Углеводы клеток. Мономеры углеводов это


Углеводы — Медицинская википедия

Углеводы (сахара́, сахариды) — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(h3O)y, формально являясь соединениями углерода и воды.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных.

Простые и сложные

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов. Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C6h22O6) — структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов.

Дисахариды

Дисахари́ды (от di — два, sacchar — сахар) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных.

Олигосахариды

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2 — 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях.

Полисахариды

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6h20O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6h20O5)p, а при полном гидролизе — глюкоза.

Гликоге́н (C6h20O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу.

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой.

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид».

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе.

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие).

Пространственная изомерия

Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда.

Биологическая роль

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих.
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК).
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений.
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Биосинтез

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

<math>\mathsf{C_x(H_2O)_y + xO_2 \rightarrow xCO_2 + yH_2O, \ \Delta H<0}</math>

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

<math>\mathsf{xCO_2 + yH_2O \rightarrow C_x(H_2O)_y + xO_2}</math>

Обмен

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Важнейшие источники

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

 Просмотр этого шаблона УглеводыОбщие:ГеометрияМоносахаридыМультисахаридыПроизводные углеводов
Альдозы · Кетозы · Фуранозы · Пиранозы
Аномеры · Мутаротация · Проекция Хоуорса
</td></tr>
Диозы Альдодиоза (Гликольальдегид)
Триозы Кетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
Тетрозы Кетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
Пентозы Кетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза, Апиоза )

Дезоксисахариды (Дезоксирибоза)
Гексоза Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы Кетогептозы (Седогептулоза, Манногептулоза)
>7 Октозы · Нонозы (Нейраминовая кислота) · Сиаловые кислоты (N-ацетилнейраминовая кислота)
B05A B05B B05C B05D B05X B05Z
</td></tr>
Препараты крови
</td></tr>
Растворы для в/в введения
</td></tr>
Ирригационные растворы
</td></tr>
Добавки к растворам для в/в введения

medviki.com

Углевод - это... Что такое Углевод?

.

Углево́ды (сахара) — общее название обширного класса природных органических соединений. Название происходит от слов "уголь" и "вода". Причиной этого является то, что первые из известных науке углеводов описывались брутто-формулой Cx(h3O)y, формально являясь соединеними углерода и воды.

С точки зрения химии углеводы являются органическими веществами, содержащими неразветвленную цепь из нескольких атомов углерода, карбонильную группу а также несколько гидроксильных групп.

Простые и сложные углеводы

По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (олигосахариды и полисахариды).

Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием простых углеводов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях.

Биологическая роль и биосинтез углеводов

Биологическое значение углеводов:

  1. Углеводы выполняют пластическую функцию, то есть участвуют в построении костей, клеток, ферментов. Они составляют 2-3 % от веса.
  2. Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
  3. В крови содержится 100—110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови.
  4. Пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ,ДНК и РНК.
  5. Углеводы выполняют защитную роль в растениях.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(h3O)y + xO2 → xCO2 + yh3O + энергия.

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2 + yh3O → Cx(h3O)y + xO2

Важнейшие источники углеводов

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % сахара.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

Моносахариды

Олигосахариды

Полисахариды

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Углеводы Википедия

Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(h3O)y, формально являясь соединениями углерода и воды.

Сахара́  — другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Классификация[ | код]

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы — дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]

ru-wiki.ru

Органические вещества. Углеводы. Белки.

Выходной контроль.

Цель: Проверить усвоение знаний по теме.

Задание: Ответьте на вопросы.

Выберите правильный ответ:

Вариант 1.

  1. 1. 1. Белки, увеличивающие скорость химических реакций в клетке:

а) гормоны;            в) витамины;

б) фермент;           г) протеины.

  1. 2. 2. Мономер сложных углеводов – это:

а) аминокислота;           в) глицерин;

б) нуклеотид;                  г) глюкоза.

3. Углеводы в клетке не выполняют функцию:

а) энергетическую;

б) запасающую;

в) хранения наследственной информации.

4. Полимер, мономеры которого располагаются в одну линию:

а) гомополимер;                                в) гетерополимер;

б) неразветвлённый полимер;      г) разветвлённый полимер.

5. В состав аминокислот не входит:

а) кислород;             в) фосфор;

б) сера;                      г) азот.

 

6. У животных гликоген, а у растений:

 

а) хитин;                      в) крахмал;

 

б) целлюлоза;           г) сахароза.

 

7. У гемоглобина есть, а у лизоцима нет:

 

а) первичной структуры;   в) третичной структуры;

 

б) вторичной структуры;     г) четвертичной структуры.

 

1

2

3

4

5

6

7

 

 

 

 

 

 

 

 

 

 

 

Вариант 2.

 

1. Углеводы при фотосинтезе синтезируются из:

а) О2 и Н2О;                                в) СО2 и Н2О;

б) СО2и Н2 г) СО2 и Н2СО3.

 

2. Запасным углеводом в клетках печени человека является:

а) целлюлоза;                              в) глюкоза;

б) крахмал;                                  г) гликоген.

 

3. Неизменяемыми частями аминокислот являются:

а) аминогруппа и карбоксильная группа;

б) только радикал;

в) только карбоксильная группа;

г) радикал и карбоксильная группа.

 

4. Из аминокислот не построена молекула:

а) гемоглобина;                             в) гликогена;

б) инсулина;                                   г) альбумина.

 

5. Основным источником энергии для новорожденных

млекопитающих является:

а) глюкоза;                        в) гликоген;

б) крахмал;                       г) лактоза.

 

6. Молекулы белков отличаются друг от друга:

а) последовательностью чередования аминокислот;

б) количеством аминокислот в молекуле;

в) формой третичной структуры;

г) всеми указанными способами.

 

7. Первичная структура белка удерживается:

а) водородными связями;

б) пептидными связями;

в) гидрофобными связями;

г) дисульфидными связями.

 

1

2

3

4

5

6

7

 

 

 

 

 

 

 

 

 

Коррекция знаний: § 2.5.

www.teacherjournal.ru

Углеводы и их виды

Углеводы (на англ. carbohydrate, hydrates — гидрат, carbon — углерод) — это органические соединения, которые имеют эмпирическую формулу, состоящую только из углерода, водорода и кислорода.

Функции углеводов

Углеводы выполняют множество функций в живых организмах. Полисахариды (к примеру, крахмал и гликоген) участвуют в образовании энергии и в качестве конструкционных элементов (к примеру, целлюлоза в растениях и хитин у членистоногих). Рибоза является важнейшим компонентом коферментов и основой генетической молекулы РНК. Дезоксирибоза является компонентом ДНК. Сахариды и их производные включают в себя биомолекулы, играющие ключевую роль в иммунной системе, предотвращении патогенеза, в свертываемости крови и в развитии всего организма.

Липогенез — это преобразование небольшой части (около 30%) съеденных углеводов в жировые отложения. Является абсолютно нормальным и естественным процессом.

Гиперлипогенез — преобразование значительной части углеводов в жировые отложения. Вызывается вследствие нарушения восприимчивости к инсулину, или нарушения его выработки.

Гликемический индекс и нагрузка

Термин «гликемический индекс» (ГИ) (на англ. glycemic index или glycaemic index (GI)) применяется как показатель влияния продуктов питания на уровень сахара в крови. Шкала измерения варьируется от 0 до 100. Высшую точку 100 занимает глюкоза.

Дополнительно: Таблица гликемического индекса продуктов.

Гликемическая нагрузка (ГН) (на англ. glycemic load (GL)) — это система оценки пищевых продуктов на их общую гликемическую реакцию. Чем выше гликемическая нагрузка, тем выше ожидаемое повышение глюкозы в крови и инсулиногенетическое влияние пищи.

Гликемическая нагрузка

Продукты ГИ Углеводы, г ГН Инсулиновый индекс
Французский багет 95 50 48
Банан 52 20 10 81
Морковь 47 7.5 3.5
Тортилья (кукурузная лепешка) 52 48 25
Картофель 50 19 9.3 121
Белый рис, варенный 64 24 15.4 79
Арбуз 72 5 3.6

Классификация углеводов и их описание

В диетических целях углеводы были разделены на простые (моносахариды и дисахариды) и сложные (олигосахариды и полисахариды). Термин сложный углевод был впервые использован «Специальным комитетом по питанию и потребностям человека при сенате США» (на англ. US Senate Select Committee on Nutrition and Human Needs) в 1977 году в публикации «Диетические цели для США» (на англ. Dietary Goals for the United States). Данный термин был употреблен для обозначения фруктов, овощей и цельных зерен.

Простые углеводы

Углеводы, которые усваиваются быстро. Многие простые углеводы содержат рафинированные сахара и несколько важных витаминов и минералов. Продукты: фрукты, фруктовые соки, молоко, йогурт, мед, патока и сахар.

Моносахариды
  • Глюкоза — это составная единица, из которой построены важнейшие полисахариды (такие как гликоген, целлюлоза и крахмал), а также входит в состав сахарозы, мальтозы и лактозы. Очень быстро всасывается в кровь через желудочно-кишечный тракт.
  • Фруктоза — моносахарид, присутствующий почти во всех сладких плодах и ягодах. В отличие от глюкозы, фруктоза не поглощается инсулинозависимыми тканями.
  • Галактоза входит в состав молочного сахара (лактоза).
  • Манноза — компонент многих полисахаридов.
  • Рибоза — компонент РНК.
  • Дезоксирибоза – производная рибозы. Является компонентом ДНК.
Дисахариды

Состоят из двух мономеров — моносахаридов.

  • Сахароза — это обычный сахар. Ее моносахаридами являются глюкоза и фруктоза. Много содержится в сахарной свекле и сахарном тростнике.
  • Мальтоза — солодовый сахар, состоящий из двух остатков глюкозы. В больших количествах содержится в проросших зернах (солоде) ячменя, ржи и в других зерновых культурах.
  • Изомальтоза (E953) входит в состав амилопектина растительного и животного крахмала (гликоген).
  • Лактоза или молочный сахар — углевод, состоящий из остатков молекул глюкозы и галактозы. У многих людей лактоза не усваивается и вызывает нарушения в пищеварительной системе. Для таких людей выпускают БАДы, не содержащие данного углевода.
  • Лактулоза — это дисахарид, состоящий из остатков фруктозы и галактозы. В природе не встречается.

Сложные углеводы

Требуют больше времени на переваривание, а некоторые вообще не усваиваются, но тем неменее участвуют в жизнедеятельности микрофлоры ЖКТ и выводят вредные вещества из организма. К ним относится клетчатка (целлюлоза) — элемент, являющийся основой клеточных стенок. Продукты: овощи, хлебобулочные изделия, крупы и макаронные изделия.

Олигосахариды

Состоят из десятков, но не более 20 мономеров — моносахаридов.

  • Фруктоолигосахариды (ФОС) (на англ. Fructooligosaccharide (FOS)) (олигофруктоза, олигофруктан) содержатся в большинстве овощах. ФОС был популярен в качестве пищевой добавки в Японии на протяжении многих лет, еще до 90-ых годов прошлого века. Служат субстратом для микрофлоры в толстой кишке. Способствуют усвоению кальция.
  • Галактоолигосахариды (ГОС) (на англ. Galactooligosaccharides (GOS)) (олигогалактосиллактоза, олигогалактоза, олиголактоза, трансгалактоолигосахариды) стимулируют рост бактерий в толстой кишке, повышенность которых положительно влияет на здоровье.
  • Маннан-олигосахариды (МОС) (на англ. Mannan-oligosaccharides (MOS)) содержатся в дрожжах. Способствуют росту полезных бактерий, регулируют баланс микрофлоры в кишечнике и желудке, а также помогает в поглощении болезнетворных бактерий и в борьбе с болезнями.
Полисахариды

Состоят из десятков, сотен или тысяч мономеров — моносахаридов.

  • Декстрин — полисахарид, продукт гидролиза крахмала.
  • Крахмал — основной полисахарид, откладываемый, как энергетический запас у растительных организмов.
  • Гликоген — полисахарид, откладываемый, как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений.
  • Целлюлоза или клетчатка — структурный компонент клеточных стенок у растений. Это самое распространенное органическое соединение на Земле.
  • Хитин — основной структурный полисахарид экзоскелета насекомых и членистоногих, а также клеточных стенок грибов.
  • Маннан содержится в высших растениях, в морских водорослях и микроорганизмах (дрожжах).
  • Галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева.
  • Глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит.
  • Амилоид — применяется при производстве пергаментной бумаги.

См. также

www.shealth.ru

Углеводы Мономеры углеводов – простые сахара или моносахариды

shkolageo.ru 1

Основные типы биополимеров

Углеводы

  • Мономеры углеводов – простые сахара или моносахариды. Чаще всего это глюкоза и фруктоза. Самая важная функция моносахаридов – обеспечение организма энергией. В живых клетках простые сахара расщепляются до двуокиси углерода и воды, что сопровождается высвобождением энергии. Эту энергию клетки используют для своих разнообразных нужд.

  • Глюкоза – это базовая форма, которая хранится в человеческом организме, как запас энергии в виде гликогена в мышцах и печени. В природе глюкоза содержится в сладких фруктах и овощах: винограде, ягодах, апельсинах, моркови, кукурузе. Глюкоза также производится в промышленном масштабе. Пример – кукурузный сироп

  • Фруктоза содержится в меде, спелых сладких фруктах и овощах. Перед усвоением глюкозы, организм должен сначала конвертировать фруктозу в глюкозу.

Строение молекулы глюкозы Линейная форма глюкозы:  СНОСН(ОН)СН(ОН)СН(ОН)СН(ОН)СН2(ОН)

  • Глюкоза преимущественно существует в циклическом виде. Известны a- и b-формы циклической глюкозы, различающиеся ориентацией гидроксила при С-1:

Простые сахара могут соединяться друг с другом, образуя дисахариды

  • Сахароза – столовый сахар, получаемый из сахарной свеклы, тростника, а также коричневый сахар, черная патока. Содержится в небольшом количестве в овощах и фруктах.

  • Лактоза – молочный сахар, единственный углевод животного происхождения, поэтому очень важный в питании человека. Содержание лактозы в молоке зависит от вида молока и варьируется от 2 до 8%.

  • Мальтоза - солодовый сахар, формируется в процессе образования солода и ферментации винограда. Присутствует в пиве, мюслях и детском питании, обогащенных мальтозой.

Липиды

  • Липиды разнообразны по структуре и по соотношению входящих в них элементов. Однако все они имеют общее свойство – все они неполярны. Они растворяются в хлороформе и эфирах, но практически нерастворимы в воде. Благодаря этому свойству липиды являются важнейшими компонентами мембран.

  • Липиды –главная форма хранения энергии в животном организме, хранятся в концентрированном виде (без воды). Любое избыточное количество сахара, не израсходованное сразу, быстро превращается в жир. Существует три группы липидов:

Триглицеролы (или триглицериды) – это молекулы, образованные в результате присоединения трех остатков жирных кислот к одной молекуле трехатомного спирта глицерола.

  • Триглицеролы (или триглицериды) – это молекулы, образованные в результате присоединения трех остатков жирных кислот к одной молекуле трехатомного спирта глицерола.

  • В этой группе различают жиры и масла. Жиры при комнатной температуре остаются твердыми, а масла сохраняют жидкую консистенцию. В маслах содержится больше ненасыщенных жирных кислот.

  • Фосфолипиды – сходны с триглицеролами, но в них один или два остатка жирных кислот замещены группами, содержащими фосфор. Фосфолипиды являются важнейшими компонентами биологических мембран.

Стероиды – это липиды, в основе которых лежит основа из четырех колец. У различных стероидов к этому основному скелету присоединяются боковые группы. К стероидам относится ряд гормонов (половые гормоны, кортизон). Стероид холестерол – важный компонент клеточных мембран у животных, но его избыток в организме может привести к образованию желчных камней и к заболеваниям сердечно-сосудистой системы.

  • Строение молекулы холестерола

Белки

  • В состав белка входят углерод, кислород, водород и азот. Некоторые белки содержат еще и серу. Роль мономеров в белках играют аминокислоты.

  • У каждой аминокислоты имеется карбоксильная группа (-СООН) и аминогруппа (-Nh3).

  • В белках встречаются 20 обычных видов аминокислот.

  • Функции белков – ферментативная, строительная (мембраны), энергетическая, двигательная, защитная и регуляторная.

Для белков характерны четыре структуры:

  • Первичная – полипептид, длинная цепь, содержащая от 100 до 300 аминокислот, образуется за счет пептидных связей.

  • Вторичная – образуется в результате формирования водородных связей между соседними пептидными связями. При формировании вторичной структуры молекула белка упаковывается либо в левозакрученную спираль, либо в бета-конфигурацию, характерную для белков, выполняющих строительную функцию.

  • Третичная формируется в результате образования 4-х видов связей: водородных, ионных взаимодействий, образования дисульфидных мостиков и гидрофильно-гидрофобных связей (Ван-Дер-Валя).

  • Существует глобулярная и фибрилярная третичные структуры. Третичная структура для большинства белков является рабочей, т.к. она энеогетически более выгодна.

  • Некоторые белки формируют четвертичную структуру – она представляет собой комплексы белков и других органических веществ. Формирующие силы такие же как и у третичной структуры.

Денатурация белка

  • Это потеря биологической активности белков при разрыве слабых связей, разрушение нативной (природной) структуры белка под действием денатурирующих агентов: высокой температуры, УФО, кислот, щелочей, ионов тяжелых металлов. Денатурация бывает обратимая (ренатурация) и необратимая.

Четыре структуры белка

shkolageo.ru

Углеводы клеток | Биология

Углеводы, или сахара

Свое название углеводы получили ввиду того, что в их молекулах водород и кислород присутствуют в таком же соотношении, как и в воде. Их общая химическая формула Cnh3nOn может быть записана и так: Cn(h3O)n или (Ch3O)n, где n > 3. Однако среди углеводов встречаются вещества, не соответствующие приведенной формуле, например рамноза (C6h22O5) и др.

Углеводы содержатся в каждой клетке. Особенно их много в клетках растений. В листьях, семенах, клубнях, плодах углеводы составляют до 90 % сухого остатка. В животных клетках углеводов содержится значительно меньше – около 1 % сухого остатка, за исключением клеток печени и мышц (до 5 %).

По химической организации сахара разделяют на простые и сложные. Простыми называют углеводы, образованные из однородных мономеров, а сложными – из мономеров различной природы.

Углеводы – это важнейшие органические вещества, имеющиеся у всех живых организмов без исключения.

Среди углеводов различают три основных класса соединений: моносахариды, олигосахариды и полисахариды.

Моносахариды

Простыми сахарами, или моносахаридами, называют низкомолекулярные органические соединения, углеродная цепь которых может содержать три и более атомов углерода. Моносахариды имеют неразветвленные углеродные цепочки, где при одном из атомов углерода находятся карбонильная группа (>C=O), а при остальных – по одной гидроксильной группе (–OH). Если карбонильная группа находится в конце цепи, то моносахарид представляет собой альдегид и называется альдозой. При любом другом положении этой группы он является кетоном и называется кетозой. Простейшие моносахариды – это трехуглеродные глицеральдегид (альдоза) и диоксиацетон (кетоза).

Примеры структурных формул альдоз и кетозПримеры структурных формул альдоз и кетоз

В зависимости от количества атомов углерода в молекулах сахаров различают триозы, тетрозы, пентозы, гексозы и т. д. Моносахариды способны кристаллизоваться, но не гидролизуются с образованием более простых углеводов. Моносахариды являются первичными продуктами фотосинтеза, из них в результате ряда превращений образуются полимерные молекулы – полисахариды.

Среди моносахаридов наиболее важны гексозы и пентозы. Глюкоза (гексоза) является главным химическим компонентом клетки благодаря участию в создании многих полимерных сахаров и сложных соединений с белками и липидами. Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот. Сложные углеводы, соединяясь с белками, образуют гликопротеины, с жирами – гликолипиды. Гликопротеины (или гликопротеиды) присутствуют во всех тканях животных, растений, грибов и бактерий. К ним относятся многие белки плазмы крови, опорных тканей, некоторые ферменты, гормоны. Они входят в состав биологических мембран, участвуют в иммунологических реакциях. Гликолипиды также содержатся в тканях всех живых организмов, входят в состав мембран, выполняют структурные функции в фотосинтетических органоидах (хлоропластах).

В современной науке химические соединения принято обозначать не только брутто-формулой, которая показывает, какие атомы и в каком количестве входят в состав вещества, но используют также и структурные формулы. Они громоздки, но зато создают представление о расположении атомов и связей между ними. Например, сравнивая структурные формулы молекул глюкозы, фруктозы и галактозы, становится понятным различие свойств этих моносахаридов, хотя брутто-формула у них одна и та же – C6h22O6. Свойства органических соединений зависят также от того, при каком атоме углерода находится та или иная функциональная группа. Поэтому при написании их формул принята определенная нумерация атомов углерода.

Формы записи молекул сахаровФормы записи молекул сахаров: А – брутто-формула; Б – линейная формула; В – циклическая формула Нумерация атомов углерода в молекулах гексоз и пентоз Нумерация атомов углерода в молекулах гексоз (А) и пентоз (Б)

Молекулы моносахаридов могут быть представлены линейной или кольцевой структурной формулой. Например, в водном растворе глюкоза может быть представлена и в той и в другой форме, но в состав полимерных соединений ее молекулы вступают только в кольцевой форме.

Моносахариды имеют большое число изомеров, различающихся лишь ориентацией их гидроксильных групп. Например, галактоза и манноза – изомеры. Два изомера, являющиеся зеркальным отражением друг друга, обладают одинаковым химическим строением и поэтому имеют одинаковые названия, различающиеся лишь приставкой D или L.

Все углеводы живых клеток являются D-изомерами.

Глюкоза, или виноградный сахар, – один из наиболее распространенных моносахаридов из группы гексоз, важнейший источник энергии в живых клетках, также является изомером. Глюкоза существует в двух основных формах: α-D-глюкопираноза (в крахмале) и β-D-глюкопираноза (в целлюлозе).

Две формы молекулы D-глюкозыДве формы молекулы D-глюкозы

Олигосахариды

Моносахариды, в первую очередь гексозы и их производные, путем взаимодействия гидроксигруппы при атоме C1 с одной из гидроксигрупп соседнего мономерного звена (C2, C3, C4 или C6) образуют большое число различных олиго- и полисахаридов. Образующуюся связь между мономерами называют гликозидной. Олигосахаридами (от греч. oligos – немного) называют углеводы, образованные двумя или несколькими моносахаридами, соединенными между собой гликозидными связями. Дисахариды – наиболее распространенные представители олигосахаридов.

Образование дисахарида сахарозыОбразование дисахарида сахарозыНаиболее распространенные природные дисахаридыНаиболее распространенные природные дисахариды: 1 – сахароза; 2 – лактоза; 3 – мальтоза

Полисахариды

Полисахариды в животных клетках чаще всего представлены в виде гликогена и хитина, а в растительных – в виде крахмала, целлюлозы, пектина и др. В полимерных углеводах роль мономеров выполняют обычно моносахариды глюкоза и фруктоза; их химический состав в обобщенном виде записывается формулой (C6h22O6)n, где n – количество мономеров, включенных в молекулу.

Полимерная молекула гликогена, состоящая из множества мономеровПолимерная молекула гликогена, состоящая из множества мономеров — молекул α-D-глюкозы

Наиболее распространенным полисахаридом является целлюлоза. В ней аккумулируется до 50 % всего углерода биосферы. Это линейный полимер, построенный из многочисленных остатков молекул глюкозы. Мономером целлюлозы является не моносахарид глюкоза, а дисахарид целлобиоза, состоящий из двух остатков β-D-глюкозы, соединенных β-гликозидной связью.

Целлюлоза может включать от 2000 до 25 000 остатков глюкозы. Уложенные параллельно друг другу, полимерные цепи целлюлозы формируют микрофибриллу диаметром 4–10 нм и длиной 1–5 мкм. Микрофибриллы целлюлозы совместно с другими полисахарами и белками образуют клеточную стенку клеток растений.

Основные структурные компоненты клеточной стенки растенийОсновные структурные компоненты клеточной стенки растений: 1 – микрофибрилла целлюлозы; 2 – молекулы гемицеллюлозы; 3 – пектины; 4 – структурный белок

Целлюлоза очень устойчива к химическим воздействиям и при растяжении прочна как сталь. Эти свойства делают ее прекрасным строительным материалом, придающим прочность клеточной стенке растений.

Крахмал является полимером α-D-глюкозы. Его молекулы состоят из двух компонентов – амилозы и амилопектина. Линейные цепи амилозы включают в себя несколько тысяч остатков глюкозы и закручены в спираль. Амилопектин представлен в виде разветвленных цепей и содержит почти вдвое больше остатков глюкозы, чем амилоза. Хитин – тоже полисахарид, но образован мономерами β-D-ацетилглюкозамина. С ним по составу сходен муреин, образующий клеточные стенки многих бактерий.

Роль углеводов в клетке

Все углеводы являются важным источником энергии, так как при расщеплении их молекул выделяется энергия. Помимо энергетической углеводы выполняют важную строительную функцию, участвуя в образовании клеточных стенок, служат важным компонентом нуклеиновых кислот и разнообразных сложных соединений с белками и липидами.

blgy.ru


.