Что такое теплоаккумулятор для электрического котла: Теплоаккумулятор и электрокотел отопления | буферная-емкость.рф

Авг 7, 1979 Разное

Что такое теплоаккумулятор для электрического котла: Теплоаккумулятор и электрокотел отопления | буферная-емкость.рф

Содержание

Теплоаккумулятор и электрокотел отопления | буферная-емкость.рф

Буферная и емкость, и электрический котел отопления.

Можно ли сэкономить свои деньги на потреблении электроэнергии, при условии отопления электрическим котлом. Да, такая возможность есть, но только в том случае. если к вашему дому подведено надежное энергоснабжение, с возможностью ночной терификации. Не будем говорить о том, что сам электрический котел может отапливать дом напрямую, в ночное время, что снизит общие затраты на отопления. Буферная емкость также может существенно способствовать экономии денег на энергопотреблении.
Что такое теплоаккумулятор. Это прибор системы отопления, который принимает на себя тепловую энергию, накапливает ее, с целью последующей отдачи в систему отопления. В случае с твердотопливными котлами, буферные емкости (теплоаккумуляторы) собирают тепло от твердотопливного котла, который уже прогрел дом, но процесс горения угля в топке еще продолжается. До установки теплоаккумулятора, это невостребованное тепло попросту уходило бы на улицу через форточку, систему вентиляции, или просто в дымоход. С установкой буферной емкости, эта тепловая энергия вначале собирается в емкость, а затем отдается в отопительную систему без дополнительного запуска угольного котла.

Как работает теплоаккумулятор с электрическим котлом. Основная идея загрузки буфера кроется в мощности электрокотла, подключении его по ночному тарифу. Ночью, электрокотел, обладающий повышенной мощностью может ни только прогревать теплоноситель для системы отопления, но и при превышении тепловой энергии запитывать ночью буферную емкость. Прогретый ночью теплоноситель, впоследствии, будет отдаваться в отопительную систему днем, когда стоимость электроэнергии уже будет тарифицироваться по более дорогому тарифу. При этом, сам электрокотел не будет включаться. Таким образом, можно сэкономить свои деньги, искусственно увеличив интервал энергопотребления в ночном, дешевом тарифе.
При большой мощности электрического котла, весь потенциал генератора тепла будет довольно быстро прогревать буфер.

Как рассчитать объем теплоаккумулятора.

Расчет объема буферной емкости можно производить по специальным теплотехническим формулам со многими неизвестными, или можно воспользоваться обычным народным расчетом. Упрощенный вид определения объема теплоакумулятора следующий: на 1 кВт мощности отопительного котла необходимо 30 литров объема буферной емкости. Другими словами, при мощности электрокотла около 15 кВт, объем буферной емкости (теплоаккумулятора) должен составлять около 500 литров.
Конечно, стоит внести поправки при подборе объема буфера на возможности выдачи электрокотлом дополнительного, невостребованного тепла. Очевидно, что что если электрический котел еле-еле справляется только с отопительной системой напрямую, то для для прогрева буфера у него попросту не останется необходимой мощности загрузки. В таклем случае, объем теплоаккумулятора стоит высчитывать по принципу остаточной мощности.

Теплоаккумулятор с электрическими ТЭНами.

Есть техническое решение, которое позволяет загружать буферную емкость недорогим теплом по ночному тарифу, без использования электрокотла. Многие производители теплоаккумуляторов оснащают свою продукцию специальными погружными гильзами для установки электрических ТЭНов сразу в тело теплоаккумулятора. И данное техническое решение, может быть даже технически более правильное, чем загрузка буфера от электрокотла.

Во-первых, вы не перегружаете основной источник отопления — электрокотел.
Во-вторых, нет теплопотерь по температуре теплоносителя, при передаче тепла от электрокотла теплоаккумулятору.
В-третьих, Вы сами регулируете энергопотребление буферной емкости, набирая оптимальную электрическую мощность ТЭНами. Выбор нагревательных элементов по мощности зависит исключительно от остаточных возможностей потребления электроэнергии с учетом работающего электрокотла.
В-четвертых. Вы не привязаны к мощности электрокотла при выборе объема бочки теплоаккумулятора. Объем выбираете сами, именно по суммарной мощности электрических ТЭНов.
Возможности набора электрических ТЭНов для тепоаккумулятора,  как правило, следующий: 2 кВТ, 3 кВТ, 6 кВТ, 9 кВТ.  Таким образом, у вас существенно увеличивается оперативный технический простор для сбора тепла в буферную емкость в ночном режиме электропотребления.

Какой купить электрокотел для буферной емкости.

Выбор электрокотла, практически ничем не ограничен. Вам не требуется особая встроенная система автоматики или управления электрокотлом, кроме обычного комнатного термостата. Все основные узлы, регулирующие направление потока теплоносителя находятся вне корпуса электрокотла. Как правило, это обычный трехходовой кран с сервоприводом, управляемый комнатным температурным программатором.
Но мы все же рекомендуем для установки в системах отопления электрокотлы ЭВАН. На сегодняшний день, это одни из самых надежных, долговечных, и проверенных отопительных электрических котлов.

Простое подключение буферной емкости и эл котла по ночному тарифу

Схем обвязки теплоаккумулятора и эл котла для реализации ночного тарифа существует множество. У всех есть свои достоинства и свои недостатки. Причем от последних не избавлена ни одна. Обычно это, или слишком сложная по гидравлике схема с использованием, большого количества оборудования, что, в свою очередь, влечет за собой увеличение стоимости, или схемы попроще, но не умеющие исключать буферную емкость из работы, когда работать она не должна. Такие простые схемы не позволяют быстро переключаться с работы на теплоаккумуляторе, на прямую работу с системой отопления. Ниже я привожу мои рассуждения о том, как должна выглядеть подобная обвязка. В ней я попробовал предложить, как простоту схемы и ее относительно невысокую стоимость, так и функционал и простоту управления. Всем, кто примет участие в обсуждении и внесет предложения по улучшению этой схемы, моя особая благодарность. В любом случае это будет интересно всем.

Итак!

Начнем с объема теплоаккумулятора

Предположим, что мы хотим запасать тепло на весь период действия дневного тарифа, чтобы совсем не включать наш электрокотел днем. Допустим, что теплопотери нашего, хорошо утепленного дома, составляют 6 квт при самой холодной пятидневке (-28 для Москвы. Для других регионов и домов потребуются свои расчеты) это дом площадью до 150-170 кв.м. Тогда, за период действия дневного тарифа 16 часов нам понадобится 16*6=96 кВт.ч энергии.

Для того чтобы мы могли запасти такое количество энергии нам потребуется буферная емкость объемом 2200-2400 литров.

Берем дельту 40 градусов (80°С максимальная температура котла и 40°С минимальная температура, подаваемая с систему отопления)

Теплоемкость воды 4,19Дж/гр.град

Коэффициент пересчета джоулей в ваттчасы 0,278

2200*4,19*40*0,278=102,5кВт.ч. сможем запасти в объеме 2200 литров.

Из этого числа вычтем неравномерный прогрев теплоаккумулятора по высоте 5% 102- 5%= 97

Итого получаем 97 киловатт часов энергии. Ровно столько сколько нам нужно

Ну а дальше все просто. Общая мощность нагревателя для загрузки буферной емкости 96кВт.ч /8 часов ночного тарифа получаем 12 кВт плюс к этому 6 кВт на сквозное отопление дома в ночное время. Итого 12+6=18кВт.

Откуда нам лучше взять такую мощность? Напрашивается ответ «конечно от электрокотла»! Не спешите. Загрузка буферной емкости — это операция одного режима! Что это значит? Это значит, что нам не нужны никакие функции, имеющиеся в электрокотле, за которые мы должны платить деньги. Зарядка теплоаккумулятора всегда производится на максимально возможной мощности и температуре, чтобы успеть зарядить ее, не выходя за временные рамки ночного тарифа. С этой задачей успешно справляются обычные тэны. Мы можем использовать один тэн мощностью 18 квт, или, что дешевле и проще три тэна по 6кВт смонтированных непосредственно в буферную емкость, благо резьбы для подключения в буферной емкости присутствуют, обычно, в избытке.

Далее. Нам потребуется циркуляция теплоносителя внутри буферной емкости для того, чтобы мы не получили прогрев только верхней ее части. Поэтому на стороне загрузки устанавливаем насос.

Со стороны системы отопления (СО) устанавливаем трехходовой смесительный клапан, управляемый термостатически или через контроллер погодозависимой автоматики (ПЗА). Трехходовой клапан, отсекающий буферную емкость, в периоды, когда она не нужна и электрокотел.

Электрокотел (самый простой или опять же тэн, смонтированный в гильзе) для компенсации недостатка запасенного тепла, если окажется, что его не хватило на время действия дневного тарифа. Отдельный электрокотел нужен для того чтобы не заряжать днем попутно и буферную емкость.

Как все это управляется:

Насос загрузки и три тэна получают разрешение на работу от таймера, настроенного на ночной тариф (23ч- 7ч), и от термостата полной загрузки емкости (установлен в нижней части и настроен в зависимости от высоты установки на температуру от 60 до 70 градусов)

Насос системы отопления работает всегда.

Отсечной клапан перекрывает циркуляцию через буферную емкость по команде термостата при снижении температуры в верхней части (раздающей) ниже 40 градусов. После перекрытия циркуляция осуществляется по малому кругу.

Этот же термостат дает разрешение электрокотлу на стороне системы отопления на включение, но это не значит, что котел начинает работу по команде этого термостата. По его команде только перекрывается циркуляция через теплоаккумулятор и дается разрешение на включение электрокотла. Но включится он только по команде комнатного термостата, фиксирующего снижение температуры в отсутствии подачи тепла от буферной емкости.

Все просто. На схеме показано релейное управление, при желании этой задачей можно нагрузить какой-нибудь самодельный контроллер на базе недорого решения, например, от Ардуино.

Теплоаккумулятор

Несмотря на простоту устройства, и очевидность пользы от использования теплоаккумуляторов, данный вид оборудования пока не очень распространен. В этой статье мы постараемся рассказать о том, что такое аккумулятор тепла и преимущества, которые приносит его использование в системах отопления.

 

Что такое теплоаккумулятор (буферная емкость) и его назначение.

Назначение теплоаккумулятора (ТА) будет легче описать на нескольких примерах-задачах. 

Задача первая. Система отопления построена на основе твердотопливного котла. Постоянно отслеживать температуру теплоносителя на подаче и вовремя подбрасывать дрова нет возможности, в результате чего температура подачи то превышает нужную нам, то снижается ниже нормы. Как обеспечить поддержание требуемой температуры теплоносителя?

Задача вторая. Дом отапливается электрокотлом. Электроснабжение – двухтарифное. Как снизить затраты на электроэнергию, уменьшив энергопотребление днем и увеличив ночью?

Задача третья. Имеется система отопления, в которой тепло вырабатывается теплогенераторами, работающими на различных видах топлива и энергии – напр. газе, электричестве, солнечной энергии (гелиоколлекторы), энергии земли (тепловой насос). Как обеспечить их эффективную работу без потерь выработанного тепла, когда в нем нет потребности, при этом обеспечить дом теплом в период пикового энергопотребления?

Не особо вдаваясь в теорию теплотехники, для всех задач напрашивается решение в виде установки в систему буферной емкости, которая служила бы резервуаром для теплоносителя и в которой его температура поддерживалась бы на заданном уровне. Именно такой буферной емкостью и является теплоаккумулятор. Для решения этих задач, теплоаккумулятор обычно включается «в разрыв» системы с образованием котлового и отопительного контуров. Условная схема включения теплоакумулятора в систему отопления изображена ниже на рисунке.

 

Рис. Принципиальная схема включения буферной емкости (теплоакумулятора)

С различными способами включения буферной емкости в систему отопления можно ознакомиться в статье «Схемы подключения теплоаккумулятора». 

В настоящее время тепловые аккумуляторы чаще всего используются в системых отопления с твердотопливными котлами. В этих системах использование теплоаккумулятора позволяет реже загружать топливо, обеспечить комфортное обеспечение теплом независимо от колебаний температуры теплоносителя на выходе из котла. Часто буферные емкости устанавливаются с электрокотлами для экономии средств за счет пониженного ночного тарифа и в комбинированных системах с одновременным использованием твердотопливных и электрических котлов.
Теплоаккумулятор (ТА) бывает полезным в системах и с газовыми котлами, особенно, когда минимальная тепловая мощность котла превышает тепловую нагрузку объекта. За счет более продолжительных периодов «загрузки» ТА (нагрева теплоносителя) удаётся избежать «тактования» котла.

Кроме использования в качестве буферной емкости, ТА выполняет функцию гидравлического разделителя. Особенно это свойство теплоаккумулятора востребовано в системах с генераторами тепла, работающих на различающихся видах энергии (в т.ч. альтернативной). Как правило, эти источники тепла работают на специальных теплоносителях, которые не допускают смешения с другими типами, требуют уникального температурного и гидравлического режима, часто несовместимого с режимами контура отопления (радиаторного, теплого пола). Так, например, диапазон температур теплового насоса составляет обычно ~5°C, а в контуре распределения тепла диапазон температур может быть значительно больше (10-20°С). Для разделения контуров, теплоаккумулятор может быть оборудован дополнительными встроенными теплообменниками.

Основные функции буферной емкости (теплоаккумулятора):
— накопление и поддержание запаса тепловой энергии в виде определенного объема теплоносителя заданной температуры с возможностью ее использования в нужный период времени или при прекращении генерации тепла основными его источниками;
— организация системы отопления на нескольких генераторах тепла разного типа, которые работают с различными температурными и гидравлическими режимами и с использованием разных теплоносителей, а также в различные временные периоды;
— гидравлическое разделение контуров генераторов тепла и отопительного контура, согласование температурных режимов в различных контурах и создание благоприятных условий для работы оборудования, в частности котлов отопления, с максимальной эффективностью. 

Устройство и объем теплоаккумулятора

Типовая конструкция буферной ёмкости.

В базовом исполнении, теплоаккумулятор представляет собой теплоизолированный бак с патрубками подачи и обратки для котлового контура и патрубками для отопительного контура. В самом простом варианте, буферная емкость может иметь всего по одному патрубку – для подачи и обратки.
Если система отопления имеет теплогенераторы на альтернативных источниках энергии, то используются тепловые аккумуляторы более сложной конструкции. Как правило в них имеется один или несколько змеевиков-теплообменников для организации автономных контуров. Емкости для таких систем могут быть укомплектованы насосно-смесительными узлами для различных контуров в заводском исполнении. Дополнительный теплообменник может быть установлен, если теплоаккумулятор используется также для приготовления горячей воды для бытовых нужд. 

Рис. Буферная емкость базовой конструкции

Рис. ТА с дополнительным теплообменником

 

В некоторых случаях в ТА требуется обеспечить качественное разделение слоёв с различной температурой. Для этой цели внутри бака может предусмотрена специальная мембрана. В ряде случаев, в конструкции предусматривается возможность установки электронагревательного элемента.
На видео, которое приведено ниже можно ознакомиться с конструкцией многофункциональной буферной емкости компании Buderus.

Видео. Многофункциональная буферная емкость — теплоаккумулятор Buderus Logalux.

 

Расчёт ёмкости теплового аккумулятора 

Имеется несколько методик расчета объема буферной емкости. Например в одних источниках рекомендуется подбирать ТА из расчета не менее 40 литров на каждый киловатт мощности теплогенераторыа. По другим источникам минимум снижен до 20-ти литров/кВт. Поэтому имеющиеся рекомендации могут не в полной мере отвечать требованиям конкретной системы отопления. Оптимальный объем бака ТА зависит от множества факторов — мощности источника тепла, периодичности выработки тепла, температурного режима отопительного контура, требуемого периода автомномности работы и т.п. На первый взгляд, было бы логично руководствоваться принципом — чем больще ТА, тем лучше, но это правило работает далеко не всегда, так как объем теплоаккумулятора должен быть согласован с возможностью теплогенератора по его наполнению, с учетом экономических факторов (стоимости топлива, электроэнергии и т.п.). 
В расчетах, для упрощения, плотность теплоносителя будем принимать равной единице.

Расчет объема ТА по
 EN 303-5

В качестве примера, приведем формулу подбора теплоаккумулятора для работы совместно с твердотопливным котлом в соответствии с европейскими нормами.

Расчет объема буферной ёмкости по EN 303-5

Vта=15*Тг*Qн*(1-0,3*Qп/Qmin), где:

 

Vта — Объем теплоаккумулятора, л.;
Тг — Продолжительность горения загрузки топлива при номинальной мощности, час;
Qн — Номинальная тепловая мощность, кВт;
Qп — Потребность объекта в тепле, кВт;
Qmin — Минимальная тепловая мощность котла, кВт.
1,163 — удельная теплоемкость воды (Вт*ч/(кг*К))

Как правило, в расчетах при подборе ТА к твердотопливному котлу, номинальная и минимальная мощность равны.

Пример расчета объема теплоаккумулятора для работы с твердотопливным котлом.

Исходные данные:

Тг — 3 час;
Qн — 25 кВт;
Qп — 20 кВт;
Qmin — 25 кВт

Итого, рекомендуемый объем буферной ёмкости составит Vта=15*3*25*(1-0,3*20/25)=855 л.

Расчет ТА по мощности имеющегося котла

Данный способ расчета напоминает предыдущий и основан на том, что теплоаккумулятор должен вместить все тепло, которое вырабатывает котел за время горения топлива при полной загрузке, при одновременном расходовании его на нужды отопления.  Как уже упоминалась в статье «Схема твердотопливного котла», рекомендуется, чтобы мощность котла превышала максимальную нагрузку системы отопления на ~30%. Формула для такого расчета приобретет следующий вид:

V = (Qн-Qп) *Тг/1,163*(tmax-tн)

Где:
Qн — Номинальная тепловая мощность котла, кВт;
Qп — Потребность объекта в тепле, кВт;
Тг — Продолжительность горения загрузки топлива при номинальной мощности, час;
tmax — максимальная температура теплоносителя в буферной емкости;
tн — расчетная температура подачи в системе отопления.

Пример расчета

Исходные данные:
Тг — 3 час;
Qн — 39 кВт;
Qп — 30 кВт;
tmax — 90°;
tн — 55°С.

Итого, рекомендуемый объем буферной ёмкости составит:  V = (39-30) *3/1,163(90-55)= 663 л.

Оценочный расчет емкости теплового аккумулятора

Иногда используется, так называемый, «оценочный» метод расчета объема ТА. Он применяется тогда, когда нужно определить, на какое время хватит накопленного в буферной емкости тепла, например, для отопления дома без использования котла отопления. Принцип расчета такой же, как и при определении объема бойлера, который мы рассматривали в статье о подборе водонагревателя. В расчете мы сначала вычисляем количество тепла, которое накоплено в баке, затем расчитываем на какое время нам этого тепла хватит. Поясним на примере.

Исходные данные:
Потребность объекта в тепле, Qп — 10 кВт;
Ёмкость теплоаккумулятора, Vта — 800 л;
Температура теплоносителя в ТА, Ттн — 80°С;
Расчетная температура подачи в отопительном контуре, Тп — 50°С
Расчетная температура температура обратки, То — 40 °С

1. Сначала определим полезное количество тепла, накопленного в теплоаккумуляторе. К сожалению, мы не можем использовать всю имеющуюся тепловую энергию. Реально (при небольшом приближении) будет использоваться энергия, высвобождаемая при остывании теплоносителя с максимальной температуры (в нашем случае — 80°С) до рабочей температуры в системе отопления (у нас — 50°С). После этого будет запущен котел отопления. Количество тепла (в квт*час) считаем по следующей формуле (для упрощения расчетов плотность теплоносителя примем за единицу):

Q=1.163*(Ттн-Т)*m 

где: Q- количество тепла, Вт*час, m — масса теплоносителя. 

До снижения температуры в баке до температуры подачи(Тп), ТА работает в автономном режиме без запуска котла. Посчитаем, какое время это займёт:

Q= 1,163 * (80 — 50) * 800 = 18608 Вт*час

18608 Вт*час/10000 Вт = 1,86 часа. Таким образом, в автономном режиме теплоаккумулятор будет обеспечивать дом теплом в течение почти 2-х часов. 

Если котел отопления (например электрокотел) в этом режиме настроен на температуру, равной температуре подачи; то вместе с работой котла будет продолжаться полезно использоваться и тепловая энергия теплоаккумулятора, пока не сравняется с температурой обратки, а это еще дополнительно съэкономленных 9,3 кВт*часа.

 

 

Схема подключения теплоаккумулятора с твердотопливным котлом и электрокотлом


Буферная емкость, неотъемлемая часть схемы подключения твердотопливного или электрического котла. При одновременном использовании двух типов теплогенераторов, установленных в единую систему отопления бак накопитель играет роль гидравлического разделителя.

Обвязка теплоаккумулятора с твердотопливным котлом или электрокотлом преследует несколько важных задач: аккумулирует и отдает энергию, предотвращает гидравлические удары и перегрев теплоносителя, обеспечивает равномерный нагрев теплонесущей жидкости.

Зачем нужна буферная ёмкость для ТТ или электрокотла

Теплоаккумулятор работает как электроаккумулятор. При включенном котле бак собирает тепловую энергию. Внутри ёмкости (в зависимости от модели) вмещается от 200 до более чем 3000 л воды.

Нагретый теплоноситель из котла поступает в накопительный бак, покрытый теплоизоляционным слоем. Внутри емкости теплоаккумулятора горячая вода сохраняет температуру в течение 5-18 часов. Сразу после отключения котла, выступающего основным источником тепловой энергии, вода в системе отопления начинает остывать. Недостаток тепла компенсируется за счет нагретого и сохраненного в буферной ёмкости теплоносителя.

Описанный принцип работы используется по-разному. Так, теплоаккумулятор в системе отопления с твёрдотопливным котлом устанавливается по нескольким причинам:

  • после отключения ТТ котла по причине прогорания дров или угля, в ночное время суток, обогрев здания продолжается;
  • перегрев и закипание теплоносителя (частое явление при работе ТТ котла) исключается;
  • при установке накопителя с контуром ГВС, можно обеспечить горячее водоснабжение дома;
  • бак с двумя теплообменниками может одновременно подключаться к котлу, системе горячего водоснабжения и солнечным коллекторам или геотермальному насосу.


Подключение буферной емкости к электрокотлу используют с несколько другой целью — с двух тарифным счетчиком. Плата за электричество по «ночному тарифу» существенно снижается. Теплоаккумулятор устанавливают с таким расчетом, чтобы нагреть его в период льготного тарифа на электроэнергию. Экономия при грамотном расчете теплоаккумулятора составит не менее 30%, по сравнению с обвязкой электрокотла без буферной емкости.

В случае параллельного подсоединения электрического и твердотопливного котла в единую сеть отопления, накопительный бак играет роль теплоаккумулятора и гидравлического разделителя.

Для простоты расчетов объём бака и определение расхода теплоносителя высчитывают по следующей таблице:

Жилая площадь / время автономной работы

8 час

10 час

12 час

14 час

16 час

100 м²

587 л

734 л

881 л

1028 л

1175 л

150 м²

880 л

1101 л

1321 л

1542 л

1762 л

200 м²

1174 л

1468 л

1762 л

2056 л

2350 л

Как подключить буферный накопитель к котлу

Чтобы выполнить правильную обвязку необходимо хорошо понимать, как устроен бак. Внутри накопитель — это пустая бочка. В верхней части присутствуют два патрубка для подключения к теплогенератору и системе отопления. Внизу присутствуют аналогичные отводы, для обратки.

Правильная обвязка котла с буферной емкостью должна обеспечить соблюдение нескольких условий:

  • нагретый теплоноситель в баке должен двигаться по направлению к системе отопления и вниз;
  • не допускается, чтобы охлажденную жидкость, находящуюся внизу ёмкости, выдавливало наверх.


Схема отопления с теплоаккумулятором в частном доме предназначена справиться с описанными выше задачами. Проектирование и изготовление обвязки — это сложный процесс, требующий определенных инженерных навыков.

Обвязка теплоаккумулятора с одним котлом

Существуют отличия в подключении буферной емкости в самотечной и с принудительной циркуляцией теплоносителя в системе. Разница заключается в нескольких аспектах, влияющих на схему обвязки:

Теплоаккумулятор в системе отопления с естественной циркуляцией необходимо расположить выше уровня радиаторов отопления. Компенсация давления осуществляется за счет мембранного или открытого расширительного бака.

Монтаж теплоаккумулятора к твердотопливному котлу осуществляется с применением предохраняющей и регулирующей арматуры. Обязательно устанавливают сепаратор воздуха, расширительный бак мембранного или открытого типа, трехходовой клапан, узел безопасности (манометр, сбросовый клапан, воздухоотводчик).

Схема буферной ёмкости с двумя котлами

Принцип обвязки во многом напоминает рассмотренный выше. Используется параллельное подключение электрокотла и твердотопливного котла. Подача теплоносителя осуществляется следующим способом:

  • твердотопливный котел устанавливается как основной источник тепла;
  • на подачу через трехходовой клапан с электроприводом, подключенный к термостату, ставится электрокотел;
  • после устанавливаются сепаратор воздуха и циркуляционный насос;
  • выполняется монтаж буферной емкости на отопление;
  • на обратку монтируют узел подпитки, модуль защиты от холостого хода, мембранный бак.

Если планируется монтаж многовалентной системы отопления, следует использовать гидрострелку. Обвязка твердотопливного котла с теплоаккумулятором и электрическим котлом работает следующим образом:

  • основным источником тепла остается котел на твёрдом топливе;
  • после прогорания дров и остывания теплоносителя, какое-то время нагрев поддерживается за счет буферной емкости;
  • как только температура нагрева падает до предельных значений, включается электрокотел.


Возможно подключение бойлера косвенного нагрева к теплоаккумулятору, с встроенным змеевиком ГВС. Для обеспечения достаточного количества тепла запас мощности котла должен составлять не менее 50%. Для дома с площадью 200 м², котел должен быть мощностью не менее 40 кВт. Такой производительности будет достаточной, чтобы прогреть систему отопления и зарядить теплоаккумулятор.

Варианты подключения теплоаккумулирующей ёмкости

назначение, критерии при выборе, схема подключения

На чтение 12 мин Просмотров 158 Опубликовано Обновлено

В домах, где отсутствует газ или централизованное отопление, используются отопительные индивидуальные системы, включающие твердотопливные и электрические котлы или гелиосистемы, работающие на солнечной энергии. У этих систем есть важный недостаток – неравномерность нагрева теплоносителя ввиду принципиальных особенностей функционирования или влияния внешних факторов. Оптимизировать их можно с помощью теплоаккумулятора для отопления, который сыграет роль буфера между источником тепла и потребителями.

Назначение теплоаккумулятора

Теплоаккумуляторную емкость можно подключать к любому типу котла

Теплоаккумулятор для различного типа котлов отопления представляет собой заполненный водой резервуар внушительного размера, который позволяет решить проблемы, возникающие при работе отопительного котла:

  • перерасход энергии;
  • избыточная мощность отопления;
  • перегрев воды в котле;
  • периодические колебания температуры нагрева из-за неравномерности самого процесса горения и несвоевременной закладки дров, угля;
  • несовпадение пиков выработки и потребления тепловой энергии.

Часть проблем можно решить путем установки пиролизного котла длительного горения, но в последнем случае он не поможет. Особенность работы котла в том, что после закладки топлива мощность отдачи тепловой энергии постепенно увеличивается, достигая пиковых значений, а затем также постепенно уменьшается. Если вовремя не добавить топливо в котел, он останавливается, теплоноситель начинает остывать, а вместе с этим падает температура в доме. В период пиковой выработки тепла система не в состоянии эффективно распределять всю энергию, поскольку оснащена терморегуляторами, поэтому часть тепла растрачивается впустую. Если котел электрический, гораздо выгоднее накапливать тепло в ночные часы, когда электроэнергия рассчитывается по льготному ночному тарифу, чтобы днем потреблять электричество как можно меньше.

Резервуар теплоаккумулятора для системы отопления выполнен из нержавеющей или обычной стали, изнутри может быть покрыт защитным лаком. Стенки сверху окрашиваются теплоустойчивой краской, затем закрываются теплоизоляционным материалом и кожзаменителем. Фактически при подключении теплоаккумулятора объем теплоносителя в системе отопления увеличивается, что позволяет компенсировать пиковую мощность котла и одновременно накопить тепло для передачи ее теплоносителю при падении мощности выработки тепловой энергии котлом. Благодаря качественному утеплению вода в теплоаккумуляторе остывает долго. Она сохраняется в нагретом состоянии в течение нескольких часов и даже дней и посредством насоса подается в систему. Принцип действия теплоаккумулятора основан на разной теплоемкости различных сред, в частности воды и воздуха. Уменьшение температуры 1 л воды на один градус приводит к повышению температуры воздуха объемом 1 м3 на 4 градуса.

Если при использовании твердотопливных и электрических котлов установка теплового аккумулятора желательна, но не обязательна, то присутствие теплоаккумулятора в гелиосистеме – необходимое условие функционирования, поскольку в вечернее и ночное время солнечную энергию невозможно получить, а осенью и зимой в пасмурные дни использование системы сильно ограничено.

Плюсы и минусы

Можно установить теплоаккумулятор, в котором имеются функции бойлера

Плюсы использования теплового аккумулятора:

  • Сохраняет тепловую энергию в течение нескольких часов и дней.
  • Исключается перегрев котла.
  • Тепловая энергия не расходуется зря, а накапливается, чтобы быть использованной в дальнейшем, благодаря этому увеличивается КПД котла и отопительной системы в целом.
  • Позволяет экономить финансовые средства.
  • Температура воздуха в помещениях легко поддерживается на оптимальном уровне, резкие скачки температуры исключены.
  • Нет необходимости в частых загрузках топлива.
  • Дополнительно к твердотопливному котлу можно установить гелиосистему, являющуюся бесплатным источником тепловой энергии.
  • Некоторые модели термоаккумуляторов для отопления могут совмещать функции бойлера.

Недостатки системы:

  • Долгий нагрев – оптимальна установка в домах, предназначенных для постоянного проживания. В дачных коттеджах, которые посещаются зимой в выходные, пользу такой прибор не принесет.
  • Высокая стоимость – они стоят примерно столько же, сколько и котел, а иногда и дороже.
  • Значительные габариты и вес – из-за этого возникают определенные сложности при транспортировке и монтаже. Кроме того, теплонакопитель, предназначенный для отопления, устанавливают в непосредственной близости к котлу, там же должно находиться дополнительное оборудование, поэтому нередко приходится выделять для установки приборов специальное помещение и подготавливать его специальным образом: обустраивать опорную площадку, способную выдержать вес накопителя. В заполненном состоянии резервуар может весить 3-4.
  • Требуется котел высокой мощности – покупка накопителя оправдана, если мощность котла не используется в полной мере, имеется как минимум двойной запас мощности, в противном случае прибор будет бездействовать.
Теплоаккумулятор можно сделать своими руками из нержавейки и медной трубы

При изготовлении теплоаккумулятора своими руками удастся сэкономить значительную сумму. Самая простая конструкция изготавливается из стальной нержавеющей бочки или даже листовой нержавейки толщиной не менее 3 мм. Также потребуется медная трубка диаметром 3 см и длиной 14 м. Ее сгибают в виде спирали и помещают внутрь бака. Снизу делают подводку холодной воды, сверху отвод для горячей, устанавливают на отводы запорные краны. Обязательно нужно утеплить теплоаккумулятор, сделанный своими руками для твердотопливного котла, иначе он будет неэффективен. Также необходимо установить датчики давления и температуры.

Если цилиндрическую емкость сварить не получается, можно изготовить теплоаккумулятор для отопления в форме параллелепипеда – своими руками резервуар такой формы сделать проще. Углы дополнительно усиливают, снаружи дополняют конструкцию ребрами жесткости – приваривают их на расстоянии 30-35 см друг от друга. Соотношение диаметра и высоты прибора – 1:3(4).

Критерии при подборе

Выбирают теплоаккумулятор, учитывая параметры системы отопления и вид теплоносителя

Подбирать тепловой аккумулятор необходимо в соответствии с точными расчетами, учитывающими параметры домашней системы отопления. Однако помимо расчетных значений принимают во внимание общие характеристики тепловых накопителей.

  • Давление в системе отопления. По этому параметру тепловой аккумулятор должен соответствовать системе отопления. Во всяком случае значение может быть выше, но не ниже. Какое давление сможет выдержать накопитель, зависит от толщины стенок, формы резервуара, материала изготовления. Теплоаккумуляторы для котлов, выдерживающие более 4 бар, имеют выпуклые нижнюю и верхнюю крышки.
  • Объем буферной емкости. Этот параметр считают наиболее важным и стараются выбрать емкость такого объема, чтобы накопитель мог аккумулировать все лишнее тепло. Но в то же время и излишне объемный прибор не нужен.
  • Наружные размеры и вес. Вопросы транспортировки и размещения оборудования решать придется, поэтому необходимо тщательно все рассчитать: пройдет ли бак в дверной проем, выдержат ли перекрытия при полностью заполненном водой резервуаре.
  • Оснащение дополнительными теплообменниками. Они позволяют еще более оптимизировать функционирование системы. Модели подбирают в соответствии со сложностью всей системы.
  • Возможность установки дополнительных устройств. Совместно с аккумуляторным буфером обмена устанавливают дополнительные ТЭНы, датчики и регуляторы температуры. Если все элементы системы подобраны грамотно, можно снизить расход топлива в два раза.

Баки изготавливают из углеродистой стали или нержавейки. Последние стоят дороже и служат дольше, а первые обязательно имеют антикоррозийное покрытие. Необходимо убедиться в его качестве.

Расчёт объема буферной емкости котла


По расчетам, теплоаккумулятор должен принять всю энергию от одной закладки топлива в котел

Объем буферной емкости обычно рассчитывают таким образом, чтобы за время горения одной закладки топлива теплоаккумулятор сохранил все выработанное котлом тепло. Самостоятельно можно произвести лишь приблизительные расчеты, не учитывающие теплопотери от радиаторов отопления и влияние температуры воздуха в помещении. Основная формула для расчетов объема теплоаккумулятора:

W = k × m × с × Δt, где

  • W – избыточное количество тепла;
  • m – масса жидкости;
  • с – теплоемкость теплоносителя;
  • Δt – количество градусов, на которые нужно нагреть теплоноситель;
  • k – КПД котла.

Отсюда нужно вычислить массу теплоносителя: m = W / (k × с × Δt).

Так как W определяется как разница значений энергии, выработанной котлом и затраченной на обогрев дома, необходимо также уточнить их и время прогорания закладки топлива. Если мощность котла приводится в паспорте прибора, расход тепловой энергии на отопление нужно рассчитывать. Время прогорания топлива определяется опытным путем. Допустим, это 3 ч, а на отопление дома требуется 10 кВт/ч. Значит, за 3 ч будет потрачено: 10 × 3 = 30 кВт.

Выработка тепла котлом мощностью 22 кВт/ч составляет: 22 × 3 = 66 кВт.

По итогам расчета избыточное тепло составит: W = 66 – 30 = 36 кВт. Переводим в Вт, получаем 36000 Вт.

Используя формулу m = W / (k × с × Δt), определяем искомое значение массы воды. КПД указывается в паспорте в процентах. Это значение нужно перевести в десятичное, разделив на 100. Например, 80/100 = 0,8. Теплоемкость воды равна 4,19 кДж/кг×°С или 1,164 Вт×ч/кг×°С или 1,16 кВт/м³×°С.

Δt  определяют путем измерения температуры трубы подачи и обратки, вычитая из большего значения меньшее. Например: Δt = 88 – 58 = 30°С. Таким образом, m = 36000/(0,8 × 1,164 × 30) = 1 288,7 кг.

Для сохранения всей избыточной энергии, выработанной котлом, потребуется емкость объемом не менее 1 288,7 м3. Подойдет теплоаккумулятор Jaspi GTV Teknik на 1500 л. При более скромных значениях расчета можно ограничиться резервуаром, к примеру, на 750 л.

Способы и схемы подключения своими руками

Теплоаккумулятор с пустым баком устанавливают, если давление в системе небольшое

Сложность и особенности подключения зависят от типа теплового накопителя. Поэтому следует разобраться, какими они бывают.

  • Самая простая конструкция – пустой внутри бак. Котел и потребители подключаются напрямую. Использование оптимально, если применяется одинаковый теплоноситель во всех контурах, давление в системе не превышает допустимые показатели накопителя и температура теплоносителя, подающегося из котла, не превышает допустимых значений для контура отопления. Если первые два требования не соблюдаются, при подключении в систему необходимо воспользоваться дополнительными внешними теплообменниками. В последнем случае следует установить смесительные узлы с трехходовыми кранами.
  • Буферная емкость с внутренним теплообменником – одним или несколькими. Теплообменник представляет собой спиральную трубу из меди или нержавейки. В таком накопителе теплоноситель перемешивается. Змеевик, расположенный в нижней части, нагревает теплоноситель, горячая вода устремляется вверх как менее плотная. Наверху расположен другой змеевик, который забирает энергию и выводит ее на контуры отопления. Прибор такого типа оптимален при использовании разных типов теплоносителей, при высоком давлении и температуре теплоносителя, подключении нескольких генераторов тепла.
  • Резервуар с проточным контуром горячего водоснабжения. Теплообменник по большей части расположен вверху бака. Он должен быть выполнен из металла, отвечающего нормативам пищевого водопотребления. Контуры подключаются напрямую. Такая система предпочтительна при равномерном расходе горячей воды.
  • Теплоаккумулятор с внутренним бойлером. В накопительной емкости сохраняется нагретая вода для бытового потребления. Такой тип аккумулятора, накапливающего тепло, можно без проблем встроить в открытую и закрытую системы отопления, оснащенные твердотопливными, электрическими котлами и солнечными коллекторами. Особенно актуальны буферные емкости этого типа при использовании электрокотлов, когда теплоноситель нагревается ночью, а вода расходуется днем. Бойлера на 150 л вполне достаточно для суточного потребления воды среднестатистической семьей.

Выходных патрубков у теплового аккумулятора, предназначенного для системы отопления, несколько, и они расположены вдоль бака по вертикали, так как имеет место температурный градиент по высоте. Это сделано для того, чтобы можно было подключать контуры с разными требованиями к температуре теплоносителя, снижать нагрузку на регуляторы температуры. В результате тепловая энергия используется максимально эффективно.

В системе с трехходовыми клапанами возможна более точная регулировка температуры

Другие типы систем:

  1. Простейшая схема обвязки, ограничивающая возможности регулировки. Горячая вода поднимается вверх и забирается из верхней точки, после остывания опускается и снова поступает в котел. Используется в том случае, если давление и температура в генераторе тепла и контурах отопления одинаковы. Температура регулируется только методом увеличения/уменьшения потока теплоносителя.
  2. В системе присутствуют узлы смешивания, байпасы, поэтому возможна более точная регулировка по температуре теплоносителя. Эффективность оборудования достигается благодаря установке, например трехходовых клапанов.
  3. В систему включен дополнительный бак, благодаря чему небольшой объем горячей воды доступен непосредственно после запуска котла. Потребителю не приходится ждать, когда система разогреется полностью, но запас воды не велик, а нагревается система медленнее, чем классическая.
  4. Внутри буферной емкости имеется один змеевик, через него проходит тепловая энергия от источника, а уже от змеевика нагревается теплоноситель в тепловом накопителе. В системе этого типа применяют разные теплоносители. Можно выбирать такие, которые нельзя смешивать из-за несовместимости химических характеристик. Через змеевик можно запитать отопление или ГВС, либо по этому кругу будет циркулировать теплоноситель от источника.
  5. В системе установлен дополнительный внешний теплообменник. Он позволяет поддерживать нужную температуру в аккумуляторе.
  6. Система с проточным контуром горячего водоснабжения. Она оптимальна, если горячая вода используется равномерно. В противном случае рекомендуется приобрести энергоаккумулятор со встроенным бойлером.
  7. Система с одним змеевиком и подключением к альтернативному источнику энергии, например, солнечному коллектору. Называется бивалентной. Подключение осуществляется таким образом, что коллектор играет ведущую роль в нагреве системы, а котел подключается, когда тепловой энергии недостаточно.
  8. Мультивалентная система, где основной нагрев осуществляют низкотемпературные источники, например солнечный коллектор и геотермальный тепловой насос. Они подключаются в нижней части теплового аккумулятора. В качестве вспомогательного источника тепловой энергии применяется высокотемпературный котел.

При наличии различных контуров отопления и источников тепловой энергии формируется сложная разветвленная система со множеством дополнительного регулировочного оборудования, датчиков, групп безопасности. Ее проектировку рекомендуется доверить профессионалам, так как потребуются высокоточные расчеты.

Обвязка аккумулятора для тепла

Емкость должна быть хорошо утеплена. Если это покупной теплоаккумулятор, нужно оценить толщину и качество внешней изоляции. Чем лучше и толще теплоизолятор, тем дольше будет сохраняться тепло. Благодаря особой структуре теплоизолятора теплоаккумулятор работает как термос. Толщина теплоизоляции в качественных моделях составляет около 10 см. Она закрывает окрашенный термостойкой краской корпус. Поверх теплоизоляции идет слой кожзаменителя. Самостоятельно утепление выполняется по той же схеме. Сначала бак красят краской, стойкой к высокой температуре, затем утепляют базальтовой ватой толщиной не менее 150 мм, а сверху закрывают фольгой.

Теплоаккумулятор своими руками – как сделать буферную емкость

Зачастую домовладельцы не в состоянии купить современное отопительное оборудование, поэтому ищут альтернативные решения. Взять хотя бы буферную емкость (иначе – тепловой аккумулятор), незаменимую вещь для систем отопления с твердотопливным котлом. Накопительный бак объемом 500 л стоит примерно 600—700 у. е., цена тысячелитровой бочки достигает 1000 у. е. Если же сделать теплоаккумулятор своими руками, а потом установить резервуар в котельной самостоятельно, удастся сэкономить половину указанной суммы. Наша задача – рассказать о способах изготовления.

Где применяется аккумулятор тепла и как он устроен

Накопитель тепловой энергии — это не что иное, как утепленный железный бак с патрубками для подключения магистралей водяного отопления. Буферная емкость выполняет 2 функции: накапливает избытки теплоты и обогревает дом в периоды, когда котел бездействует. Теплоаккумулятор замещает отопительный агрегат в 2 случаях:

  1. При обогреве жилища печью с водяным контуром либо котлом, сжигающим твердое топливо. Накопительная емкость работает для отопления ночью, после прогорания дров или угля. Благодаря этому домовладелец спокойно отдыхает, а не бегает в котельную. Это комфортно.
  2. Когда источником тепла служит электрокотел, а учет потребления электричества ведется многотарифным счетчиком. Энергия по ночному тарифу обходится вдвое дешевле, поэтому днем работу системы отопления полностью обеспечивает тепловой аккумулятор. Это экономично.
Слева на фото – буферный резервуар 400 литров фирмы Drazice, справа – электрокотел Kospel в комплекте с накопителем горячей воды

Важный момент. Бак — аккумулятор горячей воды повышает эффективность твердотопливного котла. Ведь максимальный КПД теплогенератора достигается при интенсивном горении, которое невозможно постоянно поддерживать без буферной емкости, поглощающей излишки теплоты. Чем эффективнее сжигаются дрова, тем меньше их расход. Это касается и газового котла, чей КПД снижается в режимах слабого горения.

Аккумуляторный бак, заполненный теплоносителем, действует по простому принципу. Пока обогревом помещений занимается теплогенератор, вода в емкости нагревается до максимальной температуры 80—90 °С (теплоаккумулятор заряжается). После отключения котла к радиаторам начинает подаваться горячий теплоноситель из накопительного бака, обеспечивающего отопление дома в течение определенного времени (тепловая батарея разряжается). Длительность работы зависит от объема резервуара и температуры воздуха на улице.

Как устроен аккумулятор тепла заводского изготовления

Простейшая аккумулирующая емкость для воды заводского изготовления, показанная на схеме, состоит из таких элементов:

  • основной резервуар цилиндрической формы, сделанный из углеродистой либо нержавеющей стали;
  • теплоизоляционный слой толщиной 50—100 мм в зависимости от применяемого утеплителя;
  • внешняя обшивка – тонкий окрашенный металл или полимерный чехол;
  • присоединительные штуцера, врезанные в основную емкость;
  • погружные гильзы для установки термометра и манометра.

Примечание. Более дорогие модели аккумуляторов тепла для систем отопления дополнительно снабжаются змеевиками для ГВС и подогрева от солнечных коллекторов. Другая полезная опция – встроенный в верхнюю зону бака блок электрических ТЭНов.

Изготовление накопителей тепла в заводских условиях

Если вы всерьез озаботились установкой теплоаккумулятора и решили его сделать своими силами, то для начала стоит ознакомиться с заводской технологией сборки.

Резка на плазменном аппарате заготовок для крышки и дна

Повторить технологический процесс в условиях домашней мастерской нереально, но некоторые приемы вам пригодятся. На предприятии бак–аккумулятор горячей воды делается в виде цилиндра с полусферическим дном и крышкой в таком порядке:

  1. Листовой металл толщиной 3 мм подается на аппарат плазменной резки, где из него получают заготовки торцевых крышек, корпуса, люка и подставки.
  2. На токарном станке изготавливаются основные штуцера диаметром 40 или 50 мм (резьба 1.5 и 2”) и погружные гильзы для приборов контроля. Там же вытачивается большой фланец для ревизионного люка размером около 20 см. К последнему приваривается патрубок для врезки в корпус.
  3. Заготовка корпуса (так называемая обечайка) в виде листа с отверстиями под штуцеры направляется на вальцы, изгибающие ее под определенным радиусом. Чтобы получить цилиндрическую емкость для воды, остается лишь сварить торцы заготовки встык.
  4. Из металлических плоских кругов гидравлический пресс штампует полусферические крышки.
  5. Следующая операция – сварочные работы. Порядок такой: сначала на прихватках варится корпус, потом к нему прихватываются крышки, затем идет сплошная проварка всех швов. В конце присоединяются штуцеры и ревизионный люк.
  6. Готовый накопительный бак сваривается с подставкой, после чего проходит 2 проверки на проницаемость – воздушную и гидравлическую. Последняя производится давлением 8 Бар, испытание длится 24 часа.
  7. Испытанный резервуар окрашивается и утепляется базальтовым волокном толщиной не менее 50 мм. Сверху емкость обшивается тонколистовой сталью с полимерным цветным покрытием либо закрывается плотным чехлом.
Корпус накопителя выгибается из листа железа на вальцах

Справка. Для утепления бака производители используют разные материалы. К примеру, теплоаккумуляторы «Прометей» российского производства изолированы пенополиуретаном.

Вместо облицовки производители зачастую применяют специальный чехол (можно выбрать цвет)

Большинство заводских аккумуляторов тепла рассчитаны на максимальное давление 6 Бар при температуре теплоносителя в системе отопления 90 °С. Это значение вдвое превышает порог срабатывания предохранительного клапана, устанавливаемого на группу безопасности твердотопливных и газовых котлов (предел — 3 Бар). Детально производственный процесс показан на видео:

Изготавливаем тепловую батарею самостоятельно

Вы решили, что без буферной емкости обойтись не сможете и хотите ее сделать своими руками. Тогда готовьтесь пройти 5 этапов:

  1. Расчет объема теплоаккумулятора.
  2. Выбор подходящей конструкции.
  3. Подбор и заготовка материалов.
  4. Сборка и проверка герметичности.
  5. Монтаж резервуара и подключение к системе водяного отопления.

Совет. Перед тем как посчитать объем бочки, подумайте, сколько места в котельной вы сможете под нее выделить (по площади и высоте). Четко определитесь, как долго водяной теплоаккумулятор должен замещать бездействующий котел, а уж потом приступайте к выполнению первого этапа.

Как рассчитать объем бака

Существует 2 способа расчета вместительности накопительного резервуара:

  • упрощенный, предлагаемый производителями;
  • точный, выполняемый по формуле теплоемкости воды.
Продолжительность обогрева дома тепловым аккумулятором зависит его размера

Суть укрупненного расчета проста: под каждый кВт мощности котельной установки в баке выделяется объем, равный 25 л воды. Пример: если производительность теплогенератора составляет 25 кВт, то минимальная вместительность теплоаккумулятора выйдет 25 х 25 = 625 л или 0.625 м³. Теперь вспомните, сколько места выделено в котельной и подгоняйте полученный объем под реальные размеры помещения.

Справка. Желающие сварить самодельный теплоаккумулятор нередко задаются вопросом, как посчитать объем круглой бочки. Здесь стоит напомнить формулу расчета площади круга: S = ¼πD². Подставьте в нее диаметр цилиндрического резервуара (D), а полученный результат умножьте на высоту емкости.

Вы получите более точные размеры теплового аккумулятора, если воспользуетесь вторым способом. Ведь упрощенное вычисление не покажет, на сколько времени хватит рассчитанного количества теплоносителя при самых неблагоприятных погодных условиях. Предлагаемая методика как раз и пляшет от показателей, которые нужны вам и основывается на формуле:

m = Q / 1.163 х Δt

Здесь:

  • Q – количество тепла, которое нужно накопить в аккумуляторе, кВт•ч;
  • m – расчетная масса теплоносителя в баке, тонн;
  • Δt – разность температур воды в начале и в конце нагрева;
  • 1.163 Вт•ч/кг•°С — это справочная теплоемкость воды.

Дальше поясним на примере. Возьмем стандартный дом 100 м² со средним теплопотреблением 10 кВт, где котел должен простаивать 10 часов в сутки. Тогда в бочке необходимо аккумулировать 10 х 10 = 100 кВт•ч энергии. Начальная температура воды в отопительной сети – 20 °С, нагрев происходит до 90 °С. Считаем массу теплоносителя:

m = 100 / 1.163 х (90 — 20) = 1.22 тонны, что приблизительно равно 1.25м³.

Обратите внимание, что тепловая нагрузка 10 кВт взята приблизительно, в утепленном здании площадью 100 м² теплопотери будут меньше. Момент второй: столько тепла необходимо в наиболее холодные дни, каковых бывает 5 на всю зиму. То есть, теплоаккумулятора на 1000 л хватит с большим запасом, а с учетом сезонного перепада температур можно спокойно уложиться в 750 л.

Отсюда вывод: в формулу нужно подставлять среднее теплопотребление за холодный период, равное половине от максимального:

m = 50 / 1.163 х (90 — 20) = 0.61 тонны или 0.65 м³.

Примечание. Если вы посчитаете объем бочки по среднему расходу теплоты, при крепких морозах его не хватит на расчетный промежуток времени (в нашем примере – 10 часов). Зато сэкономите деньги и место в помещении топочной. Больше информации по ведению расчетов представлено в другой нашей публикации.

О конструкции емкости

Чтобы самостоятельно изготовить аккумулятор тепла, вам придется победить одного коварного врага – давление, оказываемое жидкостью на стенки сосуда. Думаете, почему заводские резервуары сделаны цилиндрическими, а дно с крышкой – полусферическими? Да потому что такая емкость способна противостоять давлению горячей воды без дополнительного усиления.

С другой стороны, мало у кого найдется техническая возможность отформовать металл на вальцах, не говоря уже о вытяжке полукруглых деталей. Предлагаем следующие способы решения вопроса:

  1. Заказать круглый внутренний бак на металлообрабатывающем предприятии, а работы по утеплению и окончательному монтажу провести самостоятельно. Это все равно обойдется дешевле, нежели купить теплоаккумулятор заводской сборки.
  2. Взять готовый цилиндрический бак и на его базе делать буферную емкость. Где брать подобные резервуары, мы подскажем в следующем разделе.
  3. Сварить прямоугольный аккумулятор тепла из листового железа и усилить его стенки.
Чертеж теплоаккумулятора прямоугольной формы объемом 500 л в разрезе

Совет. В закрытой системе отопления с твердотопливным котлом, где избыточное давление может подскочить до 3 Бар и выше, настоятельно рекомендуется применять теплоаккумулятор цилиндрической формы.

В открытой системе отопления с нулевым напором воды можно использовать прямоугольный бак. Но не забывайте о гидростатическом давлении теплоносителя на стенки, к нему прибавьте высоту столба воды от емкости до расширительного бачка, установленного в высшей точке. Вот почему следует усиливать плоские стенки самодельного теплоаккумулятора, как показано на чертеже емкости вместительностью 500 л.

Прямоугольная накопительная емкость, усиленная должным образом, может применяться и в закрытой системе отопления. Но при аварийном скачке давления от перегрева ТТ-котла резервуар даст течь с вероятностью 90%, хотя под слоем утеплителя вы можете не заметить мелкую трещину. Как выпирает не укрепленный металл сосуда при заполнении водой, смотрите на видео:

Справка. Бессмысленно наваривать прямо на стенки жесткости из уголков, швеллеров и другого металлопроката. Практика показывает, что уголки малого сечения сила давления изгибает вместе со стенкой, а большие отрывает по краям.

Делать снаружи мощный каркас – нецелесообразно, слишком большой расход материалов. Компромиссный вариант – внутренние распорки, изображенные на чертеже самодельного теплоаккумулятора.

Чертеж аккумулятора тепла на 500 л – вид сверху (поперечный разрез)

Подбор материалов для резервуара

Вы сильно облегчите себе задачу, если найдете готовый цилиндрический бак, изначально рассчитанный на давление 3–6 Бар. Какие емкости можно использовать:

  • баллоны из-под пропана разной вместительности;
  • списанные технологические резервуары, например, ресиверы от промышленных компрессоров;
  • ресиверы от железнодорожных вагонов;
  • старые железные бойлеры;
  • внутренние баки емкостей для хранения жидкого азота, выполненные из нержавейки.
Из готовых стальных сосудов сделать надежный теплоаккумулятор значительно проще

Примечание. В крайнем случае сгодится стальная труба подходящего диаметра. К ней можно приварить плоские крышки, которые придется усилить внутренними растяжками.

Для сваривания квадратного резервуара возьмите листовой металл толщиной 3 мм, больше не надо. Жесткости сделайте из круглых труб Ø15—20 мм либо профилей 20 х 20 мм. Размер штуцеров выбирайте по диаметру выходных патрубков котла, а для облицовки купите тонкую сталь (0.3—0.5 мм) с порошковой покраской.

Отдельный вопрос – чем утеплить теплоаккумулятор, сваренный своими руками. Лучший вариант – базальтовая вата в рулонах плотностью до 60 кг/м³ и толщиной 60—80 мм. Полимеры типа пенопласта или экструдированного пенополистирола применять не стоит. Причина – мыши, которые любят тепло и осенью могут запросто поселиться под обшивкой вашей накопительной емкости. В отличие от полимерных утеплителей, базальтовое волокно они не грызут.

Не стройте иллюзий по поводу экструдированного пенополистирола, грызуны его тоже едят

Теперь укажем другие варианты готовых сосудов, которые применять для аккумуляторов тепла не рекомендуется:

  1. Импровизированный бак из еврокуба. Подобные пластиковые емкости рассчитаны на максимальную температуру содержимого 70 °С, а нам нужно 90 °С.
  2. Теплоаккумулятор из железной бочки. Противопоказания – тонкий металл и плоские крышки резервуара. Чем усиливать такую бочку, проще взять хорошую стальную трубу.

Сборка прямоугольного теплоаккумулятора

Хотим предупредить сразу: если вы посредственно владеете сваркой, то изготовление бака лучше закажите на стороне по вашим чертежам. Качество и герметичность швов имеет огромное значение, при малейшей неплотности аккумулирующая емкость потечет.

Сначала бак собирается на прихватках, а потом проваривается сплошным швом

Для хорошего сварщика здесь проблем не будет, надо лишь усвоить порядок выполнения операций:

  1. Вырежьте из металла заготовки по размерам и сварите корпус без дна и крышки на прихватках. Для фиксации листов используйте струбцины и угольник.
  2. Прорежьте в боковых стенках отверстия под жесткости. Вставьте внутрь заготовленные трубы и обварите их торцы снаружи.
  3. Прихватите к баку дно с крышкой. Вырежьте в них отверстия и повторите операцию с установкой внутренних растяжек.
  4. Когда все противоположные стенки емкости надежно связаны друг с другом, начинайте сплошную проварку всех швов.
  5. Установите снизу резервуара опоры из отрезков трубы.
  6. Врежьте штуцеры, отступив от дна и крышки на менее 10 см, как показано на ниже на фото.
  7. Приварите к стенкам металлические скобки, которые послужат кронштейнами для крепления теплоизоляционного материала и обшивки.
На фото показана растяжка из широкой полосы, но лучше применить трубу

Совет по монтажу внутренних распорок. Чтобы стенки теплоаккумулятора эффективно сопротивлялись изгибанию и не оборвались по сварке, выпустите концы растяжек наружу на 50 мм. Затем дополнительно приварите к ним ребра жесткости из стального листа или полосы. О внешнем виде не волнуйтесь, торцы труб потом скроются под облицовкой.

Стальные скобки (клипсы) привариваются к корпусу для крепления утеплителя и обшивки

Несколько слов о том, как утеплить теплоаккумулятор. Сначала проверьте его на герметичность, наполнив водой либо смазав все швы керосином. Теплоизоляция выполняется достаточно просто:

  • зачистите и обезжирьте все поверхности, нанесите на них грунтовку и краску с целью защиты от коррозии;
  • оберните бак утеплителем, не сдавливая его, а после закрепите с помощью шнура;
  • нарежьте облицовочный металл, сделайте в нем отверстия под патрубки;
  • прикрутите обшивку к кронштейнам саморезами.

Листы облицовки прикручивайте так, чтобы они были связаны между собой крепежом. На этом изготовление самодельного теплоаккумулятора для открытой системы отопления закончено.

Установка и подключение резервуара к отоплению

Если объем вашего теплоаккумулятора превышает 500 л, то ставить его на бетонный пол нежелательно, лучше устроить отдельный фундамент. Для этого демонтируйте стяжку и выкопайте яму до плотного слоя грунта. Потом засыпьте ее битым камнем (бутом), уплотните и заполните жидкой глиной. Сверху залейте железобетонную плиту толщиной 150 мм в деревянной опалубке.

Схема устройства фундамента под аккумуляторный бак

Правильная работа теплового аккумулятора построена на горизонтальном движении горячего и охлажденного потока внутри резервуара, когда батарея «заряжается», и вертикальном течении воды во время «разряда». Чтобы организовать такую работу батареи, нужно выполнить следующие мероприятия:

  • контур твердотопливного или другого котла подключается к накопительному баку для воды через циркуляционный насос;
  • отопительная система снабжается теплоносителем с помощью отдельного насоса и смесительного узла с трехходовым клапаном, позволяющим отбирать из аккумулятора необходимое количество воды;
  • насос, установленный в котловом контуре, по производительности не должен уступать агрегату, подающему теплоноситель к отопительным приборам.
Схема обвязки бака – аккумулятора тепла

Стандартная схема подключения теплоаккумулятора с ТТ-котлом представлена выше на рисунке. Балансировочный вентиль на обратке служит для регулирования потока теплоносителя по температуре воды на входе и выходе емкости. Как правильно производится обвязка и настройка, расскажет наш эксперт Владимир Сухоруков в своем видеоматериале:

Справка. Если вы проживаете в столице РФ или Подмосковье, то по вопросу подключения любых теплоаккумуляторов можете проконсультироваться лично с Владимиром, воспользовавшись контактными данными на его официальном сайте.

Бюджетный аккумулирующий бак из баллонов

Тем домовладельцам, у кого площадь котельной сильно ограничена, мы предлагаем сделать цилиндрический теплоаккумулятор из баллонов от пропана.

Самодельный накопитель тепла в паре с ТТ-котлом

Конструкция на 100 л, разработанная другим нашим мастером — экспертом Виталием Дашко, призвана выполнять 3 функции:

  • разгружать твердотопливный котел при перегреве, воспринимая излишки теплоты;
  • нагревать воду для хозяйственных нужд;
  • обеспечивать обогрев дома в течение 1—2 часов в случае затухания ТТ-котла.

Примечание. Длительность автономной работы теплоаккумулятора невелика из-за малого объема. Зато он поместится в любое помещение топочной и сможет отводить тепло от котла после отключения электричества, поскольку присоединен напрямую, без насоса.

Так выглядит без облицовки резервуар, сделанный из баллонов

Для сборки накопительного бака вам потребуется:

  • 2 стандартных баллона из-под пропана;
  • не менее 10 м медной трубки Ø12 мм либо нержавеющей гофры такого же диаметра;
  • штуцеры и гильзы для термометров;
  • утеплитель – базальтовая вата;
  • крашеный металл для обшивки.

От баллонов нужно открутить вентили и отрезать крышки болгаркой, наполнив их водой во избежание взрыва остатков газа. Медную трубку аккуратно изгибаем в змеевик вокруг другой трубы подходящего диаметра. Дальше действуем так:

  1. Пользуясь представленным чертежом, просверлите отверстия в будущем теплоаккумуляторе под патрубки и гильзы для термометров.
  2. Закрепите сваркой внутри баллонов несколько металлических скоб для монтажа теплообменника ГВС.
  3. Поставьте баллоны один на другой и сварите между собой.
  4. Установите внутрь получившегося бака змеевик, выпустив концы трубки через отверстия. Для уплотнения этих мест используйте сальниковую набивку.
  5. Приделайте дно и крышку.
  6. В крышку врежьте штуцер для сброса воздуха, в дно – патрубок сливного крана.
  7. Приварите кронштейны для крепления обшивки. Сделайте их разной длины, чтобы готовое изделие имело прямоугольную форму. Сгибать облицовку полукругом будет неудобно, да и выйдет не эстетично.
  8. Сделайте утепление резервуара и прикрутите обшивку саморезами.
Стыковка бака с ТТ-котлом без циркуляционного насоса

Особенность конструкции данного теплоаккумулятора заключается в том, что он соединяется с твердотопливным котлом напрямую, без циркуляционного насоса. Поэтому для стыковки применяются стальные трубы Ø50 мм, проложенные с уклоном, теплоноситель циркулирует самотеком. Для подачи воды к радиаторам отопления после буферной емкости устанавливается насос + трехходовой смесительный клапан.

Заключение

На многих интернет-ресурсах встречается утверждение, что изготовить теплоаккумулятор своими руками – плевое дело. Если вы изучите наш материал, то поймете, что подобные высказывания далеки от реальности, на самом деле вопрос довольно сложный и серьезный. Нельзя просто взять бочку и приладить ее к твердотопливному котлу. Отсюда совет: хорошенько продумайте все нюансы, прежде чем приступать к работе. А без квалификации сварщика за буферную емкость не стоит и браться, лучше ее заказать в специализированной мастерской.

Теплоаккумулятор для котлов обвязка, схема отопления, для электрических котлов

У всех отопительных котлов кроме плюсов есть минусы. У твердотопливного это необходимость регулярной (чаще или реже, в зависимости от конструкции агрегата) добавки порции топлива в камеру сгорания – иначе теплоноситель в системе начнет остывать.

У электрокотла другой недостаток: дорогая энергия. Лучше использовать ее в ночное время, при двух- или трехтарифной системе оплаты (сколько потребляет электрический котел отопления в месяц). Но отопление необходимо круглые сутки, а ГВС, как правило, именно в пиковые часы, утро-вечер.

Практически во всех случаях решить проблему можно, используя теплоаккумулятор для котлов отопления.

Содержание статьи

Конструкция и принцип работы

Теплоаккумулятор для электрических котлов отопления (а также твердотопливных агрегатов, солнечных станций и др.) – по сути, дополнительный бойлер большого объема. Базовая конструкция: теплоизолированный высокий бак встроен в систему между котлом и контуром.

По верхней трубе в бак поступает горячая вода, с противоположной стороны через соответствующий патрубок и подающую трубу она движется к нагревательным приборам.

По нижней – обратной – трубе охлажденный теплоноситель через бак возвращается в котел. На отрезке обратки между баком и котлом установлен циркуляционный насос.

За счет конвекции верхний теплоноситель всегда горячий, а прохладный – снизу. Аккумулятор считается заряженным, когда вода во всех слоях одинаково горячая. За счет большого объема нагретой жидкости в баке теплоноситель в контуре охлаждается медленно.

Если источник энергии – твердотопливный котел, нагрев возобновляется после восполнения в топке запаса дров (угля, пеллет и т.д.). Если котел электрический, когда температура падает ниже нормы, автоматика подключает агрегат к сети.

Отводящих патрубков у бака, как правило, несколько штук. На разной высоте температуры различны, это позволяет обеспечивать из одного бака контуры, требующие разных температурных режимов.

Например, наверху подсоединена труба, поставляющая теплоноситель в радиаторы, а ниже – для теплого пола.

Разновидности

Вышеописанный вариант применяется, если в системе только один контур, или во всех контурах одинаковый теплоноситель, а температура и давление оптимальны для всех элементов.

Кроме этой конструкции есть и другие:

  1. В нижней части бака присутствует внутренний теплообменник, один или больше, выполненный в виде спиральной трубы из нержавейки. Этот вариант применяется, когда для разных контуров нужен разный теплоноситель или давление-температура в котле превышают допустимые в контурах и самом аккумуляторе. А также если есть дополнительные источники тепла (тепловой насос, солнечный коллектор и др.). В таком баке предусмотрено конвективное перемешивание жидкости.
  2. Теплоаккумулятор оснащен дополнительно проточным контуром ГВС. Основная часть теплообменника располагается наверху, подающая труба к точке водоразбора подключена внизу. Схема оптимальна, если эксплуатация ГВС равномерная, пиковых нагрузок не бывает.
  3. Еще один теплоаккумулятор для котлов отопления и ГВС: внутри бака есть встроенный бойлер косвенного нагрева. Подходит для домов, в которых регулярно возникают пиковые нагрузки потребления.

Кроме этого в конструкции могут присутствовать собственные ТЭНы.

Основные схемы обвязки

В обвязке твердотопливного котла отопления схема с теплоаккумулятором выглядит так: котел, буферная емкость и два насоса на обратке, с обеих сторон от бака.

Поскольку охлажденный теплоноситель не должен подниматься вверх, между баком и котлом нужен более мощный насос. Недостаток этой схемы – медленный разогрев воды в контуре.

Более эффективная схема отопления с твердотопливным котлом и теплоаккумулятором включает в себя т.н. кольцо прогрева в котле.

Встроенный терморегулятор ограничивает доступ холодной воды в теплообменник котла, пока агрегат не прогреет ту, которая уже есть (что такое терморегулятор для котла отопления). Эту схему можно использовать в т.ч. при выключенном насосе и в системе с естественной циркуляцией.

Как посчитать объем

Расчет необходимой емкости можно выполнить двумя способами:

  • умножить мощность котла на 25;
  • умножить отапливаемую площадь на 4.

Если у нас есть дом 100 квадратов, по второй формуле нам потребуется теплоаккумулятор для котлов отопления 400 литров. Мощность котла подбирается из расчета минимум один киловатт на десять метров (умножить на поправочный коэффициент, плюс запас).

На наш дом потребуется ориентировочно 15 кВт. Один киловатт прогревает 25 литров, т.е. по первой формуле получится 375 литров. Почти то же самое.

Как изготовить своими руками

Теплоаккумулятор для котлов отопления российского производства на 400 литров сегодня стоит от 40 тысяч, импорт еще дороже. Возникает резонный вопрос: сложно ли изготовить такую конструкцию самостоятельно?

Чтобы сделать теплоаккумулятор самой простой конструкции, достаточно иметь сварочный аппарат и навыки сварки. Если не планируется использовать для этой цели уже готовый бак, можно сварить его из двухмиллиметровой листовой стали (лучше из нержавейки).

В продаже есть в основном круглые баки, но самостоятельно проще изготовить прямоугольную емкость.

Если у вас есть металлическая бочка нужного объема, работы меньше: достаточно приварить к стенкам необходимое количество патрубков.

Утеплить емкость снаружи лучше листовой минеральной ватой: пенопласт огнеопасен и при нагреве выделяет токсичные летучие вещества.

Возможно Вас интересует:

Газовые котлы.
Что такое электрические котлы отопления энергосберегающие.

Видео об теплоаккумуляторе для котлов отопления.


Энергии | Бесплатный полнотекстовый | Гибкость электрического котла и теплоаккумулятора для взаимодействия нескольких энергетических систем

1. Введение

В 2015 году централизованное теплоснабжение (ЦО) обеспечивало горячей водой 63% частных домов в Дании [1]. Концепция системы централизованного теплоснабжения / охлаждения 4-го поколения, поддерживаемая возобновляемыми источниками энергии, представлена ​​в [2]. Чтобы к 2030 году стать углеродно-нейтральным в секторе отопления, возобновляемые источники энергии должны удовлетворить все потребности в отоплении. Таким образом, есть возможность интегрировать тепловые и электрические сети для поддержки вспомогательных услуг сети с помощью гибких электрических нагрузок, таких как электрические котлы (EB) и тепловые насосы (HP), поддерживающие тепловую систему [2,3].Электроэнергетическая и тепловая сети соединены вместе как электроэнергия-тепло (P2H), чтобы использовать возобновляемую электроэнергию для централизованного теплоснабжения. Интегрированный накопитель тепла разделяет спрос и выработку, чтобы повысить гибкость и лучшую адаптацию к потребностям в энергии. Концепция P2H в мультиэнергетической системе требует незначительного расширения сети и хранилища [4]. Цель этой статьи — признать гибкую работу теплового блока, состоящего из электрического котла (EB) и накопительного бака, смоделированного с помощью стратифицированного слои, как часть системы P2H.Это в первую очередь реализуется посредством анализа данных по измеренному потреблению тепловой энергии в жилом районе и оценки спроса на тепловую энергию с использованием подбора кривой с последующим составлением оптимального графика EB на основе спотовой цены. Модель многослойного стратифицированного резервуара для хранения тепла подходит для интеграции в электрическую сеть и гибкой работы, чтобы компенсировать ошибку в оценке потребности в тепле. Этот метод также может быть применен к системе с тепловым насосом. Тем не менее, применение ЭБ в настоящее время имеет большое значение для обеспечения гибкости энергии, а также для частотных услуг системы [5].Например, ЭБ мощностью 50 кВт используется в качестве гибкой нагрузки на острове Ливо в Дании для увеличения собственного потребления от ветряных и фотоэлектрических установок, установленных на острове [6]. Преимущества централизованного накопления тепла с точки зрения эксплуатационной гибкости ТЭЦ (комбинированное производство тепла и электроэнергии) для централизованного теплоснабжения хорошо изучено в [7]. Гибкость сети централизованного теплоснабжения для рынка резерва автоматического восстановления частоты изучается в [8]. Балансирующие рынки предоставляют возможность для привлечения большего количества ЭБ в ЦТ и увеличения его вклада в гибкость [9].Важным аспектом здесь является то, как можно эффективно реализовать развертывание системы. Ref. [7] обращается к гибкой работе тепловых насосов с использованием стратегии прогнозирующего управления, пренебрегая потреблением горячей воды из-за его сильно рандомизированного и трудно предсказуемого характера. Прогностическое управление тепловым насосом путем оценки только температуры наружного воздуха было изучено в [10]. Таким образом, существует необходимость исследования простых и эффективных методов определения влияющих параметров для прогнозирования тепловой нагрузки для управления гибкой работой тепловых блоков в технологии P2H.Перспектива электрификации тепла на рынке с преобладанием ветра с использованием резистивного нагрева и накопления является наиболее углеродоемким методом [11] с более низкими инвестиционными затратами по сравнению с HP [9,12]. Кроме того, большим HP требуется много времени от холодного пуска до достижения оптимальной эффективности. Таким образом, они не очень активны на балансирующих рынках между часами из-за коротких интервалов старт-стоп. Скорее, они в основном используются в качестве базовой нагрузки [9]. Следовательно, гибкость легкого запуска-останова в балансировочных услугах является основным стимулом для введения большего количества EB в систему.Электроэнергетические установки в централизованном теплоснабжении имеют потенциал для отрицательной вторичной регулирующей мощности за счет увеличения потребления и поддержания баланса сети [13]. В [14] реализованы преимущества управления спросом и возможность реагирования на спрос для повышения эффективности энергосистемы с помощью интегрированных устройств энергии ветра и электрического обогрева с учетом постоянной тепловой нагрузки в течение дня. Более высокий потенциал ТН в системах ЦТ в будущем реализован в [15]. Интеграция ЭП с накопителем в низковольтную бытовую сеть в качестве гибкой потребительской нагрузки была представлена ​​в [16].Следовательно, существует потенциал хорошей гармонии и гибкости между секторами электрической и тепловой энергии, поддерживающими друг друга в мультиэнергетических системах. Исследование потребностей в отоплении помещений и горячей воде для бытовых нужд представлено в [17] на основе подбора кривой и функций распределения. В [18] индекс коэффициента пиковой нагрузки зданий используется для определения разнообразия тепловых нагрузок с целью создания теплового профиля для жилых зданий. В справочнике [19] рассчитывается вероятность потребления горячей воды для бытового потребления в момент времени (t), который зависит от вероятности в течение дня, буднего дня, сезона и праздника, как функции времени (t).Ступенчатые функции с большей вероятностью для выходных дней по сравнению с рабочими днями используются для индикации более высокого потребления горячей воды для бытового потребления в выходные дни. Тепловая потребность в отоплении помещения в типичный зимний день исследуется в [20]. Однако схема использования комбинированного эффекта отопления помещений (SH) и горячего водоснабжения (ГВС) все еще остается нереализованной. Надлежащее знание структуры спроса на отопление помещений и бытового использования, представленное в этой статье, является ключевым фактором для разработки хорошего и применимого инструмента оценки спроса на тепловую энергию.Это курсив в основном тексте и уравнениях. Для согласованности в документе, пожалуйста, внимательно проверьте и измените их на курсив. Возможность оценки потребности в тепле для отопления помещений всего за несколько часов заранее с использованием нейронной сети на основе потребления тепла в зданиях в Польше сопоставлена ​​с погодными условиями более чем на 10%. годовой период в [21]. В [21] метод прогнозирования основан на нейронной сети временных рядов с учетом температуры и потребления тепла в конкретный час, день и предыдущую историю.Данные за один месяц из сети ЦО в Риге были проанализированы для прогнозирования в [22] со сравнением методов с использованием искусственной нейронной сети, модели полиномиальной регрессии и их комбинации. С помощью этих методов прогнозы выполняются путем обновления статистики фактической нагрузки и температуры предыдущего измерения. ЦО из Чехии был проанализирован в [23] в модели прогноза, основанной на временных рядах температуры наружного воздуха и зависимых от времени социальных компонентов, которые могут различаться для разных дней недели и времени года.Для реализации прогноза социальной составляющей используется метод Бокса – Дженкинса. В [24] рассматриваются вопросы выбора соответствующих входных переменных от датчиков систем управления энергопотреблением. Температура окружающей среды и относительная влажность наряду с солнечной радиацией являются преобладающими факторами для прогнозной модели [24,25]. В [26] прогнозирование, основанное на методе аналогичного дня, хорошо представлено для выходной мощности на сутки вперед для маломасштабной солнечной фотоэлектрической системы. Тем не менее, ни одна из литературы не обсуждалась относительно централизованного теплоснабжения как летом, так и зимой, а также прогноза тепловой нагрузки, основанного на совокупном влиянии фактора времени и переменных окружающей среды (таких как температура наружного воздуха, влажность и скорость ветра) вместе.Эти аспекты важны для изучения в комплексной структуре, чтобы четко понять эффективный потенциал тепловых устройств, таких как электрические блоки. Таким образом, такие гибкие блоки могут обеспечивать энергетическую гибкость, необходимую для поддержки интеграции возобновляемых источников энергии в будущие энергетические системы. В этом документе предлагаемая методология для получения гибкости с EB в P2H резюмируется на блок-схеме, как показано на Рис. 1. Существенным вкладом в этот документ является определение модели тепловой нагрузки, оценка тепловой нагрузки с использованием инструмента построения кривой и использование стратифицированного резервуара для хранения для проверки гибкости работы ЭБ.Фактические тепловые данные от оператора ЦО анализируются, чтобы раскрыть конкретную модель потребления жилых районов, связанных с использованием, на основе различных временных факторов, таких как почасовые, будние, выходные и сезонные. Эта информация полезна при обучении инструмента построения кривой для оценки тепловой нагрузки. Со ссылкой на [21,22,23], оценка потребности в тепловой энергии основана на прошлом и ее текущем состоянии на зиму. Простой, но эффективный метод построения кривой для оценки потребности в тепле в жилом районе на основе зависимых параметров, таких как временной фактор (на основе профиля потребления) и переменные среды (кажущаяся температура), был исследован и также сравнен с фактическими данными. как следствие существующей литературы.Анализ выполняется для оценки тепловой нагрузки как зимой, так и летом. Подгонка кривой проста и решает проблему, возникающую при обновлении измеренных данных (из-за отказа измерительного оборудования), как при оценке временных рядов. Расчетный спрос используется для определения оптимального графика работы ЭБ в P2H, для планирования мощностей для одновременного хранения и удовлетворения спроса на тепловую энергию на основе спотовой цены на электроэнергию. Использование многослойного накопительного бака в сочетании с EB имитирует реальные условия эксплуатации, при которых температура подаваемой горячей воды более реалистична по сравнению со средней моделью накопительного бака, где температура горячей воды постепенно снижается.Результат подтверждается фактическим потреблением тепла, чтобы проиллюстрировать, как накопитель тепла справляется с ошибкой прогнозирования, и вносит свой вклад в качестве примера гибкой нагрузки в концепции P2H. Документ структурирован следующим образом. Анализ потребления тепловой нагрузки, основанный на фактических измерениях в одном конкретном жилом районе в Дании, снабженном пятью фидерами, анализируется для раскрытия конкретной модели использования и описывается в Разделе 2. Выбор параметров для эффективной оценки тепловой нагрузки с использованием различных инструментов, таких как нейронные сеточная подгонка и аналогичный дневной метод обсуждаются в Разделе 3.Обзор подхода к моделированию стратифицированного резервуара для хранения горячей воды и EB представлен в разделе 4 вместе с проверкой модели. В Разделе 5 представлена ​​методология оптимизации графика работы ЭБ вместе со стратегией управления ВКЛ / ВЫКЛ ЭБ. Результаты расчетного спроса обсуждаются в Разделе 6, а затем его применение в гибком графике EB для реагирования на спрос. Наконец, статья завершается результатами исследовательской работы в Разделе 7.

2.Анализ тепловых данных

Тепловые данные, измеренные на терминале пяти тепловых распределительных фидеров (F1-F5), снабжающих ряд жилых домов в одном конкретном жилом районе Ольборга, Дания, используются для анализа. Проанализированы имеющиеся измеренные данные о почасовом потреблении тепловой энергии с 21 декабря 2015 года по 4 декабря 2016 года. На рисунке 2 показано общее годовое потребление тепловой энергии (QDHW) для жилых домов в фидерах (F1-F5), снабжающих жилые дома. Годовое потребление колеблется от 723 ед.7 МВтч как самое низкое потребление для F1 до 1278,5 МВтч как самое высокое потребление в F4. Это различие связано с разным количеством жителей в районе и их уровнем комфорта. Общее годовое потребление составило 5195,7 МВтч. На рис. 3а, б показан график почасового потребления QDHW для фидеров (F1-F5) и их общего потребления соответственно в течение года. Рисунок 3a, b ясно показывает, что есть сезонные колебания. Рисунок 3b показывает, что есть внезапный переход в потреблении тепла в определенный период времени, например, ближе к концу января, середине марта и началу мая.Однако между серединой мая и концом сентября наблюдается значительная разница в потреблении тепла, которая составляет менее 35% от пикового зимнего потребления. Таким образом, чтобы упростить дальнейший анализ, тренд потребления тепла условно разделен на два сезона, зимний и летний, независимо от осени и весны. Следовательно, с октября по апрель считается зимним сезоном, а с мая по сентябрь — летним сезоном. Переходный период в начале мая и октябре в данном анализе не рассматривается.Похоже, что в мае потребность в тепле немного больше, чем в сентябре, из-за перехода с зимы на лето и составляет около 30 ± 5% от пикового зимнего потребления. Интересно увидеть анализ данных с сезонной точки зрения: потребление зимой и летом. В остальной части статьи анализ проводится с учетом совокупного воздействия всех питателей. В результате максимальная потребность в тепле, вероятно, будет меньше суммы пиковой нагрузки отдельного питателя. Это также снижает периодические колебания спроса на отдельные кормушки.

Среднее потребление QDHW в час для всех фидеров с учетом годового потребления составляет 618,5 кВтч. Зимой это 881,8 кВтч, что на 205,8% больше, чем потребление летом 288,4 кВтч.

На рис. 4a, c показан график среднечасового режима потребления тепла в разные дни недели зимой и летом соответственно. Хорошо видно, что существует уникальная картина среднего теплового потребления с пиками. В выходные (суббота и воскресенье) картина отличается от будней (с понедельника по пятницу).Для упрощения графиков, показанных на рис. 4a, c, графики со средним потреблением тепловой энергии в течение недели, будних и выходных дней были построены на рис. 4b, d для зимы и лета соответственно. Отмечается, что существуют определенные закономерности почасового использования среднего QDHW. Есть две вершины и две впадины. Ясно, что величина отклонения в потреблении тепла от минимального потребления выше для выходных, чем для будних дней, что указывает на более высокое потребление горячей воды для бытового потребления, как указано в [19].На рисунке 5 показана структура потребления в будние, будние и выходные дни за период с декабря 2016 года по август 2017 года для зимы и лета соответственно. В отличие от рисунка 4b, d общее потребление в выходные дни ниже, чем в будние дни. Таким образом, количество потребляемой тепловой энергии по выходным и будним дням не очень актуально. Однако почасовая структура потребления в будние и выходные дни сопоставима с аналогичными пиками и спадами в определенные часы, показанными на рис. 4b, d. Следовательно, знание этих моделей потребления тепла в будние и выходные дни очень полезно для обучения инструмента оценки, чтобы компенсировать ошибку из-за факторов, не зависящих от температуры, таких как поведение пользователя.Самый низкий уровень потребления приходится на период 03: 00–04: 59 ч, который постепенно увеличивается до 07: 00–07: 59 ч в обычные будние дни, когда люди готовятся к своей работе (рис. 4b, d). В выходные дни этот пик смещается примерно с 10: 00–12: 59. Сдвиг пика может быть вызван тем, что в выходные люди предпочитают поздно вставать. После утреннего пика потребление тепла снижается до 2: 00–3: 59 ч, когда люди находятся на работе в будние дни. В течение недели вечерний пик приходится на 18: 00–20: 59, который постепенно снижается до 4:59 ранним утром.Однако летом наблюдается сдвиг вечернего пика по сравнению с зимним. Этот анализ показывает актуальность времени, дня и сезона для определения характера использования теплового потребления, и что это важно для прогнозирования, как показано в [21] для тепловой нагрузки, аналогично прогнозированию электрической нагрузки [27].

3. Оценка тепловой нагрузки

Трудно оценить тепловую нагрузку для жилого района, поскольку она в значительной степени зависит не только от переменных окружающей среды (погоды), но также от поведения пользователя и геометрии здания.В действительности, анализ занятости и комфорта на уровне пользователей затруднен и приводит к проблемам, связанным с проблемами конфиденциальности отдельных лиц. Это приводит к значительным усилиям по поиску компромисса между ошибками в оцениваемых переменных и зависимых параметрах. Анализ тепловых данных в жилых районах дает замечательную информацию о структуре спроса на тепловую энергию без ущерба для частной жизни людей. Эта информация полезна при выборе эффективных переменных для оценки спроса на тепловую энергию с точки зрения поведения пользователя, которое определяет структуру спроса.Время суток и дни недели (будние или выходные) — это два основных параметра, связанных со структурой потребления тепла в зависимости от уровня комфорта пользователя.

Расчетные параметры используются для определения гибкости работы тепловой системы на основе спроса, предложения, мощности и цен на энергию. В этой статье для оценки потребления тепла в жилом районе используются тепловые данные, показанные на Рисунке 5.
3.1. Зависимые переменные для оценки тепловой нагрузки
На тепловую нагрузку сильно влияют переменные окружающей среды, такие как температура воздуха.На рисунке 6а показано почасовое значение тепловой нагрузки и соответствующая средняя внешняя температура окружающей среды. Это показывает, что снижение температуры увеличивает потребность в тепле. Помимо температуры воздуха, холодный воздух с высокой относительной влажностью увеличивает отвод тепла от тела по сравнению с сухим воздухом той же температуры. Чтобы учесть комбинированный эффект относительной влажности, ветра и температуры воздуха, ответственный за потерю тепла телом, учитывается кажущаяся температура.Кажущаяся температура рассчитывается с использованием (1) и (2) [28]. На рисунке 6b показано почасовое значение тепловой нагрузки и соответствующая кажущаяся температура. Коэффициент корреляции тепловой нагрузки по отношению к внешней температуре окружающей среды и кажущейся температуре составляет -0,88 и -0,89 соответственно.

AT = Ta + 0,33e − 0,7v − 4,00

(1)

е = Rh2006.105exp17.27Ta237.7 + Ta

(2)

где AT = кажущаяся температура [° C]. Ta = Температура внешней среды по сухому термометру [° C].e = давление водяного пара [гПа]. v = скорость ветра [м / с]. RH = относительная влажность [%]. На рисунке 7a показан график зависимости видимой температуры от тепловой нагрузки в период с декабря 2016 года по август 2017 года. На рисунке 7b показано распределение тепловой нагрузки по отношению к видимой температуре только летом и зимой. Из рисунка 7b видно, что потребность в тепле зимой обратно пропорциональна кажущейся температуре. Тогда как летом пропорциональная связь между собой очень мала.Это может быть связано с тем, что помимо внешней температуры, потребление тепла в основном используется для бытовых целей, таких как купание, стирка, обогрев туалета / ванной комнаты и потери при передаче. Таким образом, логично заключить, что сезонный эффект необходимо рассматривать как входную переменную в модели для оценки.

Параметры для оценки тепловых нагрузок в жилых районах основаны на таких факторах, как поведение пользователя (часы, рабочие и выходные дни) и условия окружающей среды (видимая температура и время года).

3.2. Метод оценки тепловой нагрузки

Рассмотрены различные подходы к оценке тепловой нагрузки, основанные на методе подбора кривой, такой как подгонка нейронной сети и аналогичный дневной метод, поскольку они широко используются. Встроенные инструменты и функции MATLAB используются для разработки модели оценки с помощью инструмента нейронной сети. Анализируются различные сценарии, основанные на сезонных колебаниях (летом и зимой).

Для инструмента подбора нейронной сети 50% сезонного набора данных используются для обучения, 25% для проверки и 25% для тестирования для разработки модели.Наборы данных делятся случайным образом для обучения, тестирования и проверки модели. После разработки модели для оценки используется 50% оставшегося набора сезонных данных.

Для аналогичного дневного подхода ежечасные данные за день упорядочены по сезону (лето и зима), а также по будням и выходным, как показано на рисунке 8. 50% каждого набора данных (будние и выходные для лета и зимы) используются как исторические данные для построения евклидова расстояния (ED) для измерения сходства. В методе аналогичного дня предполагается, что тепловая нагрузка связана с кажущейся температурой (AT) для аналогичного дня (будние дни и выходные летом или зимой), что приведет к аналогичной тепловой нагрузке.Значение ED, основанное на записанных нормированных значениях AT (AT˜) в конкретный час (h) дня (d), рассчитывается для каждого исторического аналогичного дня (di) с использованием (3) [26]

ED (AT˜, d, di) = ∑h = 124 (AT˜h (d) −AT˜h (di)) 2

(3)

где ED (AT˜, d, di) — ED между днем ​​d и историческими днями di по отношению к значению AT˜. Дни с аналогичной структурой AT будут иметь очень маленькие значения ED, поэтому соответствующее значение тепловой нагрузки выбрано в качестве оценочного значения. Параметры AT могут быть получены из прогнозируемых метеорологических данных.

5. График работы ЭБ для обеспечения гибкости

Чтобы спланировать время работы ЭБ для зарядки резервуара для горячей воды, следует процедура оптимизации, описанная в (11) и (12). Целевая функция — минимизировать затраты на электроэнергию для производства горячей воды для удовлетворения спроса и потребностей в хранении. Ограничения рассчитывают энергию, хранящуюся в резервуаре для хранения, и не позволяют резервуару для хранения заряжаться больше, чем его допустимый максимальный и минимальный предел. Энергия, извлекаемая из сети, равна 0 (когда EB выключен) или равна номинальной мощности электронагревателя EB (Pb, когда EB включен).Энергия, извлекаемая из сети, должна быть способна заряжать хранилище, а также удовлетворять спрос. Несмотря на то, что есть возможности для управления мощностью ЭБ в несколько этапов, проблема здесь упрощается с помощью только включения и выключения, чтобы продемонстрировать гибкость в работе ЭБ в условиях динамического тарифа с помощью предполагаемого спроса. Кроме того, работа ЭБ в часы пик в вечернее время ограничена, чтобы свести к минимуму проблемы, связанные с перегрузкой сети и пониженным напряжением в низковольтной жилой сети Дании, из-за интеграции и работы электрических котлов (ЭБ) [6].Тепловая энергия, хранящаяся в резервуаре в конце дня, максимизируется, чтобы проиллюстрировать, что резервуар для хранения не только обеспечивает гибкость, удовлетворяя потребность в тепловой энергии во время высокой цены на электроэнергию и пикового спроса на электроэнергию, но также сохраняет энергию в течение периода низкая цена на электроэнергию в течение 24 часов по спотовой цене на рынке электроэнергии.

Minimize∑t = 124CtPg, т

(11)

Ограничения St + 1 = St − QDHW, t + Pg, tSmin≤St≤SmaxPg, t∈ [0, PbΔt] Pg, t = 0 для 17≤t≤20 (Smax − PbΔt) ≤St≤Smaxfort = 24

(12)

Здесь C = цена энергии [евро / МВтч].Pg = энергия, извлеченная из сети [МВтч]. S = энергия, которая может быть извлечена из хранилища [МВтч]. QDHW = тепловая нагрузка [МВтч]. Pb = номинальная мощность EB [2,4 МВт]. Индексы: t = время [ч], min = минимум, max = максимум, ini = начальное значение. Максимальная энергия, которая может храниться в резервуаре для горячей воды, определяется выражением (13)

Smax = MbCw (Ts-Tr) / (3600 × 106) [МВтч]

(13)

Здесь Mb = Масса воды в хранилище [2 × 105 кг]. Ts = температура подаваемой горячей воды в баке [80 ° C]. Tr = температура возвратной воды в баке [40 ° C].Cw = удельная теплоемкость воды [4190 Дж / кг · K]. Задача оптимизации была решена путем минимизации функции стоимости с помощью оптимизации грубой силы в MATLAB. Все возможные кандидаты в решения генерируются и затем проверяются на соответствие постановке задачи, как указано в (11) и (12). Для более чем одного решения выбирается решение с меньшим количеством операций включения / выключения EB. Решения были проверены с помощью «PuLP», моделлера линейного программирования, написанного на python.
Управление EB
Оптимизированный график работы EB определяется на основе предполагаемой тепловой нагрузки.С другой стороны, фактическая потребность в тепле будет в некоторой степени отличаться от расчетной стоимости. Это приводит к ошибке оценки. Если ошибка велика, это может привести к тому, что температура накопительного бака выйдет за пределы указанного предела (T10≤75 ° C, когда накопитель заряжен, и T7≥46 ° C, чтобы ограничить разряд накопителя до 70% его емкости). Таким образом, чтобы компенсировать большую ошибку в расчетном потреблении относительно фактического значения, оптимизированный график работы EB усилен контроллерами пределов на основе управления гистерезисом, реализованным с помощью RS-триггера, для включения / выключения EB, как показано на рисунке 12.Это гарантирует, что температура горячей воды в накопительном баке находится в пределах указанного предела. На рисунке 12а показано, что при температуре нижнего слоя T10≥75 ° C EB необходимо выключить, как описано в разделе 4.1. Он отключается только на короткий период, пока температура седьмого слоя (T7) не станет ниже 78 ° C, чтобы он мог в дальнейшем следовать графику. Рисунок 12b гарантирует, что если T7 <46 ° C (накопитель разряжается более чем на 70% своей емкости), EB включается до тех пор, пока он не будет полностью заряжен (т.е.е., T10≥75 ° C). Помимо этих двух условий, ЭБ работает по установленному графику. Общая стратегия управления показана в таблице 3, где Ca - управляющий сигнал для включения и выключения EB, а Ca1 - сигнал запланированного включения / выключения EB.

7. Выводы

Этот документ показывает суть ежедневного использования тепловой энергии летом и зимой в жилом районе, а также факторы, влияющие на оценку потребности в тепле, такие как параметры поведения пользователя и параметры внешней среды.На основе этих факторов была реализована модель нейронной сети и аналогичный дневной метод оценки. Используя эту модель, можно получить оценку использования тепла для одной и той же области, но не для других областей. Так что уже имеющуюся модель вряд ли можно будет использовать для новых предметов. Тем не менее, выводы этой статьи об использовании входных параметров для определения потребности в тепле в конкретной области и ее влияния на характер использования были оправданы.

Результаты анализа данных о потреблении тепла (QDHW) позволяют сделать некоторые важные выводы о структуре энергопотребления в зависимости от времени и дня использования, отражая поведение пользователей без ущерба для личной жизни.Эта ценная информация полезна для определения генерации тепловой нагрузки и потребности в хранении. Когда большие ТЭЦ заменяются небольшими тепловыми насосами или электрическими котлами и интегрируются в электросетевую сеть, это увеличивает потребность в электроэнергии с профилем, показанным на Рисунке 4. Таким образом, в непиковые часы, когда спрос на электроэнергию низкий, Теплоаккумулятор можно использовать для хранения излишков электроэнергии, вырабатываемой ветряными турбинами и другими возобновляемыми источниками энергии. Это хранилище тепловой энергии можно использовать в часы пик, снижая выбросы парниковых газов при производстве горячей воды.Кроме того, расчетное значение потребности в тепле помогает в определении диапазона требований к аккумулированию тепла для удовлетворения потребительского спроса, а также реакции спроса на использование модуля аккумулирования тепла в качестве гибкой потребительской нагрузки в многоэнергетической системе.

Электрические котлы для центрального отопления и электрические комбинированные котлы

Электрический котел очень похож на газовый или масляный котел, но он использует электричество для нагрева воды для вашего дома, а не газа / масла.

Они являются особенно популярным вариантом для небольших домов, у которых нет доступа к газу или нефти, и часто устанавливаются в новых домах и квартирах, поскольку их дешевле устанавливать и обслуживать. Кроме того, поскольку они не имеют выбросов газов, многие считают их более экологически чистым выбором.

Электрический котел может заменить любой другой котел малого и среднего размера в доме. Он легкий, маленький, компактный и часто совершенно бесшумный. Однако, поскольку они нагревают только ограниченное количество горячей воды за раз, электрический бойлер не рекомендуется для больших домов с повышенным спросом на горячую воду.

Стоит знать: Электрокотлы не являются накопительными электронагревателями. В то время как бойлер будет использовать электричество для нагрева воды для ваших кранов и радиаторов, накопительный нагреватель будет нагревать кирпичи в вашем доме в течение ночи (когда затраты на электроэнергию ниже), чтобы вы могли использовать это накопленное тепло в течение следующего дня.



Почему выбирают электрический котел?

Не требуется ни газа, ни масла. Если вы живете в одном из 2 миллионов домов в Великобритании, который не подключен к газовой сети, или в вашем доме есть ограничения на использование газовых котлов e.грамм. памятники архитектуры, электрический котел — лучшее решение.

Высокая эффективность

Поскольку электрические котлы не нуждаются в сжигании топлива для производства тепла, они не теряют энергию из-за отходящих газов или дымоходов. Во многих случаях это приводит к КПД 99% по сравнению с 89-95% для большинства газовых котлов.

Дешевле установить

Поскольку отсутствуют отходящие газы, электрокотел не нуждается в трубах, дымоходе или дымоходе, поэтому установка котла обойдется вам дешевле.

Получите расценки на электрический котел сегодня.

Легкий и компактный

Отсутствие системы дымоудаления и отходящих газов также означает, что установка намного компактнее, и вы можете более гибко выбирать, где в доме ее установить.

Тихий

Поскольку в электрокотле нет движущихся элементов, шум практически отсутствует.

Легче обслуживать

В отличие от газовых и масляных котлов, в которые включено больше механики, электрические котлы не нуждаются в ежегодном обслуживании для поддержания их работоспособности.Обычно ремонт нужен только в случае поломки. Кроме того, в то время как газовые котлы могут заблокироваться, когда они не используются, например летом электрический циркуляционный насос будет продолжать работать, даже если он не работает.

Более высокие эксплуатационные расходы

Электроэнергия дороже газа, а значит, ежемесячные счета будут выше.

Без горячей воды

Поскольку электрические котлы нагревают воду по запросу, они ограничены в количестве горячей воды, которую они могут произвести, поэтому, возможно, это не лучший выбор для больших домов.

Отключение электроэнергии

В случае отключения электричества вы можете потерять доступ как к отоплению, так и к горячей воде, а также ко всем остальным приборам.



Электрокотел Стоимость

Чем меньше размер котла, тем меньше затраты на его установку и эксплуатацию. В среднем котел наименьшего размера стоит примерно 1500 фунтов стерлингов, а самый большой может достигать 2500 фунтов стерлингов. Однако стоимость установки будет зависеть от выбранного вами установщика.

Воспользуйтесь нашим инструментом сравнения котлов, чтобы просмотреть цены на электрические котлы, доступные в настоящее время на рынке Великобритании.

При выборе важно сравнивать несколько цитат. Boiler Guide может предоставить вам до 3 предложений от зарегистрированных и авторитетных установщиков без комиссии и без каких-либо обязательств.

Виды электрокотла

Существует несколько различных типов электрических бойлеров, некоторые из которых могут больше соответствовать вашему образу жизни, чем другие.

Прямой

Этот котел больше всего похож на газовый комбинированный котел, т.е. в нем используется нагревательный элемент для нагрева воды по запросу.Хотя это самый простой и дешевый в установке, он не имеет никакого способа хранения горячей воды, поэтому вы не можете воспользоваться тарифами эконом-класса 7, нагревая воду на ночь для использования в течение дня.

Хранилище

Накопительный электрокотел включает резервуар для горячей воды либо внутри агрегата, либо отдельно. Это позволяет нагревать воду в течение ночи, когда затраты на электроэнергию ниже, и хранить ее для использования на следующий день. Они дороже, чем котлы прямого действия, и резервуар займет больше места в вашем доме.

Электро КПСС

Комбинированный первичный накопитель

, или CPSU, хранит много горячей воды в котле, поэтому он может удовлетворить потребность намного быстрее и при более высоком давлении. Однако они, как правило, довольно большие и поэтому больше подходят для коммерческих установок.

Хранилище с сухим сердечником

Котлы с сухим сердечником аналогичны накопительным нагревателям, поскольку они используют более дешевые ночные тарифы для обогрева кирпичей в течение ночи, но затем тепло выделяется в воду для использования в центральном отоплении и горячей воде, а не напрямую в дом.

Солнечная

Если у вас есть накопительный бак, вы можете использовать солнечные батареи для нагрева воды в течение дня. Подробнее о работе электрического котла с солнечными батареями читайте здесь.

Нужна консультация по поводу электрических котлов и какой из них подходит именно вам? Boiler Guide может помочь вам связаться с 3 местными инженерами.

Электрокотел марки

Несколько брендов в Великобритании предлагают ряд типов и производителей комбинированных электрических котлов мощностью от 4 до 15 кВт.

Heatrae Sadia

  • Комбинированный электрический котел ElectroMax — это компактный котел, который легко помещается в стандартную бытовую вытяжку. Он хорошо подходит для квартир или квартир и доступен в нескольких размерах.

Компания электрического отопления

  • Бойлер Fusion Electric System доступен в диапазоне от 6 кВт до 14,4 кВт. Он не требует дымохода, подходит только для полов с подогревом и центрального отопления или центрального отопления с горячей водой с отдельным накопительным баком.
  • Комбинированные котлы Fusion Electric E10 — это более крупные агрегаты, работающие от комбинированного электрического агрегата мощностью 9 кВт / 150 л до комбинированного электрического агрегата мощностью 14,4 кВт / 170 л.

Электрические комбинированные котлы Thermaflow

  • Электрические комбинированные котлы Thermaflow мощностью 9 или 12 кВт доступны в объемах 210, 250 и 330 литров. Это большие и тяжелые блоки из нержавеющей стали.

Электрокотлы Dimplex

  • Модулирующий электрический отопительный котел Dimplex Ascari — это котел, не требующий ежегодного обслуживания, не требующий ежегодной проверки, совместимый как со стандартными радиаторами, так и с напольным отоплением, с максимальной мощностью 4–12 кВт.Маленький и стильный, он идеально подходит для кухни и хорошо впишется рядом с большинством кухонных шкафов.

Электрокотлы Trianco

  • Trianco Aztec Classic Electric Boilers — это практичная настенная система центрального отопления, которая подходит практически для всех областей применения. Он доступен с пятью выходами в диапазоне от 2 до 12 кВт.
  • Trianco Aztec Gold Electric Boilers — это небольшой электрический котел, предназначенный для обогрева небольших помещений, таких как дома на колесах, зимние сады и чердаки.Серия Aztec Gold эстетична и компактна, не требует наличия дымохода, а это означает, что ее можно установить во многих местах, когда вам будет удобно. Что касается технического обслуживания, он имеет собственную систему самодиагностики и предохранитель от перегрева. Он также совместим с большинством полов с подогревом.

Для получения дополнительной информации, которая поможет вам сделать выбор, прочтите наше полное руководство по лучшим электрическим котлам.

Стоит ли устанавливать электрический котел?

Если вы живете в небольшом доме, в котором нет доступа к газу или маслу, стоит подумать об электрическом бойлере.Их установка и обслуживание дешевле, чем газ и нефть, и, что еще лучше, они экологически безопасны благодаря отсутствию выбросов.

Получите бесплатные расценки на замену котла

Используя Boiler Guide, вы можете бесплатно получить расценки от 3 зарегистрированных и надежных установщиков Gas Safe в вашем регионе. Лучше всего то, что здесь нет никаких обязательств.

Об авторе

Адам

Адам — ​​наш постоянный эксперт по отоплению дома.Его опыт и советы помогли миллионам клиентов повысить эффективность своих домов и сэкономить деньги.

Какие проблемы у электрокотлов?

Зачем нужен электрический котел?

Большинство систем электрического отопления подключаются напрямую к электросети и используют внутренние нагревательные элементы для обеспечения тепла. Он может быть эффективным способом обогрева вашего дома, но не решает проблему нагрева воды. Кроме того, если вы переходите с газа на электричество, то, вероятно, у вас уже есть система влажного центрального отопления (которая пропускает горячую воду через радиаторы для обогрева вашего дома).Поэтому вместо того, чтобы демонтировать их и заменять электрическими нагревателями, многие люди, вносящие изменения, решают просто заменить свой нынешний газовый котел на электрический. Это также избавляет их от необходимости вкладывать средства в отдельный водонагреватель, поскольку и вода, и центральное отопление проходят через одну и ту же систему.

Чем электрические котлы отличаются от газовых?

Если коротко, то они используют разные методы нагрева воды.

Газовый котел забирает газ из национальной сети и сжигает его для производства тепла.Затем он проходит через теплообменник, который нагревает воду, используемую как для центрального отопления, так и для горячей воды. В случае электрического котла это аналогичный процесс, но вместо того, чтобы сжигать природный газ для производства тепла, электрический бойлер нагревает воду, используя энергию непосредственно от источника электроэнергии (почти всегда из национальной сети).

Это означает, что электрические котлы на самом деле значительно эффективнее своих газовых аналогов. Современные газовые котлы могут достигать КПД 95% (или даже выше), но электрические котлы могут достичь КПД 100%.

Какие проблемы у электрокотлов?

Электрические котлы не обязательно лучше для окружающей среды. Варианты электрического обогрева часто считаются более экологичными, поскольку для обогрева используется накопленная энергия, а не газ. Однако многие люди не понимают, как вырабатывается наша электроэнергия. Не все это исходит от ветряных турбин и солнечных батарей, значительная часть на самом деле производится с использованием точно такого же грязного ископаемого топлива, от которого, как предполагается, нас избавляют электрические котлы! Ваш электрический котел, по крайней мере частично, питается от электричества, вырабатываемого при сжигании газа, просто это делается на электростанции, а не внутри вашего котла.Все сводится к тому, что наше электричество является экологически чистым настолько, насколько мы используем для его производства средства.

Эксплуатационные расходы могут быть очень высокими. Хотя электричество (и электрические котлы) более эффективны, электричество значительно дороже газа. Одна единица электроэнергии может обойтись в 3-4 раза больше. Это должно быть серьезным соображением. В Фолкирке местный совет установил электрические бойлеры примерно в 900 муниципальных владениях, но теперь они сталкиваются с возмущением и противодействием со стороны жителей, некоторые из которых увидели, что их счета выросли до более чем 100 фунтов стерлингов в неделю.

Меньшая выработка горячей воды. Если у вас дом побольше, вы можете обнаружить, что электрический бойлер изо всех сил пытается удовлетворить более высокую потребность в горячей воде. Все дело в выборе правильной системы — как правило, старайтесь выделять 1,5 кВт на каждый радиатор в вашем доме (поэтому, если у вас 6 радиаторов, вам нужен электрический котел мощностью 9 кВт или выше). Это может добавить много мощности, и вам будет сложно найти бытовую систему мощностью более 15 кВт.

Старая проводка может выйти из строя. Если у вас более старый дом в Великобритании, вы вполне можете обнаружить, что работаете с предохранителем на 30 или 60 ампер, оба из которых не справятся с электрическим бойлером (который обычно работает на 48 ампер). Этого достаточно, чтобы перегореть предохранитель на 30 ампер или вывести из строя некоторые другие электрические устройства с предохранителем на 60 ампер. Единственный способ исправить это — установить более мощный усилитель. Поэтому очень важно проконсультироваться с электриком перед установкой электрического бойлера.

Что такое электрический накопительный котел?


Существует множество типов электрических котлов.И среди них котлов накопительных . О чем это ? Какие преимущества и недостатки ?

Почему это «смешанный» котел?

Электрический накопительный котел является частью семейства котлов смешанного типа . Это означает, что он производит как горячую воду для отопления дома, так и непосредственно ГВС. Термин «накопитель» означает, что в котле есть резервуар для горячей воды для хранения резерва. Благодаря этому горячая вода может быть доступна сразу же, когда это необходимо.

С этим внутренним баком бойлер может быть сладострастного , в зависимости от количества литров, которое он может вмещать. Тогда будет важно выбрать его вместимость в соответствии с количеством жителей дома и количеством ванных комнат. Меньшие модели называются micro-storage , их водоснабжение более ограничено.

Преимущества и недостатки накопительного котла

Электрические котлы в целом имеют большое преимущество в том, что они просты и легки в установке.А наличие электрического бойлера-накопителя — это гарантия мгновенного получения горячей воды в любое время дня. Таким образом, горячая вода доступна без ожидания.

Однако мы рекомендуем вам выбрать систему электрического котла, в которую не встроен резервуар для воды (например, MINI EUROPE). Во-первых, потому что застойная нехолодная вода увеличивает риск появления бактерий, и особенно потому, что она не позволяет нагревать воду просто так. В обычной котельной системе, подключенной к водонагревателю , вода нагревается только в случае реальной необходимости и с очень разумной скоростью (всего несколько секунд).

Критерии выбора электрического накопительного котла

Этот тип котла подходит не для любого образа жизни и не для всех домов. В первую очередь необходимо выделить для этого котла больше места. Благодаря большому резервуару для горячей воды он выглядит роскошно и требует места. Отапливаемые помещения не должны быть слишком большими. На самом деле потребление бойлера-накопителя необходимо точно рассчитать, и чем больше площадь, тем дороже он будет.

Что такое электрические комбинированные котлы и в чем их преимущества

Плюсы и минусы

Преимущества пароконвектомата

1.Создан, чтобы быть зеленым. Электрический бойлер легко интегрируется в вашу существующую систему. Если вы уже используете солнечные батареи или солнечные нагревательные панели, установка будет простой.

2. Возможность полностью отключиться от сети. Вы можете отказаться от подачи газа и производить собственное электричество, что означает полную независимость и полный контроль.

3. Нет ископаемого топлива. Вам не нужен газ, масло или дизельное топливо для питания вашего дома.

4. Увеличьте пространство! Электрические комбинированные котлы меньше и легче своих газовых аналогов, что позволяет устанавливать их в стандартных кухонных шкафах или в узких местах, которые слишком неудобны, чтобы их можно было использовать для чего-либо еще.

5. Наслаждайтесь тишиной. Электрокотлы бесшумны. Единственная движущаяся часть — это небольшой циркуляционный насос, который обычно не слышен при закрытых дверцах шкафа. Никакого шипения, жужжания, хрюканья или других шумов, которые обычно характерны для газового котла.

6. Вам не нужен дымоход, что отлично подходит для многоквартирных домов, так как вы экономите тысячи фунтов на строительных лесах.

7. Защита от легионелл. Специалисты отрасли HVAC серьезно обеспокоены бактериями Legionella, которые могут поразить практически любую систему отопления.Современные электрические котлы, такие как Elnur Mattira, оснащены системой защиты от легионелл, которая раз в неделю поднимает температуру воды до максимума, чтобы смыть любые образования легионеллы, которые могут скапливаться внутри котла или труб.

Преимущества комбинированных электрических котлов

1. Создан, чтобы быть зеленым. Электрический котел легко интегрируется в существующую систему игрушек. Если вы уже используете солнечные батареи или солнечные нагревательные панели, установка будет простой.

2.Возможность полностью отключиться от сети. Вы можете отказаться от подачи газа и производить собственное электричество, что означает полную независимость и полный контроль.

3. Нет ископаемого топлива. Вам не нужен газ, масло или дизельное топливо для питания вашего дома.

4. Увеличьте пространство! Электрические комбинированные котлы меньше и легче своих газовых аналогов, что позволяет устанавливать их в стандартных кухонных шкафах или в узких местах, которые слишком неудобны, чтобы их можно было использовать для чего-либо еще.

5. Наслаждайтесь тишиной.Электрокотлы бесшумны. Единственная движущаяся часть — это небольшой циркуляционный насос, который обычно не слышен при закрытых дверцах шкафа. Никакого шипения, жужжания, хрюканья или других шумов, которые обычно характерны для газового котла.

6. Защита от легионелл. Специалисты отрасли HVAC серьезно обеспокоены бактериями Legionella, которые могут поразить практически любую систему отопления. Современные электрические котлы, такие как Elnur Mattira, оснащены системой защиты от легионелл, которая раз в неделю поднимает температуру воды до максимума, чтобы смыть любые образования легионеллы, которые могут скапливаться внутри котла или труб.

Недостатки электрокотла

1. Более высокие ежемесячные расходы, если вы не производите свою собственную электроэнергию. Если вы питаетесь от сети, ваш счет за отопление будет выше

.

2. Более низкий рейтинг энергоэффективности. Вы можете купить газовый котел с рейтингом А, но пока не можете купить электрический котел с рейтингом А. На самом деле это не имеет значения, если вы не получаете котел на государственную субсидию или другую схему помощи.

3. Более короткие гарантийные сроки. На большинство электрокотлов предоставляется всего 2 года гарантии.Это не означает, что все они выйдут из строя в течение 3 лет, однако вы не получите такого же спокойствия, как в случае с основными брендами газовых котлов, дающих вам 10-летнюю гарантию.

4. Может не подходить для старых трубопроводов, требующих обновления всей системы.

Электрические котлы: будущее отопления помещений и нагрева воды в вашем доме?

В связи с приближением запрета на использование газовых котлов в Великобритании и других регионах мира, мы должны искать альтернативные технологии для центрального отопления и охлаждения в наших домах.В качестве альтернативы газу электрический бойлер — это то, что до недавнего времени было немыслимо. Но благодаря быстрой декарбонизации электросетей в развитых странах, таких как Великобритания, теперь возможно повсеместное внедрение электрических бойлеров.

Что такое электрический котел?

Как следует из названия, в электрическом котле используются электрические элементы внутри котла для нагрева воды, а не для сжигания каких-либо газов. Представьте себе кухонный чайник, но в большем (и более эффективном) масштабе.

Затем эта горячая вода перекачивается по всему дому в радиаторы или системы теплого пола, если это необходимо.

В Великобритании около 25 миллионов домов используют традиционные газовые котлы для отопления своих домов, но по мере усугубления климатического кризиса необходимо принять меры по обезуглероживанию домашней собственности, на которую приходится 13-14% общих выбросов углерода в Великобритании.

В качестве альтернативы котлам, работающим на ископаемом топливе, электрический котел имеет много преимуществ, но имеет некоторые недостатки, которые будут обсуждаться более подробно в этой статье.

Как электрические комбинированные котлы нагревают горячую воду и дом?

Электрические комбинированные котлы — это относительно простая технология, что само по себе является преимуществом. В этом коротком видео рассказывается, как работает электрический котел:

Преимущества электрического котла (перед газовым)

  • полностью удаляет газ из вашего дома
  • нет риска утечки окиси углерода
  • можно установить в любом месте вашего дома
  • неисправностей с возможностью удаленного управления
  • можно управлять с мобильного устройства
  • энергоэффективность — почти 100% эффективность
  • может работать на возобновляемых источниках энергии

Для уточнения приведенного выше списка:

  • Обустройство дома: у многих газовые и мазутные котлы вызывают беспокойство.Комбинированный газовый котел — еще один уровень сложности в вашем доме; что-то пошло не так, и исправить это обычно очень дорого. Сертификаты газовой безопасности уйдут в прошлое. Есть что-то привлекательное в том, чтобы полностью избавиться от беспокойства о подаче газа из дома. Базовая технология тоже проста.
  • Нет дымоходных или топливных труб (поэтому их можно установить где угодно): поскольку нет необходимости в подаче газа в ваш дом, вам также не понадобятся дымоходные или топливные трубы. Комбинированный электрический котел можно установить в любом месте вашего дома; это не обязательно должно быть на внешней стене.Это может передать домовладельцу пространство, которое могло быть потеряно раньше.
  • Удаленная диагностика неисправностей: одним из преимуществ полностью электрического оборудования является возможность удаленной диагностики. Если что-то пойдет не так с вашим электрическим комбинированным котлом, неисправность может быть удаленно диагностирована компанией, установившей ваш котел, что быстро сократит сумму денег, которую вы тратите на оплату вызова.
  • Удаленное управление через мобильное приложение: большинство электрических комбинированных котлов поставляются с приложением для смартфона, чтобы вы могли включать / выключать систему с помощью своего устройства.
  • Практически на 100% КПД: с вашим текущим типом котла (будь то газовый, масляный резервуар, биомасса или водород) всегда есть элемент неэффективности. Таким образом, часть энергии, поставляемой в ваш дом, будет потрачена впустую в процессе потребления энергии (то есть на преобразование ее в тепло). С помощью электрических котлов почти 100% поставляемой электроэнергии преобразуется в полезную энергию; это намного больше, чем у среднего газового котла и даже у энергоэффективного газового котла. Однако это не обязательно означает, что они дешевле в эксплуатации.
  • Может быть на 100% возобновляемым: значительным преимуществом электрической системы (или чего-либо еще) является то, что она может работать полностью за счет возобновляемых источников энергии, что сокращает ваш углеродный след почти до нуля. В Великобритании вы можете переключиться на поставщика зеленой энергии, такого как Bulb и Octupus, а в Соединенных Штатах вы можете выбрать зеленый тариф ценообразования или аналогичный.

Недостатки электрокотла

  • стоимость
  • только небольшие дома
  • под угрозой отключения электроэнергии
  • может быть поврежден из-за выхода из строя предохранителя других электрических устройств в вашем доме
  • ваша электрическая система должна выдерживать 5-15 кВт / ч

Для дальнейшего уточнения этого списка:

  • Стоимость: на момент написания в 2021 году в Великобритании цена единицы электроэнергии (14 пенсов за единицу) выше, чем газа (4 единицы за единицу).Цена на электроэнергию является основным препятствием для широкого внедрения. Однако, поскольку страны быстро расширяют свои электросети, есть основания полагать, что стоимость единицы электроэнергии в будущем будет только снижаться.
  • Это зависит от типа вашей собственности: современные технологии ограничивают использование электрических котлов только в небольших или средних домах. Это связано с тем, что электрические бойлеры нагревают воду по запросу, поэтому большая потребность в горячей воде (т. Е. Два душа, кухня и потребность в отоплении одновременно) потребует времени, чтобы отреагировать.Если вы живете в большой собственности, вы можете рассмотреть возможность использования двух электрических котлов или дополнить свой электрический котел другой системой отопления с возобновляемыми источниками энергии. Вы можете узнать больше о грунтовых тепловых насосах, водородных котлах или котлах, работающих на биомассе, в наших предыдущих статьях.
  • Удаление газа из вашего дома, вероятно, сделает вашу систему электрического отопления в целом намного более надежной, но это не обязательно означает, что она полностью безупречна. Обычно ваш котел подключается к блоку предохранителей для безопасности.Это представляет вероятность того, что неисправности других электрических устройств в вашем доме могут привести к перегоранию предохранителя вашего электрического бойлера. Всегда консультируйтесь с электриком о передовых методах установки, чтобы избежать этого.
  • Хотя это редкость, также стоит отметить, что отключение электроэнергии ограничит вашу способность нагревать воду / ваш дом (но это не обязательно ограничивается электрическими котлами, многие газовые котлы также полагаются на электрические компоненты!).
  • Наконец, хотя это нельзя считать недостатком как таковым, следует отметить, что для установки электрического котла ваша электрическая система в вашем доме должна быть способна выдерживать нагрузку 5-15 кВт.

Диапазон затрат на электрокотел (аванс и техобслуживание)

Электрические котлы стоят в пределах 1400-2000 фунтов стерлингов, включая затраты на установку в Великобритании. Что касается текущих затрат, то основными расходами будут затраты на электроэнергию. Из приведенной ниже таблицы вы можете увидеть, как средняя стоимость электроэнергии сравнивается со стоимостью других видов топлива в Англии, Шотландии и Уэльсе:

Топливо — средняя стоимость в Англии, Шотландии и Уэльсе (пенсы за киловатт-час)

  • Электроэнергия (стандартный тариф) — 16.36
  • Электроэнергия (внепиковая экономия 7) — 9,76
  • Электричество (пиковый эконом 7) — 20,03
  • Газ — 4,17
  • СНГ — 7,19
  • Масло — 4,81
  • Древесные пеллеты — 5,99

Источник: справочник котла

Электроаккумулирующие котлы: снижение затрат на электроэнергию

Разумный способ снизить затраты на электроэнергию — это установить электрический бойлер-накопитель. Это похоже на электрический бойлер, но вместо нагрева воды в реальном времени (т.е. всякий раз, когда требуется новая горячая вода), вода нагревается и затем хранится в водонагревателе. Это хранилище может быть встроено в некоторые из новых моделей или в отдельный резервуар.

Хотя электрический бойлер-накопитель стоит дороже, чем электрический бойлер, в долгосрочной перспективе экономия средств может быть огромной. Это связано с тем, что в Великобритании (и во многих других странах) действуют разные тарифы на электроэнергию в зависимости от того, когда вы используете электроэнергию.

С помощью электрического водонагревателя вы можете ночью нагреть полный бак воды для использования на следующий день.

При этом с вас будет взиматься гораздо более низкая плата за электроэнергию — около 9,76 пенсов за кВтч за электричество эконом-класса 7 в непиковое время — вместо стандартной дневной ставки, составляющей около 15-16 пенсов за кВтч.

Электрокотельные установки

В Великобритании до сих пор нет центральной организации, которая продвигает внедрение электрических бойлеров (например, Ассоциация наземных тепловых насосов).

Вероятно, самый быстрый способ найти профессионального инженера-теплотехника для вашей установки электрического котла рядом с вами — это выполнить поиск в Google.

Часто задаваемые вопросы по электрокотлам

Что такое электрический котел? Электрический бойлер пропускает воду через нагревательный элемент для нагрева воды, которая затем используется для отопления помещений и нагрева воды в вашем доме. Электрический бойлер может стать частью эффективного отопительного решения для вашего дома.

Стоит ли электрический котел? Миллионы из нас отапливают свои дома и нагревают воду газом дольше, чем мы можем вспомнить, но со всеми этими разговорами о прекращении эксплуатации газовых котлов (котлов центрального отопления) для достижения целей по изменению климата и для людей, не имеющих доступа к газу, электрический бойлер вполне может стоить рассмотрения.

Что такое электрический накопительный котел? Электрический накопительный нагреватель поставляется с накопительным баком (иногда встроенным) для хранения нагретой воды. Это дает то преимущество, что вы можете нагревать воду ночью (по более низкому тарифу) и хранить ее на следующий день, экономя до 50% на счетах за электроэнергию.

Каковы преимущества электрических котлов? Они дешевле в установке, чем другие котлы, очень эффективны, очень тихие, могут практически устранить ваш углеродный след от отопления помещений, не имеют риска отходящих газов и утечки угарного газа, а также минимальные ежегодные требования к техническому обслуживанию и, следовательно, низкие затраты на техническое обслуживание. .

Какой коэффициент полезного действия у электрокотлов? В результате рейтинг КПД составляет 99% по сравнению с 89% -95% для большинства котлов центрального отопления (газ).

Куда деваются электрические котлы? Мало того, что установка электрического котла дешевле, их также не нужно устанавливать на внешних / наружных стенах, таких как газовые и масляные агрегаты, чтобы вы могли разместить их в любом месте вашего дома с доступом к электросети.

Электрокотел EFM для систем принудительного горячего водоснабжения

Электрокотел EFM для систем принудительного горячего водоснабжения

E.F.M. Электрокотел Elect-T-Therm для систем горячего водоснабжения


Мы являемся дистрибьютором E.F.M. Сбытовая компания

E.F.M. Электрокотел компактный, чистый, тихий и не требует складского помещения или дымохода, что позволяет удобно установка рядом с местом использования. Котел обеспечивает и энергосберегающее обеспечение теплым и комфортным теплом, построенное на E.F.M. стандарты качества — самые высокие в отопительной отрасли.

Этот электрический бойлер универсален и представляет собой простой в использовании источник тепла для системы принудительного горячего водоснабжения в:
* New Homes
* Replacement Системы в существующих домах
* Резервное копирование Установки для солнечных систем отопления
* Дополнительная система отопления для теплового насоса

Clean :
Система отопления устраняет необходимость в хранилищах топлива и дымоходы.В доме никогда не бывает запахов или запахов горения. выбросы, загрязняющие нашу окружающую среду.

Compact :
Электрокотел чрезвычайно компактен и легко устанавливается. настенный почти в любом месте дома, чтобы обеспечить тепло для помещений, которые изолирован от основного теплоснабжения. Эти зоны включают гаражи, квартиры и подсобные помещения и многие другие.

Тихая :
Тихая работа поддерживается, потому что элементы включаются ступенчато, таким образом предотвращение скачков напряжения и вибрации при запуске.Качественные электрические компоненты, конструкция циркуляционного насоса и шкафа также способствует бесшумной работе электрический котел.

Энергоэффективность :
С E.F.M. уникальная система «регулирования расхода», электрический котел обеспечивает постоянный поток полезного тепла, используя минимальное количество электроэнергии. Нагревательные элементы с низкой плотностью мощности, термостат низкого напряжения и тщательный изоляция для минимальных потерь тепла — это всего лишь несколько конструктивных особенностей, встроенных в обеспечивают больше комфорта за каждый доллар энергии.

Малый котел Большие идеи :
Когда в ваших проектах требуется эффективность нагрева горячей воды и удобство электричества выбирайте котел EFM. Котел EFM достаточно маленький, чтобы установить его практически в любом месте (помните, все, что вам нужно, это стена), но мощный, чтобы справиться с большими работами по нагреву горячей воды.


Несколько слов о дополнительном обогреве для Тепловой насос

Если вы живете на большом северо-востоке или в регионе страны, где зимой температура регулярно опускается ниже 40F, тепловой насос будет работать почти постоянно отапливать жилище.Когда температура опускается ниже 32F, большинство тепловые насосы буквально отключаются, и появляется тепло сопротивления, чтобы обеспечить резервное копирование.

Для продления срока службы очень дорогого теплового насоса, электрокотла. обеспечивает дополнительное тепло, позволяя тепловому насосу «отдыхать».

Когда требуется тепло, когда температура опускается ниже 32F, воздух в система теплового насоса ниже температуры тела и поэтому кажется прохладной. В электрический бойлер может обеспечить источник тепла, который будет теплым и комфортным для трогать.


Разработано E.F.M.
для надежного домашнего обогрева комфорта

Краткое изложение практического применения

Солнечные системы отопления :
Каждая активная солнечная система отопления нуждается в надежном резервном нагревательном блоке, который может выдерживают длительные периоды неблагоприятной погоды. Котел EFM внесен в список UL как котел центрального отопления, обеспечивая тем самым мощность, необходимую для полной солнечной энергии. безопасность.

Рекреационные бассейны :
Поскольку бойлер EFM нагревает воду быстро и эффективно, это идеальный способ теплая вода в бассейне. Идеально подходит для дома, отеля, клубного и спа-бассейнов, а также для популярных с джакузи тоже. Его мощный циркуляционный насос поддерживает постоянный поток, чтобы вода однородной температуры.

Лечебные бассейны :
Спортивным и институциональным объектам требуется строго регулируемое горячее водоснабжение. для их объектов гидротерапии.Безусловно, котел EFM — безопасный выбор, предлагающий функцию верхнего предельного выключателя, которая мгновенно обесточивает нагрев элементы при заданной температуре, в то время как циркуляционный насос продолжает работу.

Кондоминиумы, Кооперативы, Квартиры :
Когда каждое жилое помещение нуждается в индивидуальном нагреве горячей воды, бойлер EFM является экономичный ответ. Он имеет поэтапный запуск для бесшумной работы; может быть легко встраивается в существующие гидравлические системы; отлично подходит для нового строительства; а также необходимость конверсионных проектов.


Краткое описание характеристик продукта

* Пять моделей — (От 10 кВт до 30 кВт).
* цельный стальной кожух котла.
* легко доступные элементы управления.
* Низкое напряжение термостат.
* Плавки одно- или многозонные системы.
* Тепло техническая вода, используемая в производственном процессе.
* Котел Шкаф легко снимается до или после установки трубопровода в систему.
* Зарегистрировано в UL как котел центрального отопления.
* Циркулятор трубопроводы и проводка на заводе.
* цельный Стальной кожух котла, ASME-Construction.
* Встроенный система удаления воздуха из погружной трубки.
* Низкое напряжение термостат.
* Униформа температура воды.
* Завод проверено.
* Низкое напряжение цепь управления с предохранителем.
* 10 лет ограниченная гарантия на корпус котла.
Плюс 10 лет пропорционально 5% в год.
Ограниченная гарантия сроком на весь год на все остальные компоненты.


Обзор преимуществ продукта

E.F.M. электрический бойлер имеет низкую ваттность нагревательные элементы плотности, установленные по бокам котла, с достаточным доступ для обслуживания. Элементы получают питание поэтапно, чтобы предотвратить скачок напряжения, продлевает срок службы нагревательного элемента и обеспечивает бесшумную работу.

Стандартные элементы управления подключаются к панели управления на заводе.Все управление легко доступ через съемную крышку.

Каждый котел изолирован стекловолоконной изоляцией на минимальную теплоотдача и размещен в прочном стальном корпусе, покрытом лазурно-синим покрытием Power Coat для дополнительной прочности.

Чистый, компактный, бесшумный, энергоэффективный, универсальный, доступный и подкрепленный легендарный E.F.M. имя. И это доступно уже сейчас!


Отопление домов в Америке для более чем 75 человек Годы.

При покупке любой системы отопления важно учитывать энергоэффективность.Но необходимо учитывать и другие факторы. Как опыт производителя, репутация и сервис. Простой факт в том, что любая система отопления хороша лишь до как компания, стоящая за этим.

Итак, подумайте: более 75 лет E.F.M. в Эммаусе, штат Пенсильвания, проектирование и производство котлов и печей для обеспечения надежного комфорта для домовладельцев Америки. Когда вы делаете что-то так долго, вы, естественно, овладеть процессом.

Благодаря нашим строгим стандартам контроля качества, используются только лучшие материалы и при производстве нашей продукции используется мастерство.Вот и наши котлы стали «легендой», и многие наши подразделения постоянно срок службы 40 лет и более.

[На главную] [Наверх]

Мы Дистрибьютор промышленных, коммерческих и Жилые обогреватели и элементы управления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *