Как сделать индукционный нагреватель: принцип работы, применение, схемы генерирования ТВЧ, как сделать своими руками

Июн 8, 1978 Разное

Как сделать индукционный нагреватель: принцип работы, применение, схемы генерирования ТВЧ, как сделать своими руками

Содержание

Как сделать простейший индукционный вихревой нагреватель своими руками — устройство и схема

Индукционный нагреватель, или индуктор, — прибор, который создает электромагнитное поле, нагревающее проводник, помещенный в это поле. Говоря простыми словами, это катушка, обрамленная медной проволокой. В основном индукторы используют с целью вырабатывания тепловой энергии за счет электрической без использования теплоэлектронагревателей.

Содержание материала

Принцип работы

Переменный ток проходит по обмотке катушки, образуя вокруг не магнитное поле. При введении в центр, внутрь витков, металлического предмета изменяется сила магнитного поля. Из-за этого и нагревается сам предмет, именуемый сердечником. Для того чтобы металл нагревался, катушка обязательно должна питаться переменным током большой частоты, иначе можно получить обычный электромагнит.

Существует два вида индукционных нагревателей:

  • индукторы, при изготовлении которых пользуются различными электронными деталями;
  • вихревой (ВИН) индуктор, им пользуются для обогрева дома, нагрева воды.

ВИН чаще всего встречается в повседневной жизни, так как его достаточно просто изготовить самостоятельно без особых затрат. Он работает на основе передачи энергии, преобразуемой в тепло, от магнитного поля к объекту, например, воде.

Как сделать в домашних условиях

Схема устройства довольно проста, так что самому можно без проблем сделать индукционный нагреватель.

Индуктор можно выполнить на любой базе, но нельзя забывать о теплоизоляции, без которой коэффициент полезного действия систем довольно сильно упадет.

Также нужно серьезно подойти к изготовлению самого важного элемента – катушки. Медную проволоку лучше наматывать очень аккуратно.

С использованием трансформатора

Базовым элементом данной схемы будет сам трансформатор, на котором уже содержатся первичная и вторичная обмотки. Электромагнитное индукционное поле, сформированное в первичной обмотке, начнет влиять на вторичную обмотку. Так, вторичная обмотка передаст энергию в виде тепла тому объекту, который требуется нагреть.

Инструкция выполнения:

  1. две трубки, отличающиеся размерами, соединить друг с другом с помощью сварки;
  2. на внешнюю трубку наложить 90-100 витков с одинаковым расстоянием между ними.

С инвертором

Основной составной частью этой системы станет высокочастотный сварочный инвертор, где уже есть индуктор, нагревательный элемент и генератор переменного тока.

Устройство генерирует высокочастотный ток, который передается на катушку. Она, в свою очередь, и создает магнитное поле, изменяющееся со временем. Его вихревой ток нагревает металлическую часть, которая и передает энергию нужному объекту.

Инструкция создания:

  1. в полимерную трубу поместить металл;
  2. на трубку наносятся сто витков проволоки из меди таким образом, чтобы не осталось большое пространство.

Таким образом, дома можно изготовить индукционный нагреватель без особых затрат и глубоких знаний физики. Главное, не забывать о безопасности.

Поделитесь материалом с друзьями в социальных сетях

сварка своими руками, печь для металла, переделка

Индукционный нагреватель из сварочного инвертора доступен каждому, ведь создать его можно своими рукамиКаждый человек заботится о комфорте и уюте в своем жилом помещении. Особенно это касается загородных домов, коттеджей, когда встает вопрос о правильном выборе системы отопления. Современный торговые представители предлагают большое количество оборудования, вы можете выбрать любой из котловых агрегатов. Но как поступить, если, ни один из печных типов вам не подходит, а от газовой магистрали вы находитесь очень далеко? Мы рекомендуем вам в этой ситуации, ознакомиться с одним из видов электрического оборудования.

Индукционная сварка: принцип работы

Нагреватель такого типа можно создать, имея определенные детали.

Чаще всего в его конструктивные узлы входят:

  1. Индуктор, который изготавливается из необходимого количества медной проволоки. Именно она будет обеспечивать своего рода магнитное поле.
  2. Элемент да нагрева. Чаще всего он изготавливается из медной трубы, которая находится внутри каждого индуктора.
  3. Генератора. Он будет преобразовывать энергию бытового типа в качественный ток.

Все эти компоненты взаимодействуют между собой и работают по принципу нагревателя индукционного типа.

Индукционный нагреватель состоит из генератора и индуктора

Индукционный нагреватель в свою очередь представляет 4 важных момента:

  • Генератор, который будет вырабатывать ток, и передавать его на медную кадушку;
  • Индуктор, принимающий ток, будет создавать электромагнитное поле;
  • Элемент для нагрева будет разогреваться под воздействием потока, и создавать векторные перемены;
  • Теплоноситель в процессе разогрева будет передавать свою энергию прямо в отопительную систему.

Такое действие индукционного агрегата дает ряд преимуществ.

Подбираем материалы на индукционный нагреватель своими руками из сварочного инвертора

Инверторный высоковольтный водонагреватель в последнее время пользуется популярностью, так как его можно попробовать сделать своими собственными руками. Для этого вам потребуется схема сборки и инструменты, и при этом совершенно не нужно сварки.

Инверторный высоковольтный водонагреватель на сегодняшний день пользуется большой популярностью

Вам потребуются:

  1. Инвертор, который находится в агрегате для сварки. Он сделает процесс монтажа более легким.
  2. Пластиковую трубу с толстыми стенками. Эта деталь станет своеобразным корпусом готового устройства.
  3. Нержавеющую проволоку. Она будет исполнять роль нагревательного элемента в электромагнитной части.
  4. Сетка из металла. Ее задача будет заключаться в удержании кусков проволоки внутри конструкции.
  5. Проволока из меди. Она поможет создать индуктор.
  6. Насос для регулярной циркуляции воды.
  7. Регулятор температуры.
  8. Краны шарового типа, чтобы создать подсоединение к отоплению;
  9. Кусачки для работы с проволокой.
  10. Регрувер и плазморез.

Все эти приборы необходимы. Каждый из них действует взаимосвязано с другим компонентом и при отсутствии одного из них предстоящая работа будет невыполнима.

Как делается индукционная печь из сварочного инвертора своими руками: поэтапность работ

Переделка доступна каждому. Ее можно сделать самому и в результате получить отличную печь. После того как все нужные компоненты и инструменты для индукционного агрегата будут готовы, можно приступать к сборке. Все этапы должны быть выполнены в четкой последовательности.

Индукционную печь из сварочного инвертора несложно сделать самостоятельно

Они заключаются в следующем:

  1. Конец пластиковой трубы нужно прикрепить к металлической сетке, чтобы не допустить проваливания проволоки. Здесь же нужно прикрепить переходник для системы отопления.
  2. С помощью кусачек нужно нарезать нержавеющую проволоку. Длина каждого куска должна составлять от 1 до 6 см. Все нарезанные куски укладываются в трубу, их расположение должно быть плотным.
  3. Другая сторона трубы так же должна быть зафиксирована сеткой. Здесь тоже требуется прикрепить отопительный переходник.
  4. Индуктор изготавливается из медной намотки на трубе. Количество витков должно быть примерно 90. Концы медной обработки должны подключиться к сварочному аппарату.
  5. Теперь можно провести подключение к отоплению. Для этого подключите циркуляционный насос и терморегулятор для автоматического функционирования.

Сборка окончена. Попробуйте включить инвертор. В рабочем состоянии индуктор должен начать создавать вихревые потоки и ТВЧ. Эти потоки должны нагреть проволоку внутри трубы, которые в свою очередь нагреют носитель тепла.

Переделка сварочного инвертора в индукционный нагреватель: важные моменты

Так как нагреватели индукционного типа, созданные своими руками не способны на самостоятельный контроль над температурой воды, то в первую очередь они могут стать источником опасности. Именно по этой причине такой агрегат сразу нуждается в дополнительных доработках. Если быть точнее, то здесь необходимо добавить устройство над контролем за автоматикой. Сперва потребуется установить определенные приборы, так называемую группу безопасности. Сюда можно включить воздухоотводчики, предохранительные клапаны и манометр.

Нагреватели индукционного типа, созданные своими руками, не способны автоматически контролировать температуру воды

Установка может выдавать оптимальную работу только в системе принудительной циркуляции носителя тепла. В случае самотечной схемы, элемент начнет быстро перегреваться и пластиковая труба разрушится.

Для того чтобы не было перегрева, нагреватель должен быть снабжен устройством аварийного отключения, управление которым будет осуществляться от термостата.

Индукционный нагреватель из сварочного инвертора (видео)

Подводя итоги по данной установке нужно отметить, что создание не сложное, однако в любом случае требует соблюдения многих факторов. Самым большим минусом такой конструкции можно считать то, что он малоэффективна. Кроме того надежность установки находится по сей момент под большим вопросом. Так же следует учесть и то, что возможно создание аварийной ситуации, которая в свою очередь приведет к разрыву пластика и короткому замыканию из-за подачи воды. Поэтому заранее задумайтесь, сможете ли вы создать надежную и эффективную конструкцию.


Добавить комментарий

Индукционные нагреватели своими руками — как сделать для воды: инструкция

Индукционный нагреватель. В его работе используется принцип индукции. Это экологичный прибор, не несущий вред и опасность человеческому здоровью, не дающий копоти и не требующий заготовки или закупки твердого топлива. Индукционный генератор с успехом нагревает воду в отопительной системе и может быть сделан собственноручно, что сэкономит финансы семьи.

Его использование возможно в бытовых электроприборах для нагревания воды, на кухне для приготовления еды, для плавки металлических сплавов дома. Чтобы изготовить такой безопасный и экономный прибор, можно приобрести доступные по цене микроконтроллеры и датчики.

Преимущества:

  • Изначальная герметичность цельнометаллического элемента нагрева и дистанционная транспортировка энергии электромагнитным полем. Это поможет избежать протечек.
  • Бесшумность даже при вибрировании нагревательного элемента, так как частота вибраций не воспринимается человеческими звуковыми волнами.
  • Возможность самостоятельной сборки нагревателя благодаря доступной цене его элементов.
  • Простое обслуживание и исключение поломок, которое гарантирует постоянно циркулирующий теплоноситель, не дающий сердечнику перегреваться.
  • Экологическая безопасность.
  • Быстрый нагрев.
  • Отсутствие необходимости в чистке, так как накипь не оседает из-за вибраций, генерируемых вихревыми токами.
  • Долговечность – до 25 лет, надежность и эффективность. А также возможность отказаться от циркуляционного насоса, так как на старте происходит разогрев теплоносителя до газообразного состояния, и он течет по трубопроводу под действием тепловой конвекции.

Виды нагревателей и принцип действия

Классификация индукционных нагревателей на определенные категории осуществляется по диапазонам их частот на выходе, которые и определяют в дальнейшем их использование. Виды:

  • высокой частоты – 20-40 или 30-100кГц;
  • средней частоты – 0,5-20 кГц;
  • сверхвысокочастотные – 100кГц – 1,5МГц.

Индукционный котел состоит из сердечника, электро- и теплоизоляции и самого корпуса. Отличительная его черта – тороидальная обмотка проводниками из меди, которая располагается между 2-ух сваренных стальных труб толщиной от 10 мм из ферромагнита.

Данная конструкция более легкая, с высоким КПД и малогабаритна. Сердечником выступает труба с обмоткой. А 2-ая труба нагревает теплоноситель. Индукционный токовый поток, генерируемый магнитным высокочастотным полем с внешней обмотки на трубу, способствует нагреву теплоносителя, вызывая одновременно вибрацию стенок.

Работа прибора основана на электромагнитной энергии, забираемую теплоносителем и преобразующим ее в тепло. Индуктор в виде многовиткового цилиндра способствует образованию магнитного поля водонагревателя.

Переменный электроток течет через катушку и образует магнитное поле переменного типа, чьи линии расположены перпендикулярно магнитному потоку и замыкаются в круг при их передвижении. Именно вихревые потоки преобразуют электроэнергию в тепловую, которая расходуется достаточно эффективно и при незначительной скорости нагревания.

Схема простого индукционного нагревателя

Делаем своими руками

Необходимые материалы и инструменты

  • Полимерная труба с толщиной стенок от 3 мм и диаметром 5 см для выполнения роли сердечника.
  • Обмотки из эмалированной проволоки из меди диаметром от 3 мм, чтобы создать индукционную катушку с 50 или 90 витками на нагревателе и подсоединить их без спайки и разрывов к клеммам.
  • В качестве нагревателя выступает рубленая проволока в 5 см диаметром 5-6 мм.
  • Сварочный инвертор высокой частоты, позволяющий плавно изменять диапазон силы электротока (от 15 А). Или 3-ехфазный трансформатор.
  • Кусачки, паяльник и сварочный аппарат.

Процесс изготовления

  1. Подготовительный этап заключается в фиксировании полимерной трубы и намотке на нее витков.
  2. Торцы сердечника обрезаются с запасной длиной проволоки в 10 см на отводы.
  3. На нижнем отводе устанавливается уголок для подключения отопительной обратки и поступления уже охлажденной воды. Должен быть установлен шаровой вентиль, чтобы заменять сердечник, не сливая систему.
  4. Труба плотно заполняется рубленой проволокой.
  5. На верхнем патрубке устанавливается тройник, чтобы выводить нагретую воду в напорный контур замкнутого типа через шаровой вентиль. Использование незанятого отвода – чтобы подключить предохранительный клапан.
  6. Далее монтируется металлический или полимерный защитный нагревательный контур. Должно быть предусмотрено окно доступа к управлению расположенному в самом низу сварочному инвертору.
  7. Проволока из меди подсоединяется к индукционным нагревательным клеммам, а сердечник наполняется теплоносителем.

Большей надежностью отличается водонагреватель с фиксированным 3-ехфазным трансформатором и 2-умя трубами из металла, которые вварены друг в друга, т.е. контур имеет форму бублика. Обмотка делается на наружной трубе, а к корпусу производят приварку патрубков.

Нагревательный элемент должен быть расположен только по центру для усиления воздействия вихревых потоков. Абсолютная герметичность системы будет обеспечена только при имеющихся рабочих навыках со сварочным аппаратом.

Производительность прибора будет выше, а размерные параметры — меньше. Необязательно установленный защитный чехол поможет снизить тепловые и токовые утечки.

Правила безопасности

  • Категорически не разрешено включение оборудования вне разводки, не заполнив полимерную трубу водой. Так как это грозит расплавлением полимерного корпуса и выпадением раскаленных металлических отрезков.
  • Включение оборудования должно происходить в отдельную линию, для которой требуется кабель сечением 4-6 кв. мм.
  • Должна присутствовать напорная циркуляция, чтобы не разорвало корпус от вскипевшей воды. Для этого устанавливается клапан избыточного давления на выходе.
  • Необходимо монтировать предохранительный клапан, чтобы снизить давление в случае выхода из строя циркуляционного насоса и выработке пара в избытке.
  • Инвертор должен быть подключен к сети с использованием защитного отключения. Желательно установить манометр или контроллеры.
  • Должно быть предусмотрено заземление индукционной обмотки, для чего электропровод выводится на металлический контур, который зарыт в землю.
  • Оборудование должно размещаться от 80 см от полового и потолочного перекрытий, от 30 см — от стеновых поверхностей. Чтобы огородить себя от действия электромагнитного поля, монтаж следует делать вдалеке от зоны проживания людей.
  • Чтобы избежать ожогов и токовых ударов, следует изолировать открытые медные участки.

Блиц-советы

  1. Оборудование индукционных водонагревателей представляет собой индивидуальную отопительную закрытую систему, которая обустраивается трубопроводом из пластика. Чтобы обезопасить монтируемого оборудование, после выводного патрубка требуется установка таких деталей, как манометр, подрывной клапан и автомат для отвода воздушных скоплений.
  2. На первый взгляд изготовление водонагревателя, основанного на принципе индукции, представляется сложным и трудоемким процессом. Но благодаря значительному снижению затрат на электроэнергию, которая на сегодняшний день один не из дешевых ресурсов, со временем польз для бюджета семьи будет очевидна. Конструкция данного оборудования способствует нагреву воду намного быстрее, благодаря своим особенностям индукционный прибор имеет ряд преимуществ перед электронагревательными аналогами при одинаковом расходе электричества.
  3. Возможно создание водонагревателя, основанного на принципе индукции, из электромагнитного трансформатора, в основу работы которого входят 2 мощных транзистора. Прибор нагревается в результате действия на металл токов Фуко.
  4. Так как переменное электромагнитное поле способствует разогреву и нагревательного элемента, и всего, что окружает его – это касается и тканей человеческого тела, то от данного устройства необходимо находиться вдалеке.
  5. К недостаткам данного прибора стоит отнести еще и его работу на недешевом источнике энергии – электричестве.
  6. Благодаря эффективности и колоссальной теплоотдачи водонагревателя существует риск детонации котла от перегрева воды, который можно устранить датчиком давления.

Статья была полезна?

0,00 (оценок: 0)

Простой индукционный нагреватель. Как сделать индукционный нагреватель своими руками из сварочного инвертора Индукционный нагреватель 1000w схема

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Описание метода.

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Преимущества.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
— повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
— применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

А) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания — заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается — это может привести к «разносу» генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания.

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности — схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот — напряжение стремится к нулю, а ток максимален.

Статья взята с сайта http://dic.academic.ru/ и переработана в более понятный для читателя текст, компанией ООО «Проминдуктор».

Индукционные отопительные котлы – это приборы, которые отличаются очень высоким КПД. Они позволяют заметно снизить затраты на электроэнергию по сравнению с традиционными приборами, оборудованными ТЭНами.

Модели промышленного производства недешевы. Однако сделать индукционный нагреватель своими руками сможет любой домашний мастер, владеющий нехитрым набором инструментов. Ему в помощь мы предлагаем подробное описание принципа действия и сборки эффективного обогревателя.

Индукционный нагрев невозможен без использования трех основных элементов:

Индуктор представляет собой катушку, обычно выполненную из медной проволоки, с ее помощью генерируют магнитное поле. Генератор переменного тока используют для получения высокочастотного потока из стандартного потока домашней электросети с частотой 50 Гц.

В качестве нагревательного элемента применяется металлический предмет, способный поглощать тепловую энергию под воздействием магнитного поля. Если правильно соединить эти элементы, можно получить высокопроизводительный прибор, который прекрасно подходит для подогрева жидкого теплоносителя и .

С помощью генератора электрический ток с необходимыми характеристиками подается на индуктор, т.е. на медную катушку. При прохождении через нее поток заряженных частиц формирует магнитное поле.

Принцип действия индукционных нагревателей основан на возникновении электротоков внутри проводников, появляющихся под воздействием магнитных полей

Особенность поля состоит в том, что оно обладает способностью на высоких частотах изменять направление электромагнитных волн. Если в это поле поместить какой-нибудь металлический предмет, он начнет нагреваться без непосредственного контакта с индуктором под воздействием созданных вихревых токов.

Высокочастотный электрический ток, поступающий от инвертора к индукционной катушке, создает магнитное поле с постоянно изменяющимся вектором магнитных волн. Помещенный в это поле металл быстро разогревается

Отсутствие контакта позволяет сделать потери энергии при переходе из одного вида в другой ничтожными, чем и объясняется повышенный КПД индукционных котлов.

Чтобы подогреть воду для отопительного контура, достаточно обеспечить ее контакт с металлическим нагревателем. Часто в качестве нагревательного элемента используют металлическую трубу, через которую просто пропускают поток воды. Вода попутно охлаждает нагреватель, что значительно увеличивает срок его службы.

Электромагнит индукционного прибора получают путем намотки проволоки вокруг сердечника из ферромагнита. Полученная в результате катушка индукции разогревается и передает тепло нагреваемому телу или протекающему рядом теплоносителю через теплообменник

Преимущества и недостатки прибора

“Плюсов” у вихревого индукционного нагревателя великое множество. Это простая для самостоятельного изготовления схема, повышенная надежность, высокий КПД, относительно низкие затраты на электроэнергию, длительный срок эксплуатации, малая вероятность возникновения поломок и т.п.

Производительность прибора может быть значительной, агрегаты этого типа успешно используются в металлургической промышленности. По скорости нагрева теплоносителя устройства этого типа уверенно соперничают с традиционными электрическими котлами, температура воды в системе быстро достигает необходимого уровня.

Во время функционирования индукционного котла нагреватель слегка вибрирует. Эта вибрация стряхивает со стенок металлической трубы известковый осадок и другие возможные загрязнения, поэтому в очистке такой прибор нуждается крайне редко. Конечно, отопительную систему следует защитить от этих загрязнений с помощью механического фильтра.

Индукционная катушка нагревает металл (трубу или куски проволоки), помещенные внутри нее, с помощью высокочастотных вихревых токов, контакт не обязателен

Постоянный контакт с водой сводит к минимуму и вероятность перегорания нагревателя, что является довольно частой проблемой для традиционных котлов с ТЭНами. Несмотря на вибрацию, котел работает исключительно тихо, дополнительная шумоизоляция в месте установки прибора не понадобится.

Еще индукционные котлы хороши тем, что они практически никогда не протекают, если только монтаж системы выполнен правильно. Это очень ценное качество для , так как исключает или значительно сокращает вероятность возникновения опасных ситуаций.

Отсутствие протечек обусловлено бесконтактным способом передачи тепловой энергии нагревателю. Теплоноситель с помощью описанной выше технологии можно разогреть чуть ли не до парообразного состояния.

Это обеспечивает достаточную тепловую конвекцию, чтобы стимулировать эффективное перемещение теплоносителя по трубам. В большинстве случаев отопительную систему не придется оборудовать циркуляционным насосом, хотя все зависит от особенностей и схемы конкретной системы отопления.

Выводы и полезное видео по теме

Ролик #1. Обзор принципов индукционного нагрева:

Ролик #2. Интересный вариант изготовления индукционного нагревателя:

Для установки индукционного нагревателя не нужно получать разрешение контролирующих органов, промышленные модели таких устройств вполне безопасны, они подходят и для частного дома, и для обычной квартиры. Но владельцам самодельных агрегатов не следует забывать о технике безопасности.

Вот проект индукционного нагревателя металлов простейшей конструкции, он собран по схеме мультивибратора и часто выступает как первый нагреватель, который делают радиолюбители.

Принцип действия ТВЧ установки

Катушка создает высокочастотное магнитное поле, и в металлическом предмете в середине катушки возникают вихревые токи, которые будут его разогревать. Даже маленькие катушки раскачивают ток около 100 A, поэтому параллельно с катушкой, подключена резонансная емкость, которая компенсирует ее индукционный характер. Схема катушка-конденсатор должна работать на их резонансной частоте.


ТВЧ катушка самодельная

Схема принципиальная электрическая


Схема индукционного нагревателя от 12В

Вот оригинальная схема генератора индукционного нагревателя, а ниже неё чуть изменённый вариант, по которому и была собрана конструкция мини ТВЧ установки. Ничего дефицитного тут нет — купить придётся только полевые транзисторы, использовать можно BUZ11, IRFP240, IRFP250 или IRFP460. Конденсаторы специальные высоковольтные, а питание будет от автомобильного аккумулятора 70 А/ч — он будет очень хорошо держать ток.

Проект на удивление оказался успешным — всё заработало, хоть и собрано было «на коленке» за час. Особенно порадовало что не требует сеть 220 В — авто аккумуляторы позволяют питать её хоть в полевых условиях (кстати, может из неё походную микроволновку сделать?). Можно поэкспериментировать в направлении чтобы снизить напряжение питания до 4-8 В как от литиевых АКБ (для миниатюризации) с сохранением хорошей эффективности нагрева. Массивные металлические предметы конечно плавить не получится, но для мелких работ пойдёт.

Ток потребления от источника питания 11 А, но после прогрева падает до примерно 7 A, потому что сопротивление металла при нагреве заметно увеличивается. И не забудьте сюда использовать толстые провода, способные выдержать более 10 А тока, иначе провода при работе станут горячие.


Нагрев отвертки до синего цвета ТВЧ
Нагрев ножа ТВЧ

Второй вариант схемы — с питанием от сети

Чтоб удобнее настраивать резонанс можно собрать более совершенную схему с драйвером IR2153. Рабочая частота настраивается регулятором 100к в резонанс. Частотами можно управлять в диапазоне примерно 20 — 200 кГц. Схема управления нуждается в вспомогательном напряжении 12-15 В от сетевого адаптера, а силовая часть через диодный мост может быть подключена напрямую к сети 220 В. Дроссель имеет около 20 витков 1,5 мм на ферритовом сердечнике 8×10 мм.


Схема индукционного нагревателя от сети 220В

Рабочая катушка ТВЧ должна быть из толстой проволоки или лучше медной трубки, и имеет около 10-30 витков на оправке 3-10 см. Конденсаторы 6 х 330n 250V. И то, и другое через некоторое время сильно нагревается. Резонансная частота около 30 кГц. Эта самодельная установка индукционного нагрева собрана в пластиковом корпусе и работает уже более года.

Схема индукционного нагревателя на 500 Ватт, который можно сделать своими руками! В интернете множество подобных схем, но интерес к ним пропадает, так как в основном они или не работают или работают но не так как хотелось бы. Данная схема индукционного нагревателя полностью рабочая, проверенная, а главное, не сложная, думаю вы оцените!

Компоненты и катушка:

Рабочая катушка содержит 5 витков, для намотки была использована медная трубка диаметром около 1 см, но можно и меньше. Такой диаметр был выбран не случайно, через трубку подаётся вода для охлаждения катушки и транзисторов.

Транзисторы ставил IRFP150 так как IRFP250 под рукой не оказалось. Конденсаторы плёночные 0,27 мкФ 160 вольт, но можно поставить 0,33 мкФ и выше, если первые найти не получится. Обратите внимание, что схему можно питать напряжением до 60 вольт, но в этом случае, рекомендуется ставить конденсаторы на напряжение 250 вольт. Если схема будет питаться напряжением до 30 вольт, то на 150 вполне хватит!

Стабилитроны можно ставить любые на 12-15 вольт от 1 Ватт, например 1N5349 и им подобные. Диоды можно использовать UF4007 и ему подобные. Резисторы 470 Ом от 2-х Ватт.

Немного фотографий:


За место радиаторов, были использованы медные пластины, которые припаиваются прямо к трубке, так как в данной конструкции используется водное охлаждение. На мой взгляд это самое эффективное охлаждение, потому что транзисторы греются хорошо и ни какие вентиляторы и супер радиаторы не спасут их от перегрева!


Охлаждающие пластины на плате расположены таким образом, что бы трубка катушки проходила через них. Пластины и трубку нужно припаять между собой, для этого я использовал газовую горелку и большой паяльник для пайки автомобильных радиаторов.


Конденсаторы расположены на двух стороннем текстолите, плата припаивается так же к трубке катушки на прямую, для лучшего охлаждения.


Дроссели намотаны на ферритовых кольцах, лично я достал их из компьютерного блока питания, провод использовался медных в изоляции.

Индукционный нагреватель получился достаточно мощным, латунь и алюминий плавит очень легко, железные детали тоже плавит, но немного медленнее. Так как я использовал транзисторы IRFP150 то по параметрам, схему можно питать напряжением до 30 вольт, поэтому мощность ограничивается только этим фактором. Так что всё таки советую использовать IRFP250.

На этом всё! Ниже оставлю видео работы индукционного нагревателя и список деталей, которые можно купить на AliExpress по очень низкой цене!

Купить детали на Алиэкспресс:

  • Купить Транзисторы IRFP250
  • Купить Диоды UF4007
  • Купить Конденсаторы 0,33uf-275v

Когда перед человеком встает необходимость нагреть металлический объект, ему на ум обязательно приходит огонь. Огонь – старомодный, неэффективный и медленный способ нагреть металл. Он тратит львиную долю энергии на тепло, и от огня всегда идет дым. Как было бы здорово, если бы всех этих проблем можно было избежать.

Сегодня я покажу вам как собрать индукционный нагреватель своими руками с ZVS-драйвером. Это приспособление нагревает большинство металлов с помощью ZVS-драйвера и силы электромагнетизма. Такой нагреватель высокоэффективен, не производит дыма, а нагрев таких небольших металлических изделий, как, допустим, скрепка — вопрос нескольких секунд. Видео демонстрирует нагреватель в действии, но инструкция там представлена другая.

Шаг 1: Принцип работы



Многие из вас сейчас задаются вопросом – что такое этот ZVS-драйвер? Это высокоэффективный трансформатор, способный создавать мощное электромагнитное поле, нагревающее металл, основа нашего нагревателя.

Чтобы стало понятно, как работает наш прибор, я расскажу о ключевых моментах. Первый важный момент — источник питания 24 В.2*R.

Очень важен металл, из которого состоит объект, который вы хотите нагреть. У сплавов на основе железа более высокая магнитная проницаемость, они могут использовать больше энергии магнитного поля. Из-за этого они быстрее нагреваются. Алюминий имеет низкую магнитную проницаемость и нагревается, соответственно, дольше. А предметы с высоким сопротивлением и низкой магнитной проницаемостью, например, палец, вообще не нагреются. Сопротивление материала очень важно. Чем выше сопротивление, тем слабее ток пройдет по материалу, и тем, соответственно, меньше выделится тепла. Чем ниже сопротивление, тем сильнее будет ток, и согласно закону Ома, меньше потеря напряжения. Это немного сложно, но из-за связи между сопротивлением и выдачей мощности, максимальная выдача мощности достигается, когда сопротивление равно 0.

Трансформатор ZVS самая сложная часть прибора, я объясню, как он работает. Когда ток включен, он идет через два индукционных дросселя к обоим концам спирали. Дроссели нужны, чтобы убедиться, что устройство не выдаст слишком сильный ток. Далее ток идет через 2 резистора 470 Ом на затворы МДП-транзисторов.

Из-за того, что идеальных компонентов не существует, один транзистор будет включаться раньше, чем другой. Когда это происходит, он принимает на себя весь входящий ток со второго транзистора. Он также будет коротить второй на землю. Из-за этого не только ток потечет через катушку в землю, но и через быстрый диод будет разряжаться затвор второго транзистора, тем самым блокируя его. Из-за того, что параллельно катушке подключен конденсатор, создается колебательный контур. Из-за возникшего резонанса, ток поменяет свое направление, напряжение упадет до 0В. В этот момент затвор первого транзистора разряжается через диод на затвор второго транзистора, блокируя его. Этот цикл повторяется тысячи раз за секунду.

Резистор 10К призван уменьшить избыточный заряд затвора транзистора, действуя как конденсатор, а зенеровский диод должен сохранять напряжение на затворах транзисторов 12В или ниже, чтобы они не взорвались. Этот трансформатор высокочастотный преобразователь напряжения позволяет нагреваться металлическим объектам.
Пришло время собрать нагреватель.

Шаг 2: Материалы


Для сборки нагревателя материалов нужно немного, и большую их часть, к счастью, можно найти бесплатно. Если вы видели где-то валяющуюся просто так электронно-лучевую трубку, сходите и заберите ее. В ней есть большая часть нужных для нагревателя деталей. Если вы хотите более качественных деталей, купите их в магазине электрозапчастей.

Вам понадобятся:

Шаг 3: Инструменты

Для этого проекта вам понадобятся:

Шаг 4: Охлаждение полевых транзисторов

В этом приборе транзисторы выключаются при напряжении 0 В, и нагреваются не очень сильно. Но если вы хотите, чтобы нагреватель работал дольше одной минуты, вам нужно отводить тепло от транзисторов. Я сделал обоим транзисторам один общий поглотитель тепла. Убедитесь, что металлические затворы не касаются поглотителя, иначе МДП-транзисторы закоротит и они взорвутся. Я использовал компьютерный теплоотвод, и на нем уже была полоса силиконового герметика. Чтобы проверить изоляцию, коснитесь мультиметром средней ножки каждого МДП-транзистора (затвора), если мультиметр запищал, то транзисторы не изолированы.

Шаг 5: Конденсаторная батарея

Конденсаторы очень сильно нагреваются из-за тока, постоянно проходящего через них. Нашему нагревателю нужна емкость конденсатора 0,47 мкФ. Поэтому нам нужно объединить все конденсаторы в блок, таким образом, мы получим требуемую емкость, а площадь рассеивания тепла увеличится. Номинальное напряжение конденсаторов должно быть выше 400 В, чтобы учесть пики индуктивного напряжения в резонансном контуре. Я сделал два кольца из медной проволоки, к которым припаял 10 конденсаторов 0,047 мкФ параллельно друг другу. Таким образом, я получил конденсаторную батарею совокупной емкостью 0,47 мкФ с отличным воздушным охлаждением. Я установлю ее параллельно рабочей спирали.

Шаг 6: Рабочая спираль



Это та часть прибора, в которой создается магнитное поле. Спираль сделана из медной проволоки – очень важно, чтобы была использована именно медь. Сначала я использовал для нагревания стальную спираль, и прибор работал не очень хорошо. Без рабочей нагрузки он потреблял 14 А! Для сравнения, после замены спирали на медную, прибор стал потреблять только 3 А. Я думаю, что в стальной спирали возникали вихревые токи из-за содержания железа, и она тоже подвергалась индукционному нагреву. Не уверен, что причина именно в этом, но это объяснение кажется мне наиболее логичным.

Для спирали возьмите медную проволоку большого сечения и сделайте 9 витков на отрезке ПВХ-трубы.

Шаг 7: Сборка цепи





Я сделал очень много проб и совершил много ошибок, пока правильно собрал цепь. Больше всего трудностей было с источником питания и со спиралью. Я взял 55А 12В импульсный блок питания. Я думаю, этот блок питания дал слишком высокий начальный ток на ZVS-драйвер, из-за чего взорвались МДП-транзисторы. Возможно, это исправили бы дополнительные индукторы, но я решил просто заменить блок питания на свинцово-кислотные аккумуляторы.
Потом я мучился с катушкой. Как я уже говорил, стальная катушка не подходила. Из-за высокого потребления тока стальной спиралью взорвались еще несколько транзисторов. В общей сложности у меня взорвались 6 транзисторов. Что ж, на ошибках учатся.

Я переделывал нагреватель множество раз, но здесь я расскажу, как собрал его самую удачную версию.

Шаг 8: Собираем прибор





Чтобы собрать ZVS-драйвер, вам нужно следовать приложенной схеме. Сначала я взял зенеровский диод и соединил с 10К резистором. Эту пару деталей можно сразу припаять между стоком и истоком МДП-транзистора. Убедитесь, что зенеровский диод смотрит на сток. Потом припаяйте МДП-транзисторы к макетной плате с контактными отверстиями. На нижней стороне макетной платы припаяйте два быстрых диода между затвором и стоком каждого из транзисторов.

Убедитесь, что белая линия смотрит на затвор (рис.2). Затем соедините плюс от вашего блока питания со стоками обоих транзисторов через 2 220 Ом резистора. Заземлите оба истока. Припаяйте рабочую спираль и конденсаторную батарею параллельно друг другу, затем припаяйте каждый из концов к разным затворам. Наконец, подведите ток к затворам транзисторов через 2 50 мкгн дросселя. У них может быть тороидальный сердечник с 10 витками проволоки. Теперь ваша схема готова к использованию.

Шаг 9: Установка на основание

Чтобы все части вашего индукционного нагревателя держались вместе, им нужно основание. Я взял для этого деревянный брусок 5*10 см. плата с электросхемой, конденсаторная батарея и рабочая спираль были приклеены на термоклей. Мне кажется, агрегат выглядит круто.

Шаг 10: Проверка работоспособности





Чтобы ваш нагреватель включился, просто подсоедините его к источнику питания. Потом поместите предмет, который вам нужно нагреть, в середину рабочей спирали. Он должен начать нагреваться. Мой нагреватель раскалил скрепку до красного свечения за 10 секунд. Предметы крупнее, как гвозди, нагревались примерно за 30 секунд. В процессе нагревания потребление тока выросло приблизительно на 2 А. Этот нагреватель можно использовать не только для развлечения.

После использования прибора не образуется сажи или дыма, он воздействует даже на изолированные металлические объекты, например, газопоглотители в вакуумных трубках. Также прибор безопасен для человека – с пальцем ничего не случится, если поместить его в центр рабочей спирали. Однако, можно обжечься о предмет, который был нагрет.

Спасибо за чтение!

Как сделать простой индукционный нагреватель для отопления

Невиданная экономия, суперэффективность, неимоверный срок службы и даже новый принцип передачи энергии. Именно так характеризуют продавцы индукционных котлов свой товар. Пора и нам приобщиться к высоким технологиям будущего и узнать, на самом ли деле оно так прекрасно, это индукционное отопление.

Блок: 1/4 | Кол-во символов: 298
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html

История индукционного нагрева

Открытие электромагнитной индукции в 1831 году принадлежит Майклу Фарадею. При движении проводника в поле магнита в нём наводится ЭДС, так же как при движении магнита, силовые линии которого пересекают проводящий контур. Ток в контуре называется индукционным. На законе электромагнитной индукции основаны изобретения множества устройств, в том числе определяющих — генераторов и трансформаторов, вырабатывающих и распределяющих электрическую энергию, что является фундаментальной основой всей электротехнической промышленности.

В 1841 году Джеймс Джоуль (и независимо от него Эмиль Ленц) сформулировал количественную оценку теплового действия электрического тока: «Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля» (закон Джоуля — Ленца). Тепловое действие индуцированного тока породило поиски устройств бесконтактного нагрева металлов. Первые опыты по нагреву стали с использованием индукционного тока были сделаны Е. Колби в США.

Первая успешно работающая т. н. канальная индукционная печь для плавки стали была построена в 1900 году на фирме «Benedicks Bultfabrik» в городе Gysing в Швеции. В респектабельном журнале того времени «THE ENGINEER» 8 июля 1904 г. появилась знаменитая публикация, где шведский изобретатель инженер F. A. Kjellin рассказывает о своей разработке. Печь питалась от однофазного трансформатора. Плавка осуществлялась в тигле в виде кольца, металл, находящийся в нём, представлял вторичную обмотку трансформатора, питающегося током 50-60 Гц.

Первая печь мощностью 78 кВт была запущена в эксплуатацию 18 марта 1900 года и оказалась весьма неэкономичной, поскольку производительность плавки составляла всего 270 кг стали в сутки. Следующая печь была изготовлена в ноябре того же года мощностью 58 кВт и ёмкостью 100 кг по стали. Печь показала высокую экономичность, производительность плавки составила от 600 до 700 кг стали в сутки. Однако износ футеровки от тепловых колебаний оказался на недопустимом уровне, частые замены футеровки снижали итоговую экономичность.

Изобретатель пришёл к выводу, что для максимальной производительности плавки необходимо при сливе оставлять значительную часть расплава, что позволяет избежать многих проблем, в том числе износа футеровки. Такой способ выплавки стали с остатком, который стали называть «болото», сохранился до сих пор в некоторых производствах, где применяются печи большой ёмкости.

В мае 1902 года была введена в эксплуатацию значительно усовершенствованная печь ёмкостью 1800 кг, слив составлял 1000—1100 кг, остаток 700—800 кг, мощность 165 кВт, производительность плавки стали могла доходить до 4100 кг в сутки! Такой результат по потреблению энергии 970 кВт⋅ч/т впечатляет своей экономичностью, которая мало уступает современной производительности порядка 650 кВт⋅ч/т. По расчётам изобретателя из потребляемой мощности 165 кВт в потери уходило 87,5 кВт, полезная тепловая мощность составила 77,5 кВт, получен весьма высокий полный КПД, равный 47 %. Экономичность объясняется кольцевой конструкцией тигля, что позволило сделать многовитковый индуктор с малым током и высоким напряжением — 3000 В. Современные печи с цилиндрическим тиглем значительно компактнее, требуют меньших капитальных вложений, проще в эксплуатации, оснащены многими усовершенствованиями за сотню лет своего развития, однако КПД повышен несущественно. Правда, изобретатель в своей публикации игнорировал тот факт, что плата за электроэнергию осуществляется не за активную мощность, а за полную, которая при частоте 50-60 Гц примерно вдвое выше активной мощности. А в современных печах реактивная мощность компенсируется конденсаторной батареей.

Своим изобретением инженер F. A. Kjellin положил начало развития промышленных канальных печей для плавки цветных металлов и стали в индустриальных странах Европы и в Америке. Переход от канальных печей 50-60 Гц к современным высокочастотным тигельным длился с 1900 по 1940 г.

Блок: 2/13 | Кол-во символов: 4046
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

О принципе индуктивного нагрева

Для начала разъясним, как функционируют электрические индукционные нагреватели. Переменный ток, проходя по виткам катушки, образует вокруг нее электромагнитное поле. Если поместить внутрь обмотки сердечник из магнитящегося металла, то он станет нагреваться вихревыми токами, возникающими под воздействием поля. Вот и весь принцип.

Важное условие. Чтобы металлический сердечник нагревался, катушка должна питаться переменным током, меняющим знак и вектор поля с высокой частотой. При подаче на обмотку постоянного тока вы получите обыкновенный электромагнит.

Сам нагревательный элемент носит название индуктора и является главной частью установки. В отопительных котлах он представляет собой стальную трубу с протекающим внутри теплоносителем, а в кухонных плитах – плоскую катушку, максимально приближенную к варочной панели, как изображено далее на фото.

Катушка-индуктор нагревает железную трубу, которая передает тепло протекающей воде

Вторая часть индукционного нагревателя — схема, повышающая частоту тока. Дело в том, что напряжение с промышленной частотой 50 Гц малопригодно для работы подобных устройств. Если присоединить индуктор к сети напрямую, то он начнет сильно гудеть и слабо прогревать сердечник, причем вместе с обмотками. Чтобы эффективно преобразовывать электричество в теплоту и полностью передавать ее металлу, частоту нужно повысить минимум до 10 кГц, чем и занимается электросхема.

В чем заключаются реальные преимущества индукционных котлов перед ТЭНовыми и электродными:

  1. Деталь, нагревающая воду, — это простой кусок трубы, не участвующий в электрохимических процессах (как в электродных теплогенераторах). Поэтому срок службы индуктора ограничивается только работоспособностью катушки и может достигать 10—20 лет.
  2. По той же причине элемент одинаково хорошо «дружит» со всеми видами теплоносителей – водой, антифризом и даже машинным маслом, разницы нет.
  3. Внутренности индуктора не покрываются накипью в процессе эксплуатации.

Здесь сердечником служит посуда из магнитного металла

Примечание. С индукционными котлами связано множество мифов. Например, продавцы утверждают, что они экономичнее других электрических обогревателей на 10—20%, хотя в действительности КПД всех электрокотлов равен 98%. Список преимуществ ограничивается тремя вышеперечисленными пунктами, остальное – .

Блок: 2/4 | Кол-во символов: 2336
Источник: https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami

Принцип действия

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля).

Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла.

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является как бы вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (скин-эффект), в результате чего их плотность резко возрастает и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока увеличивается в e раз относительно плотности тока в заготовке, при этом в скин-слое выделяется 86,4 % тепла от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электропроводящая керамика и т. д.) μ примерно равна единице.

Формула для вычисления глубины скин-слоя в мм:

,

где ρ — удельное электрическое сопротивление материала заготовки при температуре обработки, Ом·м, f — частота электромагнитного поля, генерируемого индуктором, Гц.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,047 мм, для железа ≈ 0,0001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Блок: 3/13 | Кол-во символов: 2644
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Покупать или нет

Так всё же, имеет ли смысл приобретать индукционный котёл для отопления? Увы, мы не можем дать однозначного ответа на этот вопрос. Рассказы о его сверхэкономичности оказались мифом, надёжность может быть высокой. А может и не быть. Бесшумность, о которой говорят, присуща всем электронагревателям, звук может издавать насос. Компактность весьма спорна.

На первый взгляд, индукционный котёл (справа) намного компактнее ТЭНового котла (слева). Однако в корпусе последнего размещена куча всякого необходимого оборудования, которое понадобится для индукционного тоже. И не факт, что расположенное вразнобой, оно не займёт на стене больше места

В остальном преимуществ у индукционного котла перед обычными мы не видим. Но есть недостаток: он дороже стоит. Или, если быть точнее, больше просят денег. Причём хороший ТЭНовый котёл за свои деньги представляет собой сбалансированное, полностью готовое к установке и эксплуатации устройство. А индукционный нагреватель ещё нужно комплектовать дополнительным оборудованием.  На наш взгляд, маркетологи и продавцы, представляя нам ординарный товар в качестве эксклюзива, пытаются «снять стружку». Получить прибыль большую, чем на других изделиях. Хотя, тенденция к снижению цен уже наметилась и можно ожидать, что в течение нескольких ближайших лет на индукционные котлы установятся справедливые цены. Либо их просто перестанут выпускать.

Если вы рассматриваете возможность приобретения индукционного водонагревателя для отопления собственного дома, рекомендуем пообщаться с профессиональными теплотехниками, как проектировщиками, так и практиками. Опытные специалисты отслеживают тенденции, имеют возможность давать оценки по новым видам техники на основе собственного из практического опыта. Поставщиков оборудования тоже стоит послушать, но сказанное ими следует воспринимать критически.

Блок: 3/4 | Кол-во символов: 1847
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html

Варианты самодельных устройств

На просторах интернета размещено достаточное количество разнообразных конструкций, создаваемых для различных целей. Взять индукционный малогабаритный нагреватель, сделанный из компьютерного блока питания 250—500 Вт. Модель, показанная на фото, пригодится мастеру в гараже или автосервисе для плавки стержней из алюминия, меди и латуни.

Но для отопления помещений конструкция не подойдет по причине малой мощности. В интернете есть два реальных варианта, чьи испытания и работа засняты на видео:

  • водонагреватель из полипропиленовой трубы с питанием от сварочного инвертора либо индукционной кухонной панели;
  • стальной котел с нагревом от той же варочной панели.

Справка. Существуют и другие, полностью самодельные конструкции, где преобразователи частоты умельцы собирают с нуля. Но для этого нужны знания и навыки в области радиотехники, поэтому рассматривать их мы не будем, а просто приведем пример такой схемы.

Теперь давайте подробнее разберем, как делаются индукционные нагреватели своими руками, а главное, — как они потом функционируют.

Изготавливаем нагревательный элемент из трубы

Если вы плотно занимались поиском информации по данной теме, то наверняка столкнулись с этой конструкцией, поскольку мастер выложил ее сборку на популярном видеоресурсе YouTube. После чего многие сайты разместили текстовые версии изготовления этого индуктора в виде пошаговых инструкций. Вкратце нагреватель делается так:

  1. Внутрь трубы из полипропилена диаметром 40 мм и длиной 50 см наталкиваются металлические ершики для мытья посуды (можно рубленую проволоку — катанку). Они должны притягиваться магнитом.
  2. К трубе припаиваются отводы с резьбами для подключения к отопительной сети.
  3. Снаружи вдоль корпуса приклеиваются 4—5 стержней из текстолита. На них наматывается провод сечением 1.7—2 мм² со стеклоизоляцией, применяющийся в сварочных трансформаторах.
  4. Варочная панель разбирается и «родной» индуктор плоской формы демонтируется. Вместо него подключается самодельный нагреватель из трубы.

Важный нюанс. Длину и сечение провода для намотки катушки следует определять по штатному индуктору печки, чтобы она соответствовала мощности полевых транзисторов в электросхеме. Если взять больше провода, то упадет мощность нагрева, меньше – перегреются и выйдут из строя транзисторы. Как это выглядит визуально, смотрите на видео:

Как нетрудно догадаться, роль нагревательного элемента здесь играют металлические ершики, находящиеся в переменном магнитном поле катушки. Если запустить варочную панель на максимум, одновременно пропуская через импровизированный котел проточную воду, то ее удастся нагреть на 15—20 °С, что и показали испытания агрегата.

Поскольку мощность большинства индукционных плит лежит в пределах 2—2.5 кВт, то с помощью теплогенератора можно обогреть помещения общей площадью не более 25 м². Есть способ увеличить нагрев, подключив индуктор к сварочному аппарату, но здесь есть свои сложности:

  1. Инвертор выдает постоянный ток, а нужен переменный. Для подсоединения индукционного нагревателя аппарат придется разобрать и найти на схеме точки, где напряжение еще не выпрямлено.
  2. Нужно взять провод большего сечения и подобрать число витков путем расчета. Как вариант, медную проволоку Ø1.5 мм в эмалевой изоляции.
  3. Понадобится организовать охлаждение элемента.

Проверку работоспособности индуктивного водонагревателя автор демонстрирует в своем видео, представленном ниже. Испытания показали, что агрегат требует доработки, но конечный результат, к сожалению, неизвестен. Похоже, что умелец оставил проект незавершенным.

Как собрать индукционный котел

В этом случае дешевую китайскую плиту разбирать не нужно. Суть в том, чтобы сварить по ее размерам котловой бак, руководствуясь пошаговой инструкцией:

  1. Возьмите стальную профильную трубу 20 х 40 мм с толщиной стенки 2 мм и нарежьте из нее заготовок по ширине панели.
  2. Сварите трубки между собой по длине, стыкуя меньшими сторонами.
  3. Сверху и снизу к торцам герметично приварите железные крышки. Сделайте в них отверстия и поставьте патрубки с резьбами.
  4. К одной из сторон прикрепите сваркой 2 уголка, чтобы они образовали полку для индукционной печки.
  5. Покрасьте агрегат термостойкой эмалью из баллончика. Подробнее процесс сборки показан в видеоролике.

Окончательная сборка и запуск заключается в монтаже котла на стену и его врезке в систему отопления. Варочная панель вставляется в гнездо из уголков на задней стенке бака и подключается к электросети. Остается заполнить систему теплоносителем, стравить воздух и включить нагрев индуктора.

Здесь вас подстерегает та же проблема, что встречалась с предыдущей моделью. Несомненно, индукционный нагрев будет работать, но его мощности 2.5 кВт хватит для обогрева парочки небольших комнат при морозе на улице. Осенью и весной, когда температура не опустилась ниже нуля, самодельный котел сможет отопить площадь 35—40 м². Как его правильно подключить к системе, смотрите в очередном видеосюжете:

Блок: 3/4 | Кол-во символов: 4928
Источник: https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami

Применение

Отопление, основанное на вихревых токах, созданных электромагнитными полями может найти своё применение при:

  • обогреве жилого хозяйства, дома,  бани, гаража, промышленного или административного здания;
  • в системе горячего водоснабжения;
  • обогреве сооружений и конструкций, имеющих определённые требования к источникам тепла (по безопасности).

Блок: 4/7 | Кол-во символов: 346
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html

Видео: индукционный котел

Блок: 4/4 | Кол-во символов: 26
Источник: http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html

Преимущества

  • Высокоскоростной разогрев или плавление любого электропроводящего материала.
  • Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в жидкости, в вакууме.
  • Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, жидкие металлы и т. п. Например, внутренности радиолампы можно прогревать для обезгаживания прямо через стеклянную колбу. Электролиты (растворы солей) невозможно нагревать индукционным нагревом, так как ионы, в отличие от электронов, обладают большой массой и малой подвижностью.
  • За счёт возникающих МГД-усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигеле).
  • Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.
  • Нет загрязнения воздуха, так как отсутствуют продукты горения. Небольшие установки индукционного нагрева можно эксплуатировать в замкнутом и плохо проветриваемом помещении, не оборудованном специальными средствами вентиляции и вытяжками (гаражи, небольшие домашние мастерские, подвалы).
  • Удобство эксплуатации за счёт небольшого размера индуктора.
  • Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.
  • Легко провести местный и избирательный нагрев.
  • Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более медленно за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина детали при этом остаётся вязкой).
  • Лёгкая автоматизация оборудования и конвейерных производственных линий. Простота управления циклами нагрева и охлаждения. Простая регулировка и удерживание температуры, стабилизация мощности, подача и съём заготовок.

Блок: 5/13 | Кол-во символов: 2454
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Индукционный обогреватель своими руками

Из-за дороговизны прибора многие решают изготовить подобный нагреватель самостоятельно. В интернете можно встретить много статей, в которых описывается, как сделать индукционный котел – обогреватель своими руками. Мы опишем принцип изготовления простейшего типа устройства, чтобы с подобной задачей мог справиться любой хозяин.

Перед тем как приступить к работе, подготовьте следующие инструменты: кусачки, паяльник (если вы планируете делать сердечник из металлической трубы), отвертки.

  1. Нарежьте проволоку из нержавеющей стали диаметром 7 мм на кусочки приблизительно в 5 мм.
  2. Подготовьте пластиковую или металлическую трубу (сердечник), стенки которой должны быть толщиной не менее 3-5 мм, чтобы она смогла выдерживать высокие температуры.
  3. Заполните трубу доверху обрезками из проволоки.
  4. Концы трубы закройте сеткой, чтобы исключить вероятность выпадения из неё обрезков во время работы прибора.
  5. Далее по всей длине трубы спиралью намотайте медную проволоку, сделав порядка 90 витков.
  6. Изготовьте котёл, вырезав прямоугольный участок трубы.
  7. В отверстие котла вставьте изготовленное устройство.
  8. Концы медной проволоки подключите к инвертору с высокой частотой действия. Купить его можно практически во всех магазинах, имеющих строительное направление.

Перед сборкой оборудования оцените свои силы и возможности. Не беритесь за изготовление нагревательного прибора, если ничего не понимаете в электричестве.

Блок: 5/7 | Кол-во символов: 1434
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html

Индукционный обогреватель воды для системы отопления

Обогреватель имеет весьма неприхотливую конструкцию. Он высокоэффективен и надёжен. Используя его при изготовлении котла в системе отопления, можно пренебречь установкой насоса, поскольку вода будет течь по трубам в результате конвекции.

Такое устройство следует снабдить патрубками: для холодной и горячей воды. Сверху через патрубок горячая вода будет подаваться в систему отопления. А снизу на вводной части через него будет пребывать холодная вода

Блок: 6/7 | Кол-во символов: 502
Источник: http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html

Левитационная плавка (плавка во взвешенном состоянии, плавка в электромагнитном тигле)

Переменный ток в индукторе порождает ток противоположного направления в заготовке. Область заготовки вблизи индуктора можно рассматривать как «виток» проводника с током. Токи, протекающие в противоположных направлениях, отталкиваются по закону Ампера. Таким образом, заготовка отталкивается от индуктора (электромагнитное дутьё).

Для подвешивания электропроводящей заготовки применяют индукторы специальных конструкций, обычно выполненных в виде конуса с противовитком. Электромагнитное поле в подобном индукторе сильнее снизу и по бокам, образуя потенциальную яму, удерживающую заготовку от движения вниз и вбок.

Одновременно с левитацией осуществляется интенсивный разогрев заготовки, что позволяет осуществлять плавку без контакта с тиглем и без загрязнения пробы материалом тигля. Данный метод применяется, например, для получения сверхчистых образцов сплавов.

Блок: 7/13 | Кол-во символов: 954
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Проблема индукционного нагрева заготовок из магнитных материалов

Если инвертор для индукционного нагрева не является автогенератором, не имеет схемы автоподстройки частоты (ФАПЧ) и работает от внешнего задающего генератора (на частоте, близкой к резонансной частоте колебательного контура «индуктор — компенсирующая батарея конденсаторов»). В момент внесения заготовки из магнитного материала в индуктор (если размеры заготовки достаточно крупны и соизмеримы с размерами индуктора), индуктивность индуктора резко увеличивается, что приводит к скачкообразному уменьшению собственной резонансной частоты колебательного контура и отклонению её от частоты задающего генератора. Контур выходит из резонанса с задающим генератором, что приводит к увеличению его сопротивления и скачкообразному уменьшению передаваемой в заготовку мощности. Если мощность установки регулируется внешним источником питания, то естественной реакцией оператора является увеличить напряжение питания установки. При разогреве заготовки до точки Кюри, её магнитные свойства исчезают, собственная частота колебательного контура возвращается обратно к частоте задающего генератора. Сопротивление контура резко уменьшается, резко возрастает потребляемый ток. Если оператор не успеет снять повышенное напряжение питания, то установка перегревается и выходит из строя. Если установка оборудована автоматической системой управления, то система управления должна отслеживать переход через точку Кюри и автоматически уменьшать частоту задающего генератора, подстраивая его в резонанс с колебательным контуром (либо уменьшать подаваемую мощность, если изменение частоты недопустимо).

Если производится нагрев немагнитных материалов, то вышесказанное значения не имеет. Внесение в индуктор заготовки из немагнитного материала практически не меняет индуктивность индуктора и не сдвигает резонансную частоту рабочего колебательного контура, и необходимости в системе управления нет.

Если размеры заготовки много меньше размеров индуктора, то она тоже не сильно сдвигает резонанс рабочего контура.

Индукционные плиты

Индукционная плита — кухонная электрическая плита, разогревающая металлическую посуду индуцированными вихревыми токами, создаваемыми высокочастотным магнитным полем, частотой 20-100 кГц.

Такая плита обладает большим КПД по сравнению с ТЭН электроплитками, так как меньше тепла уходит на нагрев корпуса, а кроме того отсутствует период разгона и остывания (когда зря тратится выработанная, но не поглощенная посудой энергия).

Индукционные плавильные печи

Индукционные (бесконтактные) плавильные печи — электрические печи для расплавления и перегрева металлов, в которых нагрев происходит за счет вихревых токов, возникающих в металлическом тигеле (и металле), либо только в металле (если тигель изготовлен не из металла; такой способ нагрева более эффективен, если тигель плохо теплоизолирован).

Применяется в литейных цехах металлургических заводов, а также в цехах точного литья и ремонтных цехах машиностроительных заводов для получения стальных отливок высокого качества. Возможна плавка цветных металлов (бронзы, латуни, алюминия) и их сплавов в графитовом тигле. Индукционная печь работает по принципу трансформатора, у которого первичной обмоткой является водоохлаждаемый индуктор, вторичной и одновременно нагрузкой — находящийся в тигле металл. Нагрев и расплавление металла происходят за счёт протекающих в нём токов, которые возникают под действием электромагнитного поля, создаваемого индуктором.

Блок: 9/13 | Кол-во символов: 3487
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Замечания

  • Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности .
  • Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).
  • При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев идёт намного эффективнее (до точки Кюри).
  • При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).
  • Иногда в качестве генератора высокой частоты использовали списанные мощные радиопередатчики, где антенный контур заменяли на нагревательный индуктор.
  • Индукционный нагрев можно проводить в воде, даже солёной. Так как ионы растворённых в воде солей тяжёлые и обладают большой инерционностью, высокочастотное электромагнитное поле не может их «раскачать» и загрязнённая вода не нагревается.

Блок: 10/13 | Кол-во символов: 1109
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Литература

  • Бабат Г. И., Свенчанский А. Д. Электрические промышленные печи. — М.: Госэнергоиздат, 1948. — 332 с.
  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. — 1977. — Вып. 5. — С. 26-30.
  • Васильев А. С. Ламповые генераторы для высокочастотного нагрева. — Л.: Машиностроение, 1990. — 80 с. — (Библиотечка высокочастотника-термиста; Вып. 15). — 5300 экз. — ISBN 5-217-00923-3.
  • Власов В. Ф. Курс радиотехники. — М.: Госэнергоиздат, 1962. — 928 с.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. — М.: Госэнергоиздат, 1959. — 512 с.
  • Лозинский М. Г. Промышленное применение индукционного нагрева. — М.: Изд-во АН СССР, 1948. — 471 с.
  • Применение токов высокой частоты в электротермии / Под ред. А. Е. Слухоцкого. — Л.: Машиностроение, 1968. — 340 с.
  • Слухоцкий А. Е. Индукторы. — Л.: Машиностроение, 1989. — 69 с. — (Библиотечка высокочастотника-термиста; Вып. 12). — 10 000 экз. — ISBN 5-217-00571-8.
  • Фогель А. А. Индукционный метод удержания жидких металлов во взвешенном состоянии / Под ред. А. Н. Шамова. — 2-е изд., испр. — Л.: Машиностроение, 1989. — 79 с. — (Библиотечка высокочастотника-термиста; Вып. 11). — 2950 экз. — ISBN 5-217-00572-6.

Блок: 13/13 | Кол-во символов: 1251
Источник: https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2

Кол-во блоков: 22 | Общее кол-во символов: 38406
Количество использованных доноров: 5
Информация по каждому донору:
  1. https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BD%D0%B0%D0%B3%D1%80%D0%B5%D0%B2: использовано 7 блоков из 13, кол-во символов 15945 (42%)
  2. http://Tehnika.expert/klimaticheskaya/obogrevatel/indukcionnyj.html: использовано 4 блоков из 7, кол-во символов 2980 (8%)
  3. https://StrojDvor.ru/otoplenie/princip-raboty-indukcionnogo-nagrevatelya/: использовано 1 блоков из 6, кол-во символов 2319 (6%)
  4. http://teploguru.ru/sistemy/indukcionnoe-otoplenie.html: использовано 4 блоков из 4, кол-во символов 9898 (26%)
  5. https://otivent.com/indukcionnyj-nagrevatel-svoimi-rukami: использовано 2 блоков из 4, кол-во символов 7264 (19%)

Индукционный нагреватель. Огонь, вода, работающие люди, но не пожар!

Эту игрушку я ждал с нетерпением. Об индукционном нагреве я знал давно, со времен студенчества. Иногда видел ролики, как закаляют заготовки, припавают твердосплавные пластины на резцы и прочая-прочая. Но для меня все это было чем-то из области производства, грязных жарких и душных цехов.

Поэтому, когда в списке предлагаемых на обзор гаджетов я увидел данный нагреватель, колебаний не было. Я его просто возжелал!

Оговорка по Фрейду и п.18

Как и, наверное, большинство читателей, я интересуюсь разными вещами. Всегда есть соблазн и желание приобрести что-то для своего увлечения, либо просто хочется поиграть с приглянувшимся гаджетом, как известно с возрастом лишь меняется цена игрушек.

Обзоры — это совмещение приятного с полезным. Мне нравится делиться своим опытом взаимодействия с различными вещами, спонсорам нравится видимо, как я это делаю, и получается взаимовыгодное сотрудничество. Я никогда не беру на обзор вещи, которые мне не интересны, и с которыми я не хочу провести какое-то время. Как правило я беру вещи, предназначение и характеристики которых я себе неплохо представляю, так я избегаю своего и вашего, мои уважаемые читатели, разочарования в большинстве случаев.

Обзоры я делаю объективно, товары не рекламирую, и моя цель дать вам пищу для размышления, и поделиться своим опытом пользования данной вещи. Читайте, думайте, пишите свое мнение в комментариях — в общении и обмене мнениями рождается истина!

Недавно был обзор данного устройства от уважаемого dia. В этом обзоре dia даже выпаял часть деталей, чтобы лучше понять устройство этого гаджета и нарисовал его электрическую схему. Не буду дублировать его работу, можно сходить в тот обзор и все посмотреть. И не забудьте поставить dia плюсик пожалуйста.

В своем обзоре я бы хотел рассказать, что такое индукционные нагреватели, зачем они вообще нужны, и почему же я так радовался и ждал приезда этого гаджета. И самое интересное — что я с ним делал 🙂

Как обычно, начнем с небольшого экскурса в историю.

Явление электромагнитной индукции открыл Майкл Фарадей в 1831 году. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Без открытия Фарадея не было бы у нас трансформаторов, генераторов, радио и вообще электротехнической и электронной промышленности.

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Т.е. создав переменное магнитное поле и поместив туда материал мы сможем его нагреть. И уже в 1900 г. шведская фирма «Benedicks Bultfabrik» построила и запустила первую индукционную сталеплавильную печь!

Для того, чтобы расплавить или хотя бы нагреть металл, нам необходимо создать колебательный контур и в поле, создаваемое данным контуром поместить металлический предмет.

Вот чертеж индукционной сталеплавильной печи. Как раз на нем видно, что тигель с расплавляемым металлом, окружен катушками, наводящими на него переменное магнитное поле.

А это печь в действии.

В общем случае схема индукционного нагрева выглядит следующим образом: У нас есть генератор и колебательный контур. Частота колебания в контуре зависит от индуктивности катушки и емкости конденсаторов. Различные материалы восприимчивы к различным частотам колебаний. Например, при частоте колебаний контура, при которой происходит плавления стали, например, цветные металлы могут даже не начать толком нагреваться. И наоборот.

Где же используется индукционный нагрев. На самом деле в огромном количестве мест. Он везде вокруг нас. Индукционные электроплиты, как самый яркий пример

Индукционные проточные водонагреватели

Портативные нагреватели, с их помощью например можно разогреть и открутить приржавевшую гайку.

А на производстве индукционный нагреватель используется для поверхностной закалки изделий. Это быстро, экономично и безопасно, с точки зрения отсутствия огня и горючих материалов.

И самое для меня наверное интересное, т.к. я обладатель небольших домашних токарного и фрезерного станков — напайка твердосплавных пластин на державки резцев.

Как я и говорил, для меня системы индукционного нагрева всегда были либо уделом промышленности, либо умельцев, паяющих огромные монструозные схемы с гигантскими блоками питания, которым место дома можно найти с огромной натяжкой. И какое же удивление вызвало обнаружение крохотного устройства из класса — «воткни в блок питания и получай удовольствие».

Переходим к герою нашего обзора. Состоит он из двух частей. Генератор построенный на основе обычного двухтранзисторного мультивибратора (за схемой можно сходить в обзор уважаемого dia), для тех кто разбирается в электронике, то ничего сложного, а для тех, для кого это незнакомые термины, то в двух словах — простая и надежная схема, работающая «из коробки». На плате генератора размещена сборка из емкостей. Вторая деталь — катушка колебательного контура. Соединяются обе детали винтовым разъемом.

Размер миниатюрный 5.5 см на 4 см и толщиной 2 см. Диаметр катушки 2.8 см, длина 7.5 см. Питание устройства 5-12В, ток до 5А.

Т.е. максимальная потребляемая мощность может составить 12В х 5А = 60Вт. Это потребление не самой яркой лампочки накаливания. Много это или мало? Давайте прикинем на пальцах. Современная сталелитейная промышленность в среднем тратит 650 кВтч на плавку 1 тонны стали, т.е. 650 Втч на 1 кг или 65 Втч на плавку 100 грамм. Таким образом наша малявка при должном подходе и минимизации теплопотерь в атмосферу за час может расплавить чуть меньше 100 грамм стали. Очень и очень недурственно. Казалось бы 60 Вт потребляемой мощности и 100 грамм расплавленной стали. Весьма полезно все считать, т.к. на глазок некоторые вещи совсем не очевидны, как например мне было в этом случае.

Давайте перейдем от слов к развлечениям делу.

У меня была целая куча идей, которые я хотел реализовать.

По всем идеям я снял подробное видео. Его можно будет посмотреть в конце обзора.

Идея номер 1. Закалка отверточных бит. Частенько, если приходится много закручивать шуруповертом винтов приходится наблюдать картину слизывания крестовины бит.

Есть способ продлить жизнь битам. Частенько биты продают чуть недозакалеными. Это делают видимо для избежания их раскалывания в процессе эксплуатации. Либо по каким-то другим неведомым причинам. Такие биты можно дозакалить. Этим мы и займемся.

Как же закаливают металлы? Существует огромное количество сплавов и индивидуальных режимов их термической обработки. Я не буду погружаться в рамках данного обзора в эти дебри. Если все предельно упростить, то для закалки в примитивных домашних условиях изделий из неопознанной стали можно (с кучей условностей разумеется) использовать следующий способ.

а. Нагрев до вишневого цвета (750 градусов по Цельсию).
б. Охлаждение в воде
в. Отпуск в духовке при температуре 180-190 градусов по Цельсию в течении 1 часа. Отпуск необходим для снятия внутренних напряжений, чтобы изделие не лопнуло у нас в руках в процессе эксплуатации

Привожу картинку с цветами металла и соответствующим им температурам

Соответственно, разогреваем биту

И охлаждаем ее в воде. Затем отпуск в духовке и… вуаля. Более прочная бита у нас в арсенале.

Идея номер 2. Из остатков ножовочного полотна сделать мини стамески по дереву. Подробный процесс в видео. Делюсь лишь фоткой конечных изделий

Выглядят они неказисто, но древесину режут исправно. Тест есть на видео.

Идея номер 3. Из подручных гвоздей и железяк сделать настоящее сверло. И сверло получилось! Оно успешно просверлило дерево, алюминий… и не только. Посмотрите на видео))) Заточка и закаленный кончик все выдержали, кроме тела сверла, которое я отпустил, но повторно не закалил. Вот что с ним стало после моих издевательств)))

Идея номер 4. Водонагреватель. Проверка концепции. Кладем гвоздь в трубочку, трубочку в спираль — вода кипит.

Можно сделать подогрев чего — либо, например воды в емкости. Туда поставить банку с молоком, подключить термодатчик, для контроля температуры и будет йогуртница))).

Вот видео моих издевательств над материей )))

Как резюме. Мне индукционный нагреватель понравился. Для домашнего использования мне лично пригодится однозначно. Я периодически нуждаюсь в необходимости закалить какую-либо небольшую деталь (ось накатки для токарника, например). И этот способ мне нравится больше горелки в домашних условиях. Также я получил большое удовольствие от процесса созидания из обломков пилки и ненужных ключей качественно новых вещей.

Хочу ли я нагреватель большей мощности? В квартиру — однозначно нет. Другие режимы, другая техника безопасности. В отдельную мастерскую — однозначно да.

Меня поражает скорость прогресса, если честно. И технологии. Устройство размером со спичечный коробок позволяет ощутить себя и кузнецом, и термистом и сантехником- отопителем))

Получайте удовольствие от жизни, выбирайте себе инструменты и игрушки по вкусу, и Удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Простейший индукционный нагреватель своими руками

Недавно возникла необходимость создать небольшой индукционный нагреватель своими руками. Бродя по просторам интернета, нашел несколько схем индукционных нагревателей. Многие схемы не устраивали из-за довольно сложной обвязки, некоторые не работали, но попадались и рабочие варианты.

Несколько дней назад пришел к выводу, что индукционный нагреватель можно сделать из электронного трансформатора с минимальными затратами.

Принцип индукционного нагрева заключается в воздействии на металл токами Фуко. Такой нагреватель активно применяется в самых разных сферах науки и техники. По идее токам Фуко безразличны виды и свойства металлов, поэтому индуктор может подогреть или расплавить абсолютно любой металл.

Электронный трансформатор — импульсный блок питания, на базе которого построен наш нагреватель. Это простой полумостовой инвертор, построенный на двух мощный биполярных транзисторах серии MJE13007, которые жутко перегреваются в ходе работы, поэтому им нужен очень хороший теплоотвод.

Для начала с электронного трансформатора нужно выпаять основной трансформатор. Своего рода индуктор мы изготовим на базе ферритовой чашки. Для этого берем чашку 2000НМ (размер чашки особо не важен, но желательно побольше). На каркасе мотаем 100 витков проводом 0,5 мм, с кончиков проводов снимаем лаковое покрытие и залужаем. Затем концы проводов запаиваем на место штатного импульсного трансформатора — все готово!

Получился довольно мощный самодельный индукционный нагреватель (КПД не более 65%), на основе которого, можно собрать даже небольшую индукционную печку. Если взять кусок металла и приблизить этот металл к центру катушки, то через несколько секунд металл нагреется. Таким нагревателем можно плавить провода с диаметром 1,5 мм — мне это удалось всего за 20 секунд, но при этом высоковольтные транзисторы ЭТ так нагрелись, что на них можно было яичницу жарить!

В ходе работы, возможно, будет нужда дополнительного охлаждения для теплоотводов, поскольку опыт показал, что теплоотвод попросту не успевает отводить тепло с транзисторов.

Основа работы такого инвертора довольно проста. Сама схема индукционного нагревателя удобна тем, что не требует никакой настройки (в более сложных схемах часто возникает необходимость подгонки схемы в частоту резонанса, точный расчет количества витков и диаметра провода контура, а также подсчет контурного конденсатора, а тут всего этого нет и схема работает сразу).

Напряжение сети (220 Вольт) сначала выпрямляется диодным выпрямителем, затем поступает на схему. Частоту задает динистор (диак) марки DB3. Сама схема не имеет никаких защит, только ограничивающий резистор на входе питания, который якобы должен работать в качестве сетевого предохранителя, но при малейшей проблеме в первую очередь вылетают транзисторы. Надежность схемы индукционного нагревателя можно поднять, заменив диоды в выпрямителе более мощными, добавив сетевой фильтр на вход схемы и заменив силовые транзисторы на более мощные, скажем на MJE13009.

Вообще не советую включать такой нагреватель на долгое время, если не имеется активного охлаждения, иначе каждые 5 минут будете вынуждены менять транзисторы.

My Induction Forge — Melton Forge Works

Перечень оборудования и приблизительная стоимость:

Индукционная кузница 15 кВт 632,17 долл. США (сейчас 850 долл. США по состоянию на июль 2021 г.) https://www.ebay.com/itm/283425113010
ОБНОВЛЕНИЕ: К сожалению, в настоящее время этот поставщик их больше не продает. В настоящее время я не могу найти на eBay модель мощностью 15 кВт, которая дешевле, чем покупка версии US Solid 15 кВт. Твердая цена в США по состоянию на июль 2021 года, отправленная на мой адрес, составляет 1194,45 долларов (если такой нет на eBay, AliExpress иногда также продает их и LH-15, просто будьте осторожны, чтобы убедиться, что какой из них вы заказываете явно указано как 220В.Я смотрел эти модели стоимостью менее 700 долларов на eBay в течение года, прежде чем я купил свою, и за это время я заметил, что иногда их нет в наличии, но позже они будут пополняться. С учетом сказанного, лучшее, что я могу сказать, это то, что если вы не можете переварить солидную цену в США, продолжайте смотреть на eBay или AliExpress в поисках «индукционной машины 15 кВт 220 В», пока не найдете ту, которая вам понравится. Я слышал о людях, успешно покупающих их на AliExpress, и раньше я заказывал и другие товары с этого сайта.

На Amazon периодически появляются предложения этих машин, как и раньше, просто убедитесь, что вы покупаете модель на 220 В.

25-литровый охладитель Tig Cooler 363,79 долларов (сейчас 399 долларов по состоянию на июль 2021 года) https://www.ebay.com/itm/WS-25L-Industrial-Water-Chiller-25L-TIG-MIG-Welder-Torch-Water -Cooling-110V / 124246749984

УВЕДОМЛЕНИЕ : Я слышал о нескольких людях, купивших такой же 25-литровый охладитель Tig, у которых были проблемы с перегоранием предохранителей, когда они впервые начали их использовать.Похоже, что замененный предохранитель на 6 ампер до сих пор решил их проблемы. Если вы покупаете блок 25L, может быть хорошей идеей пойти дальше и купить дополнительные 6-амперные предохранители, общая мысль заключается в том, что на некоторых из блоков может быть небольшой скачок напряжения чуть выше 5А при запуске, и это может вот почему перегорают стандартные предохранители. Кроме того, как и индукционная машина, этот охлаждающий агрегат довольно часто продается на eBay, но обычно пополняется в течение месяца и также доступен на AliExpress.

Электроснабжение
20 футов 10 калибра, трехжильный гибкий электрический провод — 45 долларов
Двухполюсный выключатель 40 А 10 долларов
Малая распределительная коробка 2
10-12 AWG термоусадочные кольцевые клеммы 5 долларов

Сантехника (Некоторые из этот шланг оказался ненужным, так как я использовал сине-красный шланг, который поставлялся с кулером Tig.)
3/8 дюйма I.D. x 1/2 дюйма Н.Д. x 10 футов. Прозрачная виниловая трубка 6 9000 $ 9 Внутренний диаметр 1/2 дюйма x 5/8 дюйма Н.Д. x 20 футов. Прозрачная виниловая трубка 10 $
Хомуты (12) $ 12

Материалы для изготовления змеевиков
Внешний диаметр 1/4 дюйма x 50 футов. Мягкая медная охлаждающая змеевиковая трубка 61 долл. США (для изготовления змеевиков)
Резак для медных труб 10 долл. США
Комплект для развальцовки медных труб 30 долл. США
Раструб 1/4 дюйма Фитинги с латунными гайками (4) 8 долл. США
1 фунт ⅛ Сплошная проволока Припой 15 долл.
Паста Флюс для пайки медных трубок $ 5
Резьбовые фитинги с отбортовкой 1/4 дюйма x MIP (2) 5 долларов США (для изготовления переходников катушки от 8 мм до ¼)

Разное
6 галлонов дистиллированной воды 12 долларов США
Стальная тележка для инструментов 50 долларов США
Маленькие гайки и болты для крепления распределительной коробки к корпусу.50c

Общая стоимость (по состоянию на август 2020 года) машин, проводки, сантехники, оборудования для изготовления катушек и т.д. ниже для вас. С момента написания этого документа цены на машины значительно выросли. На этом этапе я бы предположил, что в июле 2020 года заплату около 1500–2000 долларов за полную установку с текущими ценами. с опасно открытыми клеммами проводки и заземлением на задней панели машины.У меня земля была внизу снаружи сзади, чуть ниже отверстий для выхода воды, в то время как клеммы 220 В были расположены вверху под открытой откидной крышкой. Мне не нравилось, что эти провода и клеммы так обнажены и уязвимы, поэтому я добавил небольшую распределительную коробку с некоторым ослаблением натяжения для основного провода. Затем я повторно проложил заземление внутри корпуса и использовал несколько хороших кольцевых клемм с горячей посадкой, чтобы прикрепить провода внутри коробки. Для этого потребовалось просверлить три отверстия в желтой пластине из микарты, к которой были подключены основные клеммы.Я просверлил два отверстия, чтобы можно было прикрепить распределительную коробку, и одно отверстие, чтобы провод заземления проходил внутри корпуса, а не просто болтался снаружи. У меня теперь есть соединитель кабелепровода на коробке, так как это все, что у меня было под рукой, когда я его проводил, я заменю его на подходящий кабельный зажим для снятия натяжения.

Ошибка 404 долины Френч-Крик

Ошибка 404 долины Френч-Крик — Неверная страница / файл не найден


Дом Связаться с нами


Вы достигли старого или недействительного URL (адреса) некоторой части нашего веб-сайта French Creek Valley.Приносим извинения за неудобства.
Если вы ввели адрес, пожалуйста, внимательно проверьте это и попробуйте еще раз.
Если это не сработает или вы попали сюда, щелкнув ссылку из другого места, перейдите прямо к www.spaco.org, чтобы найти то, что вам нужно. Спасибо тебе за посещение долины Френч-Крик.

Наш веб-сайт организован в алфавитном порядке, поэтому, если вы нажмете «Главная», у вас будет возможность найти все, что вы хотеть.
Если у вас есть время, нажмите кнопку «Связаться с нами» выше и расскажите, что произошло.

Ниже приведены правильные ссылки на страницы нашего веб-сайта, которые вы, возможно, намеревались посетить:

Обновление платы Onan NHE / BG Generator A1
Топор в норвежском стиле, Tom Latane ‘
Немецкий плетеный ковровый ткацкий станок
Рельсовые наковальни
Наша контактная страница
Веб-сайт Тома и Китти Латане’
Горячекатаная сталь против холоднокатаной стали
Картинная галерея Страница 1 , для Исла-Мухерес, Мексика
Treadlehammers
Люди меня не понимают

Как это случилось со мной?

В большинстве случаев люди попадают на эту страницу, потому что ссылающийся сайт ввел недопустимый URL-адрес (адрес), и вы щелкнули по нему.Иногда они добавлена ​​точка после имени файла или добавлены пробелы или знаки препинания, или есть неправильные буквы верхнего или нижнего регистра в ссылке.
Мы проверяем эти вещи почти ежедневно и, когда мы можем идентифицировать ссылающийся сайт, мы связываемся с ними и просим исправить ссылку. Но во многих случаях ссылка в сообщении группы новостей и модератор (если он есть) не хочет возвращаться, чтобы исправить ошибку.

5 Основы проектирования змеевика индукционного нагрева

Конструкция индукционного змеевика может иметь большое влияние на качество деталей, эффективность процесса и производственные затраты.Как узнать, подходит ли конструкция катушки для вашей части и процесса? Вот некоторые основы работы с индукционной катушкой и пять советов по оптимизации вашей конструкции.

Как работают индукционные нагревательные змеевики

Индукционная катушка определяет, насколько эффективно и рационально нагревается заготовка. Индукционные катушки представляют собой медные проводники с водяным охлаждением, изготовленные из медных трубок, которым легко придать форму катушки для процесса индукционного нагрева. Змеевики индукционного нагрева сами по себе не нагреваются при прохождении через них воды.

Рабочие катушки различаются по сложности от простой спиральной или соленоидной катушки (состоящей из нескольких витков медной трубки, намотанной вокруг оправки) до катушки, которая прецизионно обработана из сплошной меди и спаяна.

Катушки передают энергию от источника питания к заготовке, создавая переменное электромагнитное поле из-за протекающего в них переменного тока. Переменное электромагнитное поле (ЭМП) катушки генерирует индуцированный ток (вихревой ток) в заготовке, который выделяет тепло из-за потерь I в квадрате R (потерь в сердечнике).

Ток в заготовке пропорционален силе ЭДС катушки. Эта передача энергии известна как эффект трансформатора или эффект вихревых токов.

Трансформаторы и индукционные катушки

Поскольку в катушках используется эффект трансформатора, характеристики трансформаторов могут быть полезны для понимания конструкции катушек. Индуктор аналогичен первичной обмотке трансформатора, а деталь эквивалентна вторичной обмотке трансформатора (предполагается, что она имеет один виток).

У трансформаторов есть две важные особенности, которые влияют на конструкцию катушки:

  • КПД связи между обмотками обратно пропорционален квадрату расстояния между ними
  • (ток в первичной обмотке трансформатора * количество витков первичной обмотки) = (ток во вторичной обмотке * количество витков вторичной обмотки)

Из-за вышеуказанных отношений существует пять условий, которые следует учитывать при проектировании любой катушки для индукционного нагрева:

5 основных советов по проектированию змеевика индукционного нагрева


1.Более высокая плотность потока возле зоны нагрева означает, что в детали генерируется более высокий ток.

Катушка должна быть присоединена как можно ближе к детали, и поэтому максимально возможное количество линий магнитного потока пересекает заготовку в точке нагрева. Это обеспечивает максимальную передачу энергии.

2. Наибольшее количество магнитных линий в катушке соленоида направлено к центру катушки.

Линии потока сосредоточены внутри катушки, обеспечивая максимальную скорость нагрева в этом месте.

3. Геометрический центр катушки — это путь слабого магнитного потока.

Поток наиболее сконцентрирован ближе к самим виткам катушки и уменьшается по мере удаления от витков.

Если бы деталь была размещена в катушке не по центру, область ближе к виткам катушки пересекала бы большее количество магнитных линий и, таким образом, нагревалась бы с большей скоростью. Область детали, удаленная от медного змеевика, испытывает меньшее сцепление и будет нагреваться с меньшей скоростью.

Этот эффект более выражен при высокочастотном индукционном нагреве.

4. Магнитный центр индуктора не обязательно является геометрическим центром.

В месте соединения проводов и катушки магнитное поле слабее.

Этот эффект наиболее выражен в одновитковых катушках. По мере увеличения числа витков катушки и добавления магнитного потока от каждого витка к потоку от предыдущих витков это условие становится менее важным.

Из-за непрактичности постоянного центрирования детали в рабочей катушке, при статическом нагреве деталь следует немного смещать в эту область.Если возможно, деталь следует повернуть, чтобы обеспечить равномерную экспозицию.

5. Катушка должна быть спроектирована так, чтобы предотвратить подавление магнитного поля.

Если противоположные стороны индуктора расположены слишком близко, катушка не имеет достаточной индуктивности, необходимой для эффективного нагрева. Помещение петли в катушку в центре компенсирует этот эффект. Затем катушка нагревает проводящий материал, вставленный в отверстие.


Есть вопросы по конструкции змеевика индукционного нагрева? Свяжитесь с нашими специалистами для получения персональной помощи.

Или прочтите наше подробное руководство по проектированию индукционных катушек.

Индукционный нагреватель

Учебное пособие по индукционному нагревателю

10 кВт и 3 кВт

Отказ от ответственности: в обсуждаемых темах используется высокое напряжение и тепло. Они могут причинить материальный ущерб, а также причинить вред и убить. Этот сайт и автор сделали эту информацию общедоступной только в образовательных целях. Любой, кто читает это и пытается создать устройство на основе какой-либо его части, делает это на свой страх и риск.Это снимает с себя всякую ответственность и никого не поощряет к этому.

Индукционный нагреватель — интересное устройство, позволяющее быстро нагревать металлический предмет. Имея достаточную мощность, можно даже расплавить металл. Индукционный нагреватель работает без ископаемого топлива и может отжигать и нагревать предметы различной формы. Я задумал сделать индукционный нагреватель, способный плавить сталь и алюминий. До сих пор я мог обеспечить потребляемую мощность более 3 киловатт! Теперь, когда я сделал это, я хотел бы рассказать, как это работает и как вы можете его построить.В конце урока я расскажу и покажу вам, как построить левитационную катушку, которая позволит вам кипятить металлы, находясь в воздухе!

В первой части этого руководства я расскажу о моей разработке инвертора на 3 кВт. Моей первоначальной целью было быстрое нагревание металлов. Моей следующей целью было левитировать металлы. Мне это удалось, но я понял, что не могу левитировать из твердой меди и стали. Их плотность была слишком велика для магнитного поля. Это была моя конечная цель: левитировать и удерживать расплавленную медь и сталь.В конце этого урока я перейду к разработке блока мощностью 10 кВт, который реализовал эту цель. Я также остановлюсь на проблемах, которые пришлось преодолеть, чтобы этого добиться.

Начнем.

Мой индукционный нагреватель — инвертор. Инвертор использует источник постоянного тока и преобразует его в переменный ток. Электропитание переменного тока приводит в действие трансформатор, который соединен с последовательным баком LC. Частота инвертора устанавливается равной резонансной частоте резервуара, что позволяет генерировать очень высокие токи внутри катушки резервуара.2. Заготовка похожа на однооборотную катушку; рабочая катушка имеет несколько витков. Таким образом, у нас есть понижающий трансформатор, поэтому в заготовке генерируются еще более высокие токи.

Я хотел бы поблагодарить Джона Дирмонда, Тима Уильямса, Ричи Бернетта и других участников форума 4hv за неоценимую помощь за то, что они помогли мне разобраться в этой теме. Теперь, прежде чем мы поговорим подробнее, давайте посмотрим на некоторые изображения того, что он может делать:

Позже дам ссылку на видео, где он работает.Вот инвертор:

Теперь я перейду к каждой части. Затем я дам схемы, расскажу о том, как вы можете построить это устройство.

Как правильно использовать индукционные нагревательные змеевики

Пятница 9 Октябрь 2020

Змеевики индукционного нагрева, передающие тепло от наших инструментов Mini-Ductor ® к нагреваемым объектам, являются критически важным элементом в процессе очистки ржавой или заедающей детали от коррозии и герметика резьбы.

Поскольку катушки — это фундаментальная часть индукционной головоломки, правильный уход за ними очень важен.

Вот обзор этих основных принадлежностей, а также несколько советов по их правильному использованию и обслуживанию для достижения наилучших результатов.

Не хотите все это читать? Смотреть видео!

Типы и размеры катушек

Предварительно формованные

Мы предлагаем более двух десятков катушек разного размера для удовлетворения различных потребностей.Большинство наших катушек предварительно сформированы, что означает, что им были приданы определенный размер и форма, и они будут сохранять эту форму на протяжении всего срока службы катушки. Однако эти катушки можно разделить, чтобы они соответствовали встроенному приложению, а провода можно согнуть, чтобы они поместились в труднодоступных местах без нарушения целостности катушки.

Подшипник, гибкая катушка

Мы также продаем гибкие катушки, такие как Bearing Buddy. Хотя подшипник не может удерживать другую форму, он работает так же эффективно, как одна из наших предварительно сформированных катушек.Комплект опоры подшипника поставляется с термостойким ковриком, и его можно легко обернуть вокруг встроенных элементов. Мы рекомендуем обернуть коврик вокруг объекта перед тем, как обернуть катушку, потому что мат продлевает срок службы катушки, защищая изоляцию от истирания или истирания, вызванного контактом с горячим металлом. Для достижения наилучших результатов оберните провод вокруг аппликации 3–4 раза, чтобы усилилось магнитное поле. Чем больше обертываний, тем лучше результат.

Катушка U-образной формы

Наконец, у нас есть U-образная катушка, которой можно придать любой размер.Просто возьмите гнездо размером с болт, который вы хотите удалить, и оберните U-образную катушку вокруг гнезда, чтобы создать катушку идеального размера для работы. Опять же, 3-4 раза — это оптимальное количество обертываний вокруг аппликации.

Правильное использование катушки

Первый шаг в правильном использовании катушки — это найти катушку правильного размера, подходящую для вашего применения. Катушка должна помещаться вокруг приложения с достаточным пространством, чтобы между катушкой и приложением оставался небольшой зазор.

Во-вторых, катушка должна быть закреплена на месте с помощью поворотного замка катушки от Mini-Ductor Venom ® и Venom HP или винтов с накатанной головкой, если вы используете Mini-Ductor II.

Затем нагрейте на 5-20 секунд, чтобы увидеть, ослабили ли вы аппликацию. Если нет, повторяйте процесс, пока не сможете ослабить его. Эти короткие рабочие циклы продлят срок службы блока и катушек. В большинстве случаев нет необходимости разогревать приложение до раскаленного состояния, как мы это делаем в наших видео и живых демонстрациях. Мы делаем это, чтобы продемонстрировать безопасное, точное и надежное тепло, выделяемое нашими продуктами, а также скорость, с которой черные металлы нагреваются с помощью наших инструментов, но в большинстве случаев это не требуется.

Как распознать признаки нормального износа и разрыва в сравнении с повреждениями

После первого использования вы можете заметить, что изоляция катушки потемнеет или потемнеет. Это совершенно нормально и происходит в течение всего срока службы катушки. При правильном использовании змеевика должна хватить на 200-300 использований. Катушки с поврежденной, потертой или отсутствующей изоляцией могут вызвать искрение и выгорание устройства. Возникновение дуги может вызвать искру в устройстве, что может стать причиной возгорания.

Запасные катушки

Мы не продаем сменную изоляцию для катушек, но вы можете приобрести запасные катушки по отдельности или в одном из наших многочисленных комплектов катушек.Все покупки можно сделать через местного дистрибьютора инструментов или посетив наш веб-сайт.

Комплекты катушек

Тонкостенная катушка

Пакет катушек подшипников

Стандартный комплект катушки

Комплект катушки Essential

Комплект длинной катушки

Разнообразие катушек

Если у вас есть какие-либо вопросы о правильном использовании катушки или конкретном применении, напишите нам по адресу [email protected].

Свяжитесь с нами, чтобы узнать больше о том, как индукционный нагрев может сэкономить ваше время и деньги.

Индукционный нагрев: удивительный поворот технологии

Что такое индукционный нагрев?

Индукционный нагрев основан на существовании вихревых токов , открытых Леоном Фуко в 1855 году. Вкратце, когда изменяющееся магнитное поле проходит через любой проводящий объект, в объекте индуцируется ток. Этот ток создает вторичное электрическое поле в проводнике. Вторичное электрическое поле, в свою очередь, создает другой поток тока, известный как вихревой ток, названный так потому, что он течет по круговой схеме, подобно тому, как вода может закручиваться в медленно движущемся потоке, когда сталкивается с препятствием.Двухтактное взаимодействие между этими полями — буквально, кинетическая энергия, вызванная перемещением электронов вперед и назад — производит тепло в проводнике.

Это использование вихревых токов позволяет не только готовить еду; он может плавить сталь и другие металлы.

Применение индукционного нагрева

Индукционный нагрев используется для производства таких конечных изделий, как бульдозеры, космические корабли, краны и герметичные пластиковые крышки на бутылках с фармацевтическими препаратами. Основная конструкция устройства индукционного нагрева использует катушку с проволокой и переменный ток для создания изменяющегося магнитного поля в нагреваемом элементе — заготовке.Катушка может иметь диаметр всего несколько сантиметров или любой другой размер, подходящий для выполняемой работы.

Заготовка помещается внутрь магнитного поля, создаваемого катушкой, но не в контакте с ней, а затем нагревается до желаемого уровня вихревыми токами. В зависимости от нагреваемого материала может быть достигнута температура до 2200 ° F (1200 ° C).

Индукционный нагрев чистый, не требует ископаемого топлива. Детали, подвергаемые индукционному нагреву, просто нагреваются, поэтому после этого не нужно проводить очистку и не беспокоиться о загрязнении заготовки.Это также быстро. Например, производители труб и трубчатых каналов используют индукционный нагрев для сварки шва по продольному размеру труб, проходящих с высокой скоростью по конвейеру.

Некоторые другие процессы, в которых используется индукционный нагрев, включают:

  • Индукционная закалка и отпуск, которые изменяют физические характеристики материалов в соответствии с потребностями различных областей применения.
  • Индукционная плавка может использоваться для плавления любых черных и цветных металлов, включая ядерные материалы и различные сплавы, используемые в медицине и стоматологии.
  • Металлические и углеродные волокнистые материалы можно соединить вместе, нагревая их, тем самым отверждая клеи, помещенные между двумя поверхностями.
  • Пайка, пайка и сварка — это естественные области применения индукционного нагрева, где важны точный контроль температуры и точное удержание тепла в желаемой области.

Индукционный нагрев решает реальные проблемы

Так называемые убийства тайленола произошли в Чикаго в 1982 году, когда кто-то, так и не идентифицированный, залил флаконы с тайленолом цианидом.Последующие события привели к общенациональному отзыву продукции Tylenol. Отравление также вынудило всю безрецептурную фармацевтическую промышленность упаковывать свою продукцию в защищенные от несанкционированного доступа контейнеры.

Алюминиевая фольга, которая обычно используется для запечатывания безрецептурных лекарств, является частью отраслевого решения и использует индукционный нагрев. Процесс начинается с помещения в колпачок фольги, которая является электропроводящей. Колпачок завинчивается, затем вся упаковка помещается в катушку индукционного нагрева.По мере того, как фольга нагревается, клей по краю прикрепляет ее к краю бутылки.

Разработчики оборудования для индукционной герметизации крышек должны учитывать несколько факторов. Физические размеры индукционного нагревателя должны быть адаптированы к герметичным контейнерам. Электромагнитное поле должно иметь глубину, подходящую для нагрева фольги. Нагрев должен происходить как можно быстрее из соображений производительности. Эффективность индукционного нагревателя должна достигать определенного уровня производительности.

Эти и другие конструктивные ограничения могут быть значительно уменьшены, если проволока, используемая для изготовления катушки, изготавливается по индивидуальному заказу. Компания New England Wire Technology, давний поставщик на рынок индукционного нагрева, предлагает проволоку, специально изготовленную для решения таких конструктивных проблем.

Например, NEWT может поставлять провода круглого, квадратного и прямоугольного сечения. Их точный размер может быть адаптирован специально для используемого переменного тока и частоты. А поскольку эффективность может быть оптимизирована в самой проволоке, инженер-проектировщик индукционных колпачков имеет гораздо большую гибкость в выборе расстояния, формы и размера уплотнительной головки.Фактически, такая же гибкость приносит пользу разработчикам любого устройства индукционного нагрева.

Корпус для Litz Wire

Индукционные нагреватели могут работать от сети переменного тока в диапазоне от нескольких герц до 500 кГц и выше. Выбранная частота определяет глубину проникновения тепла, при этом более низкие частоты проникают глубже. Частоты для индукционных нагревателей выбираются на этапе проектирования в соответствии с конкретной работой, которую необходимо выполнить. Например, приложение, которое требует упрочнения и глубокого проникновения, использует низкую частоту.Другое приложение, которое требует только поверхностного нагрева, будет использовать высокую частоту.

Более высокие частоты, проходящие через провод, вызывают скин-эффект , когда большая часть электрического тока проходит по внешней стороне провода, увеличивая его сопротивление переменному току и создавая нежелательное тепло. Использование уникального Litz-провода NEWT для создания катушки практически устраняет скин-эффект, делая катушку более эффективной и позволяя создавать более скромные и недорогие источники питания. (Подробнее о лицевом проводе).

Тем не менее, проблемы возникают

Поскольку индукционный нагрев используется во многих приложениях, преобразование потребностей заказчика в подходящую проволоку Litz включает множество факторов. По словам инженеров NEWT, «Практически каждый проект индукционного нагрева требует индивидуальной работы. Хотя создание проводов и кабелей в соответствии со спецификациями клиентов кажется простым, количество переменных, которые входят в надежную конструкцию, может быть большим ».

Например, размер провода можно отрегулировать в соответствии с частотой переменного тока, чтобы избежать скин-эффекта и других потерь в катушке.Затем можно выбрать общее количество проводников в лицевом проводе, чтобы обеспечить максимальный ток. Проводники, составляющие лицевую проволоку, изолированы пленкой, которая должна выдерживать определенные температуры. Показательный пример: индукционная катушка, используемая для нагрева большого стального чана, должна работать в гораздо более горячей среде, чем катушка, используемая для запечатывания бутылок с аспирином. Точно так же внешняя изоляция должна защищать от часто используемых высоких напряжений, а также от условий окружающей среды.

Услуги нестандартного дизайна на помощь

Решение этих проблем лежит в персонале службы индивидуального дизайна NEWT.Эта команда, состоящая из квалифицированного торгового персонала, поддерживаемого инженерами-конструкторами и инженерами-производителями, помогла клиентам по всему миру найти лучшие решения. Обязательно свяжитесь с нами, чтобы обсудить ваш следующий проект индукционного нагрева.

DIY Индукционный нагреватель с плоской катушкой BIFILAR

Самый простой и дешевый способ построить такой обогреватель — использовать электрическую схему под названием Mazzilli ZVS driver, которая является модифицированной версией генератора Ройера.
В отличие от моего предыдущего индукционного нагревателя, в этом используется плоская катушка с бифилярной обмоткой, запатентованная Николой Тесла 9 января 1894 года. Таким образом, магнитное поле, создаваемое одной обмоткой, равно и противоположно полю, создаваемому другой, в результате получается чистое магнитное поле величиной ноль (это нейтрализует любые негативные эффекты в катушке). С точки зрения электричества это означает, что самоиндукция катушки равна нулю.

Этот проект спонсировался NextPCB. Вы можете помочь мне поддержать меня, просмотрев их по одной из этих ссылок:
Зарегистрируйтесь, чтобы получить купон на 5 долларов:
https: // www.nextpcb.com?code=Mirko
Производитель надежных многослойных плат:
https://www.nextpcb.com?code=Mirko
4-х слойные платы PCB 10 шт. всего за 12 $:
https://www.nextpcb.com/pcb-quote ? act = 1
Скидка 10% — Заказы PCB и SMT:
СКИДКА 20% — Заказы PCB и 15% SMT: https: //www.nextpcb.com/activity/supp …

Самый простой и дешевый способ построить такой нагреватель можно с помощью электрической схемы, называемой драйвером Mazzilli ZVS, который является модифицированной версией генератора Ройера.
В отличие от моего предыдущего индукционного нагревателя, в этом используется плоская катушка с бифилярной обмоткой, запатентованная Николой Тесла 9 января 1894 года. Таким образом, магнитное поле, создаваемое одной обмоткой, равно и противоположно полю, создаваемому другой, в результате получается чистое магнитное поле величиной ноль (это нейтрализует любые негативные эффекты в катушке). С точки зрения электричества это означает, что самоиндукция катушки равна нулю.

Устройство состоит из двух или четырех мощных МОП-транзисторов, установленных на больших радиаторах с вентиляторами для охлаждения.В моем случае МОП-транзисторы SW3205. Также очень важной частью является емкостная батарея, состоящая из нескольких конденсаторов, соединенных параллельно. В данном случае это шесть качественных конденсаторов MKP емкостью 1 мкФ каждый и напряжением 400 В. Две тороидальные катушки служат для ограничения тока. Рабочая катушка представляет собой плоскую (блинную) катушку с двойной намоткой.

НА САМОМ ДЕЛЕ ЦЕЛЬ ДАННОГО ПРОЕКТА заключалась в сравнении эффективности такой бифилярной катушки со стандартной катушкой.

Конечным результатом стало отсутствие существенной разницы между двумя катушками индукционного нагревателя этого типа.Скажу лишь, что бифирли-катушку сделать намного сложнее. Интересно, что нагревательная спираль после этого не нагревается и мы можем свободно положить на нее руку. Это связано с тем, что в катушке используется медный провод с силиконовой изоляцией, устойчивый к температуре, а также очень плохой проводник тепла.

Устройство питается от блока питания 12 В от старого серверного компьютера. Блок питания должен обеспечивать ток не менее 10 А.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *