Горючесть монтажная пена: Горит, или нет, монтажная пена, после высыхания?

Дек 14, 2018 Разное

Горючесть монтажная пена: Горит, или нет, монтажная пена, после высыхания?

Содержание

Горит ли монтажная пена после высыхания 👉 эксплуатационные особенности материала

Потребители пены монтажной при покупке материала обращают внимание на требования, которым она должна соответствовать: уровень усадки после полимеризации, показатель адгезии, пластичность, хрупкость. Но мало кто акцентируется на вопросе: горит ли материал после высыхания или нет.

Этот вопрос волнует покупателей, имеющих определенный опыт в проведении ремонтов, или тех, кто желает повысить уровень пожарной безопасности помещения, используя при этом огнестойкий гипсокартон и другие материалы, оказывающие сопротивление огню.

Образец пены

Содержание статьи

Целесообразность применения пены с огнестойкими свойствами

Монтажная пена на полиуретановой основе имеет множество компонентов.

Материал включает:

  • Форполимерный компонент;
  • Пластификаторы пропеллентов;
  • Добавки, замедляющие горение.

Но этого недостаточно, чтобы монтажная пена, наносимая под гипсокартон или на другие участки помещения, достаточно долго сопротивлялась воздействию огня.

Для этих целей рекомендуется использовать противопожарную разновидность вещества.

Противопожарная пена неспособна полностью противостоять пожару. Ее предназначение – локализация угарного газа в одном помещении, препятствование переходу высокой температуры на соседние комнаты.

Как и огнестойкий гипсокартон, эта пена оказывает противодействие распространению пожара на протяжении определенного отрезка времени для отсрочки причинения реальных повреждений стенам помещения.

Противопожарная пена

Если брать во внимание гипсокартон, способность этого материала сопротивляться горению называется пределом. В какой-то степени и пена монтажная после высыхания приобретает такую способность. В случае с термостойким материалом этот предел составляет около 3-4 часов. Этого времени достаточно, чтобы успели приехать пожарные и ликвидировали огонь.

Чем отличается противопожарная пена от стандартной

Монтажная пена с противопожарными свойствами отличается от стандартной высоким уровнем огнестойкости и огнеупорности.

Огнеупорность – свойство материала выдерживать влияние высокой температуры от огня на протяжении длительного времени без разрушения.

Огнестойкость – свойство, определяющее способность пены оказывать противостояние открытому огню на определенном временном отрезке.

Противопожарная монтажная пена:

  • Не теряет своих свойств в обширном температурном диапазоне. Она остается одинаково эффективной и при температуре в -60 градусов по Цельсию, и при температуре +100 градусов по Цельсию.
  • Формирует высокое качество шва.
  • Способна удерживать внутри помещения ядовитые газы, которые выделяются в процессе горения легковоспламеняющихся синтетических материалов, что оказывают токсичное воздействие на организм человека.
Уплотнение коммуникационных систем
  • После высыхания огнеупорная монтажная пена подвергается любым типам обработки – нарезка, шлифование, окрашивание, оштукатуривание. При этом вещество не теряет характеристик.

Читайте также: Пена монтажная огнестойкая — характеристики состава

Область применения

Монтажная пена с противопожарными свойствами применяется в таких целях:

  • Заделка швов и полостей в печных и каминных конструкциях;
  • Заполнение отверстий в зонах перехода элементов коммуникационных систем – трубы отопления, вентиляционные воздуховоды, элементы системы водоснабжения;
  • Уплотнение коммуникационных систем;
  • Применение при монтаже дверных и оконных конструкций в помещениях с особыми эксплуатационными условиями – сауны, бани, бассейны;
  • Заполнение свободного пространства, возникающего в зоне выхода печной или каминной трубы.

Пена монтажная нередко используется как фиксатор, на который садится гипсокартон. Эта технология используется при клеевом методе выравнивания стен.

Гипсокартон лучше подходит для проведения работ такого рода. Но при монтаже листов на профили помещение теряет площадь. В небольших квартирах проблема стоит остро. Поэтому выгоднее монтировать гипсокартон на голую стену, воспользовавшись монтажной пеной.

Для достижения эффекта используют сочетание, в котором и пена, и гипсокартон обладают повышенной устойчивостью к воздействию открытого огня и высокой температуры.

Монтаж гипсокартона на пену

Рекомендации по применению

Огнеупорный вариант материала относится к экологически чистой продукции. Пенная масса нетоксична, не вызывает аллергических реакций. Но нанесение несет определенную опасность для здоровья человека – легкие и бронхи подвергаются вредному воздействию веществ. Рекомендуется соблюдать правила безопасности при нанесении и в период высыхания.

Защитные меры:

  • Респиратор;
  • Спецодежда;
  • Перчатки.

Не допускается нагревать баллон до температуры, превышающей показатель в +50 градусов по Цельсию. При попадании вещества в глаза или в рот их сразу промывают большим количеством проточной воды и в обязательном порядке обращаются за врачебной помощью. Помещение во время работы должно хорошо проветриваться.

Подбирая материал для работы, обращают внимание на показатели, которые размещены на баллоне. Особого внимания заслуживает тип пены, уровень горючести, наличие сертификации, класс огнестойкости.

На этом видео наглядным образом показано, горит ли материал или нет (тестирование обычного и термостойкого материала):

Пошаговая инструкция нанесения

Инструкция по применению:

  • Основание очищается от мусора, пыли. Затем оно подготавливается путем увлажнения водой.
  • Подходящая температура для нанесения пены составляет 20 градусов по Цельсию. Охлажденный баллон следует подержать какое-то время в помещении, если он был принесен с улицы в морозную погоду. После этого опускают в теплую воду, но сильное нагревание запрещено.
Применение пены для установки оконной конструкции
  • Баллон встряхивается, вставляется в пистолет.
  • Швы заполняются пенным составом баллона. Если обрабатываются вертикально расположенные поверхности, герметик наносится в направлении снизу вверх.

Рекомендуется смачивать пену водой для катализации процесса расширения и застывания. При этом не допускают образования капель. Достаточно использовать мелкий распылитель.

Вконтакте

Facebook

Twitter

Одноклассники

Противопожарная монтажная пена

Огнеупорная пена представляет собой особое вещество, которое применяется в строительных работах. Основным преимуществом термостойкой пены является ее способность противостоять открытому огню. Наиболее частое применение жаростойкой пены – заделка откосов проемов, в которых установлены противопожарные двери. Без использования негорючего вещества для заполнения щелей проем не будет герметичным. В случае возникновения пожара через щели, обработанные обычной пеной, быстро проникнет дым и гарь, что недопустимо по правилам пожарной безопасности.

В состав монтажной пены входят следующие компоненты:

  • катализаторы, которые ускоряют процесс расширения пены и позволяют использовать ее даже в морозы;
  • вспениватели, от которых зависит скорость затвердевания и пористость пены;
  • стабилизаторы, которые позволяют пене равномерно распределяться по поверхности;
  • газ, который выталкивает пену из баллона.

Виды противопожарной монтажной пены

В зависимости от возможности использования при отрицательной температуре воздуха огнестойкая пена делится на ту, которую можно наносить при температуре не ниже +5 градусов Цельсия, и ту, которую можно применять при температуре -5, -10 градусов. Также разные виды пены отличаются друг от друга пределом огнестойкости. Он должен соответствовать пределу огнестойкости огнеупорных дверей. К примеру, пена с маркировкой EI 30 применяется в помещениях, в которых могут одновременно находиться от 15 до 300 человек, и где есть возможность быстрой эвакуации.

Монтажная пена также делится на три класса огнестойкости. К классу В3 относится горючая пена, к классу B2 — горючая, но способная к самозатуханию, к классу B1 — негорючая. Противопожарная пена, соответственно, имеет класс B1.

По количеству активных компонентов пена бывает одно- и двухкомпонентной. Однокомпонентная огнезащитная пена застывает под воздействием влаги. Перед нанесением такой пены поверхность смачивают водой. Двухкомпонентная пена, в свою очередь, затвердевает без использования воды. Такую пену можно использовать даже зимой.

Особенности применения противопожарной пены

Перед заполнением щелей поверхность материалов подготавливают, очищая ее от масляных пятен, мусора и загрязнений. Затем поверхность увлажняют водой (в случае, если используется однокомпонентная пена). Баллон с пеной необходимо выдержать в помещении несколько часов, а затем опустить в теплую воду. После этого его хорошо встряхивают и устанавливают на монтажный пистолет вверх дном. Пеной заполняют половину объема щелей, нанося ее снизу вверх. Затем пену сбрызгивают водой. При применении двухкомпонентной пены использовать воду не нужно.

Требования к противопожарной пене

Противопожарная пена должна иметь сертификат соответствия. Кроме того, этот материал должен соответствовать ГОСТу 30247.0-94 «Конструкции строительные. Методы испытания на огнестойкость». В компании «СТРОЙСТАЛЬИНВЕСТ» монтаж противопожарных дверей осуществляют с использованием только специальной огнестойкой пены и с соблюдением других технических требований к установке данного вида конструкций.

6 секретов монтажной пены, о которых мало, кто знает

Монтажная пена, которая появилась на строительном рынке в постсоветское время, широко вошла во все направления строительно-монтажных работ. Она применяется везде, где нужно заполнить щели и трещины, провести гидро- и теплоизоляцию. При этом, существуют нюансы, о которых мало, кто знает.

Монтажная пена — это герметик, созданный на основе полиуретана. В баллоне находится жидкий преполимер с функциональными добавками, растворённый в сжиженном газе. Именно сжатый газ позволяет пене активно вылезать из баллона. В твёрдом виде вещество представляет собой пенополиуретан. В качестве вытесняющего обычно применяется предполимер и пропеллент.

Монтажная пена полимеризуется, то есть, застывает, под воздействием влаги, которая находится в воздухе и на поверхности.

То есть, чем суше воздух в помещении, где вы применяете пену, тем дольше придётся ждать застывания.

Виды монтажной пены

Сразу выделим два основных вида монтажной пены — профессиональную и бытовую. На первый взгляд, главное отличие профессиональной пены — обязательное наличие специального пистолета, который помогает выдавить герметик из баллона в нужное место. На баллоне с профессиональной пеной есть кольцевой клапан, который навинчивается на аналогичный клапан монтажного пистолета.

Бытовая пена, в отличие от профессиональной, продаётся сразу с пластиковой трубкой, которая и подаёт состав. Специалисты отмечают, что с монтажным пистолетом работать намного удобнее — легче контролировать процесс — напор и направление нанесения пены. На этом отличия бытовой и профессиональной пены не заканчиваются — у второй куда меньше вторичное расширение, а это очень важный показатель, о котором мы ещё поговорим отдельно. Да и остальные качественные характеристики бытовой монтажной пены могут быть заметно ниже.

По мнению экспертов, лучше один раз купить относительно недорогой пистолет для профессиональной монтажной пены, чем доверить бытовой пене такие важные дела, как установка дверей, подоконников и окон!

Температурные режимы применения монтажной пены

Делится монтажная пена и по температурному режиму, в рамках которого она может применяться:

Как видим, верхний предел у всех типов монтажной пены одинаковый, в 40-градусную жару на солнце работать с ней нельзя.

Классы горючести монтажной пены

Кроме того, монтажная пена делится по классам горючести:

B1 — огнеупорная;

B2 — самозатухающая;

B3 — горючая.

Разумеется, лучше всего выбирать первый класс, как наименее пожароопасный.

Расширение монтажной пены

Перейдём к таким важным характеристикам монтажной пены, как первичное и вторичное расширение. Первый раз, пена расширяется сразу же, как только появляется из баллона. Это мощное расширение, в несколько раз, это следует учитывать при нанесении.

Вторично, пена расширяется в процессе затвердения, иногда это может занять до 24 часов.

Важно! Чем меньше вторичное расширение — тем лучше, тем меньше опасность, что установленный вами подоконник на следующее утро встанет дыбом!

У профессиональной монтажной пены показатель вторичного расширения ниже, чем у бытовой.

Дополнительные характеристики монтажной пены

Объём выхода

Обычно, на баллоне пишут цифры — 50, 60, 70 литров. Именно, столько затвердевшего продукта должно получиться из одного баллона. Однако, как подчёркивают эксперты, на самом деле, этот показатель зависит от разных факторов, в том числе температуры воздуха. Производитель, просто, указывает, сколько пропеллента содержится в ёмкости при базовых условиях. На самом деле, объём выхода оказывается меньше.

Вязкость

Монтажная пена не должна течь! Если это случилось, возможно, вы вышли за пределы допустимого температурного диапазона.

Адгезия

Адгезия — это способность монтажной пены прикрепляться к различным поверхностям. Нельзя наносить пену на обледеневшую поверхность, исключение составляют, также, полипропилен, масло, силикон, тефлон, полиэтилен. На все остальные поверхности, в том числе, металл, кирпич, дерево, бетон — монтажная пена прикрепляется легко и надёжно. Особенно, если предварительно прогрунтовать.

Основные правила работы с монтажной пеной

Перед тем, как начать работать с монтажной пеной, советуем надеть перчатки, а предварительно купить специальный очиститель, который поможет убрать возможные брызги и вычистить пистолет. С поверхности, куда будет наноситься пена, смахивают весь мусор, желательно пройтись щёткой или кисточкой. Если поверхность жирная — обязательно используйте очиститель.

Важно! Перед применением баллон следует выдержать при стандартной комнатной температуре не меньше 10 часов! Даже если вы работаете на улице зимой, баллон перед использованием должен быть достаточно тёплым!

Примерно, 30 секунд встряхивайте баллон, затем надевайте пистолет или насадку и начинайте работать. Вертикальные щели и швы специалисты советуют заполнять монтажной пеной снизу вверх, чтобы было меньше шансов, что она начнёт стекать. И ещё — не забудьте, что застывшую пену после обрезания излишков, следует чем-то защитить, например, шпатлёвкой. 

Виды монтажной пены, основные правила работы


В зависимости от состава монтажная пена может быть:
  • однокомпонентной – содержащей в качестве основного действующего вещества один активный ингредиент;
  • двухкомпонентной – основанной на взаимодействии двух активных веществ.
Кроме того, производители выпускают специальные виды монтажной пены для применения в различных температурных режимах. К таким видам относятся:
  • летняя пена – разработанная для использования в жаркое время года при температуре от +5 ̊ С до +35 ̊ С;
  • зимняя пена – предназначенная для работы в холодные период в температурном диапазоне от -23 ̊ С +5 ̊ С;
  • всесезонная пена – сохраняющая свои экплуатационные качества при колебаниях температур от -10 ̊ С до +35 ̊ С.
При определении оптимальной температуры для использования монтажной пены необходимо учитывать разницу между температурным режимом окружающей среды и степенью нагретости или охлаждения самого баллона. Учитывая, что минимально допустимая температура баллона определена в 0 ̊ С, при остывании пены ниже критического показателя, ее необходимо нагреть, поместив баллон в теплую воду. Категорически запрещено нагревать монтажную пену при помощи открытого огня либо воздействия горячего воздуха во избежание взрыва.

Кроме того, недопустима значительная разница в температурах окружающей среды и внутреннего содержимого баллона. Такой перепад температурных режимов делает монтажную пену непригодной к использованию.

По способу выпуска пены из баллона, она может быть двух типов:

  • профессиональная – имеющая на баллоне специальное кольцо-аппликатор для крепления монтажного пистолета, который позволяет регулировать мощность и количество выхода пены, а также проникать в самые труднодоступные места; отличается большим объемом баллона и увеличенным выходом, применяется специалистами строительного производства для значительного количества работ с большими площадями применения;
  • бытовая – оснащенная трубкой-адаптером для локального нанесения пены на небольшие участки, обладает меньшим объемом баллона и используется для не частых бытовых работ.
Несмотря на то, что при изготовлении профессиональных пен используют более качественный состав реагентов, ключевые ингредиенты продуктов сходны и предназначены для многих видов работ.

В зависимости от класса горючести монтажная пена изготавливается в двух вариантах:

  • огнестойкий – предназначенный для использования в местах с повышенными нормами противопожарной безопасности, выпускается в розовом, красном или сером цветах, позволяющим легко идентифицировать горючесть материала;
  • обычный – предусматривающий работу в нормальных условиях.
Огнестойкость материала определяется его способностью сохранять целостность и теплоизолирующие свойства под воздействием высоких температур. Для измерения огнестойкости производят замер времени в минутах, в течение которого швы глубиной 100-200 мм и толщиной 10-40 мм способны сохранить целостность и способность к теплоизоляции под воздействием открытого пламени.

Правила работы с монтажной пеной

Монтажная пена – это уникальный материал, который позволяет выполнить огромное количество работ. Для получения наилучшего результата при использовании продукта необходимо придерживаться некоторых установленных правил:
  1. Обязательно использование в работе защитных перчаток.
  2. Необходимо встряхнуть баллон перед применением, обеспечив смешивание содержащихся в нем компонентов.
  3. Требуется увлажнить рабочую поверхность перед нанесением монтажной пены для ее полимеризации.
  4. В холодную погоду необходимо предотвратить замерзание влаги на поверхности, производя увлажнение небольших участков с последующим их запениванием.
  5. Для удобства рекомендуется заполнять пеной вертикальные швы снизу вверх.
  6. При нанесении пены следует учитывать величину ее вторичного расширения, чтобы избежать необходимости последующего подрезания излишков.
  7. После нанесения пены необходимо еще раз увлажнить шов для обеспечения быстрой и качественной полимеризации.
  8. После затвердевания швов потребуется дополнительно защитить их от разрушительного воздействия ультрафиолета штукатуркой или любым другим способом.
  9. При работе с монтажной пеной необходимо применять специальные очищающие средства.

Выбрать пену


Возврат к списку

Монтажная пена: виды, свойства и применение

ПОЛИТИКА КОНФИДЕНЦИАЛЬНОСТИ

Спасибо за посещение нашего сайта. Мы сообщаем вам ниже следующую информацию для того, чтобы объяснить политику сбора, хранения и обработку информации, полученной на нашем сайте. Также мы информируем вас относительно использования ваших персональных данных.
ЧТО ТАКОЕ «КОНФИДЕНЦИАЛЬНОСТЬ ИНФОРМАЦИИ»?
Мы считаем своим долгом защищать конфиденциальность личной информации клиентов, которые могут быть идентифицированы каким-либо образом, и которые посещают сайт и пользуются его услугами (далее — “Сервисы”). Условие конфиденциальности распространяется на всю ту информацию, которую наш сайт может получить о пользователе во время его пребывания и которая в принципе может быть соотнесена с данным конкретным пользователем. Это соглашение распространяется также и на сайты компаний партнёров с которыми у нас существуют соответствующие обязательственные отношения (далее — «Партнёры»).

Получение и использование персональной информации
Наш сайт получает персональную информацию о Вас, когда Вы регистрируетесь, когда Вы пользуетесь некоторыми нашими службами или продуктами, когда Вы находитесь на сайте, а также в случае использования услуг наших партнёров.
Также мы можем собирать данные о вас в том случае, когда вы, согласившись с данной «Политикой конфиденциальности» на нашем сайте, не завершили процесс регистрации до конца. Типы персональных данных, которые могут быть собраны на этом сайте в ходе процесса регистрации, а также совершения заказов и получения любых сервисов и услуг, могут включать ваше имя, отчество и фамилию, почтовый адрес, email, номер телефона. Кроме того мы можем запросить информацию о ваших привычках, интересах, типах продуктов и сервисов, предлагаемых сторонними партнерами нашего сайта, которые мы можем также предложить вам на нашем сайте.
Любая ваша персональная информация, полученная на сайте, остается вашей собственностью. Тем не менее, отправляя свои персональные данные нам, вы доверяете нам право использовать вашу персональную информацию для любого законного использования, включая, без ограничений:
А. совершение заказа продукта или услуги
B. передача вашей персональной информации третьей стороне в целях совершения заказа
продукта или услуги, предоставляемой третьей стороной, на нашем сайте.
C. Показ рекламных предложений средствами телемаркетинга, почтового маркетинга, всплывающих окон, баннерной рекламы.
D. Отслеживание исполнения нашего «Пользовательского соглашения».
E. Для проверки, подписки, отписки, улучшения контента и целей получения обратной связи.
Вы соглашаетесь, что мы можем связаться с вами в любое время по вопросу обновлений и (или) любой другой информации, которую мы сочтём связанной с последующим использованием нашего сайта вами. Мы также оставляем за собой право передать информацию о настоящем или прошлом пользователе в случае, если мы сочтём, что наш сайт был использован данным пользователем для совершения незаконной деятельности.
Мы можем предоставлять сторонним партнёрам нашего Сайта информацию о пользователях, которые ранее получали таргетированные рекламные кампании, с целью формирования будущих рекламных кампаний и обновления информации о посетителе, используемой для получения статистических данных.

Сторонние ссылки
Мы не несём ответственности за точность, конфиденциальность и пользовательские соглашения любых сторонних партнёров, которые могут рекламироваться на нашем сайте. Любые сторонние рекламные материалы, размещаемые на нашем сайте, принадлежащие сторонним рекламодателям, никак не связаны с нашим сайтом.
Наш сайт автоматически получает и записывает в серверные логи техническую информацию из Вашего браузера: IP адрес, cookie, запрашиваемые продукты и посещённые страницы. Данная информация записывается с целью повышения качества обслуживания пользователей нашего сайта. Мы также спрашиваем адрес электронной почты (e-mail), который нужен для входа в систему, быстрого и безопасного восстановления пароля или для того, чтобы администрация нашего сайта могла связаться с вами как в экстренных случаях (например, проблемы с оплатой), так и для ведения процесса деловой коммуникации в случае оказания услуг. Этот адрес никогда не будет использоваться ни для каких рассылок, кроме тех, на которые Вы явно подпишетесь. Ваш выбор использования информации
В ходе процесса регистрации и (или) когда вы отправляете персональные данные нам на нашем Сайте, вы имеете возможность согласиться или не согласиться с предложением передать ваши персональные данные нашим сторонним партнёрам с целью осуществления с вами маркетинговых коммуникаций. Если с вами связываются представители любых этих сторонних партнёров, вы должны уведомить их лично о ваших предпочтениях по использованию ваших персональных данных. Несмотря на все выше сказанное, мы можем сотрудничать со сторонними партнёрами, кто может (самостоятельно или через их партнёров) размещать или считывать уникальные файлы cookie в вашем веб-браузере. Эти cookies открывают доступ к показу более персонализированной рекламы, контента или сервисов, предлагаемых вам. Для обработки таких cookies мы можем передавать программный уникальный зашифрованный или хэшированный (не читаемый человеком) идентификатор, связанный с вашим email-адресом, онлайн-рекламодателям, с которыми мы сотрудничаем, которые могут разместить cookies на вашем компьютере. Никакая персональная информация, по которой вас можно идентифицировать, не ассоциирована с этими файлами cookies. Отказаться от размещения cookies на вашем компьютере можно с помощью настроек вашего браузера.

Неидентифицирующая персональная информация
Мы оставляем за собой право собирать неидентифицирующую персональную информацию о вас, когда вы посещаете разные страницы нашего Сайта. Эта неидентифицирующая персональная информация включает в себя без каких-либо ограничений: используемый вами тип браузера, ваш IP-адрес, тип операционной системы, которую вы используете, а также доменное имя вашего провайдера интернет-услуг.
Мы используем эту неидентифицирующую персональную информацию в целях улучшения внешнего вида и контента нашего Сайта, а также для получения возможности персонализировать вашу работу в сети Интернет. Мы также можем использовать эту информацию для анализа использования Сайта, также как и для предложения вам продуктов и сервисов. Мы также оставляем за собой право использовать агрегированные или сгруппированные данные о наших посетителях для не запрещённых законом целей. Агрегированные или сгруппированные данные это информация, которая описывает демографию, использование и (или) характеристики наших пользователей как обобщённой группы. Посещая и предоставляя нам ваши персональные данные вы тем самым позволяете нам предоставлять такую информацию сторонним партнерам.
Мы также можем использовать cookies для улучшения использования нашего сайта. Cookies – это текстовые файлы, которые мы сохраняем в вашем компьютерном браузере для хранения ваших предпочтений и настроек. Мы используем Cookies для понимания, как используется сайт, для персонализации вашей работы в Сети Интернет и для улучшения контента и предложений на нашем Сайте.

Несовершеннолетние
Мы не храним сознательно информацию о несовершеннолетних лицах моложе 18 лет. Никакая информация на данном сайте не должна быть предоставлена несовершеннолетними лицами. Мы предостерегаем родителей и рекомендуем им контролировать работу детей в Интернет.

Безопасность
Мы будем стремиться предотвратить несанкционированный доступ к Вашей личной информации, однако, никакая передача данных через интернет, мобильное устройство или через беспроводное устройство не могут гарантировать 100%-ную безопасность. Мы будем продолжать укреплять систему безопасности по мере доступности новых технологий и методов.
Мы настоятельно рекомендуем Вам никому не разглашать свой пароль. Если вы забыли свой пароль, мы попросим Вас предоставить документ для подтверждения Вашей личности и отправим Вам письмо, содержащее ссылку, которая позволит Вам сбросить пароль и установить новый. Пожалуйста, помните, что Вы контролируете те данные, которые Вы сообщаете нам при использовании Сервисов. В конечном счёте Вы несёте ответственность за сохранение в тайне Вашей личности, паролей и/или любой другой личной информации, находящейся в Вашем распоряжении в процессе пользования Сервисами. Всегда будьте осторожны и ответственны в отношении Вашей личной информации. Мы не несём ответственности за, и не можем контролировать использование другими лицами любой информации, которую Вы предоставляете им, и Вы должны соблюдать осторожность в выборе личной информации, которую Вы передаёте третьим лицам через Сервисы. Точно так же мы не несём ответственности за содержание личной информации или другой информации, которую Вы получаете от других пользователей через Сервисы, и Вы освобождаете нас от любой ответственности в связи с содержанием любой личной информации или другой информации, которую Вы можете получить, пользуясь Сервисами. Мы не можем гарантировать и мы не несем никакой ответственности за проверку, точность личной информации или другой информации, предоставленной третьими лицами. Вы освобождаете нас от любой ответственности в связи с использованием подобной личной информации или иной информации о других.

Согласие
Используя данный Сайт и (или) соглашаясь получать информацию средствами email от нас, вы также соглашаетесь с данной «Политикой Конфиденциальности». Мы оставляем за собой право, по нашему личному решению, изменять, добавлять и (или) удалять части данной «Политики Конфиденциальности» в любое время. Все изменения в «Политике Конфиденциальности» вступают в силу незамедлительно с момента их размещения на Сайте. Пожалуйста, периодически проверяйте эту страницу и следите за обновлениями. Продолжение вами использования Сайта и (или) согласие на наши email-коммуникации, которые последуют за публикацией изменений данной «Политики Конфиденциальности» будут подразумевать ваше согласие с любыми и всеми изменениями.

Монтажная пена. Виды и отличия. Свойства и применение. Горючесть

Монтажная пена – легкий полиуретановый герметик, используемый для заделки технологических зазоров. Она работает как укрепляющий материал, а также теплоизоляция. После нанесения состав вспенивается, увеличиваясь в объеме, а затем затвердевает.

Свойства

Монтажная пена является самым лучшим и удобным материалом для выполнения многих видов работ. Ее применение позволяет сделать:

  • Герметизацию.
  • Теплоизоляцию.
  • Укрепление.
  • Соединение.

Пеной заделывают зазоры при установке окон, дверей. Она затвердевает и обеспечивает надежное удержание, так как приклеивается к поверхностям. Она не пропускает воздух, влагу. За счет пористости это отличный теплоизолятор. Зачастую утверждается, что пена обеспечивает и звукоизоляцию. На деле это еле выражено. Для шумоизоляции она не подходит. Для этого используют другие материалы.

Ее применение позволяет очень быстро заполнить зазоры, отверстия. Она расширяется и быстро герметизирует их. После этого ее излишки можно легко срезать острым ножом, и выполнить отделку, в том числе и закрыть все штукатуркой с использованием малярной армирующей сетки. Это очень легкий материал, аналогов которому просто не существует. К тому же он за счет высокой адгезии позволяет буквально склеивать различные материалы. Нередко на монтажную пену клеят гипсокартон к неровным стенам. Конечно, более удобно для этого применять клей-пену. Она имеет меньший коэффициент расширения в сравнении с монтажной.

Что касается недостатков пены, то они следующие:
  • Разложение под ультрафиолетом.
  • Сложность смывания с кожи, одежды.
  • Малый срок хранения после вскрытия баллона.

Пена всегда должна быть закрыта от солнечного света. Под ним она желтеет и превращается в труху. Это происходит не быстро, но за 1-2 года вся герметизация может разрушиться.

Виды монтажной пены

В продаже можно встретить несколько разновидностей, отличающихся между собой по химическому составу и прочим качествам. Для каждых условий использования оптимально подходит отдельная разновидность материала.

Однокомпонентные и двухкомпонентные составы

В продаже можно встретить однокомпонентную и двухкомпонентную пену. Отличие между ними очень существенное, но утверждать какой тип лучше все-таки нельзя. Однокомпонентный состав не содержит отвердитель. После его нанесения на поверхность расширение и затвердевание производится за счет поглощения влаги из воздуха. По этой причине при использовании подобных составов всегда рекомендуется увлажнять поверхность. Это также способствует увеличению адгезии пены.

Подавляющее большинство монтажных это однокомпонентные. Их главное преимущество в более доступной стоимости, простоте использования, а также большом сроке службы. Последнее качество часто не принимается всерьез. Большинство пользователей даже не задумывается, что монтажная пена в баллоне портится. Важно использовать только непросроченные составы. Чем свежее пена, тем быстрее она отвердевает, а кроме этого имеет лучший коэффициент расширения.

Двухкомпонентный состав обладает лучшими качествами, чем однокомпонентный. В первую очередь к ним можно отнести:
  • Высокая твердость.
  • Стабильное отвердевание вне зависимости от уровня влажности воздуха.
  • Быстрое застывание.
  • Отсутствие вторичного расширения.
  • Увеличенная адгезия к поверхностям, даже стеклу и глазури.
  • Мелкие прочные поры в твердом герметике.

На первый взгляд использование двухкомпонентной пены более предпочтительно. Она действительно прочнее, к тому же не дает такую усадку после застывания, как обычная однокомпонентная. Но есть у нее проблема – малый срок хранения. Зачастую он составляет всего 12 месяцев, но только при точном соблюдении рекомендуемых условий. На деле же пена может испортиться уже через 9-10 месяцев.

Некоторые производители решили проблему срабатывания отвердителя в баллоне просто разделением его от основного состава. Компоненты располагаются внутри раздельно. На дне баллона имеется затвор, который нужно повернуть, и затем сболтать емкость. В результате произойдет смешивание, после чего пену можно применять по назначению. После приготовления она уже не сможет хранить долго не использованной.

Виды пены по условиям использования
Монтажная пена может быть рассчитана на применение в различных температурных условиях. Это качество корректируется включением в состав специальных добавок. Она бывает:
  • Летняя.
  • Зимняя.
  • Всесезонная.

Всесезонная или универсальная предназначена для использования в температурном диапазоне  от -10 до +25°С. Это наиболее оптимальный вариант в том случае, когда баллон берется наперед и используется понемногу по мере надобности. Им можно герметизировать различные швы в любое время года. Но нужно также учитывать, что после первого использования пена хранится недолго. Это может быть всего несколько месяцев, если баллон сделан некачественно. Указанный температурный диапазон определяет условия, при которых состав сработает как надо. После отвердевания пена может эксплуатироваться и при больших температурах. Рекомендуемые же условия ее хранения – это от +5 до +25°С.

Летняя обычно рассчитана на применение в пределах температур от +5 до +25°С. На деле же она отлично затвердеет и при +40°С, если хорошо увлажнить поверхность. Такой состав имеет высокий коэффициент расширения. Благодаря этому его использование наиболее выгодное. Обычно летние пены стоят дешевле зимних и всесезонных.

Зимняя может применяться в мороз. Дело в том, что зимой воздух сухой. Такая монтажная пена может увеличиваться в объеме при минимальной влажности. Но нужно учитывать, что ее объемный выход сильно зависит от температуры. Если баллон при комнатной температуре выдает 30 л пены, то в мороз -10°С, ее будет в 2 раза меньше. Это следует помнить при закупке материала.

Профессиональная и бытовая монтажная пена

Одним из ключевых отличий при выборе монтажной пены является ее класс. Она может быть бытовой или профессиональной. Различить их просто, достаточно взглянув на баллон. У бытовой имеется пластиковая трубочка адаптер. Чтобы воспользоваться такой пеной, достаточно навернуть ее на штуцер баллона, и прижать за упоры для пальцев. Профессиональная же пена рассчитана под установку специального пистолета.

Большинство пользователь отдают предпочтение именно бытовой пене. Выбор в ее пользу исключает необходимость покупать пистолет. Бытовую пену желательно израсходовать за один раз. Дело в том, что в ее тонкой трубочке адаптере остаются остатки полиуретана, которые затвердевают. После этого воспользоваться ею повторно становится сложным. При должной усидчивости застывшую пену можно достать. Для этого достаточно вкрутить в трубку длинный саморез по дереву. Он захватывает полиуретан, затем вырывается вместе с ним.

Проблема бытовой пены в том, что она имеет крупные поры, является воздушной. После нанесения она долго еще увеличивается в размере. Это сопровождается распиранием стенок. К примеру, при установке дверных коробок на такую пену существует риск, что их просто выгнет внутрь. Как следствие дверное полотно просто не закроется. Это вынуждает ставить мощные распорки.

Хотя бытовая пена и сильно расширяется, но зачастую в баллон ее не доливают. Как следствие ее фактический выход может быть весьма скромным.

Профессиональная пена нередко дает выход в 40-60 л при теплой погоде и достаточной влажности. Она сразу же увеличивается в объеме, после чего уже практически не меняет свой размер. То есть, можно визуально контролировать, сколько ее нанести, чтобы закрыть зазор. При этом сильное давление при ее дальнейшем расширении исключается.

Профессиональную пену можно использовать после длительной паузы. После применения пистолет ополаскивается специальной смывкой. Она мгновенно растворяет полиуретан внутри, пробивает все каналы. Так как такая монтажная пена дает большой выход, то в конечном счете она получается дешевле бытовой. Если пенить нужно много, то выгодней купить ее, а также пистолет и смывку. К тому же ее нанесение выполняется с большей степенью контроля. Пистолет позволяет регулировать скорость подачи.

Классы горючести

Также монтажная пена разделяется на классы по степени горючести. Изначально полиуретан легко воспламеним. При этом включение различных добавок в пену позволяет изменить это качество.

Различают следующие классы пены:
  • В1 (огнеупорная).
  • В2 (самозатухающая).
  • ВЗ (горючая).

Самая дорогая это огнеупорная. Она сопротивляется воспламенению порядка 4 часов. После этого добавка испаряется, и она воспламеняется. Такой материал можно использовать для герметизации зазоров вблизи источников открытого огня. Конечно, само нанесение должно осуществляться в нормальных условиях. Речь об огнестойкости идет только у затвердевшей пены. Состав класса В1 может выдерживать температуру пламени до +1000°С . Допускается его тление, но не горение.

Пена класса В2 является самозатухающей. Если отдалить от нее источник пламени, то без поддержки она гореть не будет. Это более доступный по стоимости материал, который обычно и используется. Он меньше выделяет вредных газов в случае пожарной ситуации. При ограниченном бюджете стоит использовать именно ее для работы в жилых помещениях.

Монтажная пена класса В3 горит горючая. Пи этом она выделяет едкий дым, которым можно отравиться. В идеале ее лучше использовать только в тех местах, где пожар изначально невозможен. Учитывая ее дешевизну и распространенность используют при установке окон и дверей.

Похожие темы:

Противопожарная монтажная пена

Определение «противопожарная» не совсем корректное. В данном случает речь идёт об огнестойкости.  Обычный пенополиуретан горит, и горит хорошо. По классификации германских стандартов выпускаемая монтажная пена относится к классам:

  • B1 — трудновоспламеняемые (Not easily flammable)

 

  • B2 — обычная воспламеняемость, напр.древесина (Flammable)

 

  • B3 — легковоспламеняемые (Easilyflammable)

 

Всё, что относится к группе B1, производители называют противопожарным. Достигается результат добавкой антипиренов – веществ препятствующих горению

 

Огнестойкость

 

Общепринятый критерий – время, за которое теряется теплоизолирующая способность, нарушается целостность материала или температура поверхности достигает критических значений. Любое состояние из перечисленных трёх означает, что предел огнестойкости достигнут.

Цифровой показатель — одно из чисел ряда: 15, 30, 45, 60, 90, 120, 150, 180, 240, 360.

Надпись IE 90 означает, что при испытании по ГОСТовской методике предел огнестойкости наступил через 90 минут. У разных производителей этот показатель варьируется от 60 до 360 минут. 6 часов – заявка SOUDAFOAM FR (SOUDAL).

 

Свойства

 

Форма выпуска – картриджи с однокомпонентным или двухкомпонентным составами.

Цвет – красный или розовый.

Фасовка – 300, 500, 700, 750, 800мл.

Большинство производителей выпускают продукцию и бытовую, и для профессионалов. Второй вариант рассчитан на работу с пистолетом. Система крепления CLICK & FIX компании SOUDAL отличается. Соединение байонетное. Обычный пистолет не подойдет. 

Особенности. Некоторые компании (Nullifire) выпускает противопожарную пену, которая при термическом воздействии расширяется повторно.

 

Основные свойства противопожарной и обычной пены мало отличаются. Отличная адгезия, нестойкость к ультрафиолету, наличие зимнего, универсального и летнего вариантов.

 

Сфера применения

 

Заполнение стыков и швов в конструкциях из огнестойких материалов;

Установка противопожарных, дверей, люков, окон;

Герметизация вентиляционных коробов, отверстий в плитах перекрытия;

Герметизация кабельных проходок;

Примыкания к дымоходам;

Утепление систем отопления.

 

О выгоде

 

Противопожарная монтажная пена стоит раза в 2 дороже обычной, но сказать, что в затратах на строительство или ремонт это заметные суммы сложно. Это обычный строительный материал. Наличие антипиренов не помешает. Схожая по горючести с пеной древесина обрабатывается огнезащитными составами всегда.  

Часто у строителей выбора просто не бывает. При строительстве общественных зданий или производственных с определёнными технологическими процессами нормативы запрещают использование материалов класса горючести B2 и B3.

 

Воспламеняемость — Ассоциация по производству пенополиуретана

На протяжении многих десятилетий PFA помогала руководить разработкой стандартов как частного сектора, так и государственных постановлений, регулирующих воспламеняемость продуктов, содержащих FPF.

Матрас проходит испытания в соответствии с Федеральным законом о воспламеняемости, 16 CFR часть 1633.

Матрасы

В феврале 2006 года Комиссия по безопасности потребительских товаров США (CPSC) утвердила новый стандарт, устанавливающий обязательные национальные критерии пожарной безопасности для большинства матрасов. PFA активно поддерживал новый стандарт и работал над его разработкой с CPSC, Международной ассоциацией продуктов для сна (ISPA), Советом по безопасности продуктов для сна (SPSC) и другими отраслевыми группами. 1 июля 2007 г. вступил в силу новый Федеральный стандарт матрасов с открытым пламенем (16 CFR, часть 1633). Соответствие требованиям в значительной степени достигается за счет использования огнезащитных материалов, которые ограничивают использование внутренних амортизирующих материалов при возгорании матрасов.

ТБ-117-2013 Аппарат испытательный.Под белую ткань кладут зажженную сигарету.

Мягкая мебель

В 2013 году Калифорнийское бюро бытовых товаров и услуг (BHGS) утвердило новую версию Калифорнийского технического бюллетеня 117. Пересмотренный CA TB-117-2013 отвечает на опасения, что более ранний стандарт привел к увеличению использования антипиренов (FR). в пенопласте и мебели. PFA снова работала в тесном сотрудничестве с Бюро, а также с другими заинтересованными сторонами, в том числе с Американским альянсом мебели для дома (AHFA), над разработкой обновленного стандарта. ТБ-117-2013 фокусируется на возгорании мебели от тлеющих источников, таких как сигареты, на долю которых приходится примерно 90% мебельных пожаров.

В конце 2020 года Конгресс США принял California TB-117-2013 в качестве национального стандарта для мягкой мебели, продаваемой на всей территории США.

Национальная ассоциация противопожарной защиты (NFPA), ASTM и органы типового строительного кодекса также рассмотрели стандарты горючести мягкой мебели. Коммерческие круги, которым выгодны изменения в конструкции мебели и требованиях к испытаниям, предложили ряд мер, которые увеличили бы стоимость и сложность производства мебели и ее компонентов.Предложения часто призывают к сопротивлению источникам открытого огня, таким как горящие занавески или преднамеренно разводимые костры. По сравнению с федеральными и государственными регулирующими органами, органы по стандартизации менее склонны учитывать экономические и производственные проблемы, которые такие изменения возлагают на производителей мебели и потребителей. PFA и ее союзники по отраслям и общественным интересам активно участвуют в разработке стандартов, чтобы избежать необоснованных требований по воспламеняемости, подобных этим.

Автомобили и самолеты

В Северной Америке FPF, используемые в автомобилях, должны соответствовать Федеральному стандарту безопасности автотранспортных средств MVSS-302, который находится в ведении U.S. Департамент транспорта. Это правило, которое применяется как к плиточному, так и к формованному пенопласту, обычно требует огнестойкой обработки пенопласта. Размещение в самолетах регулируется Министерством транспорта в соответствии с разделом 25.853 (a) Федерального авиационного законодательства и Приложением F FAR 25.853 (c). Этот стандарт соблюдается за счет комбинации обработки FR и материалов, препятствующих воспламенению. Щелкните здесь, чтобы получить дополнительную информацию о стандартах воспламеняемости пены, используемой в автомобилях и самолетах.


Будьте активны в предотвращении пожаров

PFA является партнером Управления пожарной безопасности США и Национальной ассоциации противопожарной защиты (NFPA). Мы предлагаем вам воспользоваться загружаемыми учебными материалами, чтобы принимать меры по предотвращению пожаров в вашей компании и в вашем районе:

Планирование эвакуации
Менее 75% американских семей имеют план эвакуации на случай пожара. Менее половины семей, имеющих планы, когда-либо практиковали это. Помогите своей семье, сотрудникам и соседям планировать заранее. Каждый должен знать, что делать и куда идти в случае пожара. Загрузите и распространите это важное напоминание о планировании побега.

Курение и домашние пожары
Ежегодно почти 1000 курильщиков и некурящих погибают в результате пожаров, вызванных сигаретами и другими курительными принадлежностями. Пожарная администрация США работает над предотвращением смертей и травм в результате пожара в доме, вызванных курением. предотвратимы пожары, вызванные сигаретами и другими курительными материалами.
https://www.usfa.fema.gov/prevention/outreach/smoking. html

Установить. Осмотреть. Защищать.
Установить.Осмотреть. Защищать. Кампания является частью усилий Управления пожарной охраны США по сокращению смертей и травм в результате пожаров по всей стране, призывая жителей устанавливать дымовые извещатели в своих домах, а также регулярно их проверять и обслуживать. Работающие дымовые извещатели и спринклеры спасают жизни.
https://www.usfa.fema.gov/prevention/outreach/smoke_alarms.html

Причина отказа пены № 2: неприемлемая опасность возгорания

Неприемлемая опасность пожара

Неужели слишком много просить, чтобы наша теплоизоляция не была ускорителем огня? В конце концов, теплоизоляция может (и должна) постоянно и полностью охватывать здания, которые мы занимаем.Пена питает огонь. Пена не получается. (См. 13 причин отказа пены здесь.)

Чтобы понять, что значит быть ускорителем, посмотрите видео ниже, подготовленное Ассоциацией производителей целлюлозной изоляции, в котором сравниваются характеристики горения целлюлозы, стекловолокна и пены (длинная версия видео находится здесь). Изоляция из аэрозольной пены производит пробой за 44 секунды — сверхзвуковая струя при ускорении огня за счет теплоизоляции.

Как описано в техническом меморандуме OSHA 1989 года:

«Жесткие полиуретановые и полиизоциануратные пены при воспламенении быстро воспламеняются и выделяют сильное тепло, густой дым и газы, которые являются раздражающими, легковоспламеняющимися и / или токсичными.Как и в случае с другими органическими [нефтехимическими материалами на основе углерода], наиболее важным газом обычно является окись углерода. Продукты термического разложения пенополиуретана состоят в основном из оксида углерода, бензола, толуола, оксидов азота, цианистого водорода, ацетальдегида, ацетона, пропена, диоксида углерода, алкенов и водяного пара ».

«Одна из основных мер предосторожности, которые необходимо соблюдать при работе с органическими [нефтехимическими] пенами на основе углерода, — это запретить источники возгорания, такие как открытое пламя, резаки и сварочные горелки, высокоинтенсивные источники тепла и курение.

Поэтому пена может быть особенно опасной во время строительства или ремонта, поскольку она часто подвергается воздействию.

Шанхай, 2010 г.

В 2010 году возгорание пены, вызванное сваркой в ​​Шанхае, Китай, привело к ужасающей трагедии, унесшей жизни не менее 53 человек и более 70 раненых.

Газета South China Morning Post сообщила:

«В рамках пилотной схемы энергосбережения местное правительство модернизировало его внешними изоляционными панелями.Но горючая полиуретановая пена была определена как главный фактор, способствовавший размаху катастрофы ».

Пена может содержать химические антипирены, но на самом деле они не предотвращают горение пены — см. Этот новый отчет, Антипирены в строительной изоляции: аргументы в пользу переоценки строительных норм, здесь. Однако замедлители отравляют окружающую среду (см. №1 «Опасные токсичные ингредиенты»).

В ноябре 2012 года небоскреб в Дубае — как писал Ллойд Альтер в статье Treehugger здесь — фактически сжег своего фасада, ускоренный сэндвич-панелями из пенопласта / металла.

И, конечно же, мы должны упомянуть ужасающую трагедию пожара на Гренфелл-Тауэре в Лондоне в июне 2017 года, в результате которого 72 человека погибли и 70 получили ранения. В то время как башня представляла собой ужас бесхозяйственности и нарушений, облицовка на основе пенопласта была определена как значительный вклад в трагедию.

Учитывая все это, важно напоминать себе, что есть выбор. Какие еще возможные изоляционные материалы мы можем использовать?

    • Минеральная вата? Негорючие.Глянь сюда.
    • Ячеистое стекло? Негорючие. Глянь сюда.
    • Древесное волокно? Огнезащитный. Глянь сюда.
    • Целлюлоза? Огнезадерживающие * См. Здесь. Смотрите видео ниже. (Не пытайтесь делать это дома.)

Все помогает предотвратить распространение огня.

Пена не только разжигает огонь, но и при неправильном нанесении аэрозольной пены может фактически вызвать пожар. Как сообщил Мартин Холладей в 2011 году на GreenBuildingAdvisor, результаты могут быть разрушительными:

«Подразделение пожарной безопасности Массачусетса (DFS) расследует причины трех пожаров в домах, которые произошли, когда подрядчики по изоляции устанавливали распыляемую полиуретановую пену.

По словам Тима Родрике, директора DFS, следователи подозревают, что пожары были вызваны экзотермической реакцией, которая возникла в результате смешивания двух химических веществ, используемых для создания распыляемой пены ».

Кейп-Код, 2011. Фото: Дэйв Карран.

Пена не помогает при тушении пожаров. Пенная изоляция делает пожаротушение более опасным и трудным.

У нас есть выбор.

По всем причинам, по которым пена не работает, см. Наш пост «Пена не работает».

Безопасен ли полиуретан в случае пожара?

Мы начали серию мифов о полиуретане, рассказав о его поведении перед лицом огня .

Полиуретановые системы присутствуют в нашей жизни в десятках форм. Однако до сих пор есть те, кто сомневается в огнестойкости этого изоляционного материала.

Ниже мы предлагаем серию данных и научных исследований, которые положат конец ложным мифам , связанным с реакцией полиуретановых систем в случае пожара.

Как ведет себя полиуретан в случае пожара?

Широкий ассортимент изоляционных материалов, изготовленных с использованием полиуретановых систем, не только соответствует действующим нормам энергоэффективности, но и соответствует европейским стандартам огнестойкости. Продукты из полиуретана достигают между F и B-s1, d0 в Евроклассе классификации .

Однако в недавнем исследовании ANPE и PU Europe, в котором изучались реальные условия пожара на изолированной крыше с минеральным волокном (материал с рейтингом A1) и полиуретановой системой (материал с рейтингом B-s1, D0 ).

Это была полиуретановая конструктивная система, которая прошла тест Бруфа (t2). Вопреки классификации Еврокласса, минеральное волокно не препятствовало распространению огня, но полиуретановой системе удалось остаться ниже требуемого предела, таким образом (перенесено в начало предложения) , избежав его распространения и способствуя его исчезновению.

Кроме того, в испытании «Огнестойкость систем деревянной облицовки с использованием полиуретана и минеральной ваты в соответствии с EN 1365-1» было обнаружено, что полиуретановые системы способны реагировать на огонь с использованием тех же материалов, тех же креплений, тех же U значение (0.27) как минеральная вата, но с 60% толщины изоляции из-за ее более низкой теплопроводности .

Какова токсичность паров полиуретана?

Полиуретан — это материал органического происхождения и, следовательно, горючий. Если он напрямую пострадал от пожара , пары, образующиеся при сгорании, имеют состав, аналогичный составу других органических продуктов, используемых ежедневно, таких как дерево, пробка или хлопок.

Кроме того, чтобы избежать повреждения конструкций здания огнем, полиуретановые системы защищают другими материалами, более устойчивыми к возгоранию, такими как бетон, кирпич, штукатурка, строительный раствор и т. Д.

Если огонь достиг таких размеров, что эта защита не выдержит, полиуретановые системы при работе с материалом органического происхождения будут гореть, но с определенной особенностью: полиуретан не плавится и не капает , как другие пластмассы (например, полистирол) , но поверхность, контактирующая с пламенем , карбонизирует и защищает сердцевину , тем самым сохраняя некоторую структурную стабильность в течение определенного периода времени.

Какую роль играет полиуретан в возникновении пожара?

Во многих случаях можно услышать, что причиной пожаров являются пластмассовые материалы, такие как полиуретан, которые используются для изоляции здания, но определенно не соответствует действительности.

Полиуретан

имеет особенность в том, что при контакте с пламенем он не плавится, а карбонизируется, защищая ядро ​​огня .Это заставляет структуру оставаться стабильной в течение некоторого времени.

По этой причине полиуретановые системы никогда не являются источником возгорания . Начало должно быть другим, и изоляция, если она будет достигнута, будет основываться на конструкции структурного элемента, в который он интегрирован, и времени, которое проходит по мере развития пожара. Когда речь идет о пожарной безопасности, решающее значение имеет дизайн здания.

Важно учитывать, что большинство пожаров вызваны не материалами, используемыми для изоляции промышленных объектов или домов, а плохим управлением накопленными в них отходами или человеческим фактором.

Защита от пожара из полиуретана

Строительные решения, включающие полиуретановые изоляционные материалы, способствуют повышению пожарной безопасности здания и его жителей . Ложные мифы, такие как их токсичность или легковоспламеняемость, были опровергнуты различными тестами, проведенными для проверки этой устойчивости.

Кроме того, огнестойкость полиуретана была проверена на различных этапах строительства.

Полиуретановые изделия очень похожи на другие материалы, отнесенные к более высоким евроклассам, при внутренней изоляции фасадов с системами изоляции с использованием ламинированного гипсокартона, при изоляции фасадов внешней изоляцией SATE или при изоляции крыш под гидроизоляционными битумными мембранами.

В частности, при сравнении реакции плит из полиуретана (PU) и плит из минеральной ваты (MW) не было обнаружено различий в реакции на огонь, поэтому можно утверждать, что использование полиуретановых систем для изоляции здания является безопасным и эффективным. , также в отношении реагирования на огонь.

Новости Klausbruckner & Associates »Опасность возгорания полиуретановой пены

Известно, что возгорание пенополиуретана приводит к очень высокому уровню тепловыделения и образованию чрезвычайно токсичных паров. В результате эти типы пожаров создают уникальные проблемы для жизни, пожарных, безопасности имущества и тушения пожаров. В этом исследовании возгорание пенополиуретана и процессы его возгорания исследуются с помощью симулятора динамики пожара. Прогнозы программного инструмента были подтверждены результатами испытаний экспериментальных ожогов.Сравнение моделирования и испытаний на огнестойкость продемонстрировало беспрецедентно хорошую корреляцию. Это легло в основу данного исследования, подтверждающего модель и обеспечивающего надежное понимание природы и последовательности различных происходящих событий горения.

Прогнозы модели будут использоваться для оценки воздействия пожаров полиуретановой пены на мощность систем противопожарной защиты, таких как воздействие образования дыма или время срабатывания спринклера.

Обновление , сентябрь 2015 г .: С момента публикации этой статьи исследование пожаров ППУ было расширено с целью сбора дополнительных сведений об их поведении при горении и связанных с ними процессах горения. Обновления этой статьи более подробно обсуждаются ниже, см. Внизу этой страницы.

Введение

Продукты на основе пенополиуретана (ППУ) используются во множестве предметов домашнего обихода, таких как матрасы, обивка, постельные принадлежности и детские манежи. В результате они стали обычным явлением не только в жилых домах, но также на складах и в коммерческих целях.

Известно, что в условиях пожара эти типы продуктов производят очень высокую скорость тепловыделения, что, в свою очередь, может представлять значительные проблемы для пожаротушения, а также для пожарной безопасности и безопасности зданий.В частности, влияние роста пожара и образования дыма от пожаров PUF и его влияние на время срабатывания спринклерных систем и системы контроля дыма представляет интерес для оценки возможностей систем противопожарной защиты.

Использование компьютерного моделирования пожара

Компьютерное моделирование пожара часто является очень экономичным и осуществимым методом анализа пожаров для конкретного сценария и набора условий. Однако пожары и связанные с ними процессы горения основаны на физически сложных и сложных явлениях.Следовательно, использование инструментов компьютерной гидродинамики (CFD) требует хорошего понимания всех задействованных физических процессов.

В то же время важно знать ограничения применяемых численных процедур. Однако, когда сценарии пожара смоделированы правильно, окончательные прогнозы могут быть очень близки к фактическим результатам пожара. Прогнозы этих моделей затем можно использовать для объяснения последовательности и возникновения различных событий в процессе горения, а также их воздействия на окружающую среду.Это часто дает понимание, которое иначе невозможно получить.

FDS, сокращение от Fire Dynamics Simulator, используется в этом исследовании и является одним из ведущих программных инструментов CFD в отрасли противопожарной защиты. Он специально разработан для исследования широкого спектра сценариев возгорания.

Цель и подход

Рис. 1. Огнестойкие испытания NIST: скорость тепловыделения.
(Щелкните для увеличения)

Целью данного исследования является моделирование динамики пожара, т. Е. Распространения пламени, роста пламени и результирующих скоростей тепловыделения для горизонтально расположенных материалов на основе ППУ, а также сравнение прогнозов с фактическими испытаниями на огнестойкость, проведенными NIST (Национальным Институт стандартов и технологий).Для достижения этой основной цели модель должна включать критические процессы горения, которые имеют место во время небольших и крупных пожаров ППУ.

NIST провел экспериментальные испытания на горение 1 на плитах из пенополиуретана толщиной 4 дюйма (10 см) и шириной 4 фута x 4 фута (1,2 м x 1,2 м). Результаты этих испытаний на горение используются для сравнения с моделью, разработанной для моделирования распространения пламени, тепловых потоков и образования дыма с течением времени (рис. 1).

Модель

Рисунок 2. Фронт пламени и температурный профиль по центральной линии во время горения полиола. (Нажмите, чтобы увеличить)

Разработана модель вычислительной гидродинамики (CFD), основанная на FDS версии 5.5. FDS — это программный инструмент CFD с низким числом Маха. Другими словами, моделируются только пожары, а не взрывы (горения или взрывы). При моделировании возгорания ППУ необходимо внимательно изучить процесс производства ППУ, чтобы лучше понять некоторые важные детали процесса горения. Во время изготовления / производства для создания пены используются два основных материала:

· Изоцианат (обычно толуолдиизоцианат, TDI)
· Полиол простого полиэфира.

Пропорции этих двух материалов составляют примерно одну треть ТДИ и две трети полиола. Коммерческие пены могут также содержать другие ингредиенты, такие как поверхностно-активные вещества и антипирены. Фактически, эти дополнительные ингредиенты могут повлиять на физические свойства ППУ и ​​свойства горения.

В процессе сгорания пена разлагается на свои исходные составляющие, а именно на ТДИ и полиол, и, в конечном итоге, на обугливание. Для этого исследования в экспериментальных испытаниях на огнестойкость 1 использовалась имеющаяся в продаже гибкая негорючая полиэфирная полиуретановая пена.Свойства материала были получены в результате мелкомасштабных (микрокалориметрических) экспериментов, выполненных 1 , а также из литературы.

Таблица 1. Свойства материала PUF

Свойство Пенополиуретан Толуолдиизоцианат Полиол полиэфирный
Плотность 27 кг / м 3 или
1,7 фунт / фут 3
1210 кг / м 3 или
75,5 фунт / фут 3
1012 кг / м 3 или
63.2 фунт / фут 3
Теплота сгорания 27100 кДж / кг или
11660 БТЕ / фунт
9600 кДж / кг или
4130 БТЕ / фунт
17500 кДж / кг или
7530 БТЕ / фунт
Дополнительные свойства материала можно найти в ссылке 1

На основе свойств материала в таблице 1 для этого исследования разработана многослойная двухматериальная модель (т. е. моделируются уложенные однородные слои TDI и полиола) . Количество ячеек, применяемых в моделях FDS во время разработки, колеблется от полумиллиона до четырех миллионов ячеек.Моделирование выполняется на выделенном компьютере с двенадцатью процессорами Intel XEON с использованием версии FDS для параллельных вычислений.

Первоначальные усилия по моделированию включали моделирование процесса горения для каждого отдельного горючего материала, TDI и полиола соответственно. Этот шаг оказался решающим в создании реалистичной отправной точки для сборки по существу двухфазной модели горения, имитирующей разложение ППУ обратно на ТДИ и полиол при воспламенении.

Обсуждение результатов

Для целей данного обсуждения весь процесс сгорания разделен на три фазы.

Рис. 3. Скорости тепловыделения при моделировании и испытании на огнестойкость.

TDI Горения

После возгорания плиты ППУ вдоль одного края плиты огонь распространяется радиально наружу. Из экспериментов 1 при сжигании ППУ известно, что сначала сгорит ТДИ, а после его израсходования начнет гореть полиол. Во время горения в этой фазе скорость тепловыделения медленно увеличивается, а затем выравнивается, когда достигается начало фазы горения полиола.

Приблиз. 180 секунд и скорость тепловыделения (HRR) приблизительно 0,68 миллиона БТЕ / час (200 кВт) (Рисунок 3), прогнозируемый фронт пламени распространился по поверхности пены, и огонь полностью охватил плиту. В центральной области TDI сгорел, и части слоя полиола теперь обнажены и сгорают, хотя они еще не начали выделять большую часть своей накопленной энергии. Наблюдения при испытании на огнестойкость 1 демонстрируют, что части пены разрушились, и на дне поддона остался «слой расплава».Во время этой фазы образование дыма постепенно увеличивается, и дым быстро заполняет контрольный объем (Рисунок 5).

Полиол горения

Когда большая часть TDI израсходована, образуется большое количество полиола. Полиол воспламеняется и полностью высвобождает свою энергию. Эта фаза сгорания с высоким тепловыделением длится примерно от 180 до 260 секунд (Рисунок 3). Максимальные зарегистрированные значения HRR при моделировании пожара составляют около 3,7 миллиона БТЕ / час (примерно от 1070 кВт до 1110 кВт).Эти прогнозируемые значения находятся в пределах диапазона HRR, измеренного во время экспериментальных огневых испытаний, т.е. измеренные значения варьируются от примерно 2 миллионов БТЕ / час до 3,7 миллиона БТЕ / час (от 600 кВт до 1100 кВт, рисунок 1).

Полиол горит настолько горячо, что фактически создает «огненный столб» с сильным жаром (рис. 4). Модель предсказывает, что фронт пламени на мгновение приближается к высоте более 14 футов с температурой пламени, достигающей 1500 градусов по Фаренгейту (примерно 820 градусов по Цельсию, рис. 2).Рассчитана пиковая плотность теплового потока (тепловой поток на единицу площади) 0,2 миллиона БТЕ / ч / фут 2 (760 кВт / м 2 ). Выработка дыма параллельна развитию тепловыделения в том смысле, что в течение этой фазы оно увеличивается, достигает пика, а затем уменьшается. К моменту завершения второй фазы сгорания все еще остается несгоревшая ППУ.

После сжигания полиола

Рис. 4. Развитие фронта пламени (без дыма) для индексов времени 150 сек, 220 сек и 300 сек.(Нажмите, чтобы увеличить)

Оставшийся PUF (в конечном итоге разлагающийся на TDI и полиол) будет гореть в течение некоторого времени (260–500 секунд), в течение которого еще выделяется значительное количество тепла. Однако из-за довольно небольшого количества сгорания ППУ (в начале этой фазы примерно 10% от общего количества доступного ТДИ и полиола) общее выделенное тепло намного меньше по сравнению с предыдущей фазой. Тем не менее, показатели тепловыделения от 0,5 до 0,7 миллиона БТЕ / час (от 150 до 200 кВт) все еще достигаются (Рисунок 3).Во время этой фазы высота пламени и образование дыма сначала немного возрастают (с тенденцией к небольшому увеличению тепловыделения), а затем уменьшаются до тех пор, пока огонь не погаснет.

Особые наблюдения FDS

Рис. 5. Развитие дыма при открытых граничных условиях, т.е. дым не накапливается в (вентилируемом) контрольном объеме для временных индексов
150 сек, 220 сек и 300 сек. (Нажмите, чтобы увеличить)

Имитационная модель включает две совершенно разные модели горения, одну для твердого топлива, а другую для жидкого топлива.Значительные усилия были затрачены на «объединение» двух моделей горения. Легко показать, что модель твердого топлива вполне способна точно предсказать динамику возгорания одного компонента TDI, и то же самое можно сказать о применении модели жидкого топлива для полиола.

Однако, как только две отдельные модели объединяются в одну, становится очевидным, что взаимодействие процессов горения является более сложным, чем предполагают модели для каждой из отдельных составляющих.Например, полиол при высоких температурах сгорает сразу же, в отличие от более низких температур, когда начало процесса сгорания с высоким тепловыделением, по-видимому, происходит с задержкой. Это может быть эффект фазового перехода, но требует дальнейшего изучения.

Возможно, дополнительная сложность, показанная во время разработки модели, ожидается, учитывая необходимость в первую очередь упростить процесс горения до «модели слоистого пиролиза» и невозможность применить более физический подход к разложению, другими словами, применяя « Layer »по сравнению с подходом к моделированию« ячейка за ячейкой », при котором каждая ячейка PUF разлагается на TDI и Polyol, а затем превращается в ее остаток.

В результате, это обязательство состоит в том, чтобы комбинация этих двух моделей создавала реалистичное представление задействованной физики и давала результаты, которые выгодно отличаются от экспериментальных. В итоге была получена модельная конструкция, которая отличается не только своей простотой, но и полнотой в обращении и объяснении экспериментально наблюдаемых процессов горения. Присущая модели простота конструкции позволяет легко применять ее к другим сценариям сжигания с другой геометрией, ожидая получения точных результатов.

Заключение

Многослойная модель CFD разработана с использованием FDS для изучения огнестойкости плит из ППУ толщиной 4 дюйма (10 см), используемых во многих коммерческих целях. Прогнозы модели по сравнению с реальными испытаниями на горение демонстрируют очень хорошую корреляцию и точные прогнозы процессов горения, преобладающих при горении пенополиуретана.

Воздействие пожаров ППУ кратко описывается следующим образом:

  • Первоначальное поведение плиты из ППУ при возгорании характеризуется сгоранием ТДИ.Как только TDI израсходован, полиол начнет гореть, что приведет к значительному увеличению тепловыделения. Высота пламени, образующегося во время этого процесса, в несколько раз превышает высоту пламени, возникающую при первоначальном горении ТДИ. Это важное соображение в сценариях складских помещений, особенно для стеллажного хранения с высокими стеллажами открытого пенополиуретана, который считается «вспененным пластиком группы А».
  • Полиол перед тем, как начать горение, разложился до жидкого состояния и поэтому будет течь или капать, потенциально создавая места вторичного воспламенения и опасности.Фактически это нагретая горючая жидкость (с токсичными продуктами горения).
  • Хотя горение полиола относительно короткое и интенсивное, после того, как большая часть его израсходована, он вместе с оставшимся ТДИ продолжает гореть с более низкими скоростями тепловыделения в течение довольно долгого времени и до тех пор, пока не сгорит весь ППУ и ​​огонь не погаснет. .
  • Образование дыма при горении ТДИ меньше, чем при горении полиола, когда образование дыма достигает пика. Можно ожидать, что видимость вблизи очагов пожаров ППУ будет сильно нарушена — даже вскоре после возгорания.Однако реальное воздействие на видимость и токсичность будет зависеть от рассматриваемых параметров отдельной комнаты и окружающей среды.
  • Пожары из полиуретана
  • вызывают серьезную озабоченность и создают опасность для жизни, поскольку при сжигании ТДИ и полиола образуются высокотоксичные пары оксидов азота и углерода, включая чрезвычайно токсичные углеводородные соединения, такие как цианистый водород.
  • Моделирование динамики возгорания при горении плит из пенополиуретана сложно и требует глубоких знаний о различных процессах разложения и химических реакциях.
  • Процесс горения характеризуется двухфазным разложением ТДИ и полиола, которое сложно моделировать. Многослойная модель точно предсказывает скорость тепловыделения во время горения. Это демонстрируется сравнением результатов моделирования с результатами реальных испытаний на сжигание.
  • Результаты моделирования демонстрируют способность FDS моделировать процессы двухфазного горения, в частности пожары PUF.
  • Разработка этой проверенной модели формирует основу и понимание для инженерного анализа для оценки времени срабатывания спринклера и образования дыма для больших зданий, в которых есть перекрытия и области из пенополиуретана при пожаре.

Обновление : дополнительные обсуждения отложенного сжигания полиола

Были проведены дополнительные исследования, в которых полиол (после его разложения из ППУ) сгорает без задержки (здесь и далее мы будем называть этот тип процесса горения «Сгорание полиола без задержки», NDPC). Кривые смоделированных скоростей тепловыделения сравниваются с кривыми экспериментально полученных скоростей тепловыделения. Основное предположение для этого исследования состоит в том, что устранение задержки горения полиола приведет к кривым HRR, которые не демонстрируют всех эффектов задержки, как показано на рисунке 3, в течение периодов 110–180 секунд и 250–320 секунд.

В целях моделирования NDPC корректируются только числовые параметры, относящиеся к задержке процесса горения полиола, в то время как все остальные параметры модели остаются неизменными. Задержка горения полиола ранее обсуждаемой модели (показанной на рисунке 3 и называемой моделью с задержкой горения полиола, DPC) определяется как 100% эталонной задержки. На основании этой ссылки было выполнено дополнительное моделирование с 50% задержкой горения полиола (50% DPC). Опять же, все остальные параметры модели, использованные в этом дополнительном моделировании, остались неизменными.Цель этого второго моделирования — продемонстрировать постепенное влияние задержек сгорания полиола на общую HRR ППУ в условиях горения.

Рис. 6. Сравнение кривых HRR с различными задержками сгорания полиола

Обсуждение

Рис. 7. Наклонные виды контурных линий разложения ППУ в начале горения полиола (верхнее и нижнее изображения, площадь поверхности полиола при горении окрашена в коричневый цвет). Среднее изображение: косая проекция ожога в то же время указатель (прибл.120 секунд), но с добавлением фронтов пламени.
(Нажмите, чтобы увеличить)

Во время фазы сгорания TDI кривые, отслеживающие скорость тепловыделения NDPC, идут параллельно кривым, отслеживающим выделение тепла, моделируемым моделью DPC, как показано на рисунке 6. Это наблюдение не должно вызывать удивления из-за того, что только TDI является горение во время этой фазы и все его материалы и параметры горения остались неизменными среди моделей. Как обсуждалось ранее, как только часть ТДИ полностью сгорит, на дне поддона начинает образовываться лужа расплава (рис. 7).Как только слой расплава сформирован, моделирование NDPC предсказывает немедленное возгорание полиола и немедленное высвобождение всей его доступной химической энергии. Максимальные показатели тепловыделения достигают примерно 580 кВт.

При сравнении с фактическими испытаниями на горение видно, что общие характеристики горения NDPC довольно плохо соответствуют характеристикам горения огневого испытания № 2 NIST, его наиболее близкого соответствия из всех испытаний на огнестойкость. Однако моделирование 50% DPC показывает гораздо лучшую корреляцию с экспериментальными огневыми испытаниями в целом и огневым испытанием № 1 NIST в частности.

Задержки сгорания

полиола существенно влияют на наблюдаемые максимальные скорости тепловыделения. Это подтверждается результатами моделирования HRR и их корреляцией с огневыми испытаниями, т. Е. Наблюдаемые пики тепловыделения составляют примерно 580 кВт (NDPC), 790 кВт (50% DPC) и 1100 кВт (100% DPC, эталонная задержка). .

Задержки горения полиола через плиту ППУ для случая моделирования 100% DPC могут быть визуализированы с помощью трехмерной карты, рис. 8. Однако следует отметить, что трудно создать точные представления задержек горения с учетом неизвестна природа их причин.В приближении для имитации фактических задержек горения был нанесен дополнительный слой полиола с более низкой скоростью горения и различной толщиной по плоскости плиты. Моделируемые модели задержки полиола основаны на изменениях (локализованной) потери массы TDI через плиту PUF во время горения.

Различная толщина дополнительного слоя приведет к полному сгоранию открытого однородного слоя полиола с определенными задержками по всей плите. Фактически, результирующие временные задержки будут соответствовать распределению толщины, применяемому в дополнительном слое.Массу полиола, используемую в дополнительном слое, брали из общего баланса массы полиола.

Гипотеза

Если мы сосредоточимся на динамике возгорания при горении полиола и проигнорируем для краткости влияние сценариев вентиляции, можно сделать следующую гипотезу: общее количество тепла, выделяемого ППУ и ​​регулируемое горением полиола, зависит от размера площадь поверхности при полном сгорании полиола в ванне расплава. Определена эффективная площадь слоя расплава, которая является основным фактором, способствующим сгоранию полиола с высоким тепловыделением.Эта эффективная площадь слоя расплава регулируется:

(1) Скорость разложения ППУ или скорость образования полиола
(2) Скорость истощения полиола

Следует отметить, что скорость истощения полиола также является функцией задержки сгорания полиола. Давайте дополнительно проясним этих участников и обсудим их отношения. Если полиол уже начинает полностью гореть на значительной площади, в то время как большая часть доступного полиола все еще создается (случай NDPC), то это снизит пиковые скорости тепловыделения ППУ, которые возникают позже в процессе горения.Однако это произойдет только в том случае, если оставшийся объем полиола (топливная нагрузка) этого раннего сгорания недостаточен для поддержания непрерывного горения до тех пор, пока не будет наблюдаться пиковое значение HRR.

Рис. 8. Смоделированная диаграмма задержки полиола (горелка расположена вдоль левого края).
(Щелкните, чтобы увеличить).

Другими словами, если в этом случае можно предположить, что поток жидкого полиола практически отсутствует с учетом вязкости полиола, предполагаемые относительно высокие углы смачивания границы раздела жидкость-подложка и относительно тонкий слой расплава на основе исследуемого образца ограниченная толщина и горизонтальная ориентация, тогда «локализованный объем» сгорающего полиола на ранней стадии будет уменьшен до такой степени, что останется очень мало материала для сгорания и, таким образом, будет выделяться тепло во время сгорания на поздней фазе оставшегося полиола.Это состояние представляет собой локальное «выгорание» полиола. В результате эффективная площадь поверхности слоя расплава при обжиге полиола уменьшается.

Влияние этого локального выгорания на HRR можно увидеть в испытании NIST № 2 и испытании № 4 на Рисунке 1. С другой стороны, оптимальные скорости тепловыделения будут иметь место, если задержки сгорания полиола соответствуют следующим условиям: (a) площадь поверхности ванны расплава имеет максимально возможный размер для данной геометрии образца с (b) достаточной глубиной слоя расплава (топливной загрузкой), чтобы поддерживать полное сгорание в течение достаточно длительного времени, чтобы достичь пика HRR.Результат этого влияния на HRR показан на Рисунке 3.

Сводка

Из этих имитаций и сравнений с результатами фактических испытаний на огнестойкость можно сделать вывод, что полиол будет гореть после разложения с некоторой задержкой, прежде чем будет высвобождена его полная химическая энергия. Испытания на огнестойкость показали, что величина задержки может варьироваться в зависимости от ожогов ППУ, даже при использовании испытательных образцов из одной и той же партии пенополиуретана 1 . Причины этих задержек сгорания неизвестны.

Мы надеемся, что эти дополнительные объяснения и подробности о вспененных материалах на основе полиуретана при горении дадут ответы на больше вопросов, чем они создают. Мы уверены, что многие идеи, обсуждаемые здесь, должны быть применимы и для других сценариев возгорания PUF, таких как процессы горения PUF с центральным зажиганием и с торцевого воспламенения. Возможно, самое главное, мы приветствуем любые усилия по углублению понимания горения ППУ. Это постоянная область исследований, которая, кажется, становится только более важной с течением времени, поэтому любые ценные идеи, которыми могут поделиться другие, будут приветствоваться.

Артикулы:

[1] «ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПОЖАРА НА ПЛИТЫ ИЗ ПОЛИУРЕТАНОВОГО ПЕНА» Prasad, K. R .; Kramer, R .; Marsh, N .; Ниден, М. Р., Отдел пожарных исследований, NIST, Гейтерсбург, 2009 г.

Faq Articles_Foamtutorial

ИСПОЛЬЗОВАНИЕ ГИБКИХ ЯЧЕСТВЕННЫХ ПЛАСТИКОВ В КАЧЕСТВЕ АККУСТИЧЕСКИХ И АРХИТЕКТУРНЫХ ПРОДУКТОВ В СТРОИТЕЛЬСТВЕ И ВНУТРЕННИХ СРЕДАХ

[ВЕРСИЯ PDF здесь]

На рынке представлены буквально сотни различных ячеистых пенопластов, однако лишь некоторые из них обладают надлежащими физическими характеристиками, гибкостью и необходимыми акустическими свойствами для использования в широком спектре акустических архитектурных изделий.

По сути, область сужается до двух классов ячеистых материалов, продуктов на основе полиуретана и willtec®, пены на основе меламиновой смолы.

Это руководство, основанное на строительных нормах, опубликованных технических данных и учебниках, разработано, чтобы помочь вам определить пригодность полиуретана или willtec для использования в различных средах. Один из ключевых моментов, который мы рассмотрим, — это огнестойкость обоих этих материалов.

Полиуретан

Полиуретан на самом деле является общим названием для большого количества ячеистых и неячеистых пластиков, из которых происходит ряд обычно встречающихся материалов.Название полиуретан на самом деле относится к определенной полимерной связке, которая уникальна для этого класса материалов. Полиуретаны могут демонстрировать широкий спектр физических характеристик, от жесткого до гибкого, от твердого до мягкого, от твердого до вспененного.

Пенополиуретан были первыми продуктами из ячеистой пены на рынке, которые продемонстрировали свойства, которые сделали их пригодными для акустических архитектурных применений. К сожалению, у пенополиуретана есть и плохие качества.Благодаря своему уникальному химическому составу и ячеистой структуре пенополиуретан легко воспламеняется. Попытки сделать эти пенопласты более огнестойкими не увенчались успехом, а защитный эффект обычно непостоянен.

Пенополиуретан

получил значительную известность из-за их склонности к воспламенению из-за их тонкостенной ячеистой структуры. И, в отличие от более огнестойких продуктов, они поддерживают горение даже после удаления источника возгорания.Эти пены обычно воспламеняются при температуре около 780 ° F, однако полиуретаны отличает от других полимеров то, что они начинают разлагаться при температурах от 428 ° F до 482 ° F.

Кроме того, при воздействии температур значительно ниже точки воспламенения. полиуретан начинает разлагаться, выделяя небольшое количество легковоспламеняющегося газа. Эти газы легко воспламеняются и помогают создать быстро распространяющийся огонь. Для воспламенения полиуретана не требуется значительного пламени. Многие пожары возникли из-за очень слабого источника тепла, такого как тепло и искры от сломанной лампочки.

Применение полиуретана:

Исходя из ограничений полиуретана, он не должен считаться пригодным для использования в следующих условиях:

• В помещениях зданий, не защищенных спринклерной системой или системой пожаротушения.

• В местах, где материал подвергается воздействию тепла или инфракрасного излучения.

• В производственных зонах, где используются легковоспламеняющиеся растворители или соединения.

• В любом помещении или на технологической площадке, где существует повышенный риск возгорания, тепла или пламени.

• В любых помещениях, в которых размещаются люди с ограниченными физическими возможностями или физическими / умственными недостатками.

• В любом пространстве, используемом для ограничения людей с ограниченным доступом / выходом.

• В любом месте или зоне, где аварийный выход ограничен или ограничен.

• В любой зоне аварийного выхода или на лестничной клетке.

Обратите внимание, что все возможные варианты использования и сценарии для продукта этого типа невозможно предсказать, поэтому мы не можем перечислить все потенциальные проблемные ситуации.Покупатель должен осознавать повышенный риск возгорания при использовании этого продукта и должен оценивать риск по сравнению с пользой для каждого отдельного использования. При правильном использовании в контролируемой среде пенополиуретаны могут прослужить годы. Однако при неправильном использовании или использовании во взрывоопасных зонах риск возгорания увеличивается только из-за наличия пенополиуретана.

Огнезащитные средства:

Из-за чрезвычайно высокой воспламеняемости пенополиуретана, большинство продуктов, представленных на рынке, являются огнезащитными, либо за счет нанесения антипиренового покрытия, либо за счет включения замедлителя в пену во время смешивания.

Замедлители действуют путем испарения при воздействии тепла, вытесняя кислород, так что огонь лишается топлива, или выделяя влагу, которая охлаждает поверхность, задерживая возгорание.

Предупреждения для полиуретана:

Федеральная торговая комиссия требует, чтобы продукты, содержащие полиуретан, имели предупреждающую этикетку о его воспламеняемости. Требование FTC было прямым ответом на серию катастрофических пожаров, связанных с пенополиуретаном.

willtec®

willtec — это легкий пенопласт из пористого меламина. Меламин является гораздо менее воспламеняющимся продуктом, чем полиуретан, поэтому акустические характеристики меламина сравнимы с уретановыми пенопластами, а зачастую и превосходят их. Исторически меламин был дороже полиуретана, но технические и производственные достижения сделали его более конкурентоспособным по цене.

Основное различие между огнестойкостью пенополиуретана и пенопласта willtec заключается в температуре разложения и механизме разложения.Там, где уретаны разлагаются при относительно низких температурах (428–482 ° F), химическая структура полимерного материала Willtec, как сообщается, стабильна до температуры более 1200 ° F. (Продукты из меламиновой пены, такие как willtec, относятся к классу огнестойкости 1. Это означает, что они наименее воспламеняемы. Подробнее об этом читайте в разделе «Испытания на воспламеняемость» данного руководства.)

Во время горения поверхность пены willtec обугливается, изолируя неповрежденную пену и защищая источник топлива от воздействия пламени.В отличие от полиуретана, willtec не поддерживает горение и не поддерживает воспламенение при удалении источника тепла.

Огнезащитная обработка не требуется:

Огнестойкость пены

willtec обусловлена ​​фактической химической структурой полимера, поэтому она не зависит от добавления замедляющих материалов.

РЕЙТИНГ ВОСПЛАМЕНЯЕМОСТИ

Пена и огонь

Тестирование:

Существуют буквально сотни различных тестов на воспламеняемость от самых разных государственных, федеральных, международных и частных организаций.В этом учебном пособии рассматриваются наиболее часто встречающиеся тесты на воспламеняемость, относящиеся к проверке пригодности для использования материалов в жилых помещениях в качестве отделочного или декоративного материала.

Строительные материалы, такие как акустическая пена, проходят испытания и оцениваются в соответствии с их огнезащитными свойствами. Во многих случаях установленные процедуры тестирования, разработанные одной организацией, были приняты и изменены другой группой для решения конкретной проблемы. Одним из таких примеров является испытание на горение в угловой комнате ASTM, которое позже было принято Единым строительным кодексом и преобразовано в испытание на огнестойкость всего помещения.

Следует подчеркнуть, что, хотя каждая из этих процедур испытаний предназначена для моделирования различных условий пожара и позволяет сравнивать рабочие характеристики различных материалов для испытаний, результаты испытаний не являются гарантией фактических характеристик пожара.

Наиболее распространенный метод ранжирования воспламеняемости материалов — это система классов. Материалы испытываются в соответствии с ASTM E-84, наиболее часто встречающимся испытанием на огнестойкость, используемым для определения распространения пламени и плотности дыма материала при его сжигании в наклонном туннеле.

По результатам испытаний пенопласт и другие строительные материалы классифицируются как материалы Класса I, Класса II или Класса III.

Оценок:

Система оценки класса основана на двух компонентах: распространение пламени и плотность дыма. Оба оцениваются по шкале от 1 до 100, где 1 — самый низкий, а 100 — самый высокий. Скорость распространения пламени определяет скорость распространения огня по горящему материалу. Плотность дыма показывает, насколько густым становится дым при сжигании испытуемого материала.Эти условия измерения предназначены для лабораторного использования. Они не соответствуют и не могут быть сопоставлены с реальными измерениями в «реальном мире». Например, распространение пламени от 0 до 25 не может быть определено в дюймах или футах.

· Материалы класса I наименее воспламеняются и не загораются при воздействии пламени. Они превратятся в пепел. Материалы класса 1 имеют индекс распространения пламени от 0 до 25.

· Материалы класса II воспламеняются, но их огнезащитные свойства помогают гасить пламя во время его горения.Эти материалы имеют распространение пламени 26-75.

· Материалы класса III обладают наивысшей горючестью, с разбросом пламени 76-200.

Плотность дыма для всех классов ограничена до 450.

Примеры оценок распространения пламени для обычных материалов

· Плита асбестоцементная 0

· Кирпич или бетонный блок 0

· пена willtec, натуральная 5

· пена Willtec, огнестойкая краска на поверхности 10

· Гипсокартон с бумажным лицевым покрытием 10-25

· Панели звукопоглощающие из минерального волокна 10-25

· Ковровые покрытия 10-600

· Древесноволокнистая плита измельченная (обработанная) 20-25

· Пенополиуретан акустический, толщиной 2 дюйма 30

· Пенополиуретан акустический, толщиной 3 дюйма 75

· Панель фанерная (необработанная) 75-275

· Обшивка фанерная (обработанная) 100

Воспламеняемость и ответственность за продукцию

Судебный процесс об ответственности за качество продукции стал одним из основных экономических факторов безопасности продукции.Стандарты пожарной безопасности подверглись тщательной проверке еще в 1945 году после ряда катастрофических пожаров.

В начале 1970-х годов специалисты по пожарной безопасности сосредоточили свое внимание на использовании пластмасс в строительстве и их использовании в качестве внутренней отделки или декоративных изделий. Интерес был вызван большим количеством пожаров, в которых гибель людей и материальные потери были напрямую связаны с наличием значительных количеств пластмасс, особенно пенополиуретана. Требования пожарной безопасности, строительные нормы и правила и процедуры испытаний на воспламеняемость были радикально изменены с учетом значительно возросшего риска, связанного с этими продуктами.

В настоящее время всякий раз, когда возникает пожар с нанесением ущерба, возникает последующий судебный процесс. Из-за внимания и размера этих ранних потерь использование пенополиуретана стало сложным и строго ограниченным процессом.

Судебный процесс об ответственности за качество продукции за годы вырос по размеру и сложности, превратившись из относительно простой концепции в сложную технологию.

НОРМАТИВНЫЕ ТРЕБОВАНИЯ

Допустимые и ограниченные виды использования ячеистых пенопластов

При определении или рекомендации продукта для использования важно определить, не будут ли условия использования или предполагаемая функция объекта представлять какие-либо особые опасности.Во многих областях полиуретановая пена является подходящим материалом, однако во многих областях применения, где есть потенциальный источник возгорания, например, производство, или ограниченное пространство, такое как механическое помещение с одним выходом, полиуретановая пена не является подходящим выбором из-за ее воспламеняемость.

Строительные и противопожарные коды:

Строительные нормы и правила пожарной безопасности являются юридическими документами и предназначены для регулирования строительства с целью защиты здоровья, безопасности и благополучия людей. Эти кодексы устанавливают минимальные стандарты для материалов и строительных процедур.

В строительных нормах и правилах есть положения, позволяющие использовать материалы класса II или III в конструкциях, если они имеют спринклеры, и в зависимости от использования и конкретной области. Например, материал класса II можно было бы использовать в коридоре, если бы он был защищен спринклерной системой, но нельзя было бы использовать в больничной палате даже с разбрызгивателем.

Обычно нормы устанавливают требования к санитарным помещениям, электрическому освещению, вентиляции, конструкции зданий, строительным материалам, пожарной безопасности, планированию и энергосбережению.

До 1 февраля 2003 года строительные нормы и правила были местными законами, каждый муниципалитет вводил в действие свой собственный набор правил. Хотя некоторые муниципалитеты приняли многие из одних и тех же кодексов, система была запутанной, и в ней было трудно ориентироваться.

Теперь процесс был оптимизирован с объединением Международного совета кодов (ICC), который будет разрабатывать коды для использования по всей стране и по всему миру. Новый ICC объединяет строительных чиновников и Международного администратора кодекса (BOCA), Международную конференцию строительных служащих (ICBO) и Южный конгресс строительных норм и правил (SBCCI).

Новые международные коды (I-Codes ™) агентства представляют собой единый набор из 14 строительных и противопожарных кодексов, направленных на повышение общественной безопасности и улучшение процесса строительства. I-коды используются во всем мире.

Копии новых I-кодов можно заказать на веб-сайте Международного совета по кодам www.iccsafe.org. Или вы можете позвонить по одному из следующих номеров:

· 800-877-2224 (Бирмингем, Алабама)

· 800-214-4321 (Чикаго, Иллинойс)

· 800-284-4406 (Лос-Анджелес, Калифорния)

· 888-699-0541 (Олате, Канзас)

Это руководство было разработано и написано Биллом Велбсом, директором лаборатории и руководителем Legend Technical Services.

ДЛЯ ВАШЕЙ БЕЗОПАСНОСТИ

Мы надеемся, что эта информация была вам полезна. Помните, что эта информация предназначена только для справки. При выборе материалов для любого строительного проекта обязательно проконсультируйтесь с профессионалами, которые помогут вам определить подходящий продукт для акустического контроля и помогут понять строительные нормы и правила в рамках новой системы ICC, результаты испытаний и рейтинги материалов, а также другую важную информацию перед ты начинаешь.

пожарная безопасность, горючесть и отраслевые стандарты

Воспламеняемость — важная характеристика пенопласта, особенно пенопласта, который используется в домашней обстановке, автомобильной промышленности и в самолетах.Пенополиуретан, созданный на основе комбинации органических химикатов, требует тщательной защиты и обращения со всеми источниками возгорания.

Вкратце, Закон о мебели и меблировке (пожарная безопасность) гласит, что: Все материалы, используемые для обивки, должны быть стойкими к сигаретам, а покрытия — устойчивыми; все заправочные материалы должны соответствовать нормам воспламенения; что выставочная этикетка должна быть прикреплена к каждому новому предмету мебели при продаже (исключения относятся к подержанной мебели) и; что первоначальный поставщик мягкой мебели для дома должен вести пятилетний отчет о соответствии.

Все производители обязаны обеспечивать соответствие разрабатываемых ими пенопластов местным и международным государственным правилам пожарной безопасности. В Великобритании существуют правила пожарной безопасности в отношении мебели и предметов интерьера, которые определяют установленные уровни огнестойкости, необходимые для всей мягкой мебели, предметов интерьера и других изделий, содержащих обивку, включая пенополиуретан. Существует ряд требований к испытаниям, которым должны соответствовать производители пеноматериалов, если их продукт будет легально использоваться в любом типе мебельной продукции.Однако все производители, импортеры и розничные торговцы мебели в Великобритании несут совместную ответственность за обеспечение того, чтобы мебель не поставлялась населению, содержащая пенопласт, не соответствующий требованиям законодательства.

Между частными организациями и государственными организациями существуют давние отношения, помогающие разработать подходящие современные руководства для пенопласта и обивочной продукции. Например, члены PFA (Ассоциация полиуретановой пены) с начала 1960-х годов помогали проводить исследования по улучшению характеристик горения гибкой полиуретановой пены, чтобы помочь минимизировать как свойства горения, так и воспламенения пены и связанных с ней продуктов.В 2006 году PFA приняло активное участие в поддержке Комиссии по безопасности потребительских товаров США (CPSC) в достижении обязательных критериев пожарной безопасности для матрасов , а в 2007 году вступил в силу федеральный стандарт матрасов с открытым пламенем (16 CFR Part 1633). . Однако нормативная политика распространяется не только на потребительскую обивочную продукцию — Федеральное авиационное общество (FAA) требует, чтобы противопожарная безопасность была, по сути, наивысшим приоритетом для обивки самолетов. Чтобы соответствовать требованиям по воспламеняемости композита, пена, используемая в таких применениях, должна сопровождаться огнезащитной тканью или быть обработана добавками, модифицирующими горение, в процессе производства.

Имея это в виду, интересно отметить, что огнестойкость пены также может быть изменена путем использования различных составов химических добавок для повышения огнестойкости полиуретана. Хотя полиуретан часто специально производится таким образом, чтобы повысить пожарную безопасность в здании, пену можно обработать химическими антипиренами, чтобы еще больше повысить ее устойчивость к возгоранию.

Для получения дополнительной информации о стандартах воспламеняемости продуктов eFoam, пожалуйста, напишите по электронной почте одному из наших опытных представителей.


Пенополиуретан — безопасность

2019-10-18

Дом или квартира — важное место для нас и наших семей. Мы заботимся о том, чтобы пространство было здоровым, комфортным и безопасным. Вот почему мы постоянно стремимся улучшить энергоэффективность зданий, а также тепло- и влажную изоляцию перегородок.

Пенополиуретан — безопасность

Чаще всего для изоляции выбирают пену PUR.Безопасность этой пены является важным фактором при таком выборе — это качество важно как во время самого нанесения, так и в более поздний период. Эксперты сходятся во мнении, что стоит выбрать надежную команду, обладающую опытом и знаниями правил техники безопасности и охраны труда, применяемых при выполнении пенополиуретановой изоляции методом распыления. Безопасность использования пены высокая (класс огнестойкости пены E или F). Продукт самозатухающий. Это значит, что после отключения источника тепла пена гаснет сама собой.Благодаря своим физическим свойствам, в зависимости от типа, он может использоваться как в помещении, так и на открытом воздухе.

Пенополиуретан — воспламеняемость

Воспламеняемость пенополиуретана не является фактором, препятствующим использованию такого материала в качестве изоляционного материала.Помимо фактора воспламеняемости пены важна ее нетоксичность. Пенополиуретан не представляет опасности с токсикологической точки зрения — пена не имеет запаха и не токсична, поэтому широко используется.

Пена сочетается с материалами с разными физическими и химическими свойствами. Хотя мы встречаем пенополиуретан в повседневной жизни, мы часто забываем об этом факте. Универсальность пенополиуретана трудно недооценить. Неудивительно, что ее используют для утепления, а в случае самых сложных конструкций применяют пенополиуретан методом распыления.

Безопасность использования пенополиуретана

Как правильно подготовить комнату к безопасному нанесению пены.

Помещение, которое готовится к установке теплоизоляции, должно быть сухим. Поэтому при утеплении плоской кровли или чердака пенопластом лучше всего это делать весной. Это не означает, что пену нельзя наносить в другое время года — ее можно наносить даже зимой при соблюдении всех надлежащих рекомендаций по опрыскиванию. Летом из-за температуры опрыскивание пеной Purios не вызывает никаких проблем. Само по себе опрыскивание с точки зрения удобства работы менее комфортно только в жаркие дни.

Надлежащую подготовку помещения под пенопласт можно начать еще на этапе планирования. Вам просто нужно облегчить доступ к местам, где пена будет наноситься. Это значительно улучшит процесс его применения в более позднее время.

Помните! Перед нанесением пены штукатурные поверхности и другие участки необходимо просушить — иногда высыхание может занять несколько месяцев. Если вы «на часах», вы можете высушить эти участки искусственными средствами.

В случае пенополиуретана его безопасность также зависит от его хранения.Материал термостойкий. Однако стоит помнить, что он может вступать в реакцию с разными веществами, перегреваться или становиться влажным. Именно поэтому перед применением пенки важно тщательно проверить место, где он хранится. Что может дать пенополиуретан? Безопасность, комфорт и хорошая теплоизоляция дома. Более того, характерные особенности пенополиуретана также включают отсутствие запаха и нетоксичность.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *