Рассмотрим подробнее обе системы.

Особенностью схемы ТN является соединение заземленных частей потребителей с нейтралью источника питания с помощью нулевых проводников. Эта система включает в себе три следующие схемы:

  1. Нулевые проводники (рабочий и защитный) по всей длине представлены одним проводником. Данная схема довольно распространена в домах старого типа. Сегодня эту схему не рекомендуется использовать.
  2. Эта схема похожа на предыдущую, только на вводе в жилое строение делают расщепление проводника общего отдельно на нулевой защитный и нулевой рабочий. При использовании этой системы рекомендуется проводить в дополнение повторное заземление дома. Используют взамен первой системы.
  3. По этой схеме проводя заземление жилья по всей длине линии оба нулевых проводника прокладываются раздельно. Это наиболее безопасный вариант. Он используется повсеместно в современном строительстве. Для его проведения бывает необходим пятижильный кабель в трехфазной сети, трехжильный — в однофазной.

В системе ТТ в отличие от ТN глухо заземленная нейтраль от источника питания с заземленными частями потребителей проводниками не соединяется. Для защитного заземления дома необходимо самостоятельное заземляющее устройство. Раньше эту систему использовать запрещалось. Сегодня это возможно, только если в доме установлено УЗО, хотя бы одного на вводе в жилье.

Вернуться к оглавлению

Как сделать заземление правильно и не ошибиться

Для принятия решения о том, как сделать заземление жилья правильно, необходимо выяснить, какая из схем заземления используется в линии электропередачи, подведенной к дому. В системах электроснабжения старого типа в трехфазной сети использовался четырехжильный кабель, в однофазной — двухжильный. В них отсутствует специальная жила, необходимая для защитного заземления. А заземление нулевой жилы происходит у источника электроэнергии. В большинстве случаев к частному жилому сектору производилась именно такая подводка. В таком случае в частном доме необходимо повторное заземление. Потребуется сделать контур заземления снаружи, что входит в состав повторного заземления, а внутри дома поменять всю проводку. Чтобы правильно сделать заземление своего жилья, рассчитывая на его долгий срок службы, необязательно прибегать к помощи электриков. Это легко можно сделать самому.

Рассмотрим простой вариант выполнения заземления своими руками. Если к вашему жилью электроэнергия подведена на основе современной схемы, то есть с применением специальной жилы для защитного заземления, то все работы по заземлению будут проходить внутри дома. В щите, к которому осуществлен ввод кабеля, должны иметься две шины:

  • для жилы заземления защитного;
  • для нулевой жилы.

Нулевая шина должна находиться в защищенном от корпуса щита состоянии, а заземляющая — закрепленной к корпусу щита, обеспечивая электрический контакт. Заземляющая жила и нулевая присоединяются к соответствующим шинам. Категорически запрещается соединение двух шин между собой. К каждому потребителю, нуждающемуся в заземлении, подводка выполняется трехжильным кабелем. При этом заземляющую жилу необходимо присоединить к контакту, предназначенному для этого. В доме все розетки должны быть заземленными (то есть евророзетки).

В том случае, если проводка электроэнергии сделана с помощью кабеля без заземляющей жилы, необходимо во вводном щите выполнить расщепление нулевой жилы. Обе шины — заземляющая и нулевая — должны по-прежнему быть в щите. Только необходимо соединить их вместе. К потребителям должны, подведены две жилы от соответствующих шин: нулевой и заземляющей. Этот метод называется расщепление нулевой жилы. Заземляющая жила при этом должна соединяться с повторным заземлением, которое необходимо расположить непосредственно около дома.

Вернуться к оглавлению

Как сделать правильно повторное заземление

Если в жилом доме имелось заземление старого типа, то есть необходимость сделать повторное заземление. При использование новой схемы повторное заземление потребуется для устройства молниезащиты. Оно оборудуется непосредственно возле заземляемого дома. В конструкцию такого заземления входят заземлитель и проводник заземляющий. В роли заземлителя может выступать металлический штырь, труба, уголок.

Часто вместо одного заземлителя используются несколько. Берутся три заземлителя, образуя из них контур треугольного вида. Расстояние между заземлителями нужно оставлять около двух метров. Необходимо забить их на глубину не меньше двух-трех метров. Между заземлителями роется неглубокая траншея (около 50 см). Здесь будут находиться горизонтальные соединители, сделанные из полосового металла. В итоге все заземлители соединятся в замкнутый контур. Сварка — лучший способ соединения. По траншее от контура укладывается заземляющий проводник, который будет соединять контур соединения с заземляющей шиной, расположенной во вводном щите. Данное устройство изготовить не представляет особого труда.

Следуя правилам устройства электроустановок, можно выполнить работу по заземлению дома по-другому. Выводим из грунта горизонтальный заземляющий проводник в форме стальной полосы, к которому при помощи болтового соединения присоединяем проводник.

Если даже вы будете делать заземляющее устройство своими руками, лучше использовать готовые типовые комплекты, выпускающиеся промышленностью, типа ZANDZ-6. Также есть комплекты для реализации схем заземления типовые вида: «Комбинированное заземление», «Замкнутый контур заземления», «Воронья лапа». Применение готовых комплектов позволит вам сделать правильно заземление дома, одновременно обеспечив вам безопасность при работе с электроприборами.

Вернуться к оглавлению

Приборы для измерения сопротивления заземления

По окончательному завершению монтажа контура заземления, нужно оценить качество электромонтажа точки заземления и зафиксировать показания сопротивления устройств заземления на их соответствие нормативам ПТЭЭП и ПУЭ. С этой целью замеряют сопротивления заземляющих устройств.

Сначала контур заземления осматривается визуально, обращая внимание на качество присоединения составных частей заземляющего устройства к общей системе энергосбережения методом простукивания молотком тех мест, где имеются присоединения сваркой. Необходимо удостовериться в надежности всех соединений, не ослабли ли болтовые соединения, проверить присутствуют ли в местах сварки трещины. Теперь можно приступить непосредственно к электрическому измерению. Результаты проверки фиксируются в регистрационный лист специального паспорта.

По существующим правилам устройства электрических установок, если имеется такая установка до 1000 В с заземлением нейтрали глухого типа, то сопротивление заземляющего устройства не должно превышать четырех ом. Сопротивление заземляющего устройства суммируется из показателей следующих заземлений: сопротивления заземлителя по отношению к земле и сопротивление заземляющего проводника. Чтобы измерять величину сопротивления устройства по заземлению используют различного вида омметры: АНЧ-3, М416, MRU-100 (MRU-101), КТИ-10, ЭКЗ-01, ИС-10, ЭКО-200, другие измерительные приборы.

1landscapedesign.ru


.