Электричество из ветра: Ветрогенератор для дома — минусы и минусы. Расклад по ценам и киловаттам. Цена за 1квт от ветряка.

Ноя 11, 2021 Разное

Электричество из ветра: Ветрогенератор для дома — минусы и минусы. Расклад по ценам и киловаттам. Цена за 1квт от ветряка.

Содержание

преимущества и недостатки ветряных электростанций

Виды ветряной энергии

Рост потребления энергоресурсов ускоряется с каждым годом. Появление новых устройств, бытовой техники, компьютерного оборудования способствуют повышению потребностей населения и вынуждает к увеличению мощностей централизованных линий. Их состояние, и так достаточно ветхое, от таких нагрузок становится еще более плачевным. Изношенность электросетей в некоторых регионах достигает 70-80 %, что заставляет задуматься о завтрашнем дне.

С другой стороны, имеется немало регионов, куда линии электропередач д сих пор не проведены. Это отдаленные районы Крайнего Севера, труднодоступные горные населенные пункты и т.д. Надеяться на скорую электрификацию таких мест не приходится, так как важных промышленных или оборонных объектов там нет, а вести линию «в никуда» нерационально, она никогда не окупится.

Выходом из складывающейся ситуации может стать использование альтернативных методов производства электроэнергии. Рассмотрим один из наиболее перспективных вариантов.

Воздушный поток

По сути, энергия ветра одна — кинетическая. Воздушный поток обладает огромной мощью, действие которой можно наблюдать на видео или фотографиях последствий ураганов или просто шквальных порывов. Гораздо больше существует устройств, так или иначе использующих ветряную энергию для выполнения какой-нибудь работы, производства электрического тока и прочих нужд. Так, насосы, действующие от ветряка, известны с незапамятных времен, а современные ветроэлектростанции обеспечивают электрической энергией целые страны и регионы.

Особенностью энергии ветра является ее доступность. Для создания гидроэлектростанции необходимо найти подходящий по рельефу участок русла реки, построить запруду, которая затопит большую площадь полезной поверхности земли. Страдают и исчезают пахотные земли, нарушается естественный ареал обитания животных, изменяется климат в регионе.

Для атомной энергетики надо получить ядерное топливо, построить АЭС, все время ее работы существует ощутимый риск возникновения аварии, угрожающей крупной катастрофой. Использование ветра практически безопасно, не имеет отрицательного воздействия на природу или человека.

Противники ветроэнергетики декларируют различные проблемы, создаваемые использованием ВЭС, но фактов, подтверждающих эти проблемы, не привели ни разу. Практика же опровергает все домыслы относительно вреда от ветростанций, подтверждая лишь полезные свойства.

История использования

Начало использования ветра человеком уходит корнями в далекое прошлое. Прежде всего, это мореплавание. Изобретение паруса намного облегчило навигацию и позволило добираться до места назначения гораздо быстрее. В 200 гг до н.э. в Персии уже существовали ветряные мельницы для изготовления муки.

Первая ветроэлектростанция была выстроена в Дании в XIX веке. Место появления первой станции не случайно, так как в Дании издавна использовались ветряные мельницы, а обычных на то время возможностей для производства электричества при помощи гидростанций не было. Западная Европа является одним из лидеров в развитии ветроэнергетики, хотя с ней весьма сильно конкурируют Китай и Индия.

В России ветровые установки не распространены в должной степени, так как обилие рек способствует развитию гидроэнергетики. Учитывая более высокую производительность ГЭС, это вполне оправдано, но в последнее время интерес к энергии ветра проявляется с новой силой.

Ресурсы энергии солнца и ветра на Земле

Альтернативные источники, к которым относятся солнечная и ветровая энергия, обладают огромным потенциалом. Их количество практически неисчерпаемо, во всяком случае при нынешнем уровне технических возможностей. Особенностями этих видов является периодический характер пользования — для солнца характерен перерыв в ночное время, а ветровые потока не имеют определенной системы и движутся хаотично.

Исключением являются прибрежные регионы, где направление потока изменяет только знак — либо с моря на сушу, либо наоборот. В остальном оба источника бесконечны. Ветер не теряет своей энергии даже при использовании больших станций, состоящих из сотни и более установок, что выгодно отличает его от тех же углеводородов, которые сгорают, загрязняя атмосферу и убывают при этом.

Количество солнечной энергии, доступной на поверхности Земли, во многом зависит от климата и состояния атмосферы в регионе. Районы с обычно затянутым тучами небом в этом отношении бесперспективны. То же касается и регионов со слабыми ветрами в отношении ветроэлектростанций. При этом, энергия ветра доступна в любое время дня и ночи, что делает ее позиции несколько более предпочтительными.

Какие преимущества имеет энергия ветра?

Ветер — абсолютно бесплатный источник энергии. Его не надо добывать, производить или приобретать. В этом состоит его основное преимущество, с которым нельзя спорить или опровергнуть. Кроме этого, есть и другие, не менее привлекательные качества:

  • экологическая чистота
  • доступность в любой точке земного шара
  • неиссякаемость
  • возможность использования как в промышленных масштабах, так и в индивидуальном порядке
  • простота и надежность оборудования, нужного для производства энергии

Возможность самостоятельного изготовления ветряка из подручных материалов на своем садовом участке или в частном доме отличает этот источник от любого другого. Для самостоятельной сборки требуется некоторый опыт и навык работы со слесарным инструментом и хотя бы базовые познания в электротехнике. В настоящее время получить любую необходимую информацию — не проблема, поэтому задача создания своего собственного ветрогенератора многократно упростилась.

Недостатки ветряных электростанций

К основным недостаткам относят нестабильность воздушных потоков. Даже в прибрежных регионах с преобладающими бризами, имеющими относительно ровные параметры, случаются отклонения от обычных значений, а в континентальных регионах, с их особенностями климата, перепадами среднесуточных температур и влажности, движение воздушных масс имеет сложную и зачастую неожиданную систему. Кроме того, к недостаткам ВЭС принято относить:

  • шум от работы установок
  • мерцание от вращающихся лопастей
  • вибрации, отрицательно воздействующие на мелких животных и, отчасти, на людей
  • высокие инвестиционные расходы
  • относительно короткий срок службы, не всегда обеспечивающий окупаемость проекта
  • дороговизна электроэнергии

Некоторые из этих недостатков можно смело отнести к домыслам, например, высокий уровень шума или вибраций. Но относительно дороговизны и неокупаемости проектов — факт, спорить с которым нет смысла. Расходы на создание ветростанций обычно берутся на себя государствами, особенно если рассматривается крупный проект, способный в корне изменить энергообеспеченность страны, либо, если станция невелика, покрываются из частных инвестиций.

Следует отметить, что стоимость относительно небольших проектов на несколько порядков ниже, чем у гигантов энергетики, что намного увеличивает рентабельность вложений и способствует достаточно быстрой окупаемости.

Современные способы производства электричества из энергии ветра

На сегодня самым распространенным способом преобразования энергии потоков ветра является использование ветрогенераторов. Это устройства, преобразующие энергию потока во вращательное движение, передающееся на генератор, который производит электрический ток. С генератора производится заряд аккумуляторной батареи, которая, разряжаясь, через инвертор питает потребителей.

Примечательно, что все разнообразие конструкций и типов ветряков практически никак не сказывается на состоянии электроники — ее состав, начиная с генератора, одинаков для всех видов установок и различается только по мощности.

Все разнообразие конструкций относится лишь к вращающейся крыльчатке. Здесь имеются разные варианты конструкции:

  • горизонтальные
  • вертикальные

Наименования этих групп означают расположение оси вращения ротора. Горизонтальные конструкции несколько эффективнее, что стало причиной использования их в крупных ветротурбинах. Вертикальные устройства, в свою очередь, более приспособлены к обслуживанию небольших частных хозяйств, домов, линий освещения или водоснабжения.

Возросший интерес к ветроэнергетическим установкам послужил толчком к росту разработок различных вариантов конструкции ветряка. Основным направлением поисков конструкторов является оптимальный вариант крыльчатки, способный вращаться при слабом ветре. Это актуально для условий России, так как преобладающие ветра в нашей стране относятся к слабым и, в меньшей степени, средним.

Помимо роторных установок рассматриваются и другие конструкции. Например, голландские конструкторы разработали ветряк, работающий на каплях воды. Они переносят заряд с одного электрода на другой, повышая его потенциал. Разработка совершенно новая, никаких характеристик в свободном доступе пока не имеется, но интерес к такой конструкции весьма высок.

Как сделать ветряную электростанцию?

Создание ветряной электростанции является сложным и затратным процессом. Необходимо установить большое количество ветряков и объединить их в единую энергосистему с общей производительностью. Это требует больших усилий по техническому, юридическому и финансовому сопровождению проекта, понадобятся тщательные предварительные разведочные работы, отвечающие на все вопросы эксплуатационного характера:

  • преобладающая скорость ветра
  • климатические условия, возможность ураганных ветров
  • состав почв, стабильность, несущая способность
  • особенности рельефа местности

Эти показатели дают почву для расчетов эффективности и возможности строительства станции в данном регионе. Использование ветроэлектростанций не создает проблем для сельского хозяйства, площади сокращаются только на размеры основания несущих мачт. Работа установок имеет достаточно плавный характер и не вредит окружающим людям или животным. Для местностей, не имеющих других вариантов, ветроэнергетические установки являются оптимальным выходом из положения.

Рекомендуемые товары

польза на службе у человека и принцип работы

Атмосфера Земли представляет собой огромный и неиссякаемый источник энергии. Постоянное движение воздушных масс имеет гигантскую кинетическую энергию, об истинных размерах которой можно только догадываться. Достаточно рассмотреть последствия любого урагана или просто шквалистого ветра, чтобы получить представление о масштабах имеющихся запасов энергии, использование которой пока еще ведется на минимальном уровне.

Наличие более эффективных способов производства электроэнергии ограничило активность исследовательских работ в этой области, которые были возобновлены относительно недавно. Нехватка углеводородных источников, разразившийся топливно-энергетический кризис заставляют пересматривать отношение к альтернативным вариантам производства электроэнергии, лидером среди которых является ветроэнергетика.

Энергия ветра на службе у человека

На сегодняшний день существуют полноценные электростанции, вырабатывающие электроэнергию при помощи потоков ветра. Их довольно много, во всем мире таких станций насчитывается около 20 тыс. При этом, утверждать, что человек подчинил себе энергию ветра и использует ее вполне эффективно, преждевременно. Несмотря на значительные объемы полученной энергии, возможности ветроэнергетики пока еще далеки от идеала.

Существующие установки обладают недостаточной эффективностью, вызванной сложностью условий эксплуатации и невозможностью регулирования воздушных потоков. Их неравномерность — одна из ключевых причин, сдерживающих развитие отрасли. Ведущиеся исследования в этой области выдают предельную величину КПД ветроустановок — 59,3 %, что намного выше, чем реально существующие значения, но недостаточно в целом.

Понимание важности и большого потенциала ветроэнергетики в обществе постоянно укрепляется. Больших успехов в этой области достигли Китай и Индия, обладающие самыми мощными на сегодня ветроэлектростанциями.

Особенностью отрасли является возобновляемый характер источника энергии, возможность бесконечного пользования ресурсом. В этом отношении ветроэнергетика является наиболее устойчивой по сравнению с другими способами производства электричества.

Исследования и разработки ведутся постоянно, их интенсивность в последнее время заметно усилилась. Появляются совершенно новые модели, использующие методики, отличные от распространившихся ныне. Активность конструкторов и исследователей сама по себе является свидетельством возрастания роли ветроэнергетики и гарантией увеличения количества ветрогенераторов в будущем.

Устройство для преобразования

Для того, чтобы кинетическую энергию ветра трансформировать в электрическую, необходимо использовать соответствующее оборудование. Наиболее распространенным устройством для преобразования является ветрогенератор. Это агрегат, состоящий из нескольких узлов, выполняющих задачи по приему, передаче и преобразованию энергии потока ветра в электричество.

Существует множество вариантов конструкции ветряков, выполняющих одну и ту же функцию при помощи рабочего колеса с лопастями. Отличие всех видов конструкции состоит в направлении оси вращения и в конструкции вращающегося узла — ротора.

Ветрогенераторы делятся на две большие группы, имеющие разное расположение оси вращения:

  • горизонтальные
  • вертикальные

Наиболее эффективными считаются горизонтальные устройства, напоминающие пропеллер самолета. Поток ветра, воздействующий на лопасти, используется максимально возможным образом, практически без потерь. При этом, имеется постоянная необходимость коррекции положения оси в зависимости от направления ветра, что вынуждает использовать дополнительные приспособления и устройства. Наиболее простым и эффективным среди них является хвостовой стабилизатор, аналогичный хвосту самолета, автоматически устанавливающий ветряк по ветру.

Вертикальные конструкции имеют важное достоинство — независимость от направления ветра. При этом, эффективность таких устройств несколько ниже, так как поток одновременно воздействует как на рабочую, так и на обратную сторону лопастей, создавая уравновешивающее усилие. Оно останавливает вращение ротора, вынуждая прибегать к различным конструктивным ухищрениям. Так, используются различные кожухи, закрывающие обратные стороны лопастей.

Также применяют наружные конструкции, прикрывающие доступ потока к тыльным частям лопастей, спрямляющие устройства, направляющие поток в нужную сторону и т.д.

Практические результаты показали наибольшую эффективность горизонтальных установок в составе промышленных электростанций и выгоду использования вертикальных конструкций для обеспечения энергией отдельных домовладений.

Принципы работы ветрогенератора

Ветрогенератор является агрегатом, состоящим из нескольких узлов. Они выполняют отдельные задачи, являясь звеньями в цепи последовательных изменений вида энергии.

  • поток воздуха, взаимодействуя с крыльчаткой ветряка, заставляет ее вращаться
  • движение вала передается на генератор, который производит электрический ток
  • с генератора напряжение через выпрямитель подается на аккумулятор, заряжая его
  • за уровнем заряда следит специальное устройство — контроллер, отключающее питание и включающее его снова по необходимости
  • с аккумулятора заряд подается на инвертор, приводящий полученный ток в соответствующее состояние (220 В, 50 Гц) и передающий его потребителям

Небольшие устройства иногда работают по упрощенной схеме, подавая напряжение непосредственно с генератора потребителям. Это возможно для питания водяных насосов или освещения участка, теплицы и т.д.

Производительность ветрогенератора зависит от параметров собственно генератора, размеров и конструкции крыльчатки. Кроме того, важным параметром является преобладающая скорость ветра в регионе, обеспечивающая базовый режим вращения ротора и определяющая производительность всего комплекса.

Рекомендуемые товары

виды, как выбрать, обзор лучших вариантов

Ветряки давно перестали быть экзотической новинкой, сейчас их рассматривают как один из возможных вариантов экономии. Потоки воздуха над земной поверхностью несут в себе огромное количество энергии, которую в настоящее время успешно применяют в промышленных ветротурбинах и малых ветряных установках для частного использования.

Мы расскажем, как правильно выбрать и технически грамотно установить ветрогенератор для частного дома. В предложенной нами статье описаны правила сборки и эксплуатации мини электростанций. Заинтересованным покупателям даны рекомендации по выбору, приведен рейтинг популярных моделей.

Содержание статьи:

Конструкция и принцип работы ветротурбин

Ветровые генераторы представляют собой спецустройства, которые трансформируют кинетическую энергию ветра в электрическую. Это независимые источники электроэнергии, которые отлично подходят для установки в частных жилых домах, на небольших и средних фермерских хозяйствах, производственных базах.

Конструкция стандартной мини-электростанции для бытового использования включает такие функциональные элементы:

  1. Лопасти аэродинамической формы для улавливания ветра.
  2. Генератор для продуцирования переменного тока.
  3. Контроллер для автоматического управления ветряной станцией. Позволяет регулировать подзарядку аккумуляторов, распределяет потоки энергии между устройствами.
  4. Накопитель. Специальные аккумуляторные батареи для накопления сгенерированного электричества.
  5. Инвертор для приведения параметров вырабатываемой энергии к сетевым стандартам.
  6. Мачта, приподнимающая лопасти на определённую высоту над уровнем земли.

Мачты бывают разными: свободностоящие без растяжек, жёстко зафиксированные и поворотные на растяжках. Последние могут опускаться и подниматься для обслуживания, а также проведения ремонтно-восстановительных работ.

Под воздействием ветра лопасти, насаженные на генераторный вал, начинают вращаться, способствуя запуску ротора. В результате происходит преобразование кинетической энергии воздушных потоков в механическую, а потом и в электрическую энергию. Так выглядит сильно упрощённая схема работы ветряка

В действительности энергия от ветряной электростанции напрямую к потребителю не поступает. В системе обязательно должны быть подключены специальные приборы для преобразования электротока.

В цепи после генератора размещается контроллер. Он конвертирует переменный ток в постоянный. В таком виде электричество аккумулируется и сохраняется в батареях, а потом от них через инвертор, который трансформирует постоянный ток в переменный, энергия подаётся в частную электросеть.

Такая схема даёт возможность сгладить нестабильность напряжения, а также накапливать энергию в периоды полного отсутствия потребления. А это, в свою очередь, позволяет задействовать ветряные генераторы меньшей мощности, чем суммарная мощность бытовых электроприборов.

В ходе конвертации электротока по схеме переменный-постоянный-переменный происходят определённые потери энергии, которые составляют примерно 20%

Вместе с автономной ветряной станцией можно устанавливать и солнечные модули, и топливные генераторы.

Если задействовано сразу несколько устройств для получения электричества, схему дополняют ещё одним элементом – автоматическим выключателем (ABP). Он необходим, чтобы при отключении одного источника альтернативной энергии запускался другой – резервный.

В составе современных ветряных станций используются различные конструкции роторов – вращающихся частей. Они имеют свои преимущества и недостатки, разную эффективность и функциональные возможности. В настоящее время существует много разработок автономных систем, способных взаимодействовать с ветрами разной скорости и силы.

Виды ветряных электростанций

По типу потребителей различают автономные ветрогенераторы и установки сетевого назначения. Первые осуществляют энергоснабжение удалённых от центральных электрических сетей потребителей.

Вторые – могут насчитывать несколько десятков/сотен ветряков, которые образуют единую систему и отдают энергию в общую сеть. Мощность автономных агрегатов редко превышает 75 кВт, в то время как мощность сетевых установок стартует с отметки 100 кВт.

В зависимости от типа конструкции различают ветряные генераторы:

  • с вертикальной осью вращения;
  • с горизонтальной осью вращения.

Эти устройства используются для разных условий эксплуатации, но чаще всего встречаются модели с горизонтальной осью. Они работают как обычные флюгеры и имеют схожее строение. Ось ротора вращается параллельно земной поверхности.

Такие агрегаты отличаются высокими показателями КПД (около 40%), простой регулировкой мощности и более доступной ценой, но также характеризуются высоким уровнем создаваемого шума и вибраций. Помимо этого, их необходимо ориентировать на направление ветра.

Для монтажа ветряка с горизонтальным расположением ротора нужно примерно 120 м свободного пространства и мачта высотой не меньше 8 м

Ветряные генераторы с вертикальной осью вращения имеют более компактную конструкцию, они менее восприимчивы к воздействию факторов окружающей среды.

В устройствах этого типа турбина расположена перпендикулярно по отношению к плоскости Земли. Подобные конструкции запускаются даже от слабого ветра и не зависят от направления движения воздушных потоков.

Низкий уровень создаваемого шума (до 30 дБ) даёт возможность устанавливать вертикальные ветротурбины на крышах зданий

Однако есть и существенный минус – КПД таких генераторов составляет всего 15%. Кроме того, они стоят дороже, чем модели с горизонтальной осью вращения.

Модели ветрогенераторов различаются между собой не только расположением вращательной оси, но и:

  • количеством лопастей – бывают ветряки с двумя и тремя лопастями, встречаются и многолопастные модификации;
  • материалами изготовления функциональных деталей – с парусными и жёсткими лопастями;
  • шагом винта – регулируемый или фиксированный.

Вращение многолопастных стационарных ветряков начинается даже при слабом ветре, а вот для работы двух- и трёхлопастных устройств нужен более сильный ветер. В то же время каждая дополнительная лопасть в конструкции создаёт большее сопротивление колеса, в результате чего становится сложнее достигнуть стандартных рабочих оборотов генератора.

В зависимости от материала изготовления , могут возникнуть определённые сложности в работе. Парусные элементы проще в изготовлении, поэтому и стоят дешевле.

Но если необходимо обеспечить надёжное функционирование ветротурбины для автономного электроснабжения, стоит отдавать предпочтение конструкциям с жёсткими лопастями, изготовленными из металла или армированного стеклопластика.

Что касается шага винта, то здесь также не всё так просто. Изменяемый шаг позволяет заметно расширить диапазон эффективных скоростей для работы ветряной станции и это большой плюс. Но в то же время такой механизм снижает общую надёжность стационарной установки и значительно утяжеляет ветроколесо, усложняя эксплуатацию агрегата.

Целесообразность установки ветрогенератора

Малые ветряные электростанции сегодня широко применяются в качестве альтернативных источников электроэнергии, которые позволяют добиться реальной экономии.

Подобные устройства, как правило, устанавливают на дачных участках, в зонах, удалённых от основных электросетей. Но это не единственная причина, почему люди всё чаще отдают предпочтение конструкциям такого типа.

Владельцы земельных участков успешно используют ветряные генераторы, чтобы добиться полной автономности и существенной экономии электроэнергии

Однако не каждая зона подходит для установки ветротурбины. Чтобы мини-электростанция полноценно функционировала в течение заявленного производителем срока эксплуатации, климатические условия местности должны соответствовать требованиям спецоборудования.

Средняя скорость ветра не должна быть меньше отметки 4,5-5 м/с. Лишь в этом случае монтаж конструкции с ветряком будет экономически оправдан.

Чтобы узнать приблизительные данные о среднегодовой скорости ветра по регионам, необходимо просмотреть специальную карту ветров. Более точную информацию можно получить, используя анемометр и устройство для считывания сигналов.

Измерительную систему нужно установить на большой высоте, чтобы близко расположенные постройки и деревья не искажали результатов.

Если вы решили установить ветряную мини-электростанцию для дома, также следует подумать о наличии свободного пространства. При этом нужно учесть, что ветер должен абсолютно свободно «гулять» по лопастям, ну и без препятствий на своём пути достигать их с разных сторон.

Именно поэтому идеальным местом для установки ветротурбины считаются вершины холмов, где воздушные массы уплотняются с соответствующим увеличением давления и скорости ветра. Также подходящими считаются морские регионы и степная зона.

Чтобы получить полную отдачу от ветряка, его нужно установить в месте, где нет деревьев и высоких зданий

Любые препятствия в радиусе 250 м будут оказывать влияние на . Для получения максимальных показателей КПД необходимо установить ось турбины выше уровня препятствий как минимум на 4-5 м.

Правила выбора оборудования

К подбору ветряного генератора для дома следует подойти ответственно.

Заранее нужно собрать базовую информацию:

  1. Рассчитать номинальное и максимальное количество электроэнергии для обеспечения потребностей дома.
  2. Просмотреть данные о среднегодовой скорости ветра в зоне проживания, чтобы определить периоды, когда ветряк будет бездействовать.
  3. Учесть климатические особенности местности. Если в зимнее время года отмечаются сильные морозы, установка ветряной станции себя не оправдает.
  4. Выяснить интенсивность создаваемого шума при работе ветрогенераторов.
  5. Провести сравнение технических характеристик устройств от разных производителей.

Подбор комплектующих функциональных элементов для ветроэнергетической установки производят по номинальному значению мощности. При этом играет роль и номинальная скорость ветра – значения, при которых ветрогенератор вырабатывает расчётное количество электрической энергии.

Если максимальную мощность установка выдаёт при скорости ветра 11 м/с, а в вашей местности средний показатель достигает отметки 4,5 м/с, ветряк не будет вырабатывать заявленное производителем количество энергии

Акцентировать внимание нужно и на том, что мощность ветряного генератора зависит от диаметра колеса, сформированного лопастями. При увеличении размеров в 2 раза ветряк при той же скорости ветра будет производить в 4 раза больше электричества.

Также важна ёмкость аккумуляторных батарей. На случай безветрия в них должно быть достаточно энергии, чтобы обеспечить дом.

Монтаж частной ветряной мини-электростанции лучше доверить компании, которая специализируется на выполнении такого рода работ. Главная цель – обеспечить максимальную безопасность. Габаритная конструкция ветряка должна гарантировано сохранять устойчивость даже в случае экстремальных погодных условий

Маломощные модели ветрогенераторов с лёгкими невысокими мачтами можно установить самостоятельно. Центральную опору обязательно монтируют на укреплённом железобетонном фундаменте. Для боковой устойчивости конструкции используют 3-4 растяжки.

Примерные цены и окупаемость ветрогенераторов

Популярность ветряных агрегатов растёт с каждым днём. Ими выгодно оборудовать большие и дорогие коттеджи, на содержание которых требуется много электрической энергии.

Целесообразно устанавливать ветряки и в населённых пунктах, где отсутствует централизованное электроснабжение или подача электроэнергии производится с постоянными перебоями.

Именно в таких случаях на помощь придут ветрогенераторы, использование которых имеет ряд преимуществ:

  • трансформация энергии воздушных потоков в бесплатное электричество;
  • экологическая безопасность ветротурбин;
  • отсутствие сырья и отходов при производстве электроэнергии;
  • минимальный износ функциональных деталей;
  • длительный срок эксплуатации – 25-30 лет;
  • нет необходимости постоянно контролировать работу ветростанции.

К недостаткам относят переменчивость и непредсказуемость силы ветра. Чтобы минимизировать потери, нужно дублирование источника или же монтаж дополнительного буфера для накопления энергии. Также вращающееся ветроколесо представляет потенциальную угрозу для летящих птиц.

Ветряные электростанции создают шум, сравнимый с шумом автотранспорта при движении со скоростью около 70 км/час. Повышенный уровень шума не только отпугивает животных, но и доставляет дискомфорт людям

Ещё один существенный минус ветроустановок для бытового использования – высокая стоимость. Эти громоздкие конструкции изготовляются из дорогостоящих материалов, в комплекте имеют контроллер, аккумуляторы, инверторную установку и мачту.

Следует отметить, что бытовые ветрогенераторы от российских производителей, а также качественные ветряные установки, выпускаемые в Китае, стоят намного дешевле, чем европейские аналоги. Стоимость отечественных ветряков с вертикальной осью номинальной мощностью до 2 кВт варьируется в диапазоне 1300-2500$.

Но при такой цене комплектация включает лишь генератор с лопастями. Остальное оборудование придётся приобрести отдельно или . Полнокомплектные установки стоят дороже примерно на 40-50%.

Цена ветряных станций для домашнего использования мощностью от 3 кВт до 7 кВт намного выше. Такие генераторы с сопутствующим оборудованием обойдутся покупателю в 5000-12000$.

В настоящее время применение ветряных установок в качестве альтернативы централизованному электроснабжению нерентабельно из-за высокой стоимости оборудования

И даже когда присутствуют перебои в подаче сетевого электричества, ветрогенератор устанавливать целесообразно не всегда. Проще и дешевле обойдётся смонтировать систему бесперебойного питания на базе промышленных аккумуляторов в сочетании с ИБП.

Есть смысл монтировать ветроэнергетическую установку в местах, где доступ к централизованной энергоподаче полностью отсутствует. Период окупаемости в этом случае составляет 25 лет.

Перед приобретением компонентов для сборки и установки ветряного генератора энергии желательно провести , приведенным в рекомендуемой нами статье. Здесь же вы найдете порядок и правила выполнения вычислений.

Обзор лучших брендов и установок

На российском рынке ветряных генераторов представлены как надёжные относительно недорогие устройства отечественных брендов, так и различные по функциональности модели ветряков от зарубежных производителей. Чтобы определиться с выбором установки для дома, нужно сравнить характеристики разных агрегатов.

№1 — ветрогенераторы Condor Home (Россия)

Серия ветряков для домашнего использования включает устройства мощностью 0,5-5 кВт. Они могут служить основным источником электричества или дополнительным. Станции Condor Home адаптированы для эксплуатации в условиях низких температур, способны продуцировать энергию даже при слабом ветре.

В зависимости от модели, корпус генератора изготовлен из пластика или литого алюминия, лопасти – из стеклопластика. Присутствует эффективная двойная система торможения. Мачта составная, на растяжках, имеет высоту 8-12 м. Для установки этих агрегатов нужен свайный или бетонный фундамент.

Домашние ветряные генераторы Condor Home – полностью готовые продукты, для работы с которыми не нужны специальные знания или технические навыки. Устройства предназначены для электрификации как отдельно стоящих построек, так и маленьких населённых пунктов в составе ветряных электростанций

Базовая комплектация включает мачту и растяжки, генератор, ротор и лопасти, контроллер заряда, крепёжные элементы.

№2 — мини-электростанции Falcon Euro (Россия)

Представляют собой высокотехнологичные вертикально-осевые ветряные генераторы мощностью 1-15 кВт. Применяются для основного/резервного питания потребителей, удалённых от линий электропередач. Могут быть использованы в составе комплекса с солнечными панелями и топливным генератором.

Ветряки оснащены мощными неодимовыми магнитами. Стартовая скорость ветра для запуска установки составляет 1,5 м/с, номинальная скорость – 11 м/с. Установленный аэродинамический тормоз способствует ограничению оборотов колеса. Заявленный срок эксплуатации от производителя – 20 лет, заводская гарантия на мини-электростанции – 36 месяцев.

Ветрогенераторы Falcon Euro отличаются надёжностью в эксплуатации и неприхотливостью в обслуживании. С помощью устройств этой серии легко решить проблемы электроснабжения локальных, а также островных объектов

В базовый комплект установки Falcon Euro включены несколько функциональных элементов: ветроколесо, генератор и контроллер, мачта, закладные детали. Инверторная установка и аккумуляторные батареи подбираются отдельно.

№3 — ветряные агрегаты Sokol Air Vertical (Россия)

Малые ветроэнергетические установки данного бренда могут обеспечить электричеством и небольшие коттеджи, и средние предприятия. Для бытового использования выпускаются устройства SAV мощностью 0,5-15 кВт.

Они характеризуются высокой эффективностью при слабых ветрах, бесперебойно функционируют при низких и высоких температурах в диапазоне от -50 °C до +50 °C, отличаются низким уровнем создаваемого шума и стойкостью к внешним воздействиям.

Генерация электроэнергии агрегатами Sokol Air Vertical не зависит от направления ветра. Вертикально-осевые установки работают в автоматическом режиме без обслуживающего персонала. В конструкции предусмотрена электромагнитная и аэродинамическая система торможения для ограничения оборотов ветроколеса.

Лопасти изготовлены из армированного полиэфира или авиационного алюминия (в зависимости от модели), имеют самораскручивающийся профиль. Генератор – многополюсный трёхфазный с возбуждением от постоянных магнитов.

Ветряки Sokol Air Vertical выдают номинальную мощность при показателях 7-8 м/c, что позволяет использовать их в регионах с низкой среднегодовой скоростью ветра

В базовую комплектацию ветряной электростанции входят: ветроустановка с контроллером заряда аккумуляторов, мачта с растяжками, монтажный набор. Инвертор и аккумуляторы подбираются по техническому заданию отдельно.

№4 — ветрогенераторы Energy Wind (Россия)

Покупателям доступны одно- и трёхлопастные модели продуктов универсального применения мощностью 1-10 кВт. Эти ветряки прекрасно подходят для создания проектов обеспечения электричеством частных жилых домов и коттеджей.

Основу установок Energy Wind составляют прочные лопасти из армированного стекловолокна, окрашенные автоэмалью, и надёжная система вывода из воздушного потока. Эти агрегаты с горизонтальной осью вращения стабильно работают при температурах от -40 до +40 градусов по шкале Цельсия.

Минимальная рабочая скорость ветра – 2 м/с, при некоторых положениях лопасти – 3 м/с, рекомендуемая высота мачты – 8-20 м. Средний срок эксплуатации установок российского бренда составляет 25 лет, официальная гарантия от производителя – 3 года.

Ветрогенераторы Energy Wind не требуют постоянного ухода или техобслуживания, что способствует быстрому реинвестированию вложенных финансовых средств

Базовая комплектация установок включает электрогенератор на постоянных магнитах с узлом крепления к мачте и поворотным механизмом, лопасти, комплект крепёжных элементов для сборки ветроустановки. Мачту, а также контроллер, инвертор и батареи для накопления электроэнергии нужно приобрести отдельно.

№5 — ветряки Altek EW (Китай)

Вид ветротурбин – с горизонтальной осью вращения. Устройства номинальной мощностью от 1 кВт до 10 кВт отлично подходят для решения задач электрообеспечения загородных жилых домов и дач.

Защитный кожух ветряков Altek EW изготовлен из алюминиевого сплава, что существенно облегчает конструкцию. Функциональные металлические части генератора покрыты кремнием для термостойкости.

Лопасти изготовлены из фиброармированного пластика. Стартовая скорость ветра для запуска бытовых агрегатов китайского бренда составляет 2,5 м/с, номинальная скорость – 12 м/с.

Ветрогенераторы Altek EW – одни из самых доступных устройств для выработки электричества, которые представлены на современном рынке альтернативной энергетики

В состав базовой комплектации включены лопасти, генератор и контроллер. Остальные функциональные элементы для ветряка необходимо докупить.

Если стоимость комплекта заводского производства покажется вам излишне высокой, есть смысл соорудить . В рекомендуемой нами статье описано изготовление полезного в хозяйстве агрегата из стиральной машинки.

Выводы и полезное видео по теме

Перспективы использования ветроэнергетических установок:

Принцип функционирования современных ветровых турбин. Как энергия ветра преобразуется в электричество:

Даже сегодня использование ветрогенераторов требует постоянного развития. Возможности и долгосрочные перспективы этого альтернативного способа выработки электроэнергии многообещающие. Однако нужны определённые меры как со стороны производителей оборудования, так и от администраций населённых пунктов.

Установка малых ветряных генераторов для частных домохозяйств проблему энергоснабжения в регионах полностью не решит. Но для отдельных владельцев участков данный вариант может стать выходом из положения.

Расскажите о собственном опыте в выборе или установке ветряка на загородном участке. Пишите, пожалуйста, комментарии, размещайте фото и задавайте вопросы в расположенном ниже блоке. Делитесь технологическими тонкостями и полезными сведениями, которые пригодятся посетителям сайта.

выбираем маленький ветряной генератор для дома, принцип работы и устройство

Ветряные генераторы уже не представляют собой ничего экзотичного – сейчас их используют и расценивают как наилучшую возможность сэкономить. В статье рассмотрим популярные модели мини-ветрогенераторов для дома, особенности их устройства и принцип работы.

Особенности

Даже мини-ветрогенератор с легкостью преобразовывает всю ту энергию, которую несет в себе ветер. Успешное использование данных установок уже зарекомендовало себя благодаря тому, что их можно использовать как в частных домах, дачах и загородных постройках, так и на производствах и больших фабриках.

Ветряку для того чтобы получить электроэнергию, не нужны топливо и солнце. Это заставляет задуматься о том, как они работают, и какие предложения есть на рынке данных устройств.

Еще к одной особенности ветряного генератора можно отнести то, что его мощность напрямую зависит от размера окружности, что формируют его лопасти. Если увеличить ее диаметр в 2 раза, то при сохранении прежней скорости ветра электроэнергии, которую будет производить генератор, будет в 4 раза больше.

Принцип работы

Конструкция и принцип работы старых ветряных мельниц уверенно перекочевали к их современным последователям –

ветряным электрогенераторам.

Сила ветра, вращающая лопасти, заставляет двигаться ось, к которой эти лопасти прикреплены, а она уже, в свою очередь, двигает шестерни и механизмы внутри мельницы.

В наши дни ветряные мельницы для производства электричества устроены практически так же, только энергия ветра заставляет вращаться ротор.

Рассмотрим более детально, как происходит преобразование ветра в электроэнергию.

  1. Первичный вал с редуктором начинает вращаться от силы ветра, который толкает лопасти и заставляет их совершать обороты. Затем момент вращения передается на оборудованный магнитами ротор. Благодаря такой последовательности действий в статорном кольце образуется переменный ток.
  2. При выработке электроэнергии в таком количестве необходимы аккумуляторы. Для того чтобы заряжать в безопасном режиме, необходим выпрямитель тока, который позволяет избежать скачков напряжения и увеличивает срок службы аккумуляторных батарей.
  3. Чтобы создать привычное нам напряжение в 220 В, из аккумуляторов ток подается в инвертор, а затем уже к конечным потребителям. Чтобы ветряк всегда ловил наиболее сильный ветер, устанавливают хвост, который разворачивает лопасти по ветру. Всевозможные датчики позволяют современным моделям иметь системы торможения, складывания и отвода лопастей от ударов ветра.

Виды

Различные виды ветряных мельниц классифицируют по количеству лопастей, по материалу, из которого эти лопасти изготовлены, по шагу винта и еще ряду критериев. Независимо от того, как расположена ось вращения генератора, принцип его работы остается одинаковым для любого вида. Но в основном их разделяют по выбору расположения оси или вала.

  • Горизонтальный вид. Это когда поверхность земли расположена параллельно оси вращения генератора.
  • Вертикальный вид. У этого вида ветряков вращающий вал расположен перпендикулярно поверхности земли, а лопасти расположены вокруг него.

Составная часть пропеллера или ветроколеса у современных ветряных генераторов может состоять из разного количества лопастей. Уже признано устоявшимся утверждение, что пропеллеры с количеством лопастей до трех вырабатывают большое количество тока лишь при сильном ветре, в то время как многолопастные ветрогенераторы могут довольствоваться небольшими потоками воздуха.

Обзор моделей

Российский рынок отличается большим ассортиментом ветряных генераторов. Перед выбором стоит сравнить характеристики представленных моделей и варианты их применения. Разнообразие устройств представляет солидный ряд, в котором стоят как небольшие ветрогенераторы для дома, так и изделия для промышленного использования более крупных размеров.

  • Ветряные генераторы Condor Home. Ветряки предназначены для использования в домашних условиях, мощность 0,5-5 кВт. Эти станции предназначены для использования при низких температурах, а также продуцируют энергию при слабых порывах ветра. Служат как основным, так и вспомогательным источником электричества на участке.
  • Маленькие электростанции Falcon Euro. Чаще всего используются в комплексе с солнечными батареями или другими источниками энергии в случае значительного удаления от линий электропередач. Линейка моделей представлена технологичными ветряными генераторами преимущественно с вертикальными валами мощностью 1-15 кВт.
  • Генераторы Sokol Air Vertical. Небольшие ветровые установки способны обеспечить электричеством как небольшие дома, так и средние производственные здания. Данные электростанции выпускаются с мощностью 0,5-15 кВт.
  • Ветрогенераторы Energy Wind. Данные ветряки замечательно себя зарекомендовали как прекрасный вариант для электрообеспечения жилых домов, коттеджей и жилых построек. Есть как однолопастные, так и трёхлопастные модели с различной мощностью – 1-10 кВт.
  • Ветряные мельницы Altek ЕВ. Сегмент загородных домов и дач покорили эти ветротурбины с горизонтальным валом вращения. Номинальная мощность от 1 до 10 кВт. Превосходно подходит для решения задач снабжения электричеством дачные участки.

Как выбрать?

Чтобы выбрать ветряную электростанцию, необходимо определиться с некоторыми пунктами, которые будут влиять на принятие решения. Все расчеты и подобные вычисления требуют большого внимания: нужно собрать и обработать важную информацию.

  1. Необходимо рассчитать максимальное и минимальное количество электричества, которого хватит для комфортного обеспечения объекта.
  2. Изучить показатели ветра в разное время года, выявить безветренные периоды и понять, какие нужны аккумуляторы, когда энергию от ветряной мельницы нужно заменить чем-то другим.
  3. Учитывайте в первую очередь климатические и географические характеристики региона. В том случае, если будут сильные заморозки, ветряной генератор будет нерентабелен.
  4. Хорошо изучить рынок, провести сравнение подходящих вам генераторов от всех производителей. И не забывайте про такой показатель, как шум при работе ветрогенератора.

Полный переход на такие электростанции для жилых домов на значительном удалении от линии электропередач не решит проблему целиком. Но может быть отличной альтернативой и выходом из положения в определенных ситуациях, а иногда и единственным способом обеспечить электричеством свой участок. Для того чтобы выбор оказался максимально оправдан, следует учесть каждую характеристику – от размеров, уровня шума, емкости аккумуляторов до способа установки, необходимой для работы скорости ветра и количества вырабатываемого электричества.

Подробнее о ветрогенераторе смотрите в следующем видео.

Физические основы ветрогенераторов-Энергия ветра -alter220.ru

Содержание статьи

Принцип получения энергии ветрогенератором кажется простым – ветер крутит турбину, она вырабатывает электричество. Но создание максимально эффективных ветряков основано на множестве научных дисциплин, знакомство с которыми поможет выбрать оптимальный источник альтернативной энергии для своего дома. Главный же из них, это гидродинамика – физика движения сплошных сред.

Уравнение энергии ветра

Базовый принцип физики гласит – энергия не появляется и не исчезает, она только превращается из одного вида в другой. Ветрогенераторы как раз иллюстрируют такой преобразователь: они превращают кинетическую энергию ветра в механическую энергию ротора, а затем генерируется электричество. Но источником является кинетическая энергия, которая рассчитывается по формуле

Ркин.= (М х V2) /2, где М и V это масса определённого объёма воздуха и скорость ветра.

Наглядно это можно представить в виде ветра дующего в вытянутую форточку:

Здесь сразу видно, какой объём воздуха проходит через окно, и его зависимость от площади форточки, скорости потока и времени. Следовательно, напрашивается прямая зависимость:

  • Чем больше окно;
  • Чем быстрее скорость ветра;
  • Чем длиннее «коридор»;

Тем будет больше масса воздуха протекающая через него. Учитывая, что масса воздуха это произведение плотности на объём, энергию ветра можно выразить так:

Рветр.= (r x S x V3 x T) /2, где:

r  — плотность воздуха;

S – ометаемая площадь;

V – скорость ветра;

Т – время.

На рисунке выделено апертурное окно, которое и есть площадь ометаемая лопастями ветрогенератора.

Сила и энергия

Термины сила (мощность) и энергия, очень часто путают. Но чтобы разобраться с альтернативными источниками энергии обстоятельно, надо расставить точки над i.

Энергия, это сила (мощность) умноженная на время.

Вот почему мощность приборов определяется в киловаттах, а счета за электроэнергию приходят в киловатт/часах.

Чтобы определить силу ветра, надо в формуле его кинетической энергии убрать переменную времени Т. И получится формула Рсила ветр. = (r x S x V3) /2, в которой есть три переменных:

  • Плотностью воздуха управлять невозможно – она от природы.
  • Площадь ометаемой поверхности увеличивает выработку энергии, но у всего есть предел. Ведь чтобы увеличить площадь аппертурного окна ветрогенератора всего в два раза, надо усилить его конструкцию в 4 раза! Но правда есть хитрые решения, например DAWT (ветрогенератор с диффузором).
  • Легковой автомобиль рядом с лопастью для сопоставления размеров
  • Скорость воздушного потока ощутимо влияет на результат, ведь в формуле она возводится в куб. И совсем небольшое изменение этой переменной, резко изменяется производительность ветрогенератора. Например, если скорость ветра увеличиться всего на 26%, с 10 до 12,6 м/с, то генерация вырастет на 100%: 103 = 1000, а 12,63 = 2000.

Именно поэтому ветрогенераторы стараются поднять максимально высоко, где скорость ветра гораздо выше.

Как ветрогенератор питается из альтернативного источника

Ветряки не «питаются» массой воздуха, они настроены на потребление скорости ветра. Другими словами: ветер приближается к ветротурбине с высокой скоростью, а покидается её с меньшей. Разница в скоростях ветра до и после ветрогенератора, определяет, какой объём энергии был усвоен этим устройством.

Некоторые типы ветрогенераторов делают это лучше, некоторые хуже. Но это основная функция ветрогенератора – замедлить ветер.

Грань между эффективностью и ограничением

Никогда не верьте утверждениям, что некий ветрогенератор работает с эффективностью 100%. Это значит, что ветер за лопастями ветряка должен полностью остановиться. Абсурдное доказательство наглядно демонстрирует ложное высказывание.

Ветротурбина с идеальным КПД, должна найти тот баланс, где ветер отдаёт энергии столько, чтобы ему осталось только на выход из апертурного окна устройства для дальнейшего движения. КПД в данном случае определяет разницу в скорости ветра до и после турбины, прямо влияя на коэффициент мощности ветряка, который принимает такую формулу: Рвыход= 1/2 × r × S × V3 × КПД.

Максимальный КПД ветротурбины, более 100 лет назад, немецкий учёный Бетц  обосновал в своей фундаментальной научной работе. Взяв за основу вышеприведённую формулу, немец чрезвычайно последовательно обосновал, что максимально из ветра можно извлечь 16/27 энергии. Впоследствии, его расчёты чуть подкорректировал итальянец Лореджо, и получилось что максимальный КПД для ветрогенератора 59%.

ВАЖНО: закон Бетца выводится из формулы кинетической энергии ветра, и никак не затрагивает типы ветрогенераторов. Другими словами, он просто утверждает, что для нормального функционирования ветрогенератора, ветер можно замедлить на 59%.

Это отчётливо заметно на разнице в принципах работы турбин Савониуса и Дарье. Ведь ветряки Савониуса принимают только толкающую силу ветра, а проекты Дарье используют и аэродинамическую подъёмную силу, повышающую скорость вращения лопастей.

Сравнение КПД разных типов ветротурбин

До предсказанного Бетцем предела в 59% ни один ветрогенератор до сих пор не мог даже приблизиться. Максимум что удаётся извлечь из альтернативного источника современным ветрякам, это 38-45%. Больше всего экспериментов претерпели горизонтальные модели. У них увеличивали количество лопастей как у модели Болле и уменьшали их до одной, изменяли их форму и угол атаки, но прибавляя в чём-то одном, устройство теряло другие свои качества.

ИНФОРМАЦИЯ: однолопастные турбины обладают самым высоким потенциалом  увеличения коэффициент мощности, но их трудно держать сбалансированными. Двух-и трехлопастные турбины являются проверенным стандартом балансировки аэродинамической эффективности и устойчивости при турбулентных ветрах.

Наиболее успешные в коммерческом плане горизонтальные ветряки, тем не менее не могут конкурировать с эффективностью преобразования вертикальным генератором типа Дарье.

Принципиальное отличие ветрогенератора Дарье

Если все ветрогенераторы извлекают энергию используя силу сопротивления воздушному потоку, то модель Дарье дополнительно включает эффект аэродинамической подъёмной силы. И в России, и в США, независимо друг от друга было доказано, что используя современные технологии и композитные материалы, при одинаковых трудозатратах эффективность ветряка Дарье будет на порядок выше, любой модели горизонтального расположения, потому что теоретический максимум КПД устройства такого типа – 72%!

Наиболее близкий пример для наглядного объяснения такого парадокса можно увидеть в парусном спорте, который тоже использует энергию ветра.

Если парусник двигается строго по ветру, когда он дует прямо в паруса, то его скорость, при идеальных условиях может быть равна скорости ветра.

Если же парусник «режет ветер», двигаясь под углом к воздушному потоку, то скорость судна опытных яхтсменов более чем в два раза превышает скорость ветра!

Этого эффекта удаётся достичь за счёт подъёмной силы, которую формируют ламинарные потоки над парусом.

ВЫВОД: любая ветротурбина которая не использует эффект аэродинамической подъёмной силы крыла, будет уступать модели ветрогенератора Дарье и его аналогам.

Новые обоснования старых концепций

Голословные предположения о том, что современные разработки должны резко повысить КПД ветрогенераторов вообще не имеют под собой основания. Современные модели с горизонтальным размещением достигают 75% эффективности от своего теоретического предела Бентца (приблизительно 45% КПД). Ведь раздел физики который регламентирует эффективность ветротурбин – гидродинамика, а её законы непреложны с момент их открытия.

Некоторые разработчики пытаются поднять эффективность за счёт увеличения количества лопастей, делая их более тонкими. Можно увеличивать их длину, и это даёт больший эффект за счёт роста ометаемой площади.

Но всё равно требуется выдержать баланс, между замедлением ветра и его остаточной скоростью.

Есть другое направление – повысить скорость ветра, пропуская его через диффузор. Но гидродинамика изобилует уже открытыми эффектами обтекания препятствий по пути наименьшего сопротивления.

Есть более или менее удачные модели DAWT, с большими углами на диффузоре, но эти попытки «обмануть ветер» не настолько повышают КПД, как декларирует реклама.

Самые удачные современные ветрогенераторы – это вертикальные модели с лопастями Дарье, посаженные на магнитно-левитирующие опорные подшипники (МАГЛЕВ). Работая почти бесшумно, они начинают вращаться при скорости ветра менее 1 м/с, и выдерживают шквальные порывы до 200 км/ч. Именно на основе таких источников альтернативной энергии выгоднее всего формировать частную независимую энергосистему.

 

Спасибо, что дочитали до конца! Не забывайте подписываться на наш канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши КОМЕНТАРИИ   (Ваши Комментарии очень помогают развитию проекта)

Добавляйтесь в нашу группу в ВК:        

ALTER220 Портал о альтернативную энергию

и предлагайте темы для обсуждений, вместе будет интереснее!!!

 

Как получают и где используют энергию ветра

Преобразование энергии ветра в электрическую или механическую силу стало основной задачей в современном обществе.  Для того чтобы получать энергию ветра, человечество изобрело огромное количество технических средств. Учёные по всему миру пытаются создать нечто новое, что поможет увеличить объемы, получаемой энергии из воздушных масс. Но, каким образом происходит добыча механической или электрической энергии из потоков воздуха?

Что-то подобное вы могли изучать на уроках физики в школе, сейчас мы постараемся объяснить вам, как получают энергию ветра в современной науке.

В каких странах данная отрасль развита наиболее сильно?

Каждая страна в любой точке земного шара старается идти в ногу со временем, и не отставить от общего прогресса. Это провоцирует создание новых технологий, способствующих скорейшему развитию всего человечества.

Добыча энергии альтернативными способами не остается в стороне, а, так как сила ветра считается неиссякаемой, ей уделяется отдельное внимание ученых.

Энергия ветра добывается при помощи специальных ветрогенераторов, которые напоминают по своему виду ветреную мельницу. Однако не обязательно. В Соединённых Штатах Америки уже давно используется ветрогенераторы, которые по своему строению напоминают спираль. Данная форма была адаптировано для городских условий, используется для снабжения электричеством каждого небоскрёба в частности.

Государство в Европе, которое преуспело в разработки ветрогенераторов больше всего – это Дании. 42 % всей электроэнергии добываемой на территории Дани приходится на ветряные электростанции. Этому способствует уникальные климатические условия этой страны. Так как побережье государства омывается Северным морем, на территории страны постоянно дуют сильные ветра. Это способствует постоянному развитию процедуры переработки силы ветра в электрическую и механическую энергии. Для добычи электроэнергии датчане используют ветрогенераторы, которые достигают 260 м в высоту.

Строение такого генератора довольно простое, настолько простое, что даже не опытный электрик сможет собрать его дома. Длина лопасти такого генераторов составляет 80 м. Он способен обеспечить электричеством до 2000 домов. Учитывая то, что население Дании составляет менее 6 миллионов человек, обеспечить все жилые и нежилые постройки альтернативными источниками питания – не составляет особого труда для государства.

В среднем в Евросоюзе процент электричества добываемого при помощи ветрогенераторов равен семи.  Давайте более подробно разберём, каким образом работает ветряная электростанция.

Принцип работы ветряной электростанции

Существует два вида ветрогенераторов, которые отличаются друг от друга направленностью вращения:

  1. вертикальные;
  2. горизонтальные.

Также их можно разделять по количеству глупостей, однако это не играет особой роли добычи электроэнергии при помощи ветра. Данный факт становится важным только в том случае, если объемы добываемого электричества должны быть очень большими. Например, если вы хотите снабдить ветрогенератором небольшой частный дом, тем самым автоматизировать его, сделать независимым от центрального электроснабжения, вам понадобится более мелкий прибор. Он будет иметь не три лопасти, как мы привыкли видеть обычно на больших образцах, а больше.

Однако, получение энергии из ветра возможно именно из-за глупостей. Металл, из которого они будут изготовлены, напрямую влияет на объем вырабатываемого электричества.

В классической ветряной электростанции, большую роль, чем лопасти, играет, непосредственно, электрогенератор и числовое программное устройство. Именно эти приборы позволяют преобразовывать полученную кинетическую энергию в электрическую или механическую.

Но, небольшим устройством, без которого работа всей ветряной электростанции стало бы невозможной, является датчик направления ветра, также именуемый анимоментром. Его неисправная работа может привести к поломке всей ветряной электростанции, или снизить количество добываемый электроэнергии до минимума. Все объясняется банально и просто. Если устройство не будет знать, откуда дует ветер, то не сможет работать. Направленность лопастей навстречу ветру обязательна для нормального функционирования всего механизма.

После того как лопасти начали вращаться, электро генератор преобразовывает механическое вращение в электрическую энергию, и направляет в аккумуляторы или сразу в сеть.

Отраслей, где используется энергия ветра, с каждым днём становится все больше. Причиной тому есть возможность преобразования силы ветра, как в электрическую, так и в механическую энергию.

Берегите энергию, и пользуйтесь ей правильно!

Как работают ветряные турбины?

Вы здесь

Ветровые турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветровые турбины используют ветер для производства электроэнергии.Ветер вращает похожие на пропеллер лопасти турбины вокруг ротора, который вращает генератор, который вырабатывает электричество.

Ветер — это форма солнечной энергии, вызванная комбинацией трех одновременных событий:

  1. Солнце неравномерно нагревает атмосферу
  2. Неровности земной поверхности
  3. Вращение Земли.

Характер и скорость ветрового потока сильно различаются на территории Соединенных Штатов и зависят от водоемов, растительности и особенностей местности. Люди используют этот поток ветра или энергию движения для многих целей: для плавания, запуска воздушного змея и даже для выработки электроэнергии.

Термины «энергия ветра» и «энергия ветра» описывают процесс, с помощью которого ветер используется для выработки механической энергии или электричества. Эту механическую мощность можно использовать для конкретных задач (например, измельчения зерна или перекачивания воды), или генератор может преобразовывать эту механическую мощность в электричество.

Ветряная турбина преобразует энергию ветра в электричество, используя аэродинамическую силу от лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер проходит через лезвие, давление воздуха с одной стороны лезвия уменьшается. Разница в давлении воздуха на двух сторонах лопасти создает подъемную силу и сопротивление. Сила подъемной силы сильнее сопротивления, и это заставляет ротор вращаться. Ротор подключается к генератору либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют использовать генератор меньшего размера.Этот перевод аэродинамической силы во вращение генератора создает электричество.

Типы ветряных турбин

Большинство ветряных турбин делятся на два основных типа:

Деннис Шредер | NREL 25897

Ветровые турбины с горизонтальной осью — это то, что многие люди представляют, когда думают о ветряных турбинах.

Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина поворачивается наверху башни, так что лопасти обращены против ветра.

Ветровые турбины с вертикальной осью выпускаются нескольких разновидностей, включая модель Дарье в стиле взбивания яиц, названную в честь ее французского изобретателя.

Эти турбины являются всенаправленными, что означает, что для работы их не нужно настраивать так, чтобы они были направлены против ветра.

Ветряные турбины могут быть построены на суше или в море в больших водоемах, таких как океаны и озера. Министерство энергетики США в настоящее время финансирует проекты по развитию морских ветроэнергетических установок в США.С. вод.

Применение ветряных турбин

Современные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:

Наземные ветряные турбины имеют размеры от 100 киловатт до нескольких мегаватт.

Более крупные ветряные турбины более рентабельны и объединены в ветряные электростанции, которые обеспечивают большую мощность для электросети.

Деннис Шредер | NREL 40484

Морские ветряные турбины обычно массивнее и выше Статуи Свободы.

У них нет таких же проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно перевозить на кораблях, а не по дорогам.

Эти турбины способны улавливать сильные океанские ветры и генерировать огромное количество энергии.

Когда ветряные турбины любого размера устанавливаются на стороне «потребителя» электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, их называют «распределенным ветром».

Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных и небольших коммерческих и промышленных целях.

Небольшие турбины могут использоваться в гибридных энергетических системах с другими распределенными энергоресурсами, такими как микросети с питанием от дизельных генераторов, батарей и фотоэлектрических элементов.

Эти системы называются гибридными ветровыми системами и обычно используются в удаленных автономных местах (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости.

Узнайте больше о распределенном ветре из Distributed Wind Animation или прочтите о том, что делает Управление технологий ветровой энергии для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и местных ветровых проектов.

В этом видео освещаются основные принципы работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество.См. Текстовую версию. История ветроэнергетики США

На протяжении истории использование энергии ветра увеличивалось и уменьшалось, от использования ветряных мельниц в прошлом до высокотехнологичных ветряных турбин на ветряных фермах и т. Д. Учить больше

Узнайте больше о ветровой энергии, посетив веб-страницу офиса Wind Energy Technologies Office или просмотрев информацию о финансируемых офисом мероприятиях.

Подпишитесь на информационный бюллетень WETO

Будьте в курсе последних новостей, событий и обновлений ветроэнергетики.

Основы ветроэнергетики

Что такое энергия ветра?

Энергия ветра (или энергия ветра) относится к процессу производства электричества с помощью ветра или воздушных потоков, которые естественным образом возникают в атмосфере Земли.Современные ветряные турбины используются для улавливания кинетической энергии ветра и выработки электроэнергии.

Существует три основных типа энергии ветра:

  • Ветер коммунального масштаба: Ветровые турбины размером от 100 киловатт до нескольких мегаватт, где электроэнергия доставляется в энергосистему и распределяется конечному пользователю электрическими коммунальными предприятиями или операторами энергосистем.

  • Распределенный или «малый» ветер: одиночные небольшие ветряные турбины мощностью менее 100 киловатт, которые используются для непосредственного электроснабжения дома, фермы или малого бизнеса и не подключены к сети.

  • Морской ветер: ветряные турбины, которые устанавливаются в больших водоемах, обычно на континентальном шельфе. Морские ветряные турбины больше, чем наземные, и могут генерировать больше энергии.

Как работают ветряные турбины

Когда ветер проходит мимо ветряной турбины, ее лопасти улавливают кинетическую энергию ветра и вращаются, превращая ее в механическую энергию. Это вращение вращает внутренний вал, соединенный с коробкой передач, что увеличивает скорость вращения в 100 раз.Это вращает генератор, производящий электричество.

Обычно стоящие не менее 80 метров (262 футов) высотой, стальные трубчатые башни поддерживают ступицу с тремя прикрепленными лопастями и «гондолу», в которой находится вал, редуктор, генератор и органы управления. Собираются измерения ветра, которые заставляют турбину вращаться и сталкиваться с сильнейшим ветром, а угол или «шаг» лопастей оптимизируется для захвата энергии.

Типичная современная турбина начинает вырабатывать электроэнергию, когда скорость ветра достигает шести-девяти миль в час (миль в час), известной как скорость включения.Турбины отключатся, если ветер дует слишком сильно (примерно 55 миль в час), чтобы предотвратить повреждение оборудования.

В течение года современные турбины могут вырабатывать полезное количество электроэнергии более 90 процентов времени. Например, если ветер на турбине достигает скорости включения от шести до девяти миль в час, турбина начнет вырабатывать электричество. По мере увеличения скорости ветра увеличивается и производство электроэнергии.

Другой распространенный показатель производства энергии ветра называется коэффициентом мощности.Он измеряет количество электроэнергии, производимой ветряной турбиной за определенный период времени (обычно за год), относительно ее максимального потенциала.

Например, предположим, что максимальная теоретическая мощность двухмегаваттной ветряной турбины в год составляет 17 520 мегаватт-часов (дважды 8 760 часов, количество часов в году). Однако турбина может производить только 7 884 мегаватт-часа в течение года, потому что ветер не всегда дул достаточно сильно, чтобы произвести максимальное количество электроэнергии, которое турбина была способна производить.В этом случае коэффициент мощности турбины составляет 45 процентов (7 884 делить на 17 520). Помните — это не означает, что турбина вырабатывает электроэнергию только в 45% случаев. Современные ветряные электростанции часто имеют коэффициент мощности более 40 процентов, что близко к некоторым типам электростанций, работающих на угле или природном газе.

Ветряные мельницы против ветряных турбин

Иногда люди используют термины «ветряная мельница» и «ветряная турбина» как синонимы, но между ними есть важные различия. Люди веками использовали ветряные мельницы для измельчения зерна, перекачивания воды и выполнения других работ.Ветряные мельницы вырабатывают механическую энергию, но не производят электричество. Напротив, современные ветряные турбины — это высокоразвитые машины, состоящие из более чем 8000 деталей, которые используют кинетическую энергию ветра и преобразуют ее в электричество.

Что такое ветряная электростанция?

Часто большое количество ветряных турбин строится близко друг к другу, что называется ветроэнергетическим проектом или ветряной электростанцией. Ветряная электростанция работает как единая электростанция и отправляет электроэнергию в сеть.

Как энергия ветра доходит до вас

Турбины ветряной электростанции подключены, поэтому вырабатываемая ими электроэнергия может поступать от ветряной электростанции в электрическую сеть.Как только энергия ветра будет подключена к основной энергосистеме, электроэнергетические компании или операторы будут отправлять электроэнергию туда, где она нужна людям.

Линии передачи меньшего размера, называемые линиями распределения, собирают электроэнергию, вырабатываемую на ветроэнергетическом проекте, и транспортируют ее к более крупным сетевым линиям передачи, где электроэнергия может перемещаться на большие расстояния в места, где она необходима. Наконец, более мелкие распределительные линии доставляют электричество прямо в ваш город, дом или офис. Вы можете узнать больше о передаче здесь.

Дополнительные ресурсы

ЭНЕРГИЯ ВЕТРА

Ветер Энергия —

См. также:

другие чтения с оценкой в альтернативной энергии — ветер Энергия — Геотермальная энергия — Гидроэнергетика — Атомная энергия

см. Основы альтернативной энергетики

Энергия от ветра

Ветер простой воздух в движении.Это вызвано неравномерным нагревом поверхность земли солнцем. Поскольку поверхность земли состоит из самых разных типов земли и воды, поглощает солнце нагревается с разной скоростью.

Во время днем воздух над землей нагревается быстрее, чем воздух над водой. Теплый воздух над землей расширяется и поднимается, и на его место врывается более тяжелый и прохладный воздух, создавая ветры.Ночью ветры меняются местами, потому что над сушей воздух охлаждается быстрее, чем над водой.

Там же кстати, большие атмосферные ветры, которые кружат над землей, создаются потому что земля около экватора земли больше нагревается Солнце, чем земля возле Северного и Южного полюсов.

Сегодня ветер энергия в основном используется для производства электроэнергии. Ветер называется возобновляемый источник энергии, потому что ветер будет дуть до тех пор, пока солнце сияет.

История ветра

С древних времен раз люди использовали энергию ветра. Более 5000 лет назад древние египтяне использовали ветер для плавания судов по реке Нил.Позже люди построили ветряные мельницы для измельчения пшеницы и других злаков. В самые ранние известные ветряные мельницы были в Персии (Иран). Эти ранние ветряные мельницы был похож на большие лопастные колеса. Спустя столетия люди Голландия улучшила базовую конструкцию ветряной мельницы. Они дали это лопасти винтового типа, все еще сделанные с парусами. Голландия известна для своих ветряных мельниц.

Американские колонисты использовали ветряные мельницы для измельчения пшеницы и кукурузы, для перекачивания воды и для резки древесина на лесопилках.Еще в 1920-х годах американцы использовали небольшие ветряные мельницы. для выработки электроэнергии в сельской местности без электроснабжения. Когда по линиям электропередач стало поступать электричество в сельские районы в В 1930-е гг. местные ветряные мельницы использовались все реже, хотя они все еще можно увидеть на некоторых западных ранчо.

Нехватка нефти 1970-х годов изменили энергетическую картину страны и Мир.Это вызвало интерес к альтернативным источникам энергии, мощению путь для повторного входа ветряной мельницы для выработки электроэнергии. В начале 1980-х годов энергия ветра в Калифорнии стала действительно популярной, частично из-за государственной политики, поощряющей использование возобновляемых источников энергии. С тех пор поддержка развития ветра распространилась на другие штаты, но Калифорния по-прежнему производит в два раза больше энергии ветра, чем любое другое государство.

КАК ВЕТРОВЫЕ МАШИНЫ РАБОТА

Как старомодный ветряные мельницы, современные ветряные машины используют лопасти для сбора ветра кинетическая энергия. Ветряки работают, потому что они замедляют скорость ветра. Ветер обтекает лопасти аэродинамической формы, вызывая поднять, как эффект на крылья самолета, заставляя их поворачиваться. В лопасти соединены с приводным валом, который вращает электрогенератор производить электричество.

С новым ветряные машины, все еще остается проблема, что делать, когда ветер не дует. В те времена другие типы электростанций необходимо использовать для производства электричества.

ВИДЫ ВЕТРА МАШИНЫ

Есть два типы ветряных машин (турбин), используемых сегодня в зависимости от направления вращающегося вала (оси): горизонтальные ветряные машины и вертикально-осевые ветряные машины.Размеры ветряных машин широко варьируются. Небольшие турбины, используемые для питания одного дома или офиса, могут иметь мощностью менее 100 киловатт. Некоторые большие коммерческие размеры турбины могут иметь мощность 5 миллионов ватт или 5 мегаватт.

Ветер Ферма — это группа ветряных турбин, используемых для выработки электроэнергии.

Больше турбины часто группируются в ветряных электростанций которые обеспечивают питание электрической сети.

Горизонтальная ось

Большинство ветряных машин сегодня используются типы с горизонтальной осью. Горизонтально-осевой ветер у машин есть лопасти, как у воздушных винтов.Типичный горизонтальный ветряная машина высотой с 20-этажное здание имеет три лезвия шириной 200 футов. Самые большие ветряные машины в В мире лезвия длиннее футбольного поля! Стенд ветряных машин высокий и широкий, чтобы улавливать больше ветра.

Вертикальная ось

Вертикальная ось лопасти ветряных машин идут сверху вниз и обычный тип (ветряк Дарье) выглядит как гигантский двухлопастный взбиватели для яиц.Тип вертикальной ветряной машины обычно стоит 100 футов высотой и 50 футов шириной. Вертикально-осевые ветряные машины производят составляет лишь очень небольшой процент ветряных машин, используемых сегодня.

Усиленный ветер Роторная платформа (WARP) — это ветряная система другого типа, которая разработан, чтобы быть более эффективным и использовать меньше земли, чем ветряные машины используется сегодня. WARP не использует большие лезвия; вместо этого это выглядит как стопка колесных дисков.У каждого модуля есть пара маленьких, высоких турбины, установленные на обоих его вогнутых усилителях ветра поверхности каналов модуля. Вогнутые поверхности направляют ветер в сторону турбины, увеличивающие скорость ветра на 50 процентов и более. Энеко, компания, которая разработала WARP, планирует продавать технологию питание морских нефтяных платформ и беспроводных телекоммуникационных систем.

МОЩНОСТЬ ВЕТРА РАСТЕНИЯ

Ветряные электростанции, или ветряных электростанций , как их иногда называют, являются кластеры ветряных машин, используемых для производства электроэнергии.Ветряная электростанция обычно имеет десятки ветряных машин, разбросанных по большой территории. Самая большая ветряная электростанция в мире, Центр ветроэнергетики Horse Hollow в Техасе 421 ветряная турбина, вырабатывающая достаточно электроэнергии. для питания 220 000 домов в год.

В отличие от мощности заводов, многие ветряные установки не принадлежат коммунальным предприятиям. Вместо этого они принадлежат и управляются бизнесменами, которые продают электроэнергию, произведенную на ветряной электростанции, передают в электрические сети.Эти частные компании известны как независимые производители электроэнергии.

Эксплуатация Ветроэлектростанция не так проста, как просто построить ветряную мельницу в ветреное место. Владельцы ветряных электростанций должны тщательно спланировать, где разместить свои машины. Важно учитывать, насколько быстро и как дует ветер.

Как правило, ветер скорость увеличивается с высотой и на открытых участках без ветрозащитных полос.Хорошие площадки для ветряных растений — это вершины ровных округлых холмов, открытые равнины или береговые линии, а также горные ущелья, создающие воронки ветра.

Скорость ветра меняется по всей стране. Он также меняется от сезона к сезону. В Техачапи, Калифорния, с апреля по октябрь ветер дует сильнее чем зимой. Это из-за сильного нагрева пустыни Мохаве в летние месяцы.Горячий воздух закончился пустыня поднимается, и более прохладный и плотный воздух над Тихим океаном мчится через горный перевал Техачапи, чтобы занять его место. В в таком штате, как Монтана, с другой стороны, во время зима. К счастью, эти сезонные вариации хорошо подходят для нужд регионов в электроэнергии. В Калифорнии люди используйте больше электричества летом для кондиционеров.В Монтана, люди используют больше электроэнергии в зимние месяцы для обогрев.


ВЕТРОВОЕ ПРОИЗВОДСТВО

В 2006 г. ветер машин в США произвело в общей сложности 26,6 миллиарда кВтч электроэнергии в год, достаточной для обслуживания более 2,4 млн. домохозяйства. Этого электричества хватит на город размером более Лос-Анджелес, но это лишь небольшая часть от общего числа жителей страны. производство электроэнергии, около 0.4 процента. Количество электричества генерируемые ветром, быстро растет в последние годы. В 2006 г. электричество, произведенное с помощью ветра, было в 2 1/2 раза больше, чем выработка ветром в 2002.

Новые технологии снизили стоимость производства электроэнергии из ветра, и Росту ветроэнергетики способствовали налоговые льготы для возобновляемых источников энергии. программы ценообразования в области энергетики и экологичностиМногие коммунальные службы по стране предлагать экологически чистые варианты ценообразования, которые позволяют клиентам платить больше за электричество, поступающее из возобновляемых источников.

Ветряные машины в 2006 г. производили электроэнергию в 28 штатах. с наибольшей производительностью ветра — Техас, Калифорния, Айова, Миннесота, и Оклахома.

Большая часть ветряные электростанции в мире расположены в Европе и в США, где государственные программы помогли поддержать ветер развитие власти.США занимают второе место в мире по мощность ветроэнергетики — позади Германии и впереди Испании и Индии. Дания занимает шестое место в мире по мощности ветра, но вырабатывает 20 процентов электроэнергии за счет ветра.

ВЕТЕР И ОКРУЖАЮЩАЯ СРЕДА

В 1970-х гг. нехватка нефти подтолкнула к развитию альтернативных источников энергии.В 1990-х годах толчком стала новая забота об окружающей среде. в ответ на научные исследования, указывающие на возможные изменения в глобальный климат, если использование ископаемого топлива будет продолжать расти. Энергия ветра — это экономичный источник энергии во многих областях страна. Ветер — чистое топливо; ветряные электростанции не производят ни воздуха, ни воды загрязнение, потому что топливо не сжигается. Растущее беспокойство по поводу выбросов от производства ископаемого топлива, увеличения государственной поддержки и выше затраты на ископаемое топливо (особенно природный газ и уголь) помогли мощность ветроэнергетики в США существенно выросла последние 10 лет.

Самый серьезный экологические недостатки ветряных машин могут быть их негативным влиянием на популяции диких птиц и визуальное воздействие на ландшафт. Для некоторых сверкающие лопасти ветряных мельниц на горизонте — это бельмо на глазу; для других это прекрасная альтернатива обычным электростанции.

Последняя Доработана: июль 2008 г.
Источники: Управление энергетической информации, Возобновляемые источники энергии. Годовой 2006 , апрель 2008 г.
Управление энергетической информации, Экологическое ценообразование и измерение чистоты, Июль 2008.
Национальный проект развития энергетического образования, Intermediate Информационный бюллетень по энергетике , 2005.
Американская ассоциация ветров, Wind Web Tutorial (http://www.awea.org/faq/index.html), 2007.
Глобальный совет по ветроэнергетике (http://www.gwec.net/), апрель 2007 г.
FPL Energy, Информационные бюллетени по растениям (http://www.fplenergy.com/portfolio/wind/plantfactsheet.shtml), Июль 2008.
Министерство энергетики США, Управление энергоэффективности и возобновляемых источников энергии Энергия (http://www1.eere.energy.gov/windandhydro/wind_how.html#sizes), Май 2007 г.

ИСТОЧНИК : АДМИНИСТРАЦИЯ ЭНЕРГЕТИЧЕСКОЙ ИНФОРМАЦИИ — ДЕПАРТАМЕНТ ЭНЕРГЕТИКИ — ГЛАВНАЯ ДЕТСКАЯ СТРАНИЦА


ЦЕЛЕЙ США ВЕТРОВОЙ ЭНЕРГИИ

Ветер Энергетическая миссия, видение и цели

20% Энергия ветра к 2030 году: увеличение вклада энергии ветра в U.С. Поставка электричества

ТЕСТ ВАШЕ ЗНАНИЕ МАТЕРИАЛА

1) В типовой горизонтальной ветряной машине может стоять ___ этаж

Пожалуйста введите свой ответ в отведенное для этого поле:


2) В 2006 г. количество энергии, произведенной с помощью ветра, превысило _____ млрд. кВтч


3) В скольких штатах в 2006 г. производилась энергия ветра?

Плюсы и минусы ветроэнергетики

В U.S., крупнейшим источником антропогенных выбросов парниковых газов является энергетический сектор, около 38%. Самым крупным источником энергии является уголь, который, хотя и производит менее 40% электроэнергии, производит более 70% выбросов парниковых газов в энергетическом секторе. (20% выбросов парниковых газов приходится на электростанции, работающие на природном газе.) Хотя ветряные турбины стали привычными в большей части США, ветряная энергия по-прежнему (2013 г.) составляет только около 4% в электроэнергетическом секторе.

Потенциал энергии ветра огромен, и эксперты предполагают, что энергия ветра может легко обеспечивать более 20% энергии ветра.С. и мировое электричество. Здесь подробно описаны преимущества и недостатки энергии ветра, чтобы помочь вам решить, каким должно быть будущее ветра в Соединенных Штатах.

Экономические преимущества

· оживляет сельскую экономику: Энергия ветра может диверсифицировать экономику сельских сообществ, увеличивая налоговую базу и обеспечивая новые виды доходов. Ветряные турбины могут стать новым источником налогов на собственность в сельских районах, которым в противном случае было бы трудно привлечь новую промышленность.Каждые 100 МВт ветроэнергетики на юго-западе Миннесоты приносят около 1 миллиона долларов в год в виде налогов на недвижимость и около 250 000 долларов в год в виде прямых арендных платежей землевладельцам.

· Меньше субсидий: Все энергетические системы субсидируются, и ветер не исключение. Однако ветер получает значительно меньше энергии, чем другие виды энергии. По данным журнала Renewable Energy World, традиционная энергия получает 300 миллиардов долларов США в виде субсидий в год, в то время как возобновляемые источники энергии получили менее 20 миллиардов долларов США денег налогоплательщиков за последние 30 лет.Исследование, опубликованное учеными из Гарварда в 2011 году, показало, что стоимость полного жизненного цикла угольной энергии составляет от 9,5 до 27 центов за киловатт-час, большая часть которых оплачивается налогоплательщиками в виде увеличения расходов, связанных со здоровьем. Эти «косвенные» субсидии составляют от 175 до 500 миллиардов долларов в год. (Цифры указаны в долларах 2008 г. Подробнее см. Здесь.)

· Бесплатное топливо: В отличие от других форм производства электроэнергии, когда топливо доставляется на перерабатывающий завод, энергия ветра генерирует электричество в качестве источника топлива, которое является бесплатным.Ветер — это природное топливо, которое не нужно добывать или перевозить, так как в долгосрочной перспективе затраты на электроэнергию снимаются с двух дорогостоящих затрат.

· Стабильность цен: Цена на электроэнергию из ископаемого топлива и ядерной энергии может сильно колебаться из-за очень изменчивых затрат на добычу и транспортировку. Ветер может компенсировать эти затраты, потому что цена на топливо фиксированная и бесплатная.

· Содействует рентабельному производству энергии: Стоимость ветроэнергетики упала с почти 40 центов за кВтч в начале 1980-х годов до 2.5-5 ¢ за кВтч сегодня в зависимости от скорости ветра и размера проекта.

· Создает рабочие места: Ветроэнергетические проекты создают новые краткосрочные и долгосрочные рабочие места. Соответствующие должности варьируются от метеорологов и геодезистов до инженеров-строителей, монтажников, юристов, банкиров и технических специалистов. Энергия ветра создает на 30% больше рабочих мест, чем угольная электростанция, и на 66% больше, чем атомная электростанция, на единицу произведенной энергии.

Социальные преимущества

· Национальная безопасность / энергетическая независимость: Ветровые турбины диверсифицируют наш энергетический портфель и снижают нашу зависимость от иностранного ископаемого топлива.Энергия ветра — это электричество собственного производства, которое может помочь контролировать скачки цен на ископаемое топливо. Объекты распределенной генерации, как и многие проекты ветряных электростанций, обеспечивают защиту электростанций от потенциальных террористических угроз.

· Поддерживает сельское хозяйство: Не часто новый урожай появляется из воздуха. Ветряные турбины можно устанавливать среди пахотных земель, не мешая людям, домашнему скоту или производству.

· Местное владение: Значительный вклад в мировой энергетический баланс могут внести небольшие группы турбин или даже отдельные турбины, эксплуатируемые местными землевладельцами и малыми предприятиями.Развитие местных источников электроэнергии означает, что мы импортируем меньше топлива из других государств, регионов и стран. Это также означает, что наши энергетические доллары снова вкладываются в местную экономику.

Экологические преимущества

· Сохраняет и сохраняет воду чистой: Турбины не производят выбросов твердых частиц, которые способствуют загрязнению ртутью наших озер и ручьев. Энергия ветра также сохраняет водные ресурсы. Например, для производства того же количества электроэнергии может потребоваться примерно в 600 раз больше воды с помощью ядерной энергии, чем с помощью ветра, и примерно в 500 раз больше воды с углем, чем с помощью ветра.

· Чистый воздух: Другие источники электроэнергии производят вредные выбросы твердых частиц, которые способствуют глобальному изменению климата и кислотным дождям. Энергия ветра не загрязняет окружающую среду.

· Незначительные парниковые газы: Источники большей части нашей энергии, уголь и природный газ, производят большое количество парниковых газов. (Угля намного больше, чем природного газа.) Ветровая энергия не производит ничего, кроме производства, установки и обслуживания турбин. В среднем эти парниковые газы компенсируются чистой энергией, производимой турбинами в течение 9 месяцев эксплуатации.

· Горнодобывающая промышленность и транспорт: Ветер сохраняет наши ресурсы, потому что нет необходимости в разрушительной добыче ресурсов или транспортировке топлива на перерабатывающие предприятия.

· Сохранение земель: Ветряные фермы расположены на большой географической территории, но их фактический «след» охватывает только небольшую часть земли, что приводит к минимальному воздействию на производство сельскохозяйственных культур или выпас скота.

Недостатки

· Переменный ресурс: Турбины вырабатывают электричество только тогда, когда дует ветер.Эта изменчивость отслеживается и компенсируется таким же образом, как коммунальные предприятия отслеживают изменения спроса каждый день, поэтому нет никаких фактических изменений в энергоснабжении для конечных пользователей.

· Эстетика: Люди по-разному реагируют на ветряные турбины на ландшафте. Некоторые люди видят изящные символы экономического развития и экологического прогресса или изящные символы современных технологий. Другие могут увидеть вторжение промышленности в природные и сельские пейзажи. Есть много способов минимизировать визуальное воздействие ветряных турбин, в том числе покрасить их в нейтральный цвет, расположить их визуально приятным образом и спроектировать каждую турбину единообразно.

· Мерцание тени: Мерцание тени происходит, когда лопасти ротора отбрасывают тень при повороте. Исследования показали, что наихудшие условия могут повлиять на соседних жителей за счет изменения освещения в общей сложности 100 минут в год и только 20 минут в год при нормальных обстоятельствах. Проектировщики ветряных электростанций избегают размещать турбины в местах, где мерцание теней будет проблемой в течение длительного времени.

· Звук: Ветряки не молчат.Звуки, которые они производят, обычно чужды сельским местам, где чаще всего используются ветряные турбины, но по мере того, как технология турбин совершенствовалась с годами, количество звука значительно снизилось. Звуки ветряных турбин не мешают нормальной деятельности, например тихому разговору с соседом.

· Воздействие на биологические ресурсы: Как и в случае любого строительного проекта или крупного сооружения, энергия ветра может воздействовать на растения и животных, в зависимости от чувствительности местности.Утрата среды обитания дикой природы и естественной растительности — основные проблемы дикой природы, связанные с использованием энергии ветра. Благодаря современным турбинам, установленным на трубчатых башнях и чьи лопасти вращаются всего около 15 раз в минуту, столкновения с птицами теперь редки. Обширный анализ воздействия на окружающую среду является неотъемлемой частью разработки проекта для максимального уменьшения воздействия. Общество Audubon и Sierra Club поддерживают развитие ветроэнергетики, потому что экологические преимущества намного перевешивают недостатки.

· Конструкция: Ветровые установки могут предусматривать транспортировку большого и тяжелого оборудования. Это может привести к появлению большой временно нарушенной зоны возле турбин. Эрозия — еще одна потенциальная экологическая проблема, которая может возникнуть в результате строительных работ. Единственный наиболее надежный метод ограничения эрозии — избегать профилирования дорог и строительство мелиоративных постов.

· Радар: Радиолокационные помехи от ветряных турбин редки, и их легко избежать за счет технологических усовершенствований и правильного размещения турбин вблизи чувствительных зон.Ряд правительственных объектов США имеют как ветряные турбины, так и работающие радары, и британские военные имеют опыт успешного решения этих проблем.

Резюме

Ради планеты, национальной безопасности, оживления сельской экономики и сохранения ресурсов мы должны продвигать экономику возобновляемых источников энергии. Ветроэнергетика может стать краеугольным камнем этого устойчивого энергетического будущего, поскольку она доступна по цене, обеспечивает рабочие места, существенные и распределяемые доходы и наносит незначительный ущерб окружающей среде, не вызывая загрязнения, образования опасных отходов и истощения природных ресурсов.Использование энергии ветра сегодня заложит основу для здорового завтра.

Энергия ветра

Энергия ветра — одна из самых быстрорастущих технологий возобновляемой энергетики. Количество пользователей во всем мире растет, отчасти потому, что снижаются затраты. Согласно последним данным IRENA, глобальная установленная мощность ветроэнергетики на суше и на море увеличилась почти в 75 раз, увеличившись с 7,5 гигаватт (ГВт) в 1997 году до примерно 564 ГВт к 2018 году.В период с 2009 по 2013 год производство ветровой электроэнергии увеличилось вдвое, а в 2016 году на ветровую энергию приходилось 16% электроэнергии, произведенной из возобновляемых источников. Во многих частях света сильный ветер, но лучшие места для выработки энергии ветра иногда находятся в удаленных местах. Оффшорная ветроэнергетика предлагает огромный потенциал.

Ветряные турбины впервые появились более века назад. После изобретения электрического генератора в 1830-х годах инженеры начали попытки использовать энергию ветра для производства электроэнергии.Производство энергии ветра имело место в Соединенном Королевстве и Соединенных Штатах в 1887 и 1888 годах, но считается, что современная ветроэнергетика была впервые разработана в Дании, где в 1891 году были построены ветряные турбины с горизонтальной осью и началась ветряная установка длиной 22,8 метра операция 1897 г.

Ветер используется для производства электричества с использованием кинетической энергии, создаваемой движущимся воздухом. Она преобразуется в электрическую энергию с помощью ветряных турбин или систем преобразования энергии ветра. Ветер сначала поражает лопасти турбины, заставляя их вращаться и вращать присоединенную к ним турбину.Это изменяет кинетическую энергию на энергию вращения, перемещая вал, который подключен к генератору, и тем самым вырабатывает электрическую энергию за счет электромагнетизма.

Количество энергии, которую можно получить от ветра, зависит от размера турбины и длины ее лопастей. Мощность пропорциональна размерам ротора и кубу скорости ветра. Теоретически, когда скорость ветра удваивается, потенциал ветровой энергии увеличивается в восемь раз.

Мощность ветряных турбин со временем увеличивалась.В 1985 году типовые турбины имели номинальную мощность 0,05 мегаватт (МВт) и диаметр ротора 15 метров. Сегодняшние новые ветроэнергетические проекты имеют турбинную мощность около 2 МВт на суше и 3–5 МВт на море.

Имеющиеся в продаже ветряные турбины достигли мощности 8 МВт с диаметром ротора до 164 метров. Средняя мощность ветряных турбин увеличилась с 1,6 МВт в 2009 году до 2 МВт в 2014 году.

Согласно последним данным IRENA, производство ветровой электроэнергии в 2016 году составило 6% электроэнергии, произведенной с помощью возобновляемых источников энергии.Во многих частях света сильный ветер, но лучшие места для выработки энергии ветра иногда находятся в удаленных местах. Оффшорная ветроэнергетика предлагает огромный потенциал.



Электричество от ветра ▷ Русский перевод

от ветра от ветровой

.

По

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *