Что такое тепловая энергия на гвс? Тепловая энергия формула
Закон Джоуля – Ленца. Определение, формула, физический смысл. Мощность тепловых потерь формула физика. Тепловая энергия формула
Тепловая мощность физика формула. Глава 15. Тепловая энергия и работа: начала термодинамики
Глава 15. Тепловая энергия и работа: начала термодинамики – FIZI4KA
В этой главе…
- Достигаем теплового равновесия
- Сохраняем тепловую энергию при различных условиях
- Повышаем эффективность тепловых двигателей
- Падаем почти до абсолютного нуля
Каждому, кому когда-либо приходилось работать летом на открытом воздухе, хорошо известны понятия “тепло” и “работа”, связь между которыми изучает термодинамика. В данной главе, наконец-то, встречаются эти два незабвенных понятия, о которых подробно рассказывается в главе 8 (о работе) и в главе 13 (о тепле, теплоте и тепловой энергии). В термодинамике имеется три закона, а точнее начала, которые также важны для термодинамики, как и законы Ньютона для механики. Кроме того, уж в одном отношении они даже превосходят законы Ньютона, а именно в том, что в термодинамике имеется еще и нулевой закон, который чаще называют нулевым началом термодинамики. В этой главе рассказывается о термодинамическом равновесии (нулевое начало), сохранении энергии (первое начало), о тепловых потоках (второе начало) и недостижимости абсолютного нуля (третье начало). Итак, самое время обратиться к термодинамике.
Стремимся к тепловому равновесию: нулевое начало термодинамики
Основные законы термодинамики начинаются с нулевого начала. Возможно, эта нумерация покажется странной, ведь мало какой набор вещей из повседневной жизни начинается подобным образом (“Будь осторожен на нулевой ступеньке…”), но, знаете ли, физикам нравятся их традиции. Так вот, нулевое начало термодинамики гласит, что два тела находятся в тепловом равновесии, если они могут передавать друг другу теплоту, но не делают этого. (В русскоязычной научной литературе нулевое начало термодинамики называют также общим началом термодинамики. — Примеч. ред.)
Например, если у вас и у воды в плавательном бассейне, в котором вы находитесь, одна и та же температура, то никакое тепло от вас к воде или от воды к вам не передается (хотя такая передача возможна). Ваше тело и бассейн находятся в тепловом равновесии. Однако, если вы прыгнете в бассейн зимой, проломив при этом его ледяную корку, то первое время вряд ли будете в тепловом равновесии с его водой. Впрочем, вы и не захотите этого. (Не пытайтесь проделать этот физический опыт дома!)
Чтобы обнаружить тепловое равновесие (особенно в замерзших бассейнах, куда вы собираетесь прыгнуть), надо использовать термометр. Измерьте с его помощью температуру воды в бассейне, а затем — свою температуру. Если обе температуры совпадают (другими словами, наблюдается тепловое равновесие: ваше — с термометром, а термометра — с водой в бассейне), то в таком случае вы находитесь в тепловом равновесии с водой бассейна.
Использование термометра показывает: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии друг с другом; вот вам еще одна формулировка нулевого начала.
Кроме всего прочего, нулевое начало содержит идею, что температура — это индикатор теплового равновесия. То, что два тела, упомянутые в нулевом законе, находятся в тепловом равновесии с третьим, дает все нужное дая задания температурной шкалы, например шкалы Кельвина. Ну а с физической точки зрения нулевой закон устанавливает точку отсчета, утверждая, что между двумя телами, имеющими одинаковую температуру, тепловой поток в целом отсутствует.
Сохраняем энергию: первое начало термодинамики
Первое начало термодинамики — это, попросту говоря, закон сохранения энергии. Он утверждает, что энергия никуда не исчезает. Когда системой поглощается или высвобождается тепловая энергия \( Q \), а сама система выполняет над окружающими телами работу \( W \) (или, наоборот, окружающие тела выполняют работу над ней), то внутренняя энергия системы, имевшая начальное значение \( U_н \), становится равной \( U_к \) следующим образом:
В главе 8 немало говорится о сохранении механической энергии. Там показано, что общая механическая энергия (сумма потенциальной и кинетической энергии) сохраняется. Чтобы утверждать такое, надо было работать с системами, где энергия не тратится на нагревание, — например, когда отсутствует трение. Теперь все изменилось. Тепловая энергия, наконец-то, учитывается нами (как вы, вероятно, поняли из рассуждений), и теперь общую энергию системы можно рассматривать с учетом передачи тепловой энергии, проделанной работы и внутренней энергии системы.
На основании комбинации этих трех величин (тепловой энергии, работы и внутренней энергии) определяется общая энергия системы, которая в целом сохраняется. Если передать системе количество тепловой энергии, равное \( Q \), то при отсутствии работы ее количество внутренней энергии, обозначаемое как \( U \), изменится на \( Q \). Система может терять энергию, выполняя работу над окружающими телами, например, когда машина поднимает груз, висящий на конце каната. Так вот, когда система выполняет работу над окружающими телами и никакой тепловой энергии не тратит, ее внутренняя энергия \( U \) изменится на \( W \). Иначе говоря, если учитывать тепловую энергию, то с учетом всех этих трех величин (тепловой энергии, работы и внутренней энергии) общая энергия системы сохраняется.
Польза первого начала термодинамики состоит в том, что оно связывает все три основные величины: тепловую энергию, работу и внутреннюю энергию. Зная две из них, всегда можно определить третью.
Применяем закон сохранения энергии
Величина передаваемой тепловой энергии \( Q \) является положительной или отрицательной, когда система, соответственно, поглощает или высвобождает тепловую энергию. Величина работы \( W \) является положительной или отрицательной, когда работа, соответственно, выполняется системой над окружающими телами или окружающими телами над системой.
Новички часто путаются, пытаясь определить, являются ли значения каждой из величин положительными или отрицательными. Чтобы не запутаться, при работе с первым началом термодинамики рекомендуется исходить из общей идеи сохранения энергии. Допустим, что мотор выполняет над окружающими телами работу в 2000 Дж, высвобождая при этом 3000 Дж тепловой энергии. Насколько меняется его внутренняя энергия? В данном случае известно, что мотор выполняет над окружающими телами работу в 2000 Дж, поэтому ясно, что его внутренняя энергия уменьшается на 2000 Дж. Кроме того, выполняя работу, он еще высвобождает 3000 Дж тепловой энергии, так что внутренняя энергия мотора уменьшается еще на 3000 Дж.
Значения работы и передаваемой тепловой энергии следует считать отрицательными. Тогда в предыдущем примере получим такое изменение внутренней энергии:
Внутренняя энергия системы уменьшается на 5000 Дж, что определенно имеет смысл, ведь система выполняет над окружающими телами работу в 2000 Дж и высвобождает 3000 Дж тепловой энергии. С другой стороны, а что если система, выполняя над окружающими телами работу в 2000 Дж, поглощает 3000 Дж их тепловой энергии? В таком случае получилось бы 2000 Дж входящей и 3000 Дж исходящей энергии. Теперь понятно, какими должны быть знаки:
В данном случае общее изменение внутренней энергии системы равно +1000 Дж. Отрицательное значение работа принимает, когда она выполняется над системой окружающими телами. Например, система поглощает 3000 Дж, в то время как окружающие тела выполняют над ней работу в 4000 Дж. Это значит, что внутренняя энергия системы увеличивается на 3000 Дж + 4000 Дж = 7000 Дж. А если нужно все просчитать, то восполь
xn----7sbeb3bupph.xn--p1ai
Формула количества теплоты
Здесь – количество теплоты, – удельная теплоёмкость вещества, из которого состоит тело, – масса тела, – разность температур.
Единица измерения количества теплоты — Дж (Джоуль) или кал (калория).
По сути тепловая энергия – это внутренняя энергия тела, значит потеря тепла – это уменьшение внутренней энергии тела, а нагревание – увеличение. Удельная теплоёмкость – это характеристика вещества, обозначающая его способность накапливать в себе внутреннюю (тепловую) энергию. Чем она меньше, тем легче вещество нагреть или охладить. Она не пропорциональна плотности, то есть более плотное вещество не обязательно будет нагреваться легче, чем менее плотное. Одно из веществ с большой теплоёмкостью – вода ( Дж/(кг * К)).
Примеры решения задач по теме «Количество теплоты»
Понравился сайт? Расскажи друзьям! | |||
ru.solverbook.com
Глава 15. Тепловая энергия и работа: начала термодинамики – FIZI4KA
В этой главе…
- Достигаем теплового равновесия
- Сохраняем тепловую энергию при различных условиях
- Повышаем эффективность тепловых двигателей
- Падаем почти до абсолютного нуля
Каждому, кому когда-либо приходилось работать летом на открытом воздухе, хорошо известны понятия “тепло” и “работа”, связь между которыми изучает термодинамика. В данной главе, наконец-то, встречаются эти два незабвенных понятия, о которых подробно рассказывается в главе 8 (о работе) и в главе 13 (о тепле, теплоте и тепловой энергии). В термодинамике имеется три закона, а точнее начала, которые также важны для термодинамики, как и законы Ньютона для механики. Кроме того, уж в одном отношении
rinnipool.ru
Тепловая энергия на гвс в квитанции
В квитанциях за коммунальные услуги появилась новая графа – ГВС. У пользователей она вызвала недоумение, поскольку не все понимают, что это такое и почему нужно вносить платежи по этой строке. Есть и такие собственники квартир, которые вычеркивают графу. Это влечет за собой накопление долга, пени, штрафы и даже судебные разбирательства. Чтобы не доводить дело до крайних мер, нужно знать, что такое ГВС, теплоэнергия ГВС и почему за эти показатели нужно платить.
Что такое ГВС в квитанции?
ГВС – такое обозначение расшифровывается, как горячее водоснабжение. Его цель заключается в обеспечении квартир в многоквартирных домах и иных жилых помещений горячей водой с приемлемой температурой, но ГВС – это не сама горячая вода, а тепловая энергия, которая затрачивается на подогрев воды до приемлемой температуры.
Специалисты разделяют системы горячего водоснабжения на два вида:
- Центральная система. Здесь вода нагревается на теплостанции. После этого она распределяется в квартиры многоквартирных домов.
- Автономная система. Она обычно используется в частных домах. Принцип действия такой же, как и в центральной системе, но здесь вода нагревается в котле или бойлере и используется только для нужд одного конкретного помещения.
Важно! Еще одна в графа в квитанции, связанная с ГВС – это ГВС на ОДН. Расшифровка ОДН – общедомовые нужды. Значит, графа ГВС на ОДН – это расходование энергии на подогрев воды, используемой на общие нужды всех жильцов многоквартирного дома.
К ним относятся:
- технические работы, которые выполняются перед сезоном отопления;
- опрессовка системы отопления, проводимая после ремонта;
- ремонтные работы;
- отопление мест общего пользования.
Закон о горячей воде
Закон о ГВС был принят в 2013 году. Постановление Правительства за номером 406 гласит, что пользователи центральной системы отопления обязаны осуществлять оплату по двухкомпонентному тарифу. Это говорит о том, что тариф разделили на два элемента:
- тепловая энергия;
- холодная вода.
Так в квитанции появилась ГВС, то есть тепловая энергия, затраченная на нагрев холодной воды. Специалисты ЖКХ пришли к выводу, что стояки и полотенцесушители, которые подключены к контуру горячего водоснабжения, расходуют тепловую энергию для обогрева нежилого помещения. До 2013 года эта энергия в квитанциях не учитывалась, и потребители пользовались целые десятилетия ей на безвозмездной основе, поскольку вне отопительного сезона нагрев воздуха в санузле продолжался. На основании этого чиновники разделили тариф на две составляющих, и теперь гражданам приходится оплачивать ГВС.
Оборудование для нагрева воды
Оборудованием, осуществляющим нагрев жидкости, является водонагреватель. Его поломка не оказывает влияния на тариф на горячую воду, но стоимость работ за ремонт оборудования обязаны оплатить пользователи, поскольку водонагреватели – это часть имущества владельцев жилья в многоквартирном доме. Соответствующая сумма появится в квитанции за содержание и ремонт имущества.
Важно! К этой платежке следует внимательно относиться собственникам тех квартир, которые не пользуются горячей водой, поскольку в их жилье установлена автономная система отопления. Специалисты ЖКХ не всегда обращают внимание на это, просто распределяя сумму на ремонт водонагревателя между всеми гражданами.
В результате таким собственникам квартир приходится вносить плату за оборудование, к которым они не пользовались. При обнаружении повышения тарифа за ремонт и содержание имущества, необходимо выяснить, с чем это связано и обратиться в управляющую компанию за перерасчетом, если платеж насчитан неправильно.
Компонент «тепловая энергия»
Что это такое – компонент на теплоноситель? Это и есть подогрев холодной воды. На компонент тепловой энергии не устанавливается прибор учета, в отличие от горячей воды. По этой причине нельзя сделать расчет этого показателя по счетчику. Как в таком случае рассчитывается тепловая энергия для ГВС? При подсчете платежа учитываются следующие моменты:
- тариф, который установлен на ГВС;
- расходы, затраченные на содержание системы;
- стоимость потери тепла в контуре;
- расходы, затраченные на передачу теплоносителя.
Важно! Расчет стоимости горячей воды выполняется с учетом объема израсходованной воды, которая измеряется в 1 кубическом метре.
Размер платы за энергию обычно вычисляется, основываясь на значение показаний общедомового прибора учета горячей воды и количества энергии в горячей воде. Рассчитывается энергия и для каждой отдельной квартиры. Для этого берутся данные потребления воды, которые узнают из показаний счетчика, и умножаются на удельный расход тепловой энергии. Полученные данные умножаются на тариф. Эта цифра и есть тот необходимый взнос, который указывается в квитанции.
Как сделать самостоятельный расчет
Не все пользователи доверяют расчетному центру, поэтому и возникает вопрос, как посчитать стоимость ГВС самостоятельно. Полученный показатель сравнивается с суммой в квитанции и на основании этого делается вывод о правильности начислений.
Чтобы рассчитать стоимость ГВС, необходимо знать тариф на тепловую энергию. На сумму также влияет наличие или отсутствие прибора учета. Если он есть, то берутся показания со счетчика. При отсутствии счетчика берется норматив расхода тепловой энергии, используемой на подогрев воды. Такой нормативный показатель устанавливается энергосберегающая организация.
Если в многоэтажном доме установлен прибор учета расхода энергии и в жилье есть счетчик на горячую воду, то сумма за горячее водоснабжение вычисляется на основании данных общедомового учета и последующего пропорционального распределения теплоносителя по квартирам. При отсутствии счетчика берется норма расхода энергии на 1 куб воды и показания индивидуальных счетчиков.
Жалоба из-за неправильного расчета квитанции
Если после самостоятельного вычисления суммы взносов за ГВС выявлена разница, необходимо обратиться в управляющую компанию за разъяснениями. Если сотрудники организации отказываются давать объяснений по этому поводу, необходимо подать письменную претензию. Ее сотрудники компании не имеют права проигнорировать. Ответ должен поступить в течение 13 рабочих дней.
Важно! Если ответа не поступило или из него не понятно, почему возникла такая ситуация, то гражданин имеет право подать претензию в прокуратуру или исковое заявление в суд. В инстанции будет рассмотрено дело и вынесено соответствующее объективное решение. Можно также обратиться в организации, контролирующие деятельность управляющей компании. Здесь будет рассмотрена жалоба абонента и вынесено соответствующее решение.
Электроэнергия, используемая для подогрева воды, не является бесплатной услугой. Плата за нее взимается на основании Жилищного Кодекса Российской Федерации. Каждый гражданин может самостоятельно вычислить сумму этого платежа и сравнить полученные данные с суммой в квитанции. При возникновении неточности следует обратиться в управляющую компанию. В этом случае разница будет компенсирована, если ошибка будет признана.
okommunalke.ru
Энциклопедия сантехника Перенос тепловой энергии по трубам
Перенос тепловой энергии по трубам
Формулы и задачи будут ниже.
В системе отопления множество труб, которые друг с другом соединены: Параллельно и последовательно. Теплоноситель, протекающий по трубам - движется в каждой отдельной трубке по-разному. Где-то движется быстрее где-то медленно.
Теплоноситель - это среда, которая переносит температуру, посредством ее движения по трубам. Теплоноситель, проходя через котел, набирает температуру, далее протекает по трубам и, проходя через отопительный прибор (радиатор, теплый пол), теряет тепло в каком-либо количестве. Остывший теплоноситель вновь попадает в котел и цикл повторяется.
Существуют физические законы переноса тепла , которые дают полезные формулы. Эти формулы позволяют точно рассчитать, сколько тепла теряется или приобретается теплоносителем. Причем это формула универсальная и подходит абсолютно для любого отопительного прибора: Радиатор, калорифер, теплый водяной пол, бойлер и тому подобное. Можно даже всю систему отопления рассматривать как отопительный прибор и применить расчеты для всей системы отопления - оптом. Также формула работает и в обратном смысле, это когда нужно рассчитать, сколько тепловой энергии принимает теплоноситель, проходя через котельное оборудование.
За единицу переноса тепла теплоносителем - выбран его объем (м3). То есть, сколько проходит объема той или иной температуры, точно характеризует количество потраченной или приобретенной тепловой энергии. То есть скорость теплоносителя в трубе не принимается в расчет. Самое главное уметь высчитывать, количество пройденного объема теплоносителя.
Например, зная расход теплоносителя и потерю температуры, можно точно найти, сколько тратиться тепловой энергии.
Расход - это количество пройденного объема теплоносителя через трубу, измеряется объемом (метр кубический [м3]).
Потеря температуры - это разница температур между входящим теплоносителем в отопительный прибор и выходящим из отопительного прибора.
Температурный напор - это понятие выражается обычно для того, чтобы обозначить разницу температур между двумя различными телами (средами). Например, разницу между температурой подающего и обратного теплоносителя. Также температурным напором можно обозначить разницу между температурой воздуха в помещение и температурой нагретого радиатора или теплого пола. Чем выше температурный напор, тем больше передается тепловой энергии.
Теплоноситель обладает теплоемкостью, которая характеризует его способность принимать количество тепловой энергии. Чем больше теплоемкость теплоносителя, тем больше он может принять на себя тепловую энергию. Тем самым больше перенести тепловой энергии. То есть, чем больше теплоемкость, тем меньше требуется расход теплоносителя.
Из всех известных теплоносителей вода обладает самой большой теплоемкостью. Антифризы, незамерзающие жидкости обладают меньшей теплоемкостью, примерно на 10%. То есть теплоемкость антифриза может быть меньше на 10%. Мощность отопительных приборов не стоит увеличивать. Необходимо увеличивать расход или уменьшать гидравлическое сопротивление системы. Также антифриз является более вязким веществом и в отличие от воды сильнее сопротивляется движению. То есть система отопления на антифризе имеет большее сопротивление, чем, если бы она была заправлена обычной водой. Сопротивление системы отопления на антифризе может увеличиться до 30%.
На счет сопротивления поговорим в других статьях, где подробно посчитаем сопротивление системы на воде и антифризе.
В принципе цифры небольшие и обычно, когда меняют обычную воду на антифриз не прибегают к дополнительным мерам по улучшению характеристик систем отопления. Просто, обычно в систему отопления закладываются дополнительные ресурсы производительности, которые антифризом не уменьшишь до критического положения.
Любой антифриз обладает сильной текучестью. То есть на стыках труб могут быть микроскопические щели проходы, через которые вода не проходит, а антифриз может пройти.
Также антифриз очень пагубно влияет на систему отопления. Нужно учесть, что антифриз сильно разрушает некоторые металлы и сплавы в отличие от воды. То есть система отопления на антифризе прослужит меньше чем на воде. Рекомендую за место обычной воды заливать дистилированную воду, она меньше разрушает металлы. Также антифриз разбавляйте дистилированной водой.
В некоторых краях земли воды имеют сильные отклонения в сторону (кислотности, щелочности) и поэтому если у вас железные трубы и различные металлы, то следует для систем отопления подготовить воду. Вода должна быть стабильной. Кстати алюминиевые радиаторы тоже подвержены коррозии. В природе нет идеальных металлов. Различные металлы с различной степенью отличаются друг от друга и в различной жидкости ведут себя по разному.
Стабильность воды - это величина, характеризующяя состояние воды, на предмет содержания в ней определенного количества свободной и равновесной углекислоты, которая дает оценку отклонения от требуемого баланса углекислоты стабильной воды. Стабильная вода - это вода, которая содержит одинаковое количество свободной и равновесной углекислоты, то есть соблюдается основное карбонатное равновесие.
Не стабильная вода разрушает стальной трубопровод. При повышенном содержании свободной углекислоты вода ста¬новится коррозионно-агрессивной по отношению к конструкционным материалам, в частности, к бетону и железу.
Как контролируют стабильность воды?
При использовании воды в коммунальном хозяйстве, в промышленности чрезвычайно важно учитывать фактор стабильности. Для поддержания стабильности воды регулируют водородный показатель, щелочность или карбонатную жесткость. Если вода оказывается коррозионно-активной (например, при обессоливании, умягчении), то перед подачей в линию потребления ее следует обогатить карбонатами кальция или провести подщелачивание; если, напротив, вода склонна к выделению карбонатных осадков, требуется их удаление или подкисление воды.
Контроль происходит методом дозирования. Дозирование производится пропорционально в прямой зависимости от объема жидкости прошедшей через расходомер.
И так вернемся к формулам.
Что касается воды
Теплоемкость воды: 1,163 - Вт/(литр•°С)
Или: 1163 Вт/(м3•°С)
Теплоемкость антифриза при температуре 50 °С (с характером замерзания -40 °С):
1,025 Вт/(литр•°С) или: 1025 Вт/(м3•°С)
Данные теплоемкости различных жидкостях можно находить в специальных таблицах.
Задача.
Рассмотрим простенькую схему
Предположим, что при определенных найденных параметрах, мы установили, что расход системы отопления равен:
Q = 1,7 м3/час
Теплоносителем является вода, его теплоемкость равна:
С = 1163 Вт/(м3•°С)
Измерили температуру на подающем и обратном трубопроводе:
Т1 = 60 °С
Т2 = 45 °С
Найти мощность (тепловую энергию) теряемая системой отопления.
Решение.
Для решения используется универсальная формула:
W - энергия, (Вт)С - теплоемкость теплоносителя воды, С=1163 Вт/(м3•°С)Q - расход, (м3/час)t1 - Температура подающего теплоносителяt2 - Температура остывшего теплоносителя |
Просто вставляем наши значения, не забывайте учитывать единицы измерения.
По такой формуле работают тепловые счетчики.
Ответ: Система отопления потребляет 30кВт. В течение дня и времени года эта цифра меняется, в зависимости от теплопотерь отопительных приборов.
Очень важно понять расход системы отопления. Если вы даже знаете, что ваш насос качает максимум 40 литров в минуту, это не означает, что Ваш насос столько качает. Все зависит от сопротивления системы отопления. Чем больше сопротивление системы, тем меньше расход. Очень часто на практике сталкивался с засоренными фильтрами грязевиками, которые уменьшают общий расход системы отопления.Точным расчетом будет, если вы поставите водяной счетчик расхода на систему отопления. Только через водяной счетчик Вы сможете точно узнать расход вашей системы отопления, а потом по характеристикам насоса можете привести сопротивление системы.
Сопротивления системы и более масштабные расчеты будем проводить в другой статье.
Это статья является частью системы: Конструктор водяного отопления.
Если Вы желаете получать уведомленияо новых полезных статьях из раздела:Сантехника, водоснабжение, отопление,то оставте Ваше Имя и Email. | ||
infobos.ru
Тепловая энергия
Энергия – способность тела совершать работу. Выделяют следующие ее виды: электрическую, механическую, гравитационную, ядерную, химическую, электромагнитную, тепловую и другие.
Первая – энергия электронов, движущихся по цепи. Зачастую она используется для получения механической при помощи электродвигателей.
Вторая проявляется при движении, взаимодействии отдельных частиц и тел. Это энергия деформации при растяжении, сгибании, закручивании и сжатии упругих тел.
Химическая энергия возникает в результате химических реакций между веществами. Она может выделяться в виде тепловой (к примеру, при горении), а также преобразовываться в электрическую (в аккумуляторах и гальванических элементах).
Электромагнитная проявляется в результате движения магнитного и электрического полей в виде инфракрасных и рентгеновских лучей, радиоволн и т.п. Ядерная содержится в радиоактивных веществах и высвобождается в результате деления тяжелых ядер или синтеза легких. Гравитационная – энергия, которая обусловлена тяготением массивных тел (сила тяжести).
Тепловая энергия возникает в связи с хаотичным движением молекул, атомов и других частиц. Она может выделяться в результате механического воздействия (трения), химической реакции (горения) или ядерной (деление ядра). Чаще всего тепловая энергия возникает в результате сжигания различных видов топлива. Ее используют для отопления, выпаривания, нагревания и других технологических процессов.
Тепловая энергия – это одна из форм энергии, возникающая в результате механических колебаний структурных элементов какого-либо вещества. Параметром, позволяющим определить возможность использования его в качестве источника энергии, является энергетический потенциал. Выражаться он может в киловатт (тепловых)-часах или в джоулях.
Источники тепловой энергии подразделяют на:
- первичные. Энергетическим потенциалом вещества обладают вследствие природных процессов. К таким источникам можно отнести океаны, моря, ископаемые горючие вещества и др. Первичные источники подразделяются на неисчерпаемые, возобновляющиеся и невозобновляющиеся. К первым относятся термальные воды и вещества, которые могут быть использованы для получения термоядерной энергии и т.п. Ко вторым относят энергию солнца, ветра, водных ресурсов. Третьи включают газ, нефть, торф, уголь и т.д.;
- вторичные. Это вещества, энергетический потенциал которых напрямую зависит от деятельности людей. Например, это нагретые вентиляционные выбросы, городские отходы, горячие отработанные теплоносители промышленных производств (пар, вода, газ) и т.п.
Тепловая энергия в настоящее время производится при помощи сжигания ископаемого топлива. В качестве основных источников выступают неочищенная нефть, уголь, природный газ. За счет природных ископаемых обеспечивается 90% общего энергопотребления. Однако с каждым днем все больше увеличивается использование атомной энергии.
Возобновляемые источники почти не используются. Это связано со сложностью технологии их преобразования в тепловую энергию, а также низким энергетическим потенциалом некоторых из них.
Тепловая энергия возникает в результате взаимодействия фотонов инфракрасного диапазона с внешними электронами. Последние поглощают фотоны и перемещаются на дальние от ядра орбиты. Таким образом, объем вещества увеличивается. Через фотоны инфракрасного диапазона происходит передача тепловой энергии. В частности фотоны при соударениях молекул и атомов между собой перескакивают из зоны повышенной концентрации носителей тепловой энергии в те зоны, где она понижена.
Тепловая энергия может быть выражена в формуле: ΔQ = c.m.ΔT. С – обозначает удельную теплоемкость вещества, m –массу тела, а ΔT является разностью температур.
fb.ru
тепловая энергия - fiziku5.ru
– тепловая энергия, сосредоточенная в продуктах горения. Величина в этой энергии равна:
, | (1.37) |
где — объем продуктов горения, образующихся при сжигании единицы топлива,
— их теплоемкость и температура;
— потери тепловой энергии от химической неполноты горения. Этот вид потерь связан с процессами диссоциации в продуктах горения, которые получают заметное развитие при высоких температурах (1500). Кроме этого, величина рассматриваемых потерь растет при неудовлетворительном смешении топлива с воздухом, подаваемым для сжигания топлива. Развитие этих процессов приводит к тому, что в продуктах горения топлива появляются несгоревшие компоненты: оксид углерода – СО и водород — Н, хотя и в небольших количествах – 0,5…3,0%. Появление в продуктах горения несгоревших компонентов свидетельствует о неполном использовании химической энергии топлива, о возникновении тепловых потерь данного типа;
– потери тепловой энергии от механической неполноты горения. Под механической неполнотой горения понимают вывод из процесса горения части топлива. В этой статье расходной части теплового баланса для твердого топлива учитывают потери тепловой энергии, появляющейся за счет провала кусочков топлива через колосниковую решетку, а также уноса мелких его частиц с газами и золой. Обычно такие потери оценивают по экспериментальным данным, приведенным в литературных источниках. При сжигании газообразных и жидких видов топлива подобные потери отсутствуют, т. е. в этих случаях величину принимают равной нулю;
– потери тепловой энергии в окружающую среду. Эта статья теплового баланса наиболее разнообразна по источникам потерь. При ее расчете учитываются потери энергии теплопроводностью через кладку, потери излучением через открытые окна и щели, затраты тепловой энергии на нагрев охлаждающей воды, подсасываемого из атмосферы воздуха и пр.;
— потери тепловой энергии на разогрев кладки рабочего пространства теплового агрегата (аккумуляция тепловой энергии кладкой). Этот тип потерь присущ только тепловым агрегатам и печам периодического (циклического) действия. Он обусловлен тем, что при выгрузке горячего металла и загрузке холодного футеровка агрегата (печи) остывает, и для того, чтобы восстановить тепловое состояние кладки, следует ее нагреть. Затраты теплоты на этот процесс и составляют потери данного типа;
— невязка баланса, которая может возникнуть при экспериментальном исследовании работающей печи или теплового агрегата.
Проанализированные слагаемые теплового баланса составляют его расходную часть.
Приведенная структура теплового баланса используется для расчета температур горения. При этом рассматриваются адиабатические условия горения топлива без влияния на этот процесс каких-либо технологических особенностей технологий и работы оборудования. Эти особенности расчета записываются следующим образом:
(1.38) |
Тогда уравнение теплового баланса (1.34) с учетом (1.38) может быть записано в виде:
(1.39) |
Из анализа этого уравнения следует, что тепловая энергия, подводимая для организации процесса горения в виде химической энергии топлива за вычетом тепловой энергии на компенсацию потерь, связанных с химической и механической неполнотой горения, определяя их теплосодержание на единицу сгоревшего топлива. Если же отнести величину теплосодержания к 1 продуктов горения, то уравнение (1.39) преобразуется:
(1.40) |
Величину теплосодержания обозначают и используют для отыскания температур горения. Действительно, при известных значениях теплоемкости продуктов горения — , выхода продуктов горения — , температура продуктов горения может быть найдена из (1.39) или (1.40), т. е.:
(1.41) |
Температура, достигаемая в условиях сжигания топлива при подогреве воздуха и газа с учетом только теплоты диссоциации продуктов горения при температурах горения, получила название теоретической температуры горения. В зависимости от величины коэффициента избытка воздуха эту температуру принято обозначать . Для ее определения используют формулы:
, | (1.42) |
. | (1.43) |
Теплосодержание продуктов горения при теоретических температурах горения равно:
, |
или
. |
Температура, определяемая условиями горения при подогреве воздуха и топлива с учетом химического и механического недожога, названа балансовой температурой горения. Балансовые температуры горения в зависимости от величины коэффициента избытка воздуха принято обозначать (при = 1,0) и (при > 1,0).
fiziku5.ru
Тепловая энергия - Википедия
Материал из Википедии — свободной энциклопедии
Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой[1]. Теплота — это одна из основных термодинамических величин в классической феноменологической термодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.
Для изменения внутренней энергии системы посредством теплообмена также необходимо совершить работу. Однако это не механическая работа, которая связана с перемещением границы макроскопической системы. На микроскопическом уровне эта работа осуществляется силами, действующими между молекулами на границе контакта более нагретого тела с менее нагретым. Фактически при теплообмене энергия передаётся посредством электромагнитного взаимодействия при столкновениях молекул. Поэтому с точки зрения молекулярно-кинетической теории различие между работой и теплотой проявляется только в том, что совершение механической работы требует упорядоченного движения молекул на макроскопических масштабах, а передача энергии от более нагретого тела менее нагретому этого не требует.
Энергия может также передаваться излучением от одного тела к другому и без их непосредственного контакта.
Количество теплоты не является функцией состояния, и количество теплоты, полученное системой в каком-либо процессе, зависит от способа, которым она была переведена из начального состояния в конечное.
Единица измерения в Международной системе единиц (СИ) — джоуль. Как единица измерения теплоты используется также калория. В Российской Федерации калория допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «промышленность»[2].
Определение[ | ]
Количество теплоты входит в математическую формулировку первого начала термодинамики, которую можно записать как Q=A+ΔU{\displaystyle Q=A+\Delta U}. Здесь ΔU{\displaystyle \Delta U} — изменение внутренней энергии системы, Q{\displaystyle Q}
encyclopaedia.bid