Источники альтернативной энергии: Альтернативные источники энергии | Ecodevelop
Курс «Альтернативные источники энергии»
Актуальность | Приостановлено |
---|---|
Стоимость | 19000 руб |
Продолжительность | 72 часа |
Группа | от 8 до 10 человек |
Начало занятий | По мере формирования группы |
Программа направлена на преподавателей вузов технического и физического профиля, а также на специалистов с высшим техническим образованием, специализирующихся в области альтернативных источников энергии.
Происходящие в новом столетии кардинальные изменения в энергообеспечении человечества, связанные с переходом к альтернативной энергетике с использованием возобновляемых источников энергии, делают актуальным разработку образовательных программ, ориентированных на кадровое обеспечение этого направления энергетики. Изучение различных методов и технологий преобразования энергии солнца и ветра в электрический ток становится все более в востребованным как в прикладном, так и научном плане.
В рамках предлагаемой программы слушатели изучают основные альтернативные источники энергии, отличающиеся высокой степенью экологичности, в частности фотоэлектрические и термоэлектрические преобразователи солнечной энергии, а также излагаются основные принципы ветроэнергетики. Значительное место уделяется вопросам физики и технологии тонкопленочных солнечных модулей, как одного из наиболее распространенных и экономически эффективных методов преобразования солнечной энергии. Также в программе рассмотрены базовые принципы построения и мониторинга энергообъектов на основе возобновляемых источников энергии.
Категория слушателей — преподаватели высших учебных заведений технического и физического профиля, специалисты с высшим техническим образованием, работающие в области возобновляемых источников энергии
Форма обучения— с отрывом от производства
Учебный план
№ п/п | Наименование разделов | Всего часов | В том числе | |||
---|---|---|---|---|---|---|
Лекции | Практические и лабораторные занятия | Самостоятельное изучение | Проверка знаний | |||
1 |
Раздел 1. Возобновляемые источники энергии |
16,5 |
16 |
|
0,5 |
|
1.1. |
Основные виды возобновляемых источники энергии |
4 |
4 |
|
|
|
1.2. |
Фотоэлектрические тонкопленочные преобразователи солнечной энергии |
4 |
4 |
|
|
|
1.3. |
Термоэлектрические преобразователи энергии |
4 |
4 |
|
|
|
1.4 |
История, состояние и перспективы ветроэнергетики |
4 |
4 |
|
|
|
2 |
Раздел 2. Физика и технология тонкопленочных солнечных модулей |
25 |
16 |
8 |
1 |
|
2.1. |
Физика аморфного и микрокристаллического кремния |
4 |
4 |
|
|
|
2.2. |
Технологические основы формирования тонкопленочных солнечных модулей на основе полиморфного кремния. |
4 |
4 |
|
|
|
2.3. |
Оптико-физические методы исследования материалов и структур солнечной энергетики |
8 |
4 |
4 |
|
|
2.4. |
Метрология тонкопленочных солнечных модулей и энергоустановок |
8 |
4 |
4 |
|
|
3 | Раздел 3. Базовые принципы построения и мониторинга энергообъектов |
16,5 |
|
4 |
0,5 |
|
3.1. |
Оборудование солнечных электростанций. |
8 |
4 |
4 |
|
|
3.2. |
Средства автоматизации солнечных электростанций |
4 |
4 |
|
|
|
3.3. |
Мониторинг работы солнечных электростанций. |
4 |
4 |
|
|
|
4 |
Итоговая аттестация |
14 |
|
|
12 |
2 |
|
Итого: |
72 |
44 |
12 |
12 |
4 |
Контактная информация
Запись на курс
Альтернативные источники энергии
Краснодарский край по своим природно-климатическим характеристикам является одним из самых привлекательных в России для развития генерации на основе использования возобновляемых источников энергии (ВИЭ)
В Краснодарском крае сложился многолетний опыт практического использования солнечной энергии и геотермального тепла, ветро и гидроэнергии, а также других энергоисточников
В частности, наибольшим потенциалом с точки зрения освоения инвестиций имеют следующие направления.
Во-первых, солнечная электроэнергетика, использование которой имеет большие перспективы развития в регионе, так как Краснодарский край является одним из немногих субъектов Российской Федерации, обладающих значительными ресурсами солнечной энергии. Непосредственно для выработки электроэнергии используются фотоэлектрические преобразователи.
Во-вторых, солнечная теплоэнергетика, которая может использоваться с целью оснащения современными гелиосистемами объектов социального назначения и предприятий санаторно курортного комплекса по всему побережью Черного и Азовского морей, где количество солнечных дней составляет 260-280 суток в году.
Также ключевым направлением, обладающим инвестиционным потенциалом в этой области и позволяющим обеспечить заметный вклад в развитие солнечной теплоэнергетики, является строительная отрасль. Требуется разработка и внедрение систем солнечного теплоснабжения зданий с помощью встроенных в стены солнечных коллекторов с вакуумными стеклопакетами. Облицовка фасадов зданий солнечными коллекторами с вакуумными стеклопакетами в Краснодарском крае позволит круглогодично обеспечить солнечное теплоснабжение зданий.
В-третьих, ветроэнергетика, масштабное развитие которой целесообразно в условиях обширных прибрежных зон Азовского и Черного морей (Приморско-Ахтарский, Калининский, Славянский, Крымский, Темрюкский и Туапсинский районы, города-курорты Сочи, Анапа и Геленджик), а также протяженной области Армавирского ветрового коридора (зона интенсивных постоянных по силе и направлению ветров).
В-четвертых, геотермальная энергетика. Суммарная тепловая мощность эксплуатируемых геотермальных месторождений в Краснодарском крае составляет 238 МВт. Практическое значение имеют месторождения на 60 % территории региона.
В Краснодарском крае используются в системах теплоснабжения лишь 6-7 % потенциала геотермальных месторождений.
Более подробную информацию можно получить, обратившись в министерство топливно-энергетического комплекса и жилищно- коммунального хозяйства Краснодарского края тел: +7 (861) 259-09-31
Шпракебюлль: поселок, где будущее ″зеленой″ энергетики уже наступило | Анализ событий в политической жизни и обществе Германии | DW
«Я горжусь Шпракебюллем. Приятно услышать от людей из других мест, что наш поселок стал известен своим использованием экологической энергии», — говорит Кристина Йоханнсен (Christina Johannsen). Вместе с мужем она управляет биофермой и держит фермерский магазин, многие клиенты расспрашивают ее об образцовом зеленоэнергетическом поселке, в котором проживает 260 человек. Потому что в Шпракебюлле, что в федеральной земле Шлезвиг-Гольштейн, поворот к альтернативной энергетике уже удалось осуществить.
Кристина Йоханнсен с сыном
Клиенты могут заряжать свои электромобили прямо напротив магазина Йоханнсенов. За ним строятся дома для молодых семей. А возведение новой пожарной части по соседству было профинансировано за счет доходов от местной ветряной электростанции, с гордостью поясняет бургомистр поселка Карл-Рихард Ниссен (Karl-Richard Nissen), указывая на шесть светло-серых ветряков, расположенных примерно в двух километрах отсюда.
Деньги в бюджет и высокое признание
«Альтернативные источники энергии принесли только положительное», — продолжает Ниссен. Налоги поступают в муниципальную казну от работы ветряков и установок, преобразующих энергию солнца. «Мы можем позволить себе то, на что иначе не было бы денег», — отмечает бургомистр.
Каждый житель поселка через каршеринг может дешево пользоваться электромобилем
Так, в Шпракебюлле проложены велосипедные дорожки, местные власти субсидируют уроки музыки для детей, и каждый житель поселка посредством каршеринга может за небольшую плату пользоваться имеющимся в поселке электромобилем.
Самым важным фактором успеха является участие граждан в проектах, поясняет Ниссен. Без такого участия, например, здесь не появился бы второй ветропарк. В поселковом совете не все проголосовали за это, но все приняли результаты голосования. «Решающим было то, что мы не передавали здесь земельные площади крупным инвесторам», — вспоминает бургомистр.
Обязательства и отдача от чистой энергии
Первый коммунальный ветропарк подключили к сети в Шпракебюлле еще в 1998 году. Уставной капитал с трудом собрали местные жители и фермеры. Без тех инвестиций и предоставления в качестве залога собственных домов банки тогда вряд ли бы выдали кредиты в размере 7,5 млн евро для закупки и установки пяти ветротурбин, рассказывает фермер Ханс-Кристиан Андресен (Hans-Christian Andresen), один из инициаторов проекта. Сегодня банковские кредиты для таких проектов — не проблема, и в сооружении нового ветропарка участвуют многие местные жители.
Тепло для поселка вырабатывает эта биоустановка
Они также активно поддержали и возведение двух солнечных парков в Шпракебюлле. Кроме того, на крышах домов многих местных жителей также установлены солнечные батареи. В целом, в деревне вырабатывается примерно в 50 раз больше электроэнергии, чем потребляется.
Что касается отопления, то мазут шпракебюлльцы давно не используют: в 2013 году все дома в поселке были подключены к собственной тепловой сети. Тепло вырабатывается в биоустановке, расположенной рядом с фермерским магазином Йоханссенов, куда биогаз с их фермы подается после разложения биомассы.
Инновации как средство против миграции населения из сельской местности
В 1960-х годах в Шпракебюлле было 26 фермерских хозяйств, сегодня их три, делится бургомистр Ниссен. И признается, что без возобновляемых источников энергии «мы были бы очень бедным регионом». Это хорошо заметно в соседней Дании, граница с которой находится всего в 15 км. «В Дании альтернативные источники энергии не развивались в такой форме. Когда вы едете туда, то видите вымершие деревни. Сельское хозяйство там, как и здесь, деградировало. И больше нет ничего другого».
Полевые роботы могут работать на солнечной энергии
А без работодателей из инновационных сфер бизнеса, таких как Андресены, у которых заняты 30 человек, вероятно, имел бы место «массовый исход из сельской местности, и тогда меня бы здесь не было», подтверждает Кристиан Андресен.
Ему 42 года, он получил образование инженера-агронома и присоединился к компании, основанной его отцом в 2007 году. Андресен строит системы, преобразующие энергию солнца, обслуживает ветряки и парки с солнечными батареями, а также консультирует фермеров по переходу к использованию полевых роботов, работающих на солнечной энергии.
Хорошие перспективы на будущее
Инженер-агроном полагает, что в итоге в выигрыше оказался весь регион: «Здесь появилась масса ноу-хау и инновационного потенциала, многое еще в процессе развития, идет поиск решений, которые можно реализовать с помощью электричества».
Установка про производству «зеленого» водорода
Это также относится и к успешному водородному проекту в Хаурупе, что в 20 км. Там водород получают при электролизе воды с помощью электроэнергии, которую выработали ветряки. После чего водород подается в трубопровод для природного газа.
«С технической и финансовой точек зрения полностью обеспечить мир возобновляемыми источниками энергии к 2030 году — не проблема», — уверен Андресен. Поселок, в котором он живет, — хороший пример того, что в этой области «все пойдет намного быстрее, чем многие думают сегодня».
Смотрите также:
Технологии хранения энергии из возобновляемых источников
Электростанция из аккумуляторов
Как хранить в промышленных масштабах излишки электроэнергии, выработанной ветрогенераторами и солнечными панелями? Соединить как можно больше аккумуляторов! В Германии эту технологию с 2014 года отрабатывают в институте общества Фраунгофера в Магдебурге (фото). По соседству, в Шверине, тогда же заработала крупнейшая в Европе коммерческая аккумуляторная электростанция фирмы WEMAG мощностью 10 МВт.
Технологии хранения энергии из возобновляемых источников
Большие батареи на маленьком острове
Крупнейшие аккумуляторные электростанции действуют в США и странах Азии. А на карибском острове Синт-Эстатиус (Нидерландские Антилы) с помощью этой технологии резко снизили завоз топлива для дизельных электрогенераторов. Днем местных жителей, их около 4 тысяч, электричеством с 2016 года снабжает солнечная электростанция, а вечером и ночью — ее аккумуляторы, установленные фирмой из ФРГ.
Технологии хранения энергии из возобновляемых источников
Главное — хорошие насосы
Гидроаккумулирующие электростанции (ГАЭС) — старейшая и хорошо отработанная технология хранения электроэнергии. Когда она в избытке, электронасосы перекачивают воду из нижнего водоема в верхний. Когда она нужна, вода сбрасывается вниз и приводит в действие гидрогенератор. Однако далеко не везде можно найти подходящий водоем и нужный перепад высот. В Хердеке в Рурской области условия подходящие.
Технологии хранения энергии из возобновляемых источников
Место хранения — норвежские фьорды
Оптимальные природные условия для ГАЭС — в норвежских фьордах. Поэтому по такому кабелю с 2020 года подводная высоковольтная линия электропередачи NordLink длиной в 623 километра и мощностью в 1400 МВт будет перебрасывать излишки электроэнергии из ветропарков Северной Германии, где совершенно плоский рельеф, на скалистое побережье Норвегии. И там они будут храниться до востребования.
Технологии хранения энергии из возобновляемых источников
Электроэнергия превращается в газ
Избытки электроэнергии можно хранить в виде газа. Методом электролиза из обычной воды выделяется водород, который с помощью СО2 превращается в метан. Его закачивают в газохранилища или на месте используют для заправки автомобилей. Идея технологии Power-to-Gas родилась в 2008 году в ФРГ, сейчас здесь около 30 опытно-промышленных установок. На снимке — пилотный проект в Рапперсвиле (Швейцария).
Технологии хранения энергии из возобновляемых источников
Водород в сжиженном виде
Идея Power-to-Gas дала толчок разработкам в разных направлениях. Зачем, к примеру, превращать в метан полученный благодаря электролизу водород? Он и сам по себе отличное топливо! Но как транспортировать этот быстро воспламеняющийся газ? Ученые университета Эрлангена-Нюрнберга и фирма Hydrogenious Technologies разработали технологию его безопасной перевозки в цистернах с органической жидкостью.
Технологии хранения энергии из возобновляемых источников
В чем тут соль?
Соль тут в тех круглых резервуарах, которые установлены посреди солнечной электростанции на краю Сахары близ города Уарзазат в Марокко. Хранящаяся в них расплавленная соль выступает в роли аккумуляторной системы. Днем ее нагревают, а ночью используют накопленное тепло для производства водяного пара, подаваемого в турбину для производства электричества.
Технологии хранения энергии из возобновляемых источников
Каверна в роли подземной батарейки
На северо-западе Германии много каверн — пещер в соляных пластах. Одну из них энергетическая компания EWE и ученые университета Йены превратили в полигон для испытания технологии хранения электроэнергии в соляном растворе, обогащенном особыми полимерами, которые значительно повышают эффективность химических процессов. По сути дела, речь идет о попытке создать гигантскую подземную батарейку.
Технологии хранения энергии из возобновляемых источников
Крупнейший «кипятильник» Европы
Человечество давно уже использует тепло для производства электроэнергии. Возобновляемая энергетика поставила задачу, наоборот, превращать электричество, в том числе и избыточное, в тепло (Power-to-Heat). Строительство в Берлине крупнейшего «кипятильника» Европы мощностью 120 МВт для отопления 30 тысяч домашних хозяйств компания Vattenfall намерена завершить к концу 2019 года.
Технологии хранения энергии из возобновляемых источников
Накопители энергии на четырех колесах
Когда по дорогам мира будут бегать миллионы электромобилей с мощными аккумуляторными батареями, они превратятся в еще один крупный накопитель энергии из возобновляемых источников. Этому поспособствуют умные сети энергоснабжения (Smart grid): они будут стимулировать подзарядку по низким ценам в моменты избытка электричества. (На фото — заправка для электромобилей в Китае).
Автор: Андрей Гурков
Альтернативные и возобновляемые источники энергии и системы энергообеспечения в сельском хозяйстве
ХАРАКТЕРИСТИКА НАПРАВЛЕНИЯ
Целью научного направления является развитие энергетической базы и систем энергообеспечения сельского хозяйства, обеспечение надежного и устойчивого энергообеспечения сельских потребителей при снижении энергоемкости производства, создание комфортных социально-бытовых условий жизни на селе.
Для достижения поставленной цели сотрудниками подразделений решаются следующие задачи:
— обеспечение экономичного, надежного, устойчивого и безопасного энергоснабжения сельских объектов при снижении аварийных отключений и перерывов в энергоснабжении села в 2-3 раза, повышение уровня безопасной эксплуатации энергетического оборудования (до 50%) и качества электроэнергии;
— разработка перспективных направлений, стратегии развития и создания электрических сетей нового поколения, удовлетворяющих современным условиям распределения электроэнергии сельским потребителям, включая инженерные системы в быту, ЛПХ и фермерских хозяйствах, обеспечивающих экономико-экологические требования;
— разработка новых способов передачи электроэнергии (включая резонансные) сельским потребителям, снижающих затраты на передачу и потери энергии;
— снижение зависимости от централизованного энергоснабжения ряда сельских потребителей посредством самообеспечения энергией на базе собственных и нетрадиционных энергоресурсов с выработкой энергии на местах в соответствии с ресурсами регионов;
— разработка и реализация децентрализованных систем электро- и теплообеспечения и средств малой энергетики с широким использованием электроэнергии, местных и возобновляемых энергоресурсов, отходов сельхозпроизводства;
— разработка и внедрение энергосберегающей интеллектуальной системы теплообеспечения и создания микроклимата в сельхозпомещениях с применением утилизации низкопотенциальной теплоты, геотермальной энергии, термоэлектричества, направленной на создание оптимальных условий среды обитания животных и птицы, позволяющих в максимальной степени реализовать их генетический потенциал и обеспечить максимальную продуктивность при значительном снижении энергоемкости производства.
— разработка и освоение технологий получения биотоплива посредством переработки биомассы, растительных и древесных отходов, отходов животноводства в жидкое, газообразное и твердое топливо, а также получение качественных органических удобрений.
— освоение технологий и средств повышения эффективности и широкого использования возобновляемых источников энергии(ВИЭ) в сельской энергетике, снижающих их стоимость и повышающих КПД.
Перечень выполняемых работ
Разработка энергетической стратегии развития систем и средств энергообеспечения сельских объектов на период до 2030 года.
Разработка интеллектуальных систем и технических средств энерго- и теплообеспечения, электробезопасности и эксплуатационного контроля технического состояния электрооборудования и построения распределительных систем электроснабжения сельских потребителей.
Разработка «умных сетей», включающих в себя комплексы из централизованных сетей и распределенных автономных источников электроснабжения на базе альтернативных источников электроснабжения.
Разработка энергосберегающего вентиляционно-отопительного оборудования с утилизацией теплоты, озонированием и глубокой рециркуляции внутреннего воздуха для обеспечения требуемого микроклимата и экологии в производственных сельскохозяйственных помещениях, включая оборудование для содержания и электрообогрева молодняка животных, устройств дистанционного контроля за их состоянием.
Разработка аккумуляционных электротепловых установок для горячего водо- и парообеспечения и нагрева воздуха, адаптированных для работы по многотарифному учету электроэнергии.
Разработка резонансных методов и систем передачи электрической энергии.
Исследование научно-технических принципов и разработка конструкционных основ преобразования солнечной энергии в теплофотоэлектрических и термодинамических системах в энергию потребительских форматов (электрическую и тепловую).
Новые технологии и конструкции кровельных солнечных (черепиц) для крыш жилых и производственных зданий с возможностью их полного или частичного энергообеспечения.
Исследование и разработка автоматизированной многомодульной теплофотоэлектрической энергосистемы.
Технологии и установки анаэробного сбраживания в биореакторах с предварительной обработкой органических отходов и системы управления процессом их анаэробной биоконверсии.
Разработка интеллектуальной ветроэнергетической установки для работы в условиях регионов с низким ветровым потенциалом
Разработка интеллектуальной автономной установки экстракции пресной воды из атмосферного воздуха для южных районов (в частности Крыма).
Построение интеллектуальной микросети автономного энергообеспечения сельских объектов с разработкой когенерационной микрогазотурбинной установки малой мощности и системы ее дистанционного управления.
В результате проведенных научных исследований только за последние годы разработаны исходные и технические требования, технические задания на 25 электроустановок для различных процессов сельскохозяйственного производства. По 18 разработкам изготовлены действующие образцы; 8 установок успешно прошли государственные приемочные испытания и рекомендованы к производству; ряд оборудования доведен до серийного производства; большинство электроустановок включено в «Проект системы машин и технологий для комплексной механизации и автоматизации сельскохозяйственного производства на период до 2020 года».
Разработанное по данному направлению электрооборудование неоднократно экспонировалось на различных выставках. Награждено медалями и дипломами.
Структура направления
Отдел электрификации и энергообеспечения АПК
1. Лаборатория электро- и энергообеспечения и электробезопасности
2. Лаборатория электротеплообеспечения и энергосбережения
Отдел возобновляемых источников энергии
3. Лаборатория солнечной энергетики
4. Лаборатория энергетического оборудования на возобновляемых источниках энергии
5. Лаборатория технологических систем применения возобновляемых и альтернативных источников энергии
6. Лаборатория биоэнергетических технологий
Ключевые публикации
1. Д.С. Стребков. Физические основы солнечной энергетики /Под ред. д.т.н. Безруких П.П. – 2-е изд. перераб. и доп. – М.: ФГБНУ ВИЭСХ, 2017.– 192 с.
2. Yuferev, L.; Sokolov, A. Energy-Efficient Lighting System for Greenhouse Plants // In: Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development / Ed. by Kharchenko V., Vasant P. IGI Global, 2018 pp. 204-229. DOI: 10.4018/978-1-5225-3867-7.ch009 SCOPUS
3. Leonid Yuferev (Federal Scientific Agroengineering Center VIM, Russia). The Resonant Power Transmission System. Source Title: Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development. Copyright: 2018 Pages 534-560. DOI: 10.4018/978-1-5225-3867-7.ch022
4. Yu.D. Arbuzov, V.M. Evdokimov, V.A. Majorov, L.D. Saginov, O. Shepovalova. Optimization of design parameters and the light intensity of the semiconductor solar cells internal losses in systems with concentrated radiation. 44 National Solar Conference, April 1, 2015. Energy Procedja 74(2015) 1543-1550. Web of Science
5. Alexei V. Kuzmichyov, Vladimir V. Malyshev, Dmitry A. Tikhomirov. Efficiency of the combined pasteurization of milk using UV and IR irradiation. Журнал Light & Engineering. Volume 19, Number 1, 2011, pp. 74–78.
6. Кузьмичёв А.В., Лямцов А.К., Тихомиров Д.А. Теплоэнергетические показатели ИК облучателей для молодняка животных // Светотехника. 2015. № 3. С. 57-58.
7. Тихомиров Д.А. Энергоэффективные электрические средства и системы теплообеспечения технологических процессов в животноводстве // Вестник ВНИИМЖ.-Вып.4(24). — 2016 г. — с.15-23.
8. Тихомиров Д.А., Тихомиров А.В. Совершенствование и модернизация систем и средств энергообеспечения — важнейшее направление решения задач повышения энергоэффективности сельхозпроизводства // Техника и оборудование для села. 2017. № 11. С. 32-36.
9. Strebkov, D. S. Concentrator Photovoltaic Modules Integrated in Tile [Text] / D. S. Strebkov, O. V. Shepovalova // AIP Conf. Proc. – 2017. – Vol. 1814, 020076. – Technologies and Materials for Renewable Energy, Environment and Sustainability: TMREES16 fall Meeting Conference. Paris, France, 16-18 November 2016. DOI: 10.1063/1.4976295
10. Dr. Olga Shepovalova, dr. Anatoly V. Tikhomirov, dr. Catherine K. Markelova, Viktoria Yu. Ukhanova. Estimation of Solar power systems implementation potential for rural settlements of Russia / 29th European Photovoltaic Solar Energy Conference and Exhibition Rae Convention Exhibition Center Amsterdam The Netherlands, 22-26 September. 2014
11.Strebkov D.S., Nekrasov A.I., Nekrasov A.A. Maintenance of Power Equipment System Based on the Methods of Diagnosis and Control of Technical Condition // Handbook of Research on Renewable Ener-gy and Electric Resourcesfor Sustainable Rural Development / ed. by V. Kharchenko, P. Vasant. — USA, PA, Hershey: IGI Global, 2018. — P. 421–448. — ISBN 9781522538677. — DOI: 10.4018/978-1-5225-3867-7.ch018. — URL: https://www.igi-global.com/gateway/chapter/full-text-pdf/201348
12. Strebkov D.S., Nekrasov A.I., Trubnikov V. Single-Wire Resonant Electric Power Systems for Renewable-Based Electric Grid // Handbook of Research on Renewable Energy and Electric Resourcesfor Sustainable Rural Development / ed. by V. Kharchenko, P. Vasant. — USA, PA, Hershey: IGI Global, 2018. — P. 449–474. — ISBN 9781522538677. — DOI: 10.4018/978-1-5225-3867-7.ch019. — URL: https://www.igi-global.com/gateway/chapter/201348? accesstype= complimentarycopy
13. Y.D. Arbuzov, V.M. Evdokimov, V.A. Majorov, L.D. Saginov, O.V. Shepovalova «Ultimate Open-Circuit Voltage of the Silicon Solar Cells» Proceedings of 29th European Photovoltaic Solar Energy Conference and Exibition. pp. 933 -938. DOI:10.4229/EUPVSEC2014 2014-2AV.2.56 ISBN:3-936338-34-5. SCOPUS
14. Valeriy Kharchenko, Vladimir Panchenko, Pavel V. Tikhonov, Pandian Vasant. Cogenerative PV Thermal Modules of Different Design for Autonomous Heat and Electricity Supply // Handbook of Re-search on Renewable Energy and Electric Resources for Sustainable Rural Development, pages 86 – 119, DOI: 10.4018/978-1-5225-3867-7.ch004 SCOPUS.
15. Arbuzov, Y. D. Ultimate efficiency of Cascade Solar Cells Based on Homogeneous Tunnel-Junction Structures in CPV Systems [Text] / Y. D. Arbuzov, V. M. Evdokimov, O. V. Shepovalova // AIP Conf. Proc. – 2017. – Vol. 1814, 020075. DOI: 10.1063/1.4976294 Web of Science, SCOPUS.
16. Influence of cationic polyacrilamide flocculant on high-solids anaerobic digestion of sewage sludge under thermophilic conditions. Yuri Litti , Anna Nikitina, Dmitriy Kovalev, Artem Ermoshin, Rishi Mahajan , Gunjan Goel & Alla Nozhevnikova Environmental Technology. Pages 1-10 | Received 22 Aug 2017, Accepted 08 Dec 2017, Accepted author version posted online: 14 Dec 2017, Published online: 28 Dec 2017
17. Особенности моделирования процессов передачи тепла и массы и масштабный переход в реакторах производства биогаза. Г.Е. Сахметова, А.М. Бренер, В.В. Дильман, О.С. Балабеков, Д.А. Ковалев. Reports of the national cademy of sciences of the republic of kazakhstan issn 2224-5227 Volume 3, Number 313 (2017), 34 –40
18. Химия биомассы: биотоплива и биопластики / А. Р. Аблаев, В. И. Быков, С. Д. Варфоломеев и др. — Научный мир Москва, 2017. — С. 790
19. Methane production by anaerobic digestion of organic waste from vegetable processing facilities. M. A. Gladchenko, D. A. Kovalev, A. A. Kovalev, Yu. V. Litti and A. N. Nozhevnikova. Applied Biochemistry and Microbiology, 2017 Vol. 53 No 2 pp. 242-249.
20. Effect of cavitational disintegration of surplus activated sludge on methane generation in the process of anaerobic conversion. M. A. Gladchenko, S. D. Razumovskii, D. A. Kovalev, V. P. Murygina, E. G. Raevskaya and S. D. Varfolomeev. Russian Journal of Physical Chemistry B, 2016, Vol. 10, No. 3, pp. 496–503.
21. Study of the process of hydraulic mixing in anaerobic digester of biogas plant. Karaeva J.V., Khalitova G.R., Trakhunova I.A., Kovalev D.A. Inzynieria Chemiczna i Procesowa. 2015. Т. 36. № 1. С. 101-112.
22. Dorzhiev S. S., Bazarova E. G., Morenko K. S. The Features of the Work of Wind-Receiving Devices on Different Speeds of the Wind Flow // Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development / ed. by V. Kharchenko, P. Vasant. — USA, PA, Hershey: IGI Global, 2018. — P. 383–393. — ISBN 9781522538677. — DOI: 10.4018/978- 1- 5225- 3867- 7.ch016.
23. Gusarov V.A. Rer-based microgrid forenvironmentally friendly energy supply in agriculture / Adomavichus V.B., Kharchenko V.V., Vilackas I.Y., Gusarov V.A. // Conference Proceeding. 5th International Conference TAE 2013. Trends in Agricultural Engineering 3 – 5 September, 2013. — Praga, Czech Republic. — С. 51 — 55.
24.Gusarov V.A. Investigation of experimental flat pv thermal module parametres in natural conditions / Kharchenko V.V., Nikitin B.A., Gusarov V.A., Tihonov P.V. // Conference Proceeding. 5th International Conference TAE 2013. Trends in Agricultural Engineering 3 – 5 September, 2013. — Praga, Czech Republic. — С. 309 — 313.
25. Тихомиров А.В., Свентицкий И.И., Маркелова Е.К., Уханова В.Ю. Энергетическая стратегия сельского хозяйства России на период до 2030 года. — М.: ФГБНУ ВИЭСХ, 2015.-76 с.
Курс возобновляемых и альтернативных источников энергии. Очный и дистанционный способ обучения.
+Правила оплаты и безопасность платежей, конфиденциальность информации
Оплата банковскими картами осуществляется через АО «АЛЬФА-БАНК».
К оплате принимаются карты VISA, MasterCard, МИР.
Услуга оплаты через интернет осуществляется в соответствии с Правилами международных платежных систем Visa, MasterCard и Платежной системы МИР на принципах соблюдения конфиденциальности и безопасности совершения платежа, для чего используются самые современные методы проверки, шифрования и передачи данных по закрытым каналам связи. Ввод данных банковской карты осуществляется на защищенной платежной странице АО «АЛЬФА-БАНК».
На странице для ввода данных банковской карты потребуется ввести данные банковской карты: номер карты, имя владельца карты, срок действия карты, трёхзначный код безопасности (CVV2 для VISA, CVC2 для MasterCard, Код Дополнительной Идентификации для МИР). Все необходимые данные пропечатаны на самой карте. Трёхзначный код безопасности — это три цифры, находящиеся на обратной стороне карты.
Далее вы будете перенаправлены на страницу Вашего банка для ввода кода безопасности, который придет к Вам в СМС. Если код безопасности к Вам не пришел, то следует обратиться в банк выдавший Вам карту.
Случаи отказа в совершении платежа:
- банковская карта не предназначена для совершения платежей через интернет, о чем можно узнать, обратившись в Ваш Банк;
- недостаточно средств для оплаты на банковской карте. Подробнее о наличии средств на банковской карте Вы можете узнать, обратившись в банк, выпустивший банковскую карту;
- данные банковской карты введены неверно;
- истек срок действия банковской карты. Срок действия карты, как правило, указан на лицевой стороне карты (это месяц и год, до которого действительна карта). Подробнее о сроке действия карты Вы можете узнать, обратившись в банк, выпустивший банковскую карту;
По вопросам оплаты с помощью банковской карты и иным вопросам, связанным с работой сайта, Вы можете обращаться по следующим телефонам: +7 (495) 777-7895.
Предоставляемая вами персональная информация (имя, адрес, телефон, e-mail, номер банковской карты) является конфиденциальной и не подлежит разглашению. Данные вашей кредитной карты передаются только в зашифрованном виде и не сохраняются на нашем Web-сервере.
Альтернативные источники энергии | Новости компании EF-LIGHT
Альтернативные источники энергии – это возобновляемые ресурсы, которые позволяют получать энергию без использования традиционных способов (нефть, газ, уголь). Основная задача альтернативной энергетики – поиск новых источников, которые бы могли обеспечить необходимый объем энергии, не нанося серьезного вреда экологии. Поиск новых ресурсов ведется постоянно, многие «нетрадиционные» методы получения энергии успешно используются в качестве частичной альтернативы традиционным методам. Альтернативная энергетика внедряется во все сферы жизни и на сегодняшний день можно встретить обычные бытовые приборы, работающие на энергии ветра или солнца.
Виды альтернативных источников энергии
Альтернативная энергетика так же, как и традиционная, использует природные ресурсы, однако делает это безопасно для планеты. Основная идея заключается в применении возобновляемых ресурсов, отсюда и название – возобновляемые источники энергии (ВИЭ). Органическое топливо в виде газа и нефти конечно, в то время как энергия ветра или солнца не закончится никогда. Интересно отметить, что возобновляемые источники энергии активно использовались нашими предками еще до того, как в оборот вошло органическое топливо. К сожалению, последнее дает больше энергии при меньших затратах, поэтому сегодня ВИЭ занимают далеко не первое место.
Солнечная энергия. Самый популярный источник альтернативной энергии в мире. Специальные гелиоустановки или солнечные батареи (фотоэлементы) преобразуют солнечную энергию в другие виды энергии. Солнце можно использовать как для теплоснабжения, так и для выработки электроэнергии. Среди преимуществ – возобновляемость ресурса, бесшумность, абсолютная экологичность (при переработке нет вредных выбросов). Главным недостатком является зависимость от суточного и сезонного ритма излучения, а также необходимость использовать большое количество солнечных батарей (большая площадь солнечной фермы) для выработки достаточного количества энергии. На сегодняшний день солнечная энергия активно используется во многих странах; доля энергии, получаемой от солнца, может составлять до 25% от общей суммы всей используемой в стране энергии.
Энергия ветра. Еще один популярный и активно внедряемый ресурс. Специальные ветровые электростанции (современные ветряные мельницы) преобразуют энергию ветра в электричество. Недостатки и преимущества у таких электростанция такие же, как и в случае с энергией солнца. С одной стороны энергия ветра – экологичный и возобновляемый ресурс, с другой – сильная зависимость от природных условий. Еще один недостаток современных ветряных мельниц — высокий уровень шума, это не позволяет устанавливать их вблизи жилых зон. Впрочем, ветроэнергетика на данный момент является самым перспективным направлением альтернативной энергетики
Тепловая энергия земли. Для переработки данного вида энергии используются геотермальные станции, которые преобразуют энергию грунтовых вод, вулканов, термальных источников. Геотермальные станции могут вырабатывать как тепловую энергию, так и электричество для разных нужд. Основное преимущество – возобновляемость и полная независимость от времени суток или времени года (в отличие от энергии солнца и ветра). Основной недостаток – низкая рентабельность и в некоторых случаях невозможность использовать грунтовые воды из-за токсичности.
Энергия приливов и отливов. Данный вид альтернативной энергии начали разрабатывать относительно недавно, он использует энергию приливов и отливов (кинетическую энергию вращения земли) для выработки электроэнергии. Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, работающие в режиме насоса или генератора. К сожалению, в отличие от классической гидроэлектростанции, подобные установки не пользуются большим спросом так как показывают низкую рентабельность. На данный момент специальные насосы чаще всего устанавливают не отдельно, а лишь в качестве одного из элементов классической гидроэлектростанции.
Биотопливо. Биотопливо – это топливо из растительного или животного сырья. Чаще всего под биотопливом нового поколения понимают твердое (торф, отходы деревообработки и сельского хозяйства), жидкое (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).
Перечисленные виды альтернативного топлива не единственные. Ученые постоянно ведут поиск новых источников энергии; используются грозовая энергия (атмосферное электричество) и даже энергия вирусов. К сожалению, все новые разработки пока не показывают высокой эффективности и не могут стать полноценной заменой традиционной энергетике.
Альтернативные источники питания
Альтернати́вная энерге́тика — совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде. Существуует не так много различных альтернативных источников электричества, которым и посвящен наш курс:
Ветроэнергетика
В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их используют в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25 % энергии из ветра. Ветрогенераторы бывают 2 видов – полностью автономные , или подключенные в сеть энергоснабжения.
Биотопливо
- Жидкое: Биодизель, биоэтанол.
- Твёрдое: древесные отходы и биомасса (щепа, гранулы (топливные пеллеты) из древесины, лузги, соломы и т. п., топливные брикеты)
- Газообразное: биогаз, синтез-газ.
- Гелиоэнергетика
Солнечные электростанции (СЭС) работают более чем в 80 странах.
Солнечный коллектор, в том числе Солнечный водонагреватель, используется как для нагрева воды для отопления, так и для производства электроэнергии.
Есть и другие возможности , например комбинированные , например — Энергетическая башня, совмещает солнечную и ветроэнергетику. Есть два варианта.
Первый — охлаждение нагретого солнцем воздуха на высоте нескольких сотен метров и преобразование кинетической энергии нисходящих потоков воздуха в электроэнергию.
Второй — нагревание солнцем почвы и воздуха в очень большом парнике и преобразование кинетической энергии восходящего потока воздуха в электроэнергию.
Фотоэлектрические элементы — элементы, способные вырабатывать электрический ток от падающих на поверхность фотонов света.
Наноантенны
Альтернативная гидроэнергетика
— Волновой генератор
— Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае, Южной Корее, Норвегии
— Волновые электростанции.
— Мини и микро ГЭС (устанавливаются в основном на малых реках).
Энергия температурного градиента морской воды
Аэро ГЭС (конденсация влаги из атмосферы, в том числе из облаков)— работают опытные установки.
Геотермальная энергетика
Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанциях вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.
Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)
Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена)
Мускульная сила человека
Хотя мускульная сила является самым древним источником энергии, и человек всегда стремился заменить её чем-то другим, в настоящее время её значение растёт вместе с ростом использования транспортных средств на мускульной тяге — велосипед, самокат, веломобиль и т.п.
Грозовая энергетика— это способ использования энергии путём поимки и перенаправления энергии молний в электросеть.
Криоэнергетика — это способ аккумулирования избыточной энергии посредством сжижения воздуха.
Гравитационная энергетика — аккумулирование избыточной энергии посредствам запасания её в виде потенциальной энергии гравитационного поля.
Управляемый термоядерный синтез
Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.
Водородная энергетика
На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.
Космическая энергетика
Получение электроэнергии в фотоэлектрических элементах, расположенных на околоземной орбите или на Луне. Электроэнергия будет передаваться на Землю в форме микроволнового излучения. Может способствовать глобальному потеплению. До сих пор не применяется.
Давайте изучать и применять все эти источники альтернативной энергетики вместе.
Отправьте заявку на компетенцию и мы свяжемся с Вами в ближайшее время!
14 альтернативных источников энергии, которые могут иметь значение
Альтернативные источники энергии растут
В энергетическом секторе ископаемых видов топлива источников были основным источником энергии из-за их относительно низкой цены. Тем не менее, наша потребность в энергии на , согласно прогнозам, вырастет на на в будущем, и мы больше не можем полагаться на конечных и , загрязняющих источников энергии. За последнее десятилетие мы наблюдали положительных сдвигов в сторону расширения наших мощностей по возобновляемым источникам энергии как на местном, так и на глобальном уровне.
Панели солнечных батарей, ветряных турбин, установленных на суше и на море, и гидроэлектростанций — вот некоторые из альтернативных энергетических технологий , которые будут удовлетворять наши будущие потребности в энергии . Наша зависимость от природного газа и нефти является самой большой причиной экологического ущерба, и в энергетическом секторе только несет ответственность за увеличение на 1,7% углекислого газа в нашей атмосфере. Таким образом, альтернативные источники энергии будут в центре внимания для предотвращения дальнейшего воздействия изменения климата на нашу планету.
Согласно ежегодной статистике IRENA по возобновляемым мощностям за 2019 год, глобальные возобновляемых генерирующих мощностей достигли 2351 ГВт . Из трех альтернативных источников энергии с наибольшим процентом:
- На долю гидроэнергетики приходится 1172 ГВт , что составляет примерно половину от общей суммы.
- Береговая и морская энергия ветра занимает второе место с мощностью 564 ГВт.
- Мощность солнечной энергии немного меньше — 480 ГВт, разделенных между солнечной фотоэлектрической и солнечной тепловой энергией.
Альтернативные источники энергии Источники прогнозируется до расширение в каждом секторе к 2023 . Электроэнергетический сектор имеет наибольшую долю 30% , и на пути декарбонизации электрификация станет основным энергоносителем , большая часть которого будет вырабатываться за счет возобновляемых источников энергии.
Отопление занимает второе место с 12%, а сектор транспорта идет последним с только 3.8% альтернативных источников энергии, нуждающихся в улучшении.
В приведенной ниже инфографике GreenMatch выделяет текущую и будущую область альтернативных источников энергии и дает обзор инвестиций и будущих прогнозов на нашем пути к устойчивому будущему .
Если вы хотите использовать эту инфографику на своем веб-сайте, используйте код для встраивания ниже:
Получить код для встраиванияИнвестиции в 2019 году замедляются?
В соответствии с планом реализации, установленным Парижским соглашением , совокупные инвестиции в зеленую энергию должны составить долларов США 110 трлн ., или около 2% (среднего) годового валового внутреннего продукта за этот период.
Увеличение тяги к альтернативным источникам энергии снизило затраты, особенно на солнечную энергию. Согласно отчету REN21 о статусе возобновляемых источников энергии за 2019 год, глобальные инвестиции в новые мощности достигли 288,9 млрд долларов США. , без учета гидроэнергетики свыше 50 МВт.
Правительство Китая прекратило свои схемы субсидирования , потому что солнечная энергия теперь считается доступной по цене и приводит к недостаточному развертыванию солнечной энергии в Китае.В результате цифры показывают на 11% меньше инвестиций по сравнению с 2017 годом.
Аналогичным образом, в апреле 2019 года схема льготного тарифа в Великобритании закончилась для новых заявителей, желающих использовать альтернативную энергию.
Инвестиции Прогноз предусматривает стабилизацию и рост инвестиций для следующего обзора. До сих пор Китай является крупнейшим инвестором по странам. Снижение расходов на солнечную энергию на из-за субсидии существенно повлияло на общее количество, демонстрируя явное доминирование на рынке возобновляемых источников энергии.
Объем будущих альтернативных источников энергии
Более широкое внедрение альтернативных источников энергии зависит от еще более эффективных возобновляемых технологий и , реструктурирующих электроэнергетической отрасли. С использованием возобновляемых источников энергии производство чистой энергии возможно на уровне на бытовом уровне с такими технологиями, как солнечные панели , тепловые насосы и котлы на биомассе.
Чтобы в полной мере использовать энергию, которая в основном зависит от погоды или от времени, нам еще предстоит придумать более совершенные решения по накоплению энергии .
Землепользование и рост населения
При росте населения до 9,7 млрд. Чел. к 2050 г. , более широкое использование крупных солнечных ферм может быть не идеальным решением, поскольку они занимают много земли. Минимизация площади земель имеет решающее значение, или разрабатывает более эффективных технологий, таких как преобразователей энергии ветра .
Энергия ветра в настоящее время является одним из наиболее важных альтернативных источников энергии в Великобритании , и примерно обеспечивает около 4 млн.дома. Оффшорный ветер все еще недостаточно развит из-за дорогостоящего обслуживания и расположения в глубоких водах, но в будущем мы сможем более эффективно вырабатывать энергию из океанов и глубоких вод .
Недостатки в конструкции современных ветряных турбин ограничивают потенциал использования энергии ветра, неспособного преодолевать ветры на больших высотах. Будущая воздушная технология может стать лидером с гораздо более многообещающим радиусом действия от до 500 м , где ветры на сильнее .
Один из наиболее дорогостоящих проектов на ранней стадии включает получение солнечной энергии из пространства . Прототип состоит из оптических отражателей, фотоэлементов, преобразующих солнечный свет в энергию, и схемы, преобразующей электричество в радиочастоты. Затем интегрированная антенна будет передавать энергию обратно на Землю.
В будущем этот инновационный альтернативный источник энергии сможет удовлетворить потребности в энергии нашего растущего населения без ограничений, используя постоянный солнечный свет из космоса.
Хранение зеленой энергии
Эффективный аккумулятор жизненно важен для более широкого внедрения альтернативных источников энергии. Солнечная фотоэлектрическая энергия зависит от прямого воздействия солнца, а это означает, что значительного количества энергии идет неиспользованным или потраченным впустую из-за отсутствия встроенных солнечных аккумуляторных батарей.
В будущем водород будет движущим источником энергии. В настоящее время большая часть производится из ископаемого топлива. Однако излишков альтернативной энергии также используется для производства газообразного водорода.Применения универсальны — газообразный водород можно подавать в сеть природного газа или с помощью топливных элементов для обратного преобразования в электричество. Водород можно было бы широко использовать в транспортном секторе, когда мы сможем предложить менее дорогостоящих решений для более широкого внедрения таких альтернативных источников энергии.
Водород имеет наивысшую плотность из всех видов топлива, что делает его более подходящим для распределения и хранения. Его стабильный химический состав также означает, что он может удерживать энергию лучше, чем любая другая среда.
В будущем создание инфраструктуры снабжения и хранения позволит более эффективно использовать водорода. В планы на будущее для водорода входит строительство подземной системы хранения , где излишки энергии ветра, например, могут быть преобразованы в водород посредством электролиза .
Альтернативная энергетика и инфраструктура
Наша текущая глобальная инфраструктура адаптирована только для ископаемого топлива. Строительство нового займет годы и огромных ресурсов.В последние годы автономных технологий , основанных на альтернативной энергии, смогли обеспечить питание удаленных точек в виде мини- или локальных сетей.
Полная децентрализация сети предоставит клиентам возможность продавать электроэнергию обратно в сеть, а получит контроль над необходимой и потребляемой энергией . Однако Великобритания далека от полной децентрализации из-за масштабов необходимых преобразований.
Ряд из предприятий , однако, можно считать пионерами реструктуризации вне сети в Великобритании, например, UPS и некоторые из гигантов розничной торговли и супермаркетов .
Расширение масштабов альтернативной энергетики откроет еще рабочих мест в секторе устойчивой энергетики. Рост и внедрение во всех секторах потребуют лет планирования и значительных инвестиций .
Чтобы гарантировать будущее без дальнейших выбросов парниковых газов, мы можем начать с введения дополнительных запретов на будущие проектов по ископаемому топливу и более строгих целевых показателей выбросов .
В центре внимания альтернативные источники энергии | Изучайте науку в Scitable
Сегодня почти все страны мира признают, что эпоха получения энергии из ископаемых видов топлива — в основном сырой нефти и угля — идет на убыль.На Земле не только ограниченное количество запасов ископаемого топлива, но и экологические (и даже политические) издержки использования этих запасов выше, чем готово нести большинство стран. В результате поиск энергии, полученной из альтернативных источников, включая геотермальные, ядерные, солнечные, ветровые и гидроэлектрические технологии, приобрел огромное значение в политических и научных кругах. Некоторые страны добились значительных успехов в переводе своей энергетической базы с ископаемого топлива на возобновляемые источники энергии; например, Дания, которая поставляла более 95% своей национальной энергии из ископаемого топлива в начале 1970-х годов, в настоящее время поставляет более 30% энергии из ветра и других возобновляемых источников.Многие другие страны, в том числе США и Китай, по-прежнему в значительной степени основаны на ископаемом топливе, но начинают осознавать необходимость инвестировать на национальном уровне в инновации в области альтернативной энергетики, которые могут преобразовать их экономику в ближайшем будущем. Следующие двадцать лет вполне могут принести масштабное переосмысление мирового подхода к энергетике.
Есть много вопросов, на которые необходимо ответить, и сотни путей, по которым можно идти в поисках выхода за рамки ископаемого топлива. Следует ли правительствам мира делать упор на стратегиях повышения энергоэффективности, снижающих спрос на ископаемое топливо за счет снижения энергопотребления? Одним из примеров такого подхода является использование «умных сетей», которые более эффективно регулируют поток энергии от коммунальных предприятий к домам и предприятиям.Или правительствам следует делать упор на выращивании новых источников энергии, таких как энергия ветра или геотермальная энергия? Или их комбинация? Должны ли автомобили будущего работать на топливных элементах, электричестве, растительном топливе. . . или ископаемое топливо? В дебатах об альтернативных источниках энергии нет простых ответов. Формирование глубокого понимания многих точек зрения в этом диалоге необходимо для выработки продуманной, сбалансированной позиции.
В этом обзоре мы проводим экскурсию по поиску альтернативных источников энергии.Какие виды энергии исследуются, и каковы их плюсы и минусы? Как традиционные энергетические компании, в том числе нефтегазовые компании и коммунальные предприятия, реагируют на этот вызов? Как выращивание альтернативных источников энергии может стимулировать экономический рост? Мы надеемся, что ваше исследование ресурсов, которые мы собрали здесь, чтобы ответить на эти вопросы, станет лишь началом пожизненного участия в решении одной из самых важных проблем нашего времени.
Изображение: НАСА.
возобновляемых ресурсов | Национальное географическое общество
Когда дело доходит до энергоресурсов, всегда возникает вопрос устойчивости.Важно, чтобы ресурсы обеспечивали достаточно энергии для удовлетворения наших потребностей — для обогрева наших домов, электроснабжения наших городов и запуска наших автомобилей. Однако также важно учитывать, как эти ресурсы можно использовать в долгосрочной перспективе. Некоторые ресурсы практически никогда не закончатся. Они известны как возобновляемые ресурсы. Возобновляемые ресурсы также производят чистую энергию, что означает меньшее загрязнение и выбросы парниковых газов, которые способствуют изменению климата.
Источники энергии в Соединенных Штатах со временем эволюционировали: от использования древесины до девятнадцатого века до более позднего освоения невозобновляемых ресурсов, таких как ископаемое топливо, нефть и уголь, которые до сих пор остаются доминирующими источниками энергии.Но запас этих ресурсов на Земле ограничен. В последнее время стало расти использование возобновляемых ресурсов. По данным Агентства по охране окружающей среды США, в 2017 году 11 процентов энергопотребления в США приходилось на возобновляемые источники.
Есть некоторые проблемы, связанные с использованием возобновляемых ресурсов. Например, возобновляемая энергия может быть менее надежной, чем невозобновляемая энергия, с сезонными или даже ежедневными изменениями в количестве производимой энергии. Тем не менее, ученые постоянно решают эти проблемы, работая над улучшением осуществимости и надежности возобновляемых ресурсов.
Возобновляемые ресурсы включают энергию биомассы (например, этанол), гидроэнергетику, геотермальную энергию, энергию ветра и солнечную энергию.
Биомасса относится к органическому материалу растений или животных. Сюда входят древесина, сточные воды и этанол (который поступает из кукурузы или других растений). Биомассу можно использовать в качестве источника энергии, потому что этот органический материал поглотил энергию Солнца. Эта энергия, в свою очередь, выделяется в виде тепловой энергии при сгорании.
Гидроэнергетика — один из старейших возобновляемых источников энергии, который использовался тысячи лет.Сегодня каждый штат США использует определенное количество гидроэлектроэнергии. В гидроэнергетике механическая энергия проточной воды используется для выработки электроэнергии. Гидроэлектростанции используют поток рек и ручьев, чтобы вращать турбину для питания генератора, высвобождая электричество.
Геотермальная энергия поступает из тепла, вырабатываемого глубоко внутри ядра Земли. Геотермальные резервуары можно найти на границах тектонических плит вблизи вулканической активности или глубоко под землей. Геотермальную энергию можно использовать путем бурения скважин для перекачки горячей воды или пара на электростанцию.Эта энергия затем используется для отопления и электричества.
Энергия ветра генерирует электричество за счет вращения ветряных турбин. Ветер толкает лопасти турбины, и генератор преобразует эту механическую энергию в электричество. Это электричество может поставлять электроэнергию в дома и другие здания, а также может храниться в электросети.
Излучение Солнца также можно использовать в качестве источника энергии. Фотоэлектрические элементы можно использовать для преобразования этой солнечной энергии в электричество.По отдельности эти элементы генерируют достаточно энергии только для питания калькулятора, но в сочетании для создания солнечных панелей или даже более крупных массивов они обеспечивают гораздо больше электроэнергии.
Поиск правильного метода использования возобновляемых ресурсов — задача, которая становится все более важной, поскольку запасы невозобновляемых ресурсов на Земле продолжают сокращаться. Переход на возобновляемые источники энергии не только лучше поддержит быстро растущее население мира, но и обеспечит более чистую и здоровую окружающую среду для будущих поколений.
Возобновляемая энергия, факты и информация
В любой дискуссии об изменении климата возобновляемая энергия обычно возглавляет список изменений, которые мир может осуществить, чтобы предотвратить наихудшие последствия повышения температуры. Это потому, что возобновляемые источники энергии, такие как солнце и ветер, не выделяют углекислый газ и другие парниковые газы, которые способствуют глобальному потеплению.
Чистая энергия может рекомендовать гораздо больше, чем просто «зеленая» энергия. Растущий сектор создает рабочие места, делает электрические сети более устойчивыми, расширяет доступ к энергии в развивающихся странах и помогает снизить счета за электроэнергию.Все эти факторы способствовали возрождению возобновляемых источников энергии в последние годы, когда ветер и солнце устанавливают новые рекорды для производства электроэнергии.
Последние 150 лет или около того люди в значительной степени полагались на уголь, нефть и другие ископаемые виды топлива для питания всего, от лампочек до автомобилей и заводов. Ископаемое топливо присутствует практически во всем, что мы делаем, и в результате выбросы парниковых газов при сжигании этого топлива достигли исторически высоких уровней.
Поскольку парниковые газы улавливают в атмосфере тепло, которое в противном случае могло бы уйти в космос, средняя температура на поверхности растет.Глобальное потепление является одним из симптомов изменения климата, этим термином ученые теперь предпочитают описывать сложные сдвиги, влияющие на погодные и климатические системы нашей планеты. Изменение климата включает не только повышение средних температур, но и экстремальные погодные явления, изменение популяций и мест обитания диких животных, повышение уровня моря и ряд других воздействий.
Конечно, возобновляемые источники энергии, как и любой другой источник энергии, имеют свои собственные компромиссы и связанные с ними дискуссии. Один из них посвящен определению возобновляемой энергии.Строго говоря, возобновляемые источники энергии — это именно то, что вы могли подумать: они доступны постоянно или, по выражению Управления энергетической информации США, «практически неисчерпаемы». Но «возобновляемый» не обязательно означает устойчивый, как часто спорят противники кукурузного этанола или крупных гидроэлектростанций. Он также не охватывает другие ресурсы с низким или нулевым уровнем выбросов, у которых есть свои сторонники, включая энергоэффективность и ядерную энергетику.
Смотрите все наши видеоролики о возобновляемых источниках энергии здесь. Типы возобновляемых источников энергииГидроэнергетика: На протяжении веков люди использовали энергию речных течений, используя плотины для регулирования потока воды. Гидроэнергетика на сегодняшний день является крупнейшим источником возобновляемой энергии в мире, при этом ведущими производителями гидроэнергии являются Китай, Бразилия, Канада, США и Россия. Хотя гидроэнергетика теоретически является чистым источником энергии, восполняемым за счет дождя и снега, у нее также есть несколько недостатков.
Крупные плотины могут нарушить речные экосистемы и окружающие сообщества, нанося вред дикой природе и вытесняя жителей.Производство гидроэлектроэнергии уязвимо для накопления ила, который может снизить мощность и повредить оборудование. Засуха также может вызвать проблемы. Согласно исследованию 2018 года, в западной части США выбросы углекислого газа за 15-летний период были на 100 мегатонн выше, чем обычно, поскольку коммунальные предприятия обратились к углю и газу для замены гидроэнергетики, потерянной из-за засухи. Даже гидроэнергетика, работающая на полную мощность, несет свои собственные проблемы с выбросами, поскольку разлагающийся органический материал в водохранилищах выделяет метан.
Плотины — не единственный способ использовать воду в качестве источника энергии: проекты по приливной и волновой энергии по всему миру стремятся запечатлеть естественные ритмы океана.В настоящее время проекты морской энергетики вырабатывают около 500 мегаватт электроэнергии — менее одного процента всех возобновляемых источников энергии, — но потенциал намного больше. Такие программы, как премия Шотландии Saltire Prize, поощряют инновации в этой области.
ЧАСЫ: Эти ветряные турбины, более высокие, чем Статуя Свободы, путешествовали по морю.
Ветер: Использование ветра в качестве источника энергии началось более 7000 лет назад.Сейчас ветряные турбины, вырабатывающие электричество, быстро распространяются по всему миру, а Китай, США и Германия являются ведущими производителями энергии ветра. С 2001 по 2017 год совокупная ветровая мощность во всем мире увеличилась до более чем 539 000 мегаватт с 23 900 мВт — более чем в 22 раза.
Некоторые люди могут возражать против того, как ветряные турбины выглядят на горизонте и как они звучат, но энергия ветра, цены на которую снижаются, оказывается слишком ценным ресурсом, чтобы отрицать это. В то время как большая часть энергии ветра поступает от береговых турбин, появляются и морские проекты, большая часть которых приходится на США.К. и Германия. Первая в США оффшорная ветряная электростанция открылась в 2016 году в Род-Айленде, и другие оффшорные проекты набирают обороты. Еще одна проблема с ветряными турбинами заключается в том, что они представляют опасность для птиц и летучих мышей, ежегодно убивая сотни тысяч человек, не так много, как от столкновений со стеклом и других угроз, таких как потеря среды обитания и инвазивные виды, но достаточно, чтобы инженеры работали над решениями, чтобы сделать они безопаснее для летающих диких животных.
Солнечная энергия: Солнечная энергия меняет энергетические рынки по всему миру, от крыш домов до крупных ферм.За десятилетие с 2007 по 2017 год общая установленная в мире мощность фотоэлектрических панелей увеличилась на колоссальные 4300 процентов.
В дополнение к солнечным панелям, которые преобразуют солнечный свет в электричество, в электростанциях, концентрирующих солнечную энергию (CSP), используются зеркала, которые концентрируют солнечное тепло, получая вместо этого тепловую энергию. Китай, Япония и США лидируют в преобразовании солнечной энергии, но солнечной энергии еще предстоит пройти долгий путь, на нее приходится около двух процентов от общего объема электроэнергии, вырабатываемой в США.S. в 2017 г. Солнечная тепловая энергия также используется во всем мире для горячего водоснабжения, отопления и охлаждения.
Что такое солнечные элементы и как они работают? Узнайте больше о солнечной энергии — и узнайте, как этот возобновляемый ресурс превращает энергию солнца в полезную энергию.
Биомасса: Энергия биомассы включает биотопливо, такое как этанол и биодизель, древесину и древесные отходы, биогаз со свалок и твердые бытовые отходы. Как и солнечная энергия, биомасса является гибким источником энергии, способным заправлять транспортные средства, обогревать здания и производить электричество.Но биомасса может вызвать острые проблемы.
Критики этанола на основе кукурузы, например, говорят, что он конкурирует с продовольственным рынком за кукурузу и поддерживает те же вредные методы ведения сельского хозяйства, которые привели к цветению токсичных водорослей и другим опасностям для окружающей среды. Точно так же разгорелись дебаты по поводу того, стоит ли доставлять древесные гранулы из лесов США в Европу, чтобы их можно было сжигать для получения электроэнергии. Тем временем ученые и компании работают над способами более эффективного преобразования кукурузной соломы, осадка сточных вод и других источников биомассы в энергию, стремясь извлечь пользу из материалов, которые в противном случае пошли бы в отходы.
Геотермальная энергия: Используемая на протяжении тысячелетий в некоторых странах для приготовления пищи и обогрева геотермальная энергия извлекается из внутреннего тепла Земли. В больших масштабах подземные резервуары пара и горячей воды можно использовать через скважины, глубина которых может достигать мили и более, для выработки электроэнергии. В меньшем масштабе в некоторых зданиях есть геотермальные тепловые насосы, которые используют разницу температур в несколько футов под землей для обогрева и охлаждения. В отличие от солнечной и ветровой энергии, геотермальная энергия доступна всегда, но у нее есть побочные эффекты, которые необходимо контролировать, например запах тухлых яиц, который может сопровождать выделенный сероводород.
Мировое производство биотоплива увеличилось, основным источником которого является этанол на основе кукурузы.
Способы стимулирования использования возобновляемых источников энергииГорода, штаты и федеральные правительства по всему миру проводят политику, направленную на увеличение использования возобновляемых источников энергии. По крайней мере, 29 штатов США установили стандарты портфеля возобновляемых источников энергии — политики, которые предписывают определенный процент энергии из возобновляемых источников, более 100 городов по всему миру в настоящее время могут похвастаться как минимум 70% возобновляемой энергии, а третьи берут на себя обязательства достичь 100%.Другие стратегии, которые могут стимулировать рост возобновляемой энергии, включают ценообразование на выбросы углерода, стандарты экономии топлива и стандарты эффективности зданий. Корпорации тоже вносят свой вклад, покупая рекордное количество возобновляемой энергии в 2018 году.
Интересно, сможет ли ваш штат когда-либо быть обеспечен 100-процентным использованием возобновляемых источников энергии? Независимо от того, где вы живете, ученый Марк Джейкобсон считает, что это возможно. Это видение изложено здесь, и, хотя его анализ не обходится без критики, он подчеркивает реальность, с которой мир теперь должен считаться.Даже без изменения климата ископаемое топливо является ограниченным ресурсом, и если мы хотим, чтобы наша аренда на планете была возобновлена, наша энергия должна быть возобновляемой.
Источники энергии: сравнение
Если вы хотите быть экологически чистыми, вам следует водить электромобиль. Верно?
К сожалению, не все так просто. Хотя электромобили не загрязняют воздух вокруг себя, как двигатель внутреннего сгорания, их необходимо заряжать, что вызывает вопросы, например, из какого источника энергии поступает электричество и является ли этот источник энергии чистым.
Общая оценка источника энергии основана не только на том, насколько он чист; он также должен быть надежным, доступным и доступным. Не все эти факторы можно однозначно классифицировать. Например, нефть, как правило, относительно доступна в Соединенных Штатах, но отчасти это связано с тем, что правительство субсидирует отрасли, производящие ископаемое топливо. Точно так же, хотя энергия ветра имеет тенденцию быть относительно дорогой, ее стоимость неуклонно снижается в течение многих лет по мере увеличения ее использования.
Для оценки доступных вариантов полезно понимание фундаментальных фактов о том, какие типы энергии доступны и какие компромиссы каждый представляет.
Существует три основных категории источников энергии: ископаемое топливо, альтернативные и возобновляемые источники энергии. Возобновляемые источники энергии иногда, но не всегда, включаются в альтернативу.
Ископаемое топливо образовалось более миллионов лет назад, когда мертвые растения и животные подверглись воздействию сильной жары и давления в земной коре. Этот естественный процесс превращал кости и другие органические вещества в богатые углеродом вещества, которые при сгорании генерируют энергию. Есть три основных вида ископаемого топлива.
- Нефть — это общий термин, который включает такие продукты, как сырая нефть, которая перерабатывается в более привычные виды топлива, такие как бензин, реактивное топливо, керосин и дизельное топливо. Petroleum и oil часто используются как взаимозаменяемые. Его добывают путем бурения или гидроразрыва пласта (также известного как гидроразрыв).
- Уголь — это горная порода, обнаруженная недалеко от поверхности земли, и это одно из самых распространенных ископаемых видов топлива в мире. Его добывают путем открытых горных работ (с использованием машин для очистки самых верхних слоев породы и почвы) и подземных горных работ (с использованием машин и горняков для удаления угля глубоко под землей).
- Природный газ , смесь газов, находящихся под поверхностью земли, добывается аналогично нефти.Достижения в области бурения и гидроразрыва пласта открыли огромные запасы природного газа.
Ископаемые виды топлива часто называют грязными источниками энергии, потому что их использование сопряжено с высокими, а зачастую и необратимыми последствиями для окружающей среды. Выбросы углерода или количество углекислого газа, выделяемого этим топливом в атмосферу, складываются из поколения в поколение и не могут быть возвращены. Более того, на Земле есть лишь конечное количество этих ресурсов.
Формы энергии, не полученные из ископаемого топлива, включают как возобновляемые источники энергии, и альтернативные источники энергии , термины, которые иногда используются как синонимы, но не означают одно и то же.Альтернативная энергия в широком смысле относится к любой энергии, которая не извлекается из ископаемого топлива, но не обязательно только из возобновляемых источников. Например, в ядерной энергетике чаще всего используется уран — широко распространенное, но технически не возобновляемое топливо. Возобновляемая энергия, с другой стороны, включает в себя такие источники, как солнце и ветер, которые возникают естественным образом и непрерывно.
Существует пять основных возобновляемых и альтернативных видов топлива.
- Энергия ветра создается, когда ветер вращает турбину или ветряную мельницу, которая может быть расположена на суше или на море.
- Солнечная энергия использует солнечную энергию двумя способами: путем преобразования солнечного света непосредственно в электричество, когда солнце отсутствует (например, солнечные панели), или солнечной тепловой энергии, которая использует солнечное тепло для создания электричества, метод, который работает даже когда солнце село.
- Гидроэнергетика создается, когда быстро текущая вода вращает турбины внутри плотины, вырабатывая электричество.
- Атомная энергия вырабатывается на электростанциях в процессе ядерного деления.Энергия, создаваемая во время ядерных реакций, используется для производства электричества.
- Биотопливо , также называемое биомассой, производится с использованием органических материалов (древесины, сельскохозяйственных культур и отходов, пищевых отходов и навоза), которые содержат накопленную энергию солнца. Люди использовали биомассу с тех пор, как открыли, как сжигать дрова для разведения огня. Жидкое биотопливо, такое как этанол, также выделяет химическую энергию в виде тепла.
Возобновляемые и альтернативные источники энергии часто классифицируются как чистые, поскольку они производят значительно меньше выбросов углерода по сравнению с ископаемым топливом.Но они не лишены воздействия на окружающую среду.
Например, производство гидроэлектроэнергии выбрасывает меньше углерода, чем электростанции, работающие на ископаемом топливе. Однако строительство плотин для строительства водохранилищ для гидроэлектростанций наводняет долины, нарушая местные экосистемы и источники средств к существованию. В другом случае биотопливо является возобновляемым, но культивируется на огромных участках земли и иногда вызывает больше выбросов углерода, чем ископаемое топливо.
Другие соображения, такие как безопасность, также имеют значение. Вероятность аварии на ядерном объекте чрезвычайно мала, но если она произойдет, результаты будут катастрофическими.Фактически, опасения по поводу опасностей, связанных с эксплуатацией атомных электростанций, ограничили распространение ядерной энергетики.
возобновляемых источников — Национальные академии
Возобновляемые источники
Идея получения нашей энергии из возобновляемых источников, независимых от иностранных государств и не выделяющих парниковые газы, очень привлекательна. Но захват этих ресурсов стоит дорого, и многие из них носят временный характер, что затрудняет их использование в больших масштабах.Узнайте о текущем вкладе возобновляемых источников в наше энергоснабжение и их перспективах для нашего энергетического будущего.
Геотермальный
Геотермальный
Соединенные Штаты производят на электроэнергии больше, чем на электроэнергии из геотермальной энергии, чем любая другая страна в мире.
Геотермальная энергия — это внутренний источник энергии с относительно благоприятным воздействием на окружающую среду.Так почему же он составляет всего 0,2% от общего энергоснабжения США?
Подробнее о геотермальной энергии
Ветер
Ветер
В Соединенных Штатах количество электроэнергии, произведенной с помощью ветра , удвоилось на в период с 2010 по 2015 год и в настоящее время составляет 19% от всей потребляемой возобновляемой энергии и почти 2% от общего количества U.С. Энергопотребление.
Ветер составляет очень небольшую часть нашего общего производства энергии, но в последние несколько лет он растет. Узнайте, как эта технология использования возобновляемых источников энергии способствует нашему электроснабжению.
Подробнее о ветре
Солнечная
Солнечная
Около 0.6% от общего количества энергии, потребляемой в США, приходилось на фотоэлектрические и солнечные тепловые источники в 2015 году, но эта доля растет.
Солнечный свет — самый богатый источник энергии на Земле. Тем не менее, улавливание и преобразование его энергии в пригодные для использования формы является сложной задачей. Узнайте, как в настоящее время используется солнечная энергия и препятствия на пути к расширению ее использования.
Подробнее о солнечной энергии
Гидроэлектростанции
Гидроэлектростанции
Источники гидроэлектроэнергии производят около четверти всего U.S. возобновляемые источники энергии, потребленные в 2014 году, и около 2,5% от общего объема потребленной энергии.
Из возобновляемых источников энергии, используемых для производства электроэнергии в Соединенных Штатах, наибольший вклад вносит гидроэнергетика. Вода, используемая для вращения турбины, является дешевым и экологически чистым домашним источником энергии. Но гидроэнергетика влечет за собой и другие воздействия на окружающую среду, которые необходимо учитывать.
Подробнее о гидроэлектростанции
Биомасса
Биомасса
Древесина и отходы биомассы, наряду с биотопливом, составляли около 50% U.S. возобновляемые источники энергии в 2014 году и более 4% всей потребляемой энергии.
Из всех возобновляемых источников биомасса вносит наибольший вклад в энергоснабжение США. Узнайте, как метан со свалок, зерновой спирт из кукурузы и даже тепло из городских отходов помогают нашей нации.
Подробнее о биомассе
возобновляемых источников энергии | Гавайский Электрик
Что такое возобновляемая энергия?
Электроэнергия может быть произведена из различных источников.Некоторые из них являются ископаемыми видами топлива, такими как нефть и уголь. Более 80 процентов всей энергии, используемой на Гавайях для электричества, наземного и воздушного транспорта, поступает из импортных ископаемых видов топлива, в основном нефти и некоторого количества угля. Ископаемое топливо образовывалось под землей в течение миллионов лет в результате сжатия органических материалов, таких как растения и животные. После использования ископаемого топлива заменить его невозможно. Мы называем источник энергии «возобновляемым» или «устойчивым», если он может быть восполнен — например, биомасса, биотопливо или мусор — или никогда не иссякнет — например, солнце, ветер или движение океана.
Источники возобновляемой энергии
Перейдите по этим ссылкам, чтобы узнать больше о состоянии и планах на будущее в отношении различных типов возобновляемых источников энергии, доступных на Гавайях.
Почему это важно?
Банка возобновляемой энергии:
- Сократить потребление нефти на Гавайях. Нефть должна быть импортирована на Гавайи, часто из нестабильных, неспокойных мест на тысячах миль открытого океана. Сегодня цены на нефть ниже, но Гавайи экономически уязвимы перед ростом цен на нефть и перебоями в поставках.Чтобы повысить нашу энергетическую безопасность и сохранить больше наших энергетических долларов дома, нам необходимо использовать местные возобновляемые ресурсы по более стабильным ценам.
- Защитите окружающую среду Гавайев и уменьшите наше влияние на глобальное потепление. Сжигание ископаемого топлива приводит к образованию углекислого газа и других выбросов, вызывающих глобальное изменение климата. Будучи островами в центре Тихого океана, Гавайи уязвимы для повышения уровня моря, более продолжительных и сильных штормов и более продолжительных и более засушливых засух. Хотя углеродный след Гавайев и наш вклад в глобальное изменение климата невелик, важно, чтобы все мы вносили свой вклад.
Снижение импорта нефти
Гавайи исторически зависели от импортной нефти для удовлетворения большей части своих потребностей в энергии по многим причинам. В отличие от континентальных штатов, Гавайи не имеют доступа к источникам топлива, таким как большие реки, для производства гидроэлектроэнергии. На островах нет местных запасов нефти, природного газа или угля. Такое топливо нужно импортировать. Нефть относительно легко транспортировать и хранить; его можно легко переработать для создания топлива для всего спектра использования в воздухе, воде и наземном транспорте, электричестве и других целях.
Диверсификация источников энергии на Гавайях за счет использования большего количества местных возобновляемых источников энергии по более низким и более стабильным ценам для производства электроэнергии (и, по возможности, для транспортировки) — лучший способ помочь Гавайям использовать меньше нефти.
Только около одной трети нефти, импортируемой Гавайями, используется для производства электроэнергии. Около одной трети идет на авиакеросин и около одной трети — на бензин и дизельное топливо для наземного и водного транспорта. Хотя использование возобновляемых источников энергии сократит использование Гавайскими островами нефти для производства электроэнергии, это не устранит необходимости импортировать сырую нефть или нефтепродукты на Гавайи, если топливо необходимо для наземного и воздушного транспорта.Это одна из причин, по которой Hawaiian Electric выступает за электромобили.
.