Типы мышечных волокон и лучшие упражнения для их тренировки. Какие белки обязательно должны входить в состав мышечных волокон
Мышечные белки
Впервые А. Я. Данилевский (1881) разделил экстрагируемые из мышц белки на три класса: растворимые в воде, экстрагируемые 8 — 12% раствором хлорида аммония и белки, извлекаемые разбавленными растворами кислот и щелочей. В настоящее время белки мышечной ткани делят на три основные группы: саркоплазматические белки, миофибриллярные белки, белки стромы. На долю первых приходится около 35%, вторых —45% и третьих-20% всего мышечного белка. Эти группы белков резко отличаются друг от друга по растворимости в воде и солевых средах с различной ионной силой.
Белки, входящие в состав саркоплазмы, принадлежат к числу протеинов, растворимых в солевых средах с низкой ионной силой.
К числу саркоплазматических белков относятся также дыхательный пигмент миоглобин и разнообразные белки-ферменты, локализованные главным образом в митохондриях и катализирующие процессы тканевого дыхания, окислительного фосфорилирования, а также многие стороны азотистого и липидного обменов. Недавно была открыта группа саркоплазматических белков — парвальбумины, которые способны связывать ионы кальция.
К группе миофибриллярных белков относятся миозин, актин и актомиозин — белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки: тропомиозин, тропонин, α- и β-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц.
Миозин составляет 50-55% от сухой массы миофибрилл. Миозин обладает АТФазной активностью, т. е. способностью катализировать расщепление АТФ на АДФ и Н3РО4. Химическая энергия АТФ, освобождающаяся в ходе данной ферментативной реакции, превращается в механическую энергию сокращающейся мышцы. Молекула миозина имеет сильно вытянутую форму, длину 150 нм. Она может быть расщеплена без разрыва ковалентных связей на субъединицы: две тяжелые полипептидные цепи и несколько коротких легких цепей. Тяжелые цепи образуют длинную закрученную α-спираль («хвост» молекулы), конец каждой тяжелой цепи совместно с легкими цепями создает глобулу («головку» молекулы), способную соединяться с актином. Эти головки выдаются из основного стержня молекулы.
Толстые нити (толстые миофиламенты) в саркомере получены путем соединения большого ппчисла определенным образом ориентированных в ппппппппппппппппппппппппппппппппппппространстве молекул миозина.
Актин, составляющий ~20% от сухой массы миофибрилл. Известны две формы актина: глобулярный (Г-актин) и фибриллярный (Ф-актин) актин. Молекула Г-актина состоит из одной полипептидной цепочки, в образовании которой принимают участие 374 аминокислотных остатка. Ф-актин является продуктом полимеризации Г-актина и имеет структуру двухцепочечной спирали.
Актомиозин образуется при соединении миозина с Ф-актином. Актомиозин, как обладает АТФазной активностью. Однако АТФазная активность актомиозина отличается от АТФазной активности миозина. Фермент актомиозин активируется ионами магния и ингибируется этилен-диаминтетраацетатом (ЭДТА) и высокой концентрацией АТФ, тогда как миозиновая АТФаза ингибируется ионами Mg2+, активируется ЭДТА и не ингибируется высокой концентрацией АТФ. Оптимальные значения рН для обоих ферментов также различны.
Тропомиозин был открыт К. Бейли в 1946 г. Молекула тропомиозина состоит из двух α-спиралей и имеет вид стержня. На долю тропомиозина приходится около 4 — 7% всех белков миофибрилл.
Т
Структура тонкого филамента.
1 — актин; 2 — тропомиозин; 3 — тропонин С;
4 — тропонин
I; 5 — тропонин Тропонин — глобулярный белок, открытый С. Эбаси в 1963 г. В скелетных мышцах взрослых животных и человека тропонин (Тн) составляет лишь около 2% от всех миофибриллярных белков. В его состав входят три субъединицы (Тн-I, Тн-С, Тн-Т). Тн-I (ингибирующий) может ингибировать АТФазную активность, Тн-С (кальцийсвязывающий) обладает значительным сродством к ионам кальция, Тн-Т (тропомиозинсвязывающий) обеспечивает связь с тропомиозином. Тропонин, соединяясь с тропомиозином, образует комплекс, названный нативным тропомиозином. Этот комплекс прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоночных чувствительность к ионам кальция.Белки стромы в поперечнополосатой мускулатуре представлены в основном коллагеном и эластином.
Небелковые азотистые экстрактивные вещества
В скелетных мышцах содержится ряд важных азотистых экстрактивных веществ: адениновые нуклеотиды (АТФ, АДФ и АМФ), нуклеотиды неаденинового ряда, креатин-фосфат, креатин, креатинин, карнозин, ансерин, свободные аминокислоты и др.
На долю креатина и креатинфосфата приходится до 60% небелкового азота мышц. Креатинфосфат и креатин относятся к тем азотистым экстрактивным веществам мышц, которые участвуют в химических процессах, связанных с мышечным сокращением.
К числу азотистых веществ мышечной ткани принадлежат и имидазолсодержащие дипептиды — карнозин и ансерин.
Карнозин и ансерин — специфические азотистые вещества скелетной мускулатуры позвоночных — увеличивают амплитуду мышечного сокращения, предварительно сниженную утомлением. Имидазолсодержащие дипептиды не влияют непосредственно на сократительный аппарат, но увеличивают эффективность работы ионных насосов мышечной клетки.
Среди свободных аминокислот в мышцах наиболее высокую концентрацию имеет глутаминовая кислота (до 1,2 г/кг) и ее амид - глутамин (0,8-1,0 г/кг). В состав различных клеточных мембран мышечной ткани входит ряд фосфоглицеридов: фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин и др. Другие азотсодержащие вещества: мочевина, мочевая кислота, аденин, гуанин, ксантин и гипоксантин — встречаются в мышечной ткани в небольшом количестве.
studfiles.net
Сократительные белки: функции, примеры
Белки (полипептиды, протеины) представляют собой высокомолекулярные вещества, в состав которых входят альфа-аминокислоты, соединенные пептидной связью. Состав протеинов определяется в живых организмах генетическим кодом. Как правило, при синтезе используется набор из 20 стандартных аминокислот.
Классификация белков
Разделение протеинов осуществляется по разным признакам:
- Форме молекулы.
- Составу.
- Функциям.
По последнему критерию белки классифицируются:
- На структурные.
- Питательные и запасные.
- Транспортные.
- Сократительные.
Структурные белки
К ним относят эластин, коллаген, кератин, фиброин. Структурные полипептиды участвуют в процессе формирования мембран клеток. Они могут создавать в них каналы или осуществлять иные функции.
Питательные, запасные протеины
Питательным полипептидом является казеин. За счет него растущий организм обеспечивается кальцием, фосфором и аминокислотами.
Запасными являются белки семян культурных растений, яичный белок. Они потребляются на этапе развития зародышей. В человеческом организме, как и у животных, протеины не откладываются в запас. Их необходимо регулярно получать с пищей, иначе вероятно развитие дистрофии.
Транспортные полипептиды
Классическим примером таких белков является гемоглобин. В крови обнаруживаются и другие полипептиды, участвующие в перемещении гормонов, липидов и других веществ.
В мембранах клетки находятся протеины, обладающие способностью транспортировать ионы, аминокислоты, глюкозу и прочие соединения через клеточную мембрану.
Сократительные белки
Функции этих полипептидов связаны с работой мышечных волокон. Кроме того, они обеспечивают движение ресничек и жгутиков у простейших. Сократительные белки выполняют функцию транспортировки органелл внутри клетки. За счет их наличия обеспечивается изменение клеточных форм.
Примерами сократительных белков являются миозин и актин. Стоит сказать, что эти полипептиды обнаруживаются не только в клетках мышечных волокон. Сократительные белки выполняют свои задачи практически во всех тканях животных.
Особенности
В клетках обнаруживается индивидуальный полипептид – тропомиозин. Сократительный мышечный белок миозин является его полимером. Он образует комплекс с актином.
Сократительные белки мышц не растворяются в воде.
Скорость синтеза полипептидов
Ее регулируют тиреоидные и стероидные гормоны. Проникая в клетку, они связываются со специфическими рецепторами. Образованный комплекс проникает в клеточное ядро и связывается с хроматином. За счет этого повышается скорость синтеза полипептидов на генном уровне.
Активные гены обеспечивают усиление синтеза определенной РНК. Она выходит из ядра, направляется к рибосомам и активирует синтез новых структурных либо сократительных белков, ферментов или гормонов. В этом заключается анаболическое действие генов.
Между тем белковый синтез в клетках – процесс достаточно медленный. Он требует больших энергетических затрат и пластического материала. Соответственно, гормоны не в состоянии оперативно контролировать метаболизм. Ключевая их задача состоит в регуляции роста, дифференциации и развития клеток в организме.
Мышечное сокращение
Оно является ярким примером сократительной функции белков. В ходе исследований было установлено, что в основе сокращения мускулатуры лежит изменение физических свойств полипептида.
Сократительную функцию выполняет белок актомиозин, взаимодействующий с аденозинтрифосфорной кислотой. Эта связь сопровождается сокращением миофибрилл. Такое взаимодействие можно наблюдать вне организма.
К примеру, если на вымоченные в воде (мацерированные) волокна мышц, лишенные возбудимости, воздействовать раствором аденозинтрифосфата, начнется их резкое сокращение, аналогичное сокращению живой мускулатуры. Этот опыт имеет важнейшее практическое значение. Он доказывает тот факт, что для мышечного сокращения необходима химическая реакция сократительных белков с веществом, богатым энергией.
Действие витамина Е
С одной стороны, он является главным внутриклеточным антиоксидантом. Витамин Е обеспечивает защиту жиров и прочих легкоокисляемых соединений от окисления. Вместе с тем он выступает в качестве переносчика электронов и участвует в окислительно-восстановительных реакциях, которые связаны с запасанием высвобождаемой энергии.
Дефицит витамина Е вызывает атрофию мышечной ткани: содержание сократительного белка миозина резко уменьшается, и его заменяет коллаген – инертный полипептид.
Специфика миозина
Он считается одним из ключевых сократительных белков. На его долю приходится порядка 55 % от общего содержания полипептидов в мышечной ткани.
Из миозина состоят филаменты (толстые нити) миофибрилл. В молекуле присутствует длинная фибриллярная часть, имеющая двуспиральную структуру, и головки (глобулярные структуры). В составе миозина выделяют 6 субъединиц: 2 тяжелые и 4 легкие цепи, находящиеся в глобулярной части.
В качестве основной задачи фибриллярного участка выступает способность формировать пучки филаментов миозина или толстые протофибриллы.
На головках находятся активный участок АТФ-азы и актинсвязывающий центр. За счет этого обеспечивается гидролиз АТФ и связь с актиновыми филаментами.
Разновидности
Подвидами актина и миозина считаются:
- Динеин жгутиков и ресничек простейших.
- Спектрин в мембранах эритроцитов.
- Нейростенин перисинаптических мембран.
К разновидностям актина и миозина можно также отнести полипептиды бактерий, ответственные за перемещение различных веществ в градиенте концентраций. Этот процесс называется также хемотаксисом.
Роль аденозинтрифосфорной кислоты
Если поместить нити актомиозина в раствор кислоты, добавить ионы калия и магния, можно увидеть, что они укорачиваются. При этом наблюдается расщепление АТФ. Это явление свидетельствует о том, что распад аденозинтрифосфорной кислоты имеет определенную связь с изменением физико-химических свойств сократительного белка и, следовательно, с работой мышц. Впервые этот феномен был выявлен Сцент-Дьиордьи и Энгельгардтом.
Синтез и распад АТФ имеют важнейшее значение в процессе превращения химической энергии в механическую. При распаде гликогена, сопровождающегося выработкой молочной кислоты, как и при дефосфорилировании аденозинтрифосфорной и креатинфосфорной кислот, участие кислорода не требуется. Этим объясняется способность изолированной мышцы функционировать в анаэробных условиях.
В волокнах мускулатуры, утомленных при работе в анаэробной среде, накапливаются молочная кислота и продукты, образовавшиеся при распаде аденозинтрифосфорной и креатинфосфорной кислот. В результате исчерпываются запасы веществ, при расщеплении которых выделяется необходимая энергия. Если поместить утомленную мышцу в условия, содержащие кислород, она будет его потреблять. Некоторое количество молочной кислоты начнет окисляться. В результате образуются вода и углекислый газ. Высвобождающаяся энергия будет использоваться для ресинтеза креатинфосфорной, аденозинтрифосфорной кислот и гликогена из продуктов распада. За счет этого мышца снова приобретет способность работать.
Скелетная мышца
Отдельные свойства полипептидов можно объяснить только на примере их функций, т. е. их вклада в сложную деятельность. Среди немногочисленных структур, в отношении которых была установлена корреляция между функциями белков и органа, особого внимания заслуживает скелетная мышца.
Ее клетка активируется за счет нервных импульсов (мембранно-направленных сигналов). В молекулярном плане сокращение основывается на циклическом формировании поперечных мостиков благодаря периодическим взаимодействиям между актином, миозином и Mg-АТР. Кальцийсвязывающие белки и ионы Са выступают в качестве посредников между эффекторами и нервными сигналами.
Посредничество ограничивает скорость ответа на импульсы "включение/выключение" и предотвращает самопроизвольные сокращения. Вместе с тем некоторые осцилляции (колебания) маховых мышечных волокон крылатых насекомых контролируют не ионы или аналогичные низкомолекулярные соединения, а непосредственно сократительные белки. За счет этого возможны очень быстрые сокращения, которые после активации протекают самостоятельно.
Жидкокристаллические свойства полипептидов
При укорочении мышечных волокон изменяется период решетки, образованной протофибриллами. При вхождении решетки из тонких нитей в структуру из толстых элементов тетрагональную симметрию сменяет гексагональная. Это явление можно считать полиморфным переходом в жидкокристаллической системе.
Особенности механохимических процессов
Они сводятся к трансформации химической энергии в механическую. АТФ-азная активность митохондриальных клеточных мембран имеют сходство с актом иозиновой системы скелетной мускулатуры. Общие черты отмечаются и в их механохимических свойствах: они сокращаются под влиянием АТФ.
Следовательно, в мембранах митохондрий должен присутствовать сократительный белок. И он действительно там присутствует. Установлено, что сократительные полипептиды задействованы в митохондриальной механохимии. Однако выяснилось также, что значительную роль в процессах играет и фосфатидилинозитол (липид мембран).
Дополнительно
Молекула белка миозина не только способствует сокращению разных мышц, но и может участвовать в других внутриклеточных процессах. Речь, в частности, о перемещении органелл, прикреплении актиновых нитей к мембранам, формировании и функционировании цитоскелета и пр. Почти всегда молекула так или иначе взаимодействует с актином, являющимся вторым ключевым сократительным белком.
Было доказано, что молекулы актомиозина могут изменять длину под воздействием химической энергии, высвобождаемой при отщеплении от АТФ остатка фосфорной кислоты. Другими словами, именно этот процесс обуславливает сокращение мышц.
Система АТФ, таким образом, выступает как своего рода аккумулятор химической энергии. По мере надобности она превращается непосредственно в механическую при посредничестве актомиозина. При этом отсутствует промежуточный этап, характерный для процессов взаимодействия других элементов, - переход в тепловую энергию.
fb.ru
31. Основные функции мышц. Строение мышечного волокна.
Мышцы (от слова «мышь» — из-за формы, поэтому ударение на первый слог) или мускулы (от лат. musculus — мышца (mus — мышка, маленькая мышь)) — органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов. Предназначены для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания.
Мышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Человек выполняет любые движения — от таких простейших, как моргание или улыбка, до тонких и энергичных, какие мы наблюдаем у ювелиров или спортсменов — благодаря способности мышечных тканей сокращаться. От исправной работы мышц, состоящих из трёх основных групп, зависит не только подвижность организма, но и функционирование всех физиологических процессов. А работой всех мышечных тканей управляет нервная система, которая обеспечивает их связь с головным и спинным мозгом и регулирует преобразование химической энергии в механическую.
В теле человека 640 мышц (в зависимости от метода подсчёта дифференцированных групп мышц их общее число определяют от 639 до 850)[источник не указан 353 дня]. Самые маленькие прикреплены к мельчайшим косточкам, расположенным в ухе. Самые крупные — большие ягодичные мышцы, они приводят в движение ноги. Самые сильные мышцы — икроножные и жевательные, язык.
По форме мышцы очень разнообразны. Чаще всего встречаются веретенообразные мышцы, характерные для конечностей, и широкие мышцы — они образуют стенки туловища. Если у мышц общее сухожилие, а головок две или больше, то их называют двух-, трёх- или четырёхглавыми.
Структурный элемент мышц — мышечное волокно, каждое из которых в отдельности является не только клеточной, но и физиологической единицей, способной сокращаться. Мышечное волокно представляет собой многоядерную клетку, диаметр его составляет от 10 до 100 мкм. Данная клетка заключена в оболочку, сарколемму, которая заполнена саркоплазмой. В саркоплазме располагаются миофибриллы. Миофибрилла — нитевидное образование, состоящее из саркомеров. Толщина миофибрилл в общем случае менее 1 мкм. В зависимости от количества миофибрилл различают белые и красные мышечные волокна. В белых волокнах миофибрилл больше, саркоплазмы меньше, благодаря чему они могут сокращаться более быстро. В красных волокнах содержится большое количество миоглобина, из-за чего они и получили такое название. Помимо миофибрилл в саркоплазме мышечных волокон также присутствуют митохондрии, рибосомы, комплекс Гольджи, включения липидов и прочие органеллы. Саркоплазматическая сеть обеспечивает передачу импульсов возбуждения внутри волокна. В состав саркомеров входят толстые миозиновые нити и тонкие актиновые нити.
Актин — сократительный белок, состоящий из 375 аминокислотных остатков с молекулярной массой 42300, который составляет около 15 % мышечного белка. Под световым микроскопом более тонкие молекулы актина выглядят светлой полоской (так называемые «Ι-диски»). В растворах с малым содержанием ионов актин содержится в виде единичных молекул с шарообразной структурой, однако в физиологических условиях, в присутствии АТФ и ионов магния, актин становится полимером и образует длинные волокна (актин фибриллярный), которые состоят из спирально закрученных двух цепочек молекул актина. Соединяясь с другими белками, волокна актина приобретают способность сокращаться, используя энергию, содержащуюся в АТФ.
Миозин — основной мышечный белок; содержание его в мышцах достигает 65 %. Молекулы состоят из двух полипептидных цепочек, в каждой из которых содержится более 2000 аминокислот. Белковая молекула очень велика (это самые длинные полипептидные цепочки, существующие в природе), а её молекулярная масса доходит до 470000. Каждая из полипептидных цепочек оканчивается так называемой головкой, в состав которой входят две небольшие цепочки, состоящие из 150—190 аминокислот. Эти белки проявляют энзиматическую активность АТФазы, необходимую для сокращения актомиозина. Под микроскопом молекулы миозина в мышцах выглядят тёмной полоской (так называемые «А-диски»).
Актомиозин — белковый комплекс, состоящий из актина и миозина, характеризующийся энзиматической активностью АТФазы. Это значит, что благодаря энергии, освобождённой в процессе гидролиза АТФ, актомиозин может сокращаться. В физиологических условиях актомиозин создаёт волокна, находящиеся в определённом порядке. Фибриллярные части молекул миозина, собранные в пучок, образуют так называемую толстую нить, из которой перпендикулярно выглядывают миозиновые головки. Молекулы актина соединяются в длинные цепочки; две таких цепочки, спирально закрученные друг вокруг друга, составляют тонкую нить. Тонкая и толстая нити расположены параллельно таким образом, что каждая тонкая нить окружена тремя толстыми, а каждая толстая нить — шестью тонкими; миозиновые головки цепляются за тонкие нити.
В целом, мышечная ткань состоит из воды, белков и небольшого количества прочих веществ: гликогена, липидов, экстрактивных азотсодержащих веществ, солей органических и неорганических кислот и др. Количество воды составляет 72—80 % от общей массы.
Мышцы и скелет определяют форму человеческого тела. Активный образ жизни, сбалансированное питание и занятие спортом способствуют развитию мышц и уменьшению объёма жировой ткани.
В зависимости от особенностей строения мышцы человека делят на 3 типа или группы:
скелетные,
гладкие,
сердечная.
Первая группа мышц — скелетные, или поперечнополосатые мышцы. Скелетных мышц у каждого из нас более 600. Мышцы этого типа способны произвольно, по желанию человека, сокращаться и вместе со скелетом образуют опорно-двигательную систему. Общая масса этих мышц составляет около 40 % веса тела, а у людей, активно развивающих свои мышцы, может быть ещё больше. С помощью специальных упражнений размер мышечных клеток можно увеличивать до тех пор, пока они не вырастут в массе и объёме и не станут рельефными. Сокращаясь, мышца укорачивается, утолщается и движется относительно соседних мышц. Укорочение мышцы сопровождается сближением её концов и костей, к которым она прикрепляется. В каждом движении участвуют мышцы как совершающие его, так и противодействующие ему (агонисты и антагонисты соответственно), что придаёт движению точность и плавность.
Второй тип мышц, который входит в состав клеток внутренних органов, кровеносных сосудов и кожи, — гладкая мышечная ткань, состоящая из характерных мышечных клеток (миоцитов). Короткие веретеновидные клетки гладких мышц образуют пластины. Сокращаются они медленно и ритмично, подчиняясь сигналам вегетативной нервной системы. Медленные и длительные их сокращения происходят непроизвольно, то есть независимо от желания человека.
Гладкие мышцы, или мышцы непроизвольных движений, находятся главным образом в стенках полых внутренних органов, например пищевода или мочевого пузыря. Они играют важную роль в процессах, не зависящих от нашего сознания, например в перемещении пищи по пищеварительному тракту.
Отдельную (третью) группу мышц составляет сердечная поперечнополосатая (исчерченная) мышечная ткань (миокард). Она состоит из кардиомиоцитов. Сокращения сердечной мышцы не подконтрольны сознанию человека, она иннервируется вегетативной нервной системой.
studfiles.net
4. Сократительные белки мышечного волокна (актин, миозин, а-м), их состав и функции
Изучение химического состава миофибрилл показало, что толстые и тонкие нити состоят только из белков.
Толстые нити состоят из белка миозина. Миозин - белок с молекулярной массой около 500 кДа, содержащий две очень длинные полипептидные цепи. Эти цепи образуют двойную спираль, но на одном конце эти нити расходятся и формируют шаровидное образование - глобулярную головку. Поэтому в молекуле миозина различают две части - глобулярную головку и хвост. В состав толстой нити входит около 300 миозиновых молекул, а на поперечном срезе толстой нити обнаруживается 18 молекул миозина. Миозиновые молекулы в толстых нитях переплетаются своими хвостами, а их головки выступают из толстой нити по правильной спирали. В головках миозина имеются два важных участка (центра). Один из них катализирует гидролитическое расщепление АТФ, т. е. соответствует активному центру фермента. АТФазная активность миозина впервые обнаружена отечественными биохимиками Энгельгардтом и Любимовой. Второй участок головки миозина обеспечивает во время мышечного сокращения связь толстых нитей с белком тонких нитей - актином. Тонкие нити состоят из трех белков: актина, тропонина и тропомиозина.
Основной белок тонких нитей - актин. Актин - глобулярный белок с молекулярной массой 42 кДа. Этот белок обладает двумя важнейшими свойствами. Во-первых, проявляет высокую способность к полимеризации с образованием длинных цепей, называемых фибриллярным актином (можно сравнить с нитью бус). Во-вторых, как уже отмечалось, актин может соединяться с миозиновыми головками, что приводит к образованию между тонкими и толстыми нитями поперечных мостиков, или спаек.
Основой тонкой нити является двойная спираль из двух цепей фибриллярного актина, содержащая около 300 молекул глобулярного актина (как бы две нити бус, закрученные в двойную спираль, каждая бусинка соответствует глобулярному актину).
Еще один белок тонких нитей – тропомиозин – также имеет форму двойной спирали, но эта спираль образована полипептидными цепями и по размеру гораздо меньше двойной спирали актина. Тропомиозин располагается в желобке двойной спирали фибриллярного актина.
Третий белок тонких нитей – тропонин - присоединяется к тропомиозину и фиксирует его положение в желобке актина, при котором блокируется взаимодействие миозиновых головок с молекулами глобулярного актина тонких нитей.
5. Технологические приемы ускорения созревания мяса
После прекращения жизни животного (синтеза) в мясе происходит комплекс изменений, на которые влияют ферменты. Начинается самораспад тканей под действием ферментов самих тканей. Этот процесс называется автолизом. При этом изменению подвергаются мышечные, соединительные и жировые ткани. Изменения в мышечной ткани при хранении влияют на качество мяса.
При жизни животного основной функцией мышечной ткани является двигательная, в результате которой происходит превращение химической энергии в механическую. Эти сложные превращения происходят за счет биохимических, физиологических, физических и термодинамических процессов.
Биохимический аспект выражается в изменении миофибрилл белков, прежде всего миозина и актина (80% белков). При сокращении происходит соединение фибриллярного актина с миозином. Образуется прочный актомиозиновый комплекс, в котором на одну молекулу миозина приходится 2-3 молекулы актина.
Энергетический механизм сокращения заключается в изменении свободной энергии, образующейся при расщеплении АТФ. Активностью АТФ обладает белок миозин, который при распаде АТФ соединяется с актином, образуя актиномиозиновый комплекс, т.е. происходит процесс окоченения. В данном случае миозин является не только белком, но в своем роде ферментом.
Фаза собственного созревания мяса характеризуется интенсивным распадом мышечного гликогена и накоплением молочной кислоты, а также изменением его химического состава, но окоченение входит в процесс автолиза.
Характерной особенностью окоченения является снижение влагоудерживающей способности мышечной ткани, вследствии чего всегда наблюдается отделение мышечного сока. По внешним признакам окоченевшее мясо имеет большую упругость, при тепловой обработке – излишнюю жесткость, а из-за снижения влагаудерживающей способностью становится менее сочным. В состоянии окоченения мышцы менее подвержены действию протеометических ферментов и мясо хуже усваивается.
В результате накопления молочной, фосфорной и других кислот в мясе увеличивается концентрация водородных ионов, вследствии чего к концу окоченения рН снижается до 5,8-5,7, а иногда и ниже. В кислой среде при распаде АТФ и фосфорной кислоты происходит частичное накопление неорганического фосфора.
Фаза созревания во многом определяет интенсивность течения физико-коллоидных процессов и микроструктурных изменений мышечных волокон. В результате комплекса причин (действия протеометических ферментов, образования продуктов автолитического распада, кислой среды) и происходит распад мышечных волокон. Глубокий распад свидетельствует уже о глубоком автолизе, что чаще наблюдается при порче мяса. На фазе же плавного перехода от окоченения к созреванию мясо размягчается, разрыхляется, появляется нежность, а это значит, что пищеварительные соки свободно проникают к саркоплазме, что улучшает переваримость и усвояемость мяса.
Нежность тканей мяса, где много соединительной ткани, невелика, а мясо молодых животных нежнее, чем старых.
При повышении температуры (до 300С), а также при длительной выдержке мяса (свыше 20-26 сут.) при низких плюсовых температурах (2-40С) ферментативный процесс созревания настолько углубляется, что в мясе заметно увеличивается количество распада белков в виде малых пептидов и свободных аминокислот. На этой стадии мясо приобретает коричневую окраску, в нем увеличивается количество аминного и аммиачного азота, происходит заметный гидролитический распад жиров, что отрицательно оказывает влияние на его пищевые свойства и товарный вид мяса.
Для ускорения созревания мяса, способствующего улучшению его качества, используют различные методы обработки, в том числе применяют ферменты, антибиотики.
Исследования также показали, что поверхностная обработка мяса (погружением в раствор или распылением порошка) не дает достаточного эффекта.
Хорошие результаты дает ферментация мяса, проводимая одновременно после сублимационного восстановления.
Ферментативный препарат добавляет в консервы для получения продуктов более высокого качества. Предлагается добавлять препараты в колбасы низших сортов.
Мясо, обработанное ферментативными препаратами, должно по внешнему виду, цвету, аромату не отличаться от неферментативного, а по вкусу – быть более мягким, без горького вкуса, вызываемого продуктами глубокого расщепления белков ферментами.
studfiles.net
Типы мышечных волокон и лучшие упражнения для их тренировки
Примерно 40% массы человеческого тела приходится на мышцы. Каждая из более 600 мышц необходима нам для выполнения жизненно важных функций: приема пищи, дыхания, ходьбы и пр. Чтобы мышцы были крепкими, их необходимо тренировать. А для определения правильного типа тренировок необходимо знать, что все мышцы нашего тела состоят из двух основных типов мышечных волокон, об особенностях работы и тренировки которых estet-portal.com расскажет в данной статье.
Разные мышечные волокна – разные функции
Скелетные мышцы состоят из двух основных типов волокон:
- Волокна I типа отвечают за выносливость, волокна II типа (быстрые, гликолитические, белые) – за силу и скорость.
- Волокна II типа начинают работать, когда физическая активность требует задействовать более 25% максимальной силы.
У большинства людей соотношение типов мышечных волокон примерно одинаково, и определяется оно генетически. Однако быстрые волокна отличаются большим размером, чем медленные, а также более значительным потенциалом роста.
Гены определяют три важных фактора в отношении мышц:
- Максимальное количество волокон.
- Соотношение типов мышечных волокон.
- Форма полностью задействованных мышц.
Соотношение типов мышечных волокон определяется генетически, а выявить доминантный тип возможно только посредством инвазивной биопсии мышц.
Далее estet-portal.com более подробно рассмотрит:
- особенности и упражнения для тренировки волокон I типа;
- особенности и упражнения для тренировки II типа.
Мышечные волокна медленного (I) типа: особенности строения и работы
Что необходимо знать о мышечных волокнах I типа (медленных):
- они содержат митохондрии, которые используют кислород для выработки АТФ, необходимой для сокращения мышц;
- они называются красными мышечными волокнами, поскольку содержат больше миоглобина (белка, связывающего кислород), который делает их более темными;
- поскольку медленные мышечные волокна могут самостоятельно обеспечивать себя энергией, они могут выдерживать небольшие силовые нагрузки на протяжении длительного времени, однако не способны обеспечить значительную силу;
- для данного типа мышечных волокон характерен низкий порог активации, т.е. они первыми задействуются во время сокращения мышц; если они не способны сгенерировать достаточное количество силы для выполнения определенного действия, активируются быстрые мышечные волокна;
- тонические мышцы, отвечающие за осанку, имеют более высокую плотность красных волокон;
- статические упражнения на выносливость позволяют увеличить плотность митохондрий, что способствует повышению эффективности использования кислорода для выработки АТФ.
Какие упражнения подходят для тренировки мышечных волокон медленного типа
Характеристики медленных мышечных волокон и особенности их функционирования позволяют определить типы упражнений, которые повышают их аэробную активность. Такими упражнениями являются:
- изометрические упражнения (пример: планка), которые поддерживают мышечные волокна медленного типа в сокращенном состоянии на протяжении длительного периода времени – за счет этого повышается способность таких волокон использовать кислород для выработки энергии;
- медленные силовые упражнения с небольшим весом, но более 15 повторов, в которых активируется аэробный метаболизм;
- круговые тренировки, в которых одно упражнения сменяет другое практически без перерывов;
- упражнения с собственным весом и большим количеством повторов также повышает эффективность работы медленных волокон;
- при выполнении упражнений с собственным или небольшим весом для тренировки медленных мышечных волокон лучше сократить перерыв между подходами примерно до 30 секунд.
Для медленных мышечных волокон подходят медленные упражнения, многократные повторы и небольшие нагрузки.
Мышечные волокна быстрого (II) типа: особенности строения и функционирования
Мышечные волокна II типа (белые) делятся на быстрые волокна типа IIа и IIb:
- мышечные волокна IIa (быстрые окислительно-гликолитические) используют кислород для превращения гликогена в АТФ;
- мышечные волокна IIb (гликолитические) используют АТФ из мышечных клеток для генерирования энергии;
- для быстрых мышечных волокон характерен высокий порог активации, т.е. они задействуются только в случае, когда медленные волокна не способны обеспечить необходимое количество силы;
- волокна II типа быстрее достигают пиковой силы и могут развивать значительно большую силу, чем волокна I типа;
- быстрые волокна называют белыми, поскольку в них содержится мало капилляров;
- белые волокна быстрее «устают»;
- для фазических мышц, отвечающих за движение, характерна большая плотность быстрых волокон;
- быстрые волокна отвечают за размер и выраженность определенных мышц.
Какие упражнения подходят для тренировки мышечных волокон быстрого типа
Исходя из характеристик быстрых мышечных волокон, можно сделать вывод, что для их тренировки подходят упражнения на развитие взрывной силы и силовые тренировки, а именно:
- силовые тренировки с большим весом стимулируют двигательные единицы и активируют больше мышечных волокон; чем больше вес, тем больше быстрых волокон задействуется для его подъема;
- взрывные движения с отягощениями или с задействованием собственной массы тела – отличный способ тренировки белых мышечных волокон;
- быстрые мышечные волокна быстро устают, поэтому достижения максимальной эффективности во время упражнения рекомендуется ограничить количество повторов до 2–6;
- поскольку данный тип мышечных волокон быстро расходует энергию, для их восстановления требуется более длительный период отдыха (минимум 60– 90 секунд перерыва между упражнениями).
Именно быстрые волокна определяют размер мышц, а для их тренировки лучше всего подходят взрывные движения с отягощениями.
Понимание того, как организм адаптируется к нагрузкам, позволяет разработать наиболее эффективную программу тренировок, соответствующую Вашим индивидуальным потребностям.
estet-portal.com
Строение мышечных волокон | Построй себя сам!
Мышцы состоят из упругой и эластичной ткани, которая сокращается от воздействия нервных импульсов центральной нервной системы. В организме стандартного телосложения на долю мышечных волокон приходится более 40 % массы тела. Мышечные волокна принимают участие в двигательных процессах тела, кровообращении (в каждом кровеносном сосуде есть мышечные волокна), пищеварении, дыхании и других многих важных физиологических функциях организма. Принято считать, что в человеческом организме 640 мышц. Самые маленькие мышцы в организме прикреплены к мельчайшим косточкам, которые находятся в ухе. Самые крупные мышцы — это большие ягодичные мышцы. Самая длинная — это продольная мышца спины. Самые сильные мышцы — жевательные, то есть мышцы костей челюсти. Их усилие на сдавливание может превышать 400 килограмм давления.
Функции мышц
Двигательная функция. Благодаря мышцам двигаются части тела и отображают в действии мысли, желания и чувства человека (мимика лица). Таким образом любое движение человека невозможно без мышечной ткани.
Защитная функция. Пример, брюшная полость (живот) защищается мышцами брюшного пресса. Почти все кости и суставы в человеческом теле защищены мышечной тканью. Мышечная ткань осуществляет два самых главных фактора защиты костей и суставов. Это защита от механических воздействий, то есть банальных ушибов. Поврежденные мышцы полностью восстанавливаются и омолаживаются за время от 3 до 14 дней. А кости и суставы значительно дольше, а иногда и не восстанавливаются должным образом. Второй фактор (не менее) — это защита от холода. Коленные суставы не закрыты должным образом мышцами, поэтому часто страдают механически и термически.
Функция формирования. Развитие мышц определяет форму человеческого тела.
Энергетическая функция. Это своеобразный двигатель, который преобразует химическую энергию в механическую и тепловую энергию
Строение мышцы
Как уже многим известно, мышцы состоят из воды примерно на 70%, иногда до 80%. Это не совсем точное утверждение. Состоят мышцы не из воды, а из жидкости, которая формируется организмом, а это не совсем вода.
Минимальный структурный составляющий элемент всех типов мышечных волокон стоит рассмотреть и изучить более подробно. Непосредственно мышечное волокно, из которого состоят все мышцы, является не только клеточной составляющей мышцы (как все прочие), но и физиологической составляющей мышцы, которая способна сокращаться. Эта способность к сокращению напрямую связана со строением мышечного волокна, содержащего не только органеллы (составляющие клетки), но и специфические составляющие элементы, связанные с механизмом сокращения непосредственно — это миофибриллы. В их состав входят «сократительные» белки, которые называются актин и миозин.
Миозин — это основной белок мышечных волокон. Содержание его мышечных волокнах достигает 60%. Актин — это сократительный белок мышцы, содержание его около 15% от белка мышц. Актомиозин — это белковый комплекс мышечного волокна, состоящий из актина и миозина, который сокращается благодаря энергии, освобожденной в результате процесса гидролиза АТФ. Это сложное химическое соединение, которое является складом или аккумулятором энергии во всех живых организмах с мышечной структурой. Вырабатывается в ходе метаболических процессов — реакций, связанных с разложением пищевых веществ. В мышцах актомиозин создает волокна, расположенные в определенном порядке.
Мышечные волокна образуют пучки, которые питаются кровеносными сосудами и управляются нервом, подведенным к мышце, чей импульс приводит к сокращению. Вся эта конструкция прикрепляется к кости или другой, более мощной мышце, с помощью сухожилия.
Порядок, в котором располагаются мышечные волокна, определяет тип ткани и ее непосредственное назначение, которые тоже лучше знать и понимать.
Типы мышечной ткани
Все мышцы человеческого организма состоят из трёх типов волокон: скелетных (поперечно — полосатых), гладких и мышц сердца.
Скелетные или поперечно-полосатые мышцы
Это пучки мышечных волокон, которые соединены друг с другом слоями соединительной ткани. Данные длинные пучки соединяются в группы и образуют более крупную конструкцию связок мышечных волокон. Такая конструкция способна очень быстро сокращаться и так же быстро приходить в расслабленное состояние (буквально за долю секунды). Но самое важное — ее работа управляется волей человека с помощью нервных импульсов. Эти мышцы не способны работать длительное время, они быстро истощаются. Эти мышцы называют еще белыми волокнами. Они характеризуются небольшим содержанием белка миоглобина, но большим содержанием гликогена.
Мышца сердца
Этот тип волокна, похож на вышеописанный тип, но отличается строением и сокращается непроизвольно, самостоятельно, не вызывая при этом усталости внутреннего органа, сердца. При обычной работе сердце сокращается около 1 сек, но при увеличении нагрузки на кровеносную и мышечную систему частота сокращений увеличивается. Эта мышца сокращается самопроизвольно и уникальной ее особенностью является способностью сохранять ритм сокращения даже при извлечении этой мышцы из организма человека.
Гладкая мышечная ткань
Эти мышцы еще называют красными волокнами. Они отличаются от белых высоким содержанием белка миоглобина, который и придает им красный цвет.
Этот тип сокращается медленно и способен работать длительное время, а самое главное и интересное — непроизвольно, то есть сокращаться вне зависимости от желания человека. Из таких гладких мышечных волокон состоят внутренние органы, стенки пищевода, все кровеносные сосуды, половые органы и дыхательные пути. Эти мышцы отличаются автоматизмом, то есть способны возбуждаться при отсутствии каких либо внешних раздражителей. Если сокращение скелетных мышц (белых волокон) продолжается меньше одной секунды, то сокращения гладких мышц (красных волокон) продолжается от трех секунд до трех минут. Они способны на длительное время работы и истощаются медленнее, чем белые волокна. Также они слабее, чем белые волокна.
Следует отметить, что все типы мышечных волокон присутствуют во всех мышцах, но в разных количествах.
Если у мышцы с одного конца одно сухожилие (по сути — крепление), а с другого конца — несколько, то такие мышцы называют двух-, трех-, или четырехглавыми.
heavystuff.net
Быстрые мышечные волокна

Быстрые мышечные волокна
Скелетные мышцы состоят из двух типов миоцитов (мышечных волокон или клеток):
- Первого типа: Медленные Мышечные Волокна, они же красные.
- Второго типа: быстрые мышечные волокна, они же белые волокна, этот тип клеток наиболее важен в бодибилдинге, именно о них пойдет речь в данной статье.
- Быстрые мышечные волокна в свою очередь делятся на два подтипа: тип IIа и тип IIб.
Соотношение количества клеток скелетной мускулатуры определяется главным образом генетикой, и от этого во многом зависит атлетический потенциал каждого человека.
Каждая клетка мышцы состоит из множества миофибрилл - это тонкие нити белка (актина и миозина), которые способны сокращаться. За счет массового сокращения миофибрилл происходит сокращение всей мышцы.
Тип I(медленные) | Медленная | Небольшая | Низкая | Аэробной активности (бег, велоспорт) | Низкая | Много | Богатое | Высокая | Низкая | Жиры |
Тип IIa(переходные) | Высокая | Небольшая | Умеренная | Продолжительной анаэробной | Высокая | Много | Умеренное | Высокая | Высокая | Креатинфосфат, гликоген |
Тип IIb(быстрые) | Очень высокая | Большая | Высокая | Короткие анаэробные (силовой тренинг) | Очень высокая | Мало | Скудное | Низкая | Высокая | Креатинфосфат, гликоген |
Белые мышечные волокна
Быстрые или белые мышечные волокна используют анаэробный (бескислородный) метаболизм для производства энергии для сокращения. Они выполняют высокоскоростные движения, которые характеризуются большой или взрывной силой, однако утомляются они значительно раньше, чем медленные. И те и другие типы клеток производят примерно одинаковое количество работы за одно сокращение, однако белые клетки делают это значительно быстрее.
Отдельно выделяют два типа белых мышечных волокон. Подтип IIа и IIб
Подтип IIа
Клетки подтипа IIа также известны как промежуточные или переходные. Они могут использовать как аэробный (сопровождающийся потреблением кислорода) и анаэробный (бескислородный) метаболизм для продукции энергии сокращения в равной степени. Эти волокна представляют собой нечто среднее между быстрыми и медленными.
Подтип IIб
Это истинные быстрые мышечные волокна, они используют только анаэробный метаболизм, обладают максимальной силой и скоростью сокращений. Именно эти клетки играют первостепенную роль при наборе массы в бодибилдинге, поэтому практически все тренировочные программы рассчитаны на данный тип волокна скелетной мускулатуры.
Белые волокна IIб могут гипертрофироваться в гораздо большей степени, чем медленные.
В каких видах спорта важны быстрые волокна?
Именно этот тип клеток вносит основной вклад в достижение спортивных целей в тех видах спорта, где требуется взрывная сила:
Генетика и бодибилдинг
Ученые установили, что соотношение медленных и быстрых мышечных волокон генетически детерминировано. У среднестатистического человека их примерно поровну. В бодибилдинге лучших результатов добиваются те атлеты, мышцы которых содержат в большей степени белые волокна.
Белые мышечные волокна также важны для спринтеров. У выдающихся спортсменов - спринтеров быстрые мышечные волокна всегда преобладают - их около 80%.
Есть данные, что особенность тренировок может влиять на это соотношение. Силовой тренинг в бодибилдинге может увеличить количество клеток II типа, а при аэробных тренировках увеличивается содержание медленных клеток I типа. Однако эти изменения довольно ограничены. В исследованиях переход одного типа в другой, как правило, не превышает 10%. По этой причине, одни люди набирают мышечную массу с большим трудом, а другие наоборот - очень быстро.
Как определить долю белых волокон?
- Прежде всего, об этом может говорить ваш прогресс в бодибилдинге, пауэрлифтинге или других силовых видах спорта. Если все ваши усилия не оправдывают себя, то можно полагать, что у вас преобладает доля медленных волокон.
- Выполните ТЕСТ на соотношение волокон
- Максимально точно определить соотношение можно с помощью электромиографии, которая может определить точное соотношение клеток вашей мускулатуры.
Что делать если мало белых мышечных клеток?
- Если вы хотите получить красивую фигуру и выглядеть привлекательно, то этого можно достигнуть даже в том случае, если белые волокна в меньшинстве. К сожалению, достижения в профессиональном спорте будут маловероятны.
wikipower.ru