Опорный узел глубинного насоса конструкция: Основные узлы центробежных насосов

Дек 30, 2020 Разное

Опорный узел глубинного насоса конструкция: Основные узлы центробежных насосов

Содержание

опорный узел погружной одновинтовой насосной установки — патент РФ 2375604

Изобретение относится к технике добычи нефти, а именно к погружным одновинтовым скважинным насосам, и может быть использовано в нефтедобывающих отраслях промышленности. Опорный узел погружной одновинтовой насосной установки состоит из последовательно соединенных подшипникового узла, соединительного устройства и гидрокомпенсатора. Вал гидрокомпенсатора соединен с одной стороны с валом протектора электродвигателя, а с другой через соединительное устройство — с входным концом вала подшипникового узла. На валу подшипникового узла размещены масляный насос, уплотнения, устройство предварительного натяжения и фиксации подшипниковых модулей на валу, с двух концов радиальные роликовые подшипники и последовательно расположенные между ними упорные осевые подшипниковые модули, включающие упорные роликовые подшипники с цилиндрическими или коническими роликами, кольцевые нажимные и опорные обоймы с кольцевыми канавками по поверхности соприкосновения с подшипниковыми кольцами, внутренние и внешние втулки. В обоймах упорных осевых подшипниковых модулей в кольцевых углублениях установлены кольцевые демпферы из проволочного проницаемого материала, выступающие над опорной поверхностью обойм, обращенной к подшипниковому кольцу. Изобретение направлено на увеличение нагрузочной способности, повышение надежности и долговечности. 4 з.п. ф-лы, 6 ил.

Формула изобретения

1. Опорный узел погружной одновинтовой насосной установки, состоящий из последовательно соединенных подшипникового узла, соединительного устройства и гидрокомпенсатора, вал которого соединен с одной стороны с валом протектора электродвигателя, а с другой — через соединительное устройство с входным концом вала подшипникового узла, на котором размещены масляный насос, уплотнения, устройство предварительного натяжения и фиксации подшипниковых модулей на валу, с двух концов радиальные роликовые подшипники и последовательно расположенные между ними упорные осевые подшипниковые модули, включающие упорные роликовые подшипники с цилиндрическими или коническими роликами, кольцевые нажимные и опорные обоймы с кольцевыми канавками по поверхности соприкосновения с подшипниковыми кольцами, внутренние и внешние втулки, при этом в обоймах упорных осевых подшипниковых модулей в кольцевых углублениях установлены кольцевые демпферы из проволочного проницаемого материала, выступающие над опорной поверхностью обойм, обращенной к подшипниковому кольцу.

2. Опорный узел по п.1, отличающийся тем, что профиль поперечного сечения кольцевого демпфера повторяет форму поперечного сечения кольцевого углубления.

3. Опорный по п.1, отличающийся тем, что профиль поперечного сечения кольцевого демпфера не повторяет форму поперечного сечения кольцевого углубления.

4. Опорный узел по п.1, отличающийся тем, что корпус подшипникового узла выполнен составным из головки и трубы, причем верхнее торцевое уплотнение размещено в головке.

5. Опорный узел по п.1, отличающийся тем, что гидрокомпенсатор выполнен в виде поршневого модуля.

Описание изобретения к патенту

Устройство относится к технике добычи нефти, а именно к погружным одновинтовым скважинным насосам с приводом от погружного электродвигателя, и может быть использовано в нефтедобывающих отраслях промышленности при подъеме пластовых жидкостей на большую высоту.

Известно устройство гидрозащиты погружного электродвигателя типов ГЗН, ПБ92, ГБ52 / Международный транслятор. Установки погружных ценробежных насосов для добычи нефти. Под ред. В.Ю.Алекперова, В.Я.Кершенбаума. Москва, 1999 г., RU № 96112091 А. Протектор для гидравлической защиты погружного маслозаполненного электродвигателя/. Устройство предназначено для защиты погружных маслозаполненных электродвигателей от проникновения пластовой жидкости в их внутреннюю полость, компенсации утечки масла и тепловых изменений его объема при эксплуатации. Гидрозащита содержит головку, верхний, средний и нижний ниппель, два корпуса и основание, последовательно соединенные между собой резьбой. На валу гидрозащиты установлены три радиальных подшипника скольжения. Осевые нагрузки на вал через пяту воспринимаются верхним и нижним подпятниками (опорными подшипниками скольжения). На обоих концах вала выполнены шлицы для соединения с электродвигателем и насосом. На валу последовательно установлены три торцевых уплотнения, зафиксированных пружинными кольцами. Внутри корпусов размещены две эластичные диафрагмы — верхняя и нижняя, концы которых хомутами герметично закреплены на опорах.

Недостатком данного устройства является низкая несущая способность опорного подшипника скольжения (пяты и подпятников), которая не допускает эксплуатацию погружного винтового насоса с осевой нагрузкой на вал более 600 700 кг, что ограничивает высоту подъема пластовой жидкости. Кроме того, расположение опорного подшипника скольжения в нижней части гидрозащиты ведет к потере валом гидрозащиты продольной устойчивости, его прогибам и колебаниям. В целом снижается надежность устройства и уменьшается его долговечность.

Наиболее близким по своей сути является устройство, описанное в и принятое за прототип. Разгрузочный узел для погружных винтовых насосов содержит корпус, вал с размещенными на нем опорными элементами, при этом узел снабжен герметичной камерой, заполненной гидравлическим маслом, с системой обратных клапанов и диафрагмой, служащей для выравнивания давления внутри камеры с давлением пластовой жидкости, а опорные элементы выполнены в виде осевых упорных подшипников, размещенных в герметичной камере, с регулировочными винтами, обеспечивающими равномерное распределение осевой нагрузки /Патент RU № 2290539. Разгрузочный узел для погружных винтовых насосов/.

Недостатками прототипа являются:

Низкая несущая способность разгрузочного узла вследствие расположения опорных элементов в нижней части устройства. Вал, размещенный в верхней части устройства в подшипниках скольжения, испытывает значительные радиальные нагрузки от ротора винтового насоса, совершающего планетарное вращение, а так же испытывает сжимающие напряжения от действия осевой нагрузки. Радиальная нагрузка приводит к повышенному износу подшипников скольжения, а передаваемая осевая сила может вызвать потерю продольной устойчивости вала, его прогибы и колебания.

— Низкая надежность из-за наличия регулировочных винтов для выравнивания осевой нагрузки между опорными подшипниками и необходимости технологической операции регулировки при сборке устройства.

— Низкая надежность из-за отсутствия масляного насоса, обеспечивающего циркуляцию гидравлического масла и теплоотвод от упорных подшипников, что может привести к локальному перегреву зоны опорных элементов.

Задачей изобретения является увеличение нагрузочной способности одновинтовой насосной установки, повышение надежности и долговечности устройства за счет равномерности распределения нагрузки и, тем самым, снижение затрат на спускоподъемные операции погружного оборудования, обеспечение непрерывной работы оборудования и безостановочной добычи нефти, а также упрощение технологии изготовления за счет исключения регулировочно-установочных работ.

Требуемый результат достигается тем, что опорный узел погружной одновинтовой насосной установки, состоящий из последовательно соединенных подшипникового узла, соединительного устройства и гидрокомпенсатора, вал которого соединен с одной стороны с валом протектора электродвигателя, а с другой через соединительное устройство — с входным концом вала подшипникового узла, на котором размещены масляный насос, уплотнения, устройство предварительного натяжения и фиксации подшипниковых модулей на валу, с двух концов радиальные роликовые подшипники и последовательно расположенные между ними упорные осевые подшипниковые модули, включающие упорные роликовые подшипники с цилиндрическими или коническими роликами, кольцевые нажимные и опорные обоймы с кольцевыми канавками по поверхности соприкосновения с подшипниковыми кольцами, внутренние и внешние втулки, при этом в обоймах упорных осевых подшипниковых модулей в кольцевых углублениях установлены кольцевые демпферы из проволочного проницаемого материала, выступающие над опорной поверхностью обойм, обращенной к подшипниковому кольцу, причем профиль поперечного сечения кольцевого демпфера повторяет форму поперечного сечения кольцевого углубления, при этом профиль поперечного сечения кольцевого демпфера не повторяет форму поперечного сечения кольцевого углубления, корпус подшипникового узла выполнен составным из головки и трубы, причем верхнее торцевое уплотнение размещено в головке, а гидрокомпенсатор выполнен в виде поршневого модуля.

Сущность изобретения поясняется фигурами 1, 2, 3, 4, 5, 6.

Фиг.1. Опорный узел погружной одновинтовой насосной установки с упорными роликовыми подшипниками с цилиндрическими роликами.

Фиг.2. Опорный узел погружной одновинтовой насосной установки с упорными роликовыми подшипниками с коническими роликами.

Фиг.3. Подшипниковый узел с упорными роликовыми подшипниками с цилиндрическими роликами и ступенчатыми обоймами.

Фиг.4. Подшипниковый узел с упорными роликовыми подшипниками с коническими роликами и фасочными обоймами.

Фиг.5. Подшипниковый узел с упорными роликовыми подшипниками с цилиндрическим роликами и фасочными обоймами.

Фиг.6. Компоновка погружной одновинтовой насосной установки.

Опорный узел погружной одновинтовой насосной установки (фиг.1) предназначен для восприятия осевых и радиальных сил, возникающих при работе винтового насоса, и устанавливается между винтовым насосом и протектором (гидрозащитой) погружного электродвигателя. Опорный узел погружной одновинтовой насосной установки (фиг.1, 2) состоит из подшипникового узла 1 и гидрокомпенсатора 2, соединенных ниппелем 3. Непосредственно подшипниковый узел 1 предназначен для восприятия осевых и радиальных нагрузок, возникающих при подъеме нефти или иной пластовой жидкости. Гидрокомпенсатор 2 служит для размещения масла, используемого для смазки и отвода тепла и компенсации его температурного расширения. Ниппель 3 предназначен для соединения между собой подшипникового узла и гидрокомпенсатора.

Подшипниковый узел 1 (фиг.1, 2) состоит из головки 4, цилиндрического корпуса 5 и установленного в нем вала 6 со шлицами с обоих концов. На валу установлены подшипники 7, 8, 9, 10, образующие несколько опор. Радиальные роликовые подшипники 8 и 9 предназначены для восприятия радиальных сил, действующих на вал, и установлены по разные стороны от середины вала. Применение радиальных роликовых подшипников позволяет существенно повысить радиальные нагрузочные возможности погружной одновинтовой насосной установки. Для восприятия осевых нагрузок предназначены упорные осевые подшипниковые модули, устанавливаемые последовательно между радиальными подшипниками 8 и 9. Упорные осевые подшипниковые модули включают в себя роликовые подшипники с цилиндрическими роликами 7 (фиг.1) или упорные роликовые подшипники с коническими роликами 10 (фиг.2). Применение для упорных подшипниковых модулей стандартных серийно выпускаемых упорных роликоподшипников с цилиндрическими или коническими роликами позволяет упростить технологию изготовления опорного узла.

Упорные цилиндрические 7 (фиг.3, 5) или упорные конические 10 (фиг.4) роликоподшипники устанавливлены между нажимной 11 и опорной 12 обоймами (фиг.3, 4, 5), имеющими форму кольцевого диска, между внутренней 13 и наружной 14 цилиндрическими втулками, так что образован унифицированный упорный осевой подшипниковый модуль. Цилиндрические кольцевые обоймы 11, 12 могут иметь различный профиль поперечного сечения (фиг.3, 4, 5), но такой, чтобы сопряженные поверхности двух соседних обойм различных подшипниковых модулей не соприкасались друг с другом и обеспечивали прохождение масла или охлаждающей жидкости по кольцевым зазорам. Наличие кольцевых зазоров достигается не только за счет профиля сечения нажимной и опорной обойм, но и за счет высоты проставочных втулок 13, 14, которые должны быть одного размера, что обеспечивает равномерность зазора между различными подшипниками. В случае, если установочные размеры подшипниковых колец одинаковы, на втулках выполняют пояски, имеющие для внутренних втулок больший наружный размер, для наружных втулок меньший внутренний диаметр. Такая конструкция втулок обеспечивает кольцевые зазоры для смазывающей и охлаждающей жидкости, а также модульность конструкции.

В нажимных и опорных обоймах со стороны поверхностей, обращенных к кольцам подшипников, выполнены кольцевые углубления, в которых размещены демпферы 15 (фиг.3, 4, 5). Профиль поперечного сечения кольцевого углубления может быть произвольным, но технологически более простым является прямоугольный. Демпферы 15 выполнены в форме кольца из проволочного проницаемого материала, представляющего собой определенным образом ориентированную проволочную спираль, которая в результате холодного прессования образует проницаемую во всех направлениях открытую пористую систему, обеспечивающую требуемую механическую прочность и упругость, гидравлическую проницаемость для масла и хорошую теплопроводность для отвода от зоны контакта с кольцом подшипника тепла. Профиль поперечного сечения кольцевого демпфера либо повторяет профиль поперечного сечения кольцевого углубления в обоймах, либо отличается. Но, в любом случае, демпфер должен выступать над опорной поверхностью обоймы, обращенной к кольцу упорного подшипника.

Между радиальными роликовыми подшипниками с обоих концов вала 6 установлены устройства предварительного натяжения 16, представляющие собой цилиндрические втулки с аксиальными отверстиями и расположенными внутри них цилиндрическими пружинами.

Все упорные осевые подшипниковые модули, радиальные подшипники и устройства предварительного натяжения 7, 8, 9, 10, 16 установлены на вал, который со стороны головки 4 снабжен упорным буртиком, а с другой стороны имеет резьбовую пару 40 (фиг.1, 2), обеспечивающую фиксацию всех узлов на валу.

Вал 6 за пределами опор снабжен многозаходной резьбой прямоугольного профиля, которая при взаимодействии с аналогичной резьбой, размещенной в головке 4, образует масляный насос 17. Масляный насос обеспечивает прокачку масла через все подшипники 7, 8, 9, 10 опорного узла. Возврат масла к насосу происходит по осевому каналу внутри вала.

Гидрокомпенсатор 2 (фиг.1, 2) состоит из цилиндрического корпуса 18, основания 19 и переходника 20. Внутри корпуса на валу 24 установлена специальная цилиндрическая втулка 21 с двумя предохранительными клапанами 23, расположенными со стороны ниппеля 3 аксиально валу 24, с размещенной на ней в средней части эластичной диафрагмой 22, образующей полость для масла. В полости, образованной эластичной диафрагмой 22, находится запас масла, предназначенный для компенсации утечек и компенсации теплового расширения. Предохранительные клапаны 23, установленные последовательно, предохраняют эластичную диафрагму 22 от разрушения в случае чрезмерного повышения давления масла во внутренней полости устройства путем отвода масла в окружающую пластовую жидкость (внешнюю среду).

Вал 24, проходящий внутри корпуса, основания и переходника, опирается на радиальные подшипники скольжения и передает крутящий момент от электродвигателя через вал 6 подшипникового узла 1 к винтовому насосу. Вал 24 гидрокомпенсатора 2 соединен с валом 6 подшипникового узла 1 посредством шлицевой муфты 41.

Для повышения интенсивности охлаждения масла и обеспечения работы при повышенных температурах, а также для уменьшения габаритных размеров опорного узла эластичная диафрагма может быть заменена компенсатором изменения объема масла поршневого типа. В этом случае на вал устанавливается кольцевой поршень, перемещение которого обеспечивает компенсацию утечек и температурных расширений масла.

Подшипниковый узел 1, ниппель 3 и гидрокомпенсатор 2 образуют общую масляную полость. Герметичность этой полости обеспечивается конструкцией резьбовых соединений корпуса, ниппеля и основания, уплотненных резиновыми кольцами. Также в головке 4 подшипникового узла 1 и в основании 19 гидрокомпенсатора 2 установлены торцевые уплотнения 25 и 26, предотвращающие попадание пластовой жидкости в подшипниковый узел и в гидрокомпенсатор.

Опорный узел погружной одновинтовой насосной установки 27 (фиг.6) устанавливается между винтовым насосом 28 и протектором 29 погружного электродвигателя 30. Крутящий момент от электродвигателя 30 через протектор 29 передается на вал 24 гидрокомпенсатора 2 (фиг.1, 2), далее через шлицевую муфту 41 — на вал 6 подшипникового узла 1 и далее через гибкий вал 32 — на ротор 31 винтового насоса 28 (фиг.6). Забор пластовой жидкости производится через перфорированный корпус 33 винтового насоса, внутри которого и размещен гибкий вал 32.

Опорный узел погружной одновинтовой насосной установки работает следующим образом. При подъеме пластовой жидкости реактивная осевая сила от ротора 31 винтового насоса через гибкий вал 32 передается на вал 6 подшипникового узла 1 и воспринимается упорными роликовыми подшипниками с цилиндрическими 7 (фиг.1) или коническими 10 (фиг.2) роликами. Пропорциональное разделение осевой силы по числу упорных подшипников обеспечивает снижение действующей нагрузки на каждый подшипник и, тем самым, повышает несущую способность конструкции в целом. Технологические неточности изготовления нажимных 11 и опорных 12 кольцевых обойм, внутренних 13 и наружных 14 цилиндрических втулок компенсируют упругие демпферы 15 подшипникового узла за счет их формы и свойств материала, что повышает равномерность разделения нагрузки между упорными подшипниками.

Радиальная нагрузка от гибкого вала 32 передается на вал 6 подшипникового узла через шлицевую муфту или резьбовое соединение и воспринимается радиальными роликовыми подшипниками 8 и 9.

Таким образом, заявляемое устройство позволяет повысить нагрузочную способность одновинтовой насосной установки, увеличить надежность и долговечность устройства за счет равномерности распределения нагрузки, упростить технологию изготовления и, тем самым, снизить затраты на спускоподъемные операции погружного оборудования, обеспечив непрерывную работу оборудования и безостановочную добычу нефти, а также упростить технологию изготовления за счет исключения регулировочно-установочных работ.

За счет применения заявляемой конструкции существенно упрощается технология изготовления установки в целом, не требуется применения дорогостоящей технологической оснастки и обеспечивается высокая надежность конструкции.

Заявляемое устройство позволяет улучшить технические и технологические показатели погружных насосных установок и таким образом расширить сферу применения данного класса изделий.

Опорный узел | ЛУКОЙЛ ЭПУ Сервис

Опорный узел предназначен для компенсации осевых и радиальных сил, возникающих при работе винтового однопоточного РСР-насоса, и для передачи крутящего момента от электродвигателя, через гидрозащиту на РСР-насос.

Опорный узел устанавливается между РСР-насосом и гидрозащитой погружного электродвигателя.

Опорный узел состоит из устройства осевой разгрузки, гидрокомпенсатора и приёмного модуля.

Устройство осевой разгрузки

Устройство осевой разгрузки представляет собой корпус с установленным внутри валом. Вал сцентрирован двумя радиальными роликовыми подшипниками, снабженными устройствами преднатяга. Для восприятия осевой нагрузки применены пять упорных роликовых подшипников. Для восприятия осевой нагрузки при обратном вращении насоса установлен один упорный роликовый подшипник. Внутренняя полость устройства осевой разгрузки заполнена маслом.

Гидрокомпенсатор

Гидрокомпенсатор представляет собой корпус с проходящим внутри валом и втулку с резиновой диафрагмой. Во втулке установлены предохранительные клапаны.

Приёмный модуль состоит из корпуса с отверстиями или пазами для забора пластовой жидкости, гибкого вала и соединительных муфт.

Вращающий момент от гидрозащиты электродвигателя передаётся на вал гидрокомпенсатора и вал устройства осевой разгрузки, затем через гибкий вал на ротор винтового насоса.

Характеристики опорного узла ОПУ-96В5ТА

  • Аксиальная нагрузка (не более) — 6000 кг.
  • Номинальный крутящий момент — 1000 Нм.
  • Максимальный крутящий момент — 1500 Нм – кратковременно, не более 10 мин.
  • Диапазон рабочей частоты вращения — 0..1500 об/мин
  • Режим работы — продолжительный.
  • Массо-габаритные показатели:
    • длина — не более 3320 мм,
    • диаметр — 96 мм,
    • масса — не более 125 кг.

ОПОРНЫЙ УЗЕЛ ПОГРУЖНОЙ ОДНОВИНТОВОЙ НАСОСНОЙ УСТАНОВКИ

Устройство относится к технике добычи нефти, а именно к погружным одновинтовым скважинным насосам с приводом от погружного электродвигателя, и может быть использовано в нефтедобывающих отраслях промышленности при подъеме пластовых жидкостей на большую высоту.

Известно устройство гидрозащиты погружного электродвигателя типов ГЗН, ПБ92, ГБ52 / Международный транслятор. Установки погружных ценробежных насосов для добычи нефти. Под ред. В.Ю.Алекперова, В.Я.Кершенбаума. Москва, 1999 г., RU №96112091 А. Протектор для гидравлической защиты погружного маслозаполненного электродвигателя/. Устройство предназначено для защиты погружных маслозаполненных электродвигателей от проникновения пластовой жидкости в их внутреннюю полость, компенсации утечки масла и тепловых изменений его объема при эксплуатации. Гидрозащита содержит головку, верхний, средний и нижний ниппель, два корпуса и основание, последовательно соединенные между собой резьбой. На валу гидрозащиты установлены три радиальных подшипника скольжения. Осевые нагрузки на вал через пяту воспринимаются верхним и нижним подпятниками (опорными подшипниками скольжения). На обоих концах вала выполнены шлицы для соединения с электродвигателем и насосом. На валу последовательно установлены три торцевых уплотнения, зафиксированных пружинными кольцами. Внутри корпусов размещены две эластичные диафрагмы — верхняя и нижняя, концы которых хомутами герметично закреплены на опорах.

Недостатком данного устройства является низкая несущая способность опорного подшипника скольжения (пяты и подпятников), которая не допускает эксплуатацию погружного винтового насоса с осевой нагрузкой на вал более 600…700 кг, что ограничивает высоту подъема пластовой жидкости. Кроме того, расположение опорного подшипника скольжения в нижней части гидрозащиты ведет к потере валом гидрозащиты продольной устойчивости, его прогибам и колебаниям. В целом снижается надежность устройства и уменьшается его долговечность.

Наиболее близким по своей сути является устройство, описанное в и принятое за прототип. Разгрузочный узел для погружных винтовых насосов содержит корпус, вал с размещенными на нем опорными элементами, при этом узел снабжен герметичной камерой, заполненной гидравлическим маслом, с системой обратных клапанов и диафрагмой, служащей для выравнивания давления внутри камеры с давлением пластовой жидкости, а опорные элементы выполнены в виде осевых упорных подшипников, размещенных в герметичной камере, с регулировочными винтами, обеспечивающими равномерное распределение осевой нагрузки /Патент RU №2290539. Разгрузочный узел для погружных винтовых насосов/.

Недостатками прототипа являются:

Низкая несущая способность разгрузочного узла вследствие расположения опорных элементов в нижней части устройства. Вал, размещенный в верхней части устройства в подшипниках скольжения, испытывает значительные радиальные нагрузки от ротора винтового насоса, совершающего планетарное вращение, а так же испытывает сжимающие напряжения от действия осевой нагрузки. Радиальная нагрузка приводит к повышенному износу подшипников скольжения, а передаваемая осевая сила может вызвать потерю продольной устойчивости вала, его прогибы и колебания.

— Низкая надежность из-за наличия регулировочных винтов для выравнивания осевой нагрузки между опорными подшипниками и необходимости технологической операции регулировки при сборке устройства.

— Низкая надежность из-за отсутствия масляного насоса, обеспечивающего циркуляцию гидравлического масла и теплоотвод от упорных подшипников, что может привести к локальному перегреву зоны опорных элементов.

Задачей изобретения является увеличение нагрузочной способности одновинтовой насосной установки, повышение надежности и долговечности устройства за счет равномерности распределения нагрузки и, тем самым, снижение затрат на спускоподъемные операции погружного оборудования, обеспечение непрерывной работы оборудования и безостановочной добычи нефти, а также упрощение технологии изготовления за счет исключения регулировочно-установочных работ.

Требуемый результат достигается тем, что опорный узел погружной одновинтовой насосной установки, состоящий из последовательно соединенных подшипникового узла, соединительного устройства и гидрокомпенсатора, вал которого соединен с одной стороны с валом протектора электродвигателя, а с другой через соединительное устройство — с входным концом вала подшипникового узла, на котором размещены масляный насос, уплотнения, устройство предварительного натяжения и фиксации подшипниковых модулей на валу, с двух концов радиальные роликовые подшипники и последовательно расположенные между ними упорные осевые подшипниковые модули, включающие упорные роликовые подшипники с цилиндрическими или коническими роликами, кольцевые нажимные и опорные обоймы с кольцевыми канавками по поверхности соприкосновения с подшипниковыми кольцами, внутренние и внешние втулки, при этом в обоймах упорных осевых подшипниковых модулей в кольцевых углублениях установлены кольцевые демпферы из проволочного проницаемого материала, выступающие над опорной поверхностью обойм, обращенной к подшипниковому кольцу, причем профиль поперечного сечения кольцевого демпфера повторяет форму поперечного сечения кольцевого углубления, при этом профиль поперечного сечения кольцевого демпфера не повторяет форму поперечного сечения кольцевого углубления, корпус подшипникового узла выполнен составным из головки и трубы, причем верхнее торцевое уплотнение размещено в головке, а гидрокомпенсатор выполнен в виде поршневого модуля.

Сущность изобретения поясняется фигурами 1, 2, 3, 4, 5, 6.

Фиг.1. Опорный узел погружной одновинтовой насосной установки с упорными роликовыми подшипниками с цилиндрическими роликами.

Фиг.2. Опорный узел погружной одновинтовой насосной установки с упорными роликовыми подшипниками с коническими роликами.

Фиг.3. Подшипниковый узел с упорными роликовыми подшипниками с цилиндрическими роликами и ступенчатыми обоймами.

Фиг.4. Подшипниковый узел с упорными роликовыми подшипниками с коническими роликами и фасочными обоймами.

Фиг.5. Подшипниковый узел с упорными роликовыми подшипниками с цилиндрическим роликами и фасочными обоймами.

Фиг.6. Компоновка погружной одновинтовой насосной установки.

Опорный узел погружной одновинтовой насосной установки (фиг.1) предназначен для восприятия осевых и радиальных сил, возникающих при работе винтового насоса, и устанавливается между винтовым насосом и протектором (гидрозащитой) погружного электродвигателя. Опорный узел погружной одновинтовой насосной установки (фиг.1, 2) состоит из подшипникового узла 1 и гидрокомпенсатора 2, соединенных ниппелем 3. Непосредственно подшипниковый узел 1 предназначен для восприятия осевых и радиальных нагрузок, возникающих при подъеме нефти или иной пластовой жидкости. Гидрокомпенсатор 2 служит для размещения масла, используемого для смазки и отвода тепла и компенсации его температурного расширения. Ниппель 3 предназначен для соединения между собой подшипникового узла и гидрокомпенсатора.

Подшипниковый узел 1 (фиг.1, 2) состоит из головки 4, цилиндрического корпуса 5 и установленного в нем вала 6 со шлицами с обоих концов. На валу установлены подшипники 7, 8, 9, 10, образующие несколько опор. Радиальные роликовые подшипники 8 и 9 предназначены для восприятия радиальных сил, действующих на вал, и установлены по разные стороны от середины вала. Применение радиальных роликовых подшипников позволяет существенно повысить радиальные нагрузочные возможности погружной одновинтовой насосной установки. Для восприятия осевых нагрузок предназначены упорные осевые подшипниковые модули, устанавливаемые последовательно между радиальными подшипниками 8 и 9. Упорные осевые подшипниковые модули включают в себя роликовые подшипники с цилиндрическими роликами 7 (фиг.1) или упорные роликовые подшипники с коническими роликами 10 (фиг.2). Применение для упорных подшипниковых модулей стандартных серийно выпускаемых упорных роликоподшипников с цилиндрическими или коническими роликами позволяет упростить технологию изготовления опорного узла.

Упорные цилиндрические 7 (фиг.3, 5) или упорные конические 10 (фиг.4) роликоподшипники устанавливлены между нажимной 11 и опорной 12 обоймами (фиг.3, 4, 5), имеющими форму кольцевого диска, между внутренней 13 и наружной 14 цилиндрическими втулками, так что образован унифицированный упорный осевой подшипниковый модуль. Цилиндрические кольцевые обоймы 11, 12 могут иметь различный профиль поперечного сечения (фиг.3, 4, 5), но такой, чтобы сопряженные поверхности двух соседних обойм различных подшипниковых модулей не соприкасались друг с другом и обеспечивали прохождение масла или охлаждающей жидкости по кольцевым зазорам. Наличие кольцевых зазоров достигается не только за счет профиля сечения нажимной и опорной обойм, но и за счет высоты проставочных втулок 13, 14, которые должны быть одного размера, что обеспечивает равномерность зазора между различными подшипниками. В случае, если установочные размеры подшипниковых колец одинаковы, на втулках выполняют пояски, имеющие для внутренних втулок больший наружный размер, для наружных втулок меньший внутренний диаметр. Такая конструкция втулок обеспечивает кольцевые зазоры для смазывающей и охлаждающей жидкости, а также модульность конструкции.

В нажимных и опорных обоймах со стороны поверхностей, обращенных к кольцам подшипников, выполнены кольцевые углубления, в которых размещены демпферы 15 (фиг.3, 4, 5). Профиль поперечного сечения кольцевого углубления может быть произвольным, но технологически более простым является прямоугольный. Демпферы 15 выполнены в форме кольца из проволочного проницаемого материала, представляющего собой определенным образом ориентированную проволочную спираль, которая в результате холодного прессования образует проницаемую во всех направлениях открытую пористую систему, обеспечивающую требуемую механическую прочность и упругость, гидравлическую проницаемость для масла и хорошую теплопроводность для отвода от зоны контакта с кольцом подшипника тепла. Профиль поперечного сечения кольцевого демпфера либо повторяет профиль поперечного сечения кольцевого углубления в обоймах, либо отличается. Но, в любом случае, демпфер должен выступать над опорной поверхностью обоймы, обращенной к кольцу упорного подшипника.

Между радиальными роликовыми подшипниками с обоих концов вала 6 установлены устройства предварительного натяжения 16, представляющие собой цилиндрические втулки с аксиальными отверстиями и расположенными внутри них цилиндрическими пружинами.

Все упорные осевые подшипниковые модули, радиальные подшипники и устройства предварительного натяжения 7, 8, 9, 10, 16 установлены на вал, который со стороны головки 4 снабжен упорным буртиком, а с другой стороны имеет резьбовую пару 40 (фиг.1, 2), обеспечивающую фиксацию всех узлов на валу.

Вал 6 за пределами опор снабжен многозаходной резьбой прямоугольного профиля, которая при взаимодействии с аналогичной резьбой, размещенной в головке 4, образует масляный насос 17. Масляный насос обеспечивает прокачку масла через все подшипники 7, 8, 9, 10 опорного узла. Возврат масла к насосу происходит по осевому каналу внутри вала.

Гидрокомпенсатор 2 (фиг.1, 2) состоит из цилиндрического корпуса 18, основания 19 и переходника 20. Внутри корпуса на валу 24 установлена специальная цилиндрическая втулка 21 с двумя предохранительными клапанами 23, расположенными со стороны ниппеля 3 аксиально валу 24, с размещенной на ней в средней части эластичной диафрагмой 22, образующей полость для масла. В полости, образованной эластичной диафрагмой 22, находится запас масла, предназначенный для компенсации утечек и компенсации теплового расширения. Предохранительные клапаны 23, установленные последовательно, предохраняют эластичную диафрагму 22 от разрушения в случае чрезмерного повышения давления масла во внутренней полости устройства путем отвода масла в окружающую пластовую жидкость (внешнюю среду).

Вал 24, проходящий внутри корпуса, основания и переходника, опирается на радиальные подшипники скольжения и передает крутящий момент от электродвигателя через вал 6 подшипникового узла 1 к винтовому насосу. Вал 24 гидрокомпенсатора 2 соединен с валом 6 подшипникового узла 1 посредством шлицевой муфты 41.

Для повышения интенсивности охлаждения масла и обеспечения работы при повышенных температурах, а также для уменьшения габаритных размеров опорного узла эластичная диафрагма может быть заменена компенсатором изменения объема масла поршневого типа. В этом случае на вал устанавливается кольцевой поршень, перемещение которого обеспечивает компенсацию утечек и температурных расширений масла.

Подшипниковый узел 1, ниппель 3 и гидрокомпенсатор 2 образуют общую масляную полость. Герметичность этой полости обеспечивается конструкцией резьбовых соединений корпуса, ниппеля и основания, уплотненных резиновыми кольцами. Также в головке 4 подшипникового узла 1 и в основании 19 гидрокомпенсатора 2 установлены торцевые уплотнения 25 и 26, предотвращающие попадание пластовой жидкости в подшипниковый узел и в гидрокомпенсатор.

Опорный узел погружной одновинтовой насосной установки 27 (фиг.6) устанавливается между винтовым насосом 28 и протектором 29 погружного электродвигателя 30. Крутящий момент от электродвигателя 30 через протектор 29 передается на вал 24 гидрокомпенсатора 2 (фиг.1, 2), далее через шлицевую муфту 41 — на вал 6 подшипникового узла 1 и далее через гибкий вал 32 — на ротор 31 винтового насоса 28 (фиг.6). Забор пластовой жидкости производится через перфорированный корпус 33 винтового насоса, внутри которого и размещен гибкий вал 32.

Опорный узел погружной одновинтовой насосной установки работает следующим образом. При подъеме пластовой жидкости реактивная осевая сила от ротора 31 винтового насоса через гибкий вал 32 передается на вал 6 подшипникового узла 1 и воспринимается упорными роликовыми подшипниками с цилиндрическими 7 (фиг.1) или коническими 10 (фиг.2) роликами. Пропорциональное разделение осевой силы по числу упорных подшипников обеспечивает снижение действующей нагрузки на каждый подшипник и, тем самым, повышает несущую способность конструкции в целом. Технологические неточности изготовления нажимных 11 и опорных 12 кольцевых обойм, внутренних 13 и наружных 14 цилиндрических втулок компенсируют упругие демпферы 15 подшипникового узла за счет их формы и свойств материала, что повышает равномерность разделения нагрузки между упорными подшипниками.

Радиальная нагрузка от гибкого вала 32 передается на вал 6 подшипникового узла через шлицевую муфту или резьбовое соединение и воспринимается радиальными роликовыми подшипниками 8 и 9.

Таким образом, заявляемое устройство позволяет повысить нагрузочную способность одновинтовой насосной установки, увеличить надежность и долговечность устройства за счет равномерности распределения нагрузки, упростить технологию изготовления и, тем самым, снизить затраты на спускоподъемные операции погружного оборудования, обеспечив непрерывную работу оборудования и безостановочную добычу нефти, а также упростить технологию изготовления за счет исключения регулировочно-установочных работ.

За счет применения заявляемой конструкции существенно упрощается технология изготовления установки в целом, не требуется применения дорогостоящей технологической оснастки и обеспечивается высокая надежность конструкции.

Заявляемое устройство позволяет улучшить технические и технологические показатели погружных насосных установок и таким образом расширить сферу применения данного класса изделий.

Опорный узел

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти.

Известен упорный подшипник, содержащий пяту, установленную на валу с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без возможности вращения относительно него, подпятник, содержащий самоустанавливающиеся сегменты и выполненный с возможностью восприятия осевой силы со стороны пяты (см. Патент РФ №2305212, МПК 51 F16C 17/04, опубл. 27.08.2007 г. ). В такой конструкции опорные поверхности самоустанавливающихся сегментов, контактирующие с опорной поверхностью пяты, образуя пару трения, содержат антифрикционное покрытие. В качестве антифрикционного покрытия используются пластмассовые покрытия, например, типа полиэфирэфиркэтон (PEEK), политетрафторэтилен (PTFE), композиционные материалы или другие пластмассовые материалы. Данное техническое решение широко используется в современном машиностроении, т.к. в процессе вращения пяты совместно с валом самоустанавливающиеся сегменты подпятника в зависимости от частоты вращения вала занимают оптимальные положения для передачи осевой нагрузки, создавая гидродинамическую (аэродинамическую) подъемную силу на пяту. Тем самым снижается износ трущихся поверхностей.

Однако при повышении температуры в зоне трения, соответственно и пластмассовых покрытий самоустанавливающихся сегментов, падает несущая способность упорного подшипника, так как пластмассы теряют несущую способность с повышением температуры. С повышением частоты вращения вала, с повышением нагрузки на вал, соответственно на упорный подшипник, увеличивается выделение тепла и повышение температуры в зоне трения пяты с подпятником. При этом снижается надежность, долговечность, несущая способность упорного подшипника. В то же время ограничение во многих случаях площади трущихся поверхностей в связи с ограничением наружного диаметра упорного подшипника, например, в установках погружных электроцентробежных насосов для добычи пластовой жидкости, ограничивает грузоподъемность упорного подшипника, не позволяя достигнуть необходимых значений. Это ограничивает применение их при высоких температурах и осевых нагрузках.

Сегодня возникает значительная потребность в упорных подшипниках (опорных узлах), работоспособных при высоких температурах окружающей среды, при высоких оборотах вала и высоких осевых нагрузках от вала на упорные подшипники в условиях ограничения наружных диаметров упорных подшипников. Особенно высока потребность в таких упорных подшипниках (опорных узлах) в нефтедобывающей, газодобывающей отраслях, в атомной энергетике.

Известен опорный узел, содержащий корпус, вал, расположенные вдоль оси вала, по крайней мере, две опорные секции, каждая из которых содержит упругий элемент, закрепленный на валу упор и закрепленную в корпусе опору, в кольцевой проточке, выполненной на внутренней торцевой поверхности упора, закреплено антифрикционное кольцо, контактирующее с антифрикционным кольцом, установленным в держателе, который закреплен на основании опоры (см. Патент РФ №2235226, МПК 7 F16C 17/26, опубл. 10.04.2004 г.).

В такой конструкции допускаемая удельная нагрузка на антифрикционные вставки, изготовленные из керамики или из твердосплавных материалов, имеющих повышенную твердость и теплостойкость по сравнению с металлическими, пластмассовыми и композиционными материалами, позволяет использовать эти вставки в конструкциях опорного узла (упорного подшипника) повышенной грузоподъемности.

Недостатком данной конструкции является то, что антифрикционные кольца изготовлены из хрупких материалов — керамики или твердого сплава. В настоящее время наиболее часто для таких условий работы применяются вставки и кольца из керамики или из твердых сплавов карбида вольфрама со связкой из кобальта типа ВК8 или карбида вольфрама со связкой из никеля типа СН8. Эти материалы являются дорогостоящими, что приводит удорожанию упорного подшипника. В то же время детали из этих материалов хрупкие, это предъявляет повышенные требования бережного отношения к ним при сборке узла, транспортировке, эксплуатации, ремонтных работах. Особые требования предъявляются к конструкции изделий из этих материалов при повышенных нагрузках на них. Детали из этих материалов не должны иметь концентраторов напряжений, резких переходов с одной толщины на другую, должны иметь равномерную нагрузку по всей поверхности трения. Каналы для охлаждения внутри и на опорных поверхностях пяты и подпятника из этих материалов создают концентраторы напряжения. Отсутствие охлаждения приводит к перегреву и разрушению опор, перегреву масла, например, погружного электродвигателя и ухудшению электроизоляционных свойств масла, к отказу электродвигателя. Изделия из этих материалов разрушаются при вибрационных нагрузках. Недостаточная надежность крепления антифрикционных вставок и колец снижает грузоподъемность опорного узла. Все это приводит к снижению надежности опорного узла, в конечном счете всей установки, в которую он установлен, приводить к необходимости частого ремонта опорного узла для замены антифрикционных вставок и колец узла, к снижению межремонтного периода опорного узла, установки в целом, может привести к разрушению установки, в которую он установлен.

Технической задачей изобретения является увеличение грузоподъемности опорного узла, повышение надежности его работы, увеличение межремонтного периода и долговечности его работы путем создания конструкции опорного узла работоспособной при повышенных осевых нагрузках, частотах вращения вала и температуре окружающей рабочей среды.

Данная техническая задача решается тем, что опорный узел, содержащий основание со встроенным радиальным подшипником, корпус, головку со встроенным радиальным подшипником, последовательно соединенные между собой, вал, расположенные вдоль оси вала опорные секции, каждая из которых содержит пяту, установленную на валу насоса с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без возможности вращения относительно него, подпятник, выполненный с возможностью восприятия осевой силы со стороны пяты и закрепленный в корпусе. Опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность пяты твердосплавным покрытием контактирует с твердосплавным покрытием опорной поверхности подпятника, образуя пару трения.

Кроме того, опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие толщиной 0.1 мм — 1.0 мм и более каждая.

Кроме того, пята опорной секции со стороны, противоположной опорной поверхности с твердосплавным покрытием, содержит закрепленный на валу упругий элемент.

Кроме того, подпятник выполнен в виде корпуса с опорной поверхностью, контактирующей с пятой образованием пары трения, и сопрягаемого с ним основания, при этом поверхность корпуса подпятника, противоположная опорной поверхности, выполнена сферической или торовой, а сопрягаемая с ней поверхность основания подпятника выполнена конической или сферической.

Кроме того, подпятник на контактируемой с пятой поверхности имеет радиальные каналы.

Кроме того, опорная поверхность подпятника может содержать гидродинамические уклоны.

Кроме того, опорная поверхность подпятника может быть выполнена на упругих площадках-секторах.

Кроме того, опорная поверхность подпятника, выполненная на упругих площадках-секторах, может содержать гидродинамические уклоны.

Кроме того, опорный узел содержит упор-ограничитель, содержащий опорную секцию, расположенную на валу симметрично остальным опорным секциям, имеющую пяту и подпятник, при этом подпятник закреплен в корпусе, пята, закрепленная на валу без возможности вращения относительно него, установлена с возможностью передачи усилия от вала на подпятник, опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность пяты твердосплавным покрытием может контактировать с твердосплавным покрытием опорной поверхности подпятника, образуя пару трения.

Кроме того, между основанием и головкой опорного узла перед опорными секциями установлены один или более теплообменников, содержащих корпус, закрепленный в корпусе опорного узла, и циркуляционный насос в виде шнека, закрепленный на валу.

На фиг. 1 представлен продольный разрез заявляемого опорного узла.

На фиг. 2 представлен выносной элемент I фиг. 1, на котором в увеличенном масштабе показана опорная секция опорного узла.

На фиг. 3 представлен разрез А-А фиг. 2, на котором показаны гидродинамические уклоны опорной поверхности подпятника.

На фиг. 4 представлен выносной элемент I фиг. 1, на котором показана опорная секция где опорная поверхность подпятника выполнена на упругих площадках-секторах.

На фиг. 5 представлен разрез Б-Б I фиг. 1, на котором опорная поверхность упругих площадок-секторов подпятника содержат гидродинамические уклоны.

На фиг. 6 представлен продольный разрез заявляемого опорного узла, на котором между основанием и головкой перед опорными секциями установлены один или более теплообменников.

Опорный узел содержит основание 1 со встроенным радиальным подшипником 2, корпус 3, головку 4 со встроенным радиальным подшипником 5, последовательно соединенные между собой, вал 6, расположенные вдоль оси вала опорные секции 7, каждая из которых содержит пяту 8, установленную на валу 6 насоса с возможностью вращения совместно с валом 6 и восприятия осевой силы со стороны вала 6 и без возможности вращения относительно него, подпятник 9, выполненный с возможностью восприятия осевой силы со стороны пяты 8 и закрепленный в корпусе 3. Опорная поверхность 10 пяты 8 и опорная поверхность 11 подпятника 9 содержат твердосплавные покрытия 12 и 13 соответственно, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность 10 пяты 8 твердосплавным покрытием 12 контактирует с твердосплавным покрытием 13 опорной поверхности 11 подпятника 9, образуя пару трения. Поверхности пар трения могут формироваться и из покрытий других твердых сплавов.

Основание 1, корпус 3 и головка 4 последовательно соединены между собой, например, посредством резьбы 14.

Пята 8 установлена на валу 6 с возможностью вращения совместно с валом 6 и восприятия осевой силы со стороны вала 6 и без возможности вращения относительно него. Пята 8 может быть установлена на валу 6 с помощью шпонки 15 или шпонок. Для восприятия пятой 8 осевой силы (нагрузки) со стороны вала 6 на валу может быть установлено упорное кольцо 16 с упором 17. Для обеспечения одновременного контакта всех опорных поверхностей 10 пят 8 и с опорными поверхностями 11 подпятников 9 при работе и компенсации зазоров, возникающих при изготовлении вследствие технологических допусков, пята 8 опорной секции 7 со стороны противоположной опорной поверхности 10 с твердосплавным покрытием 12 содержит закрепленный на валу 6 упругий элемент 18. В качестве упругого элемента могут применяться, например, тарельчатые пружины.

Подпятник 9 выполнен с возможностью восприятия осевой силы со стороны пяты 8 и закреплен в корпусе 3 с помощью втулок распорных 19. В распорных втулках 19 для удобства сборки опорного узла могут быть выполнены отверстия 20. Для компенсации зазоров могут быть применены шайбы 21. Шайбы 21 могут служить для обеспечения необходимого вылета или заглубления торцов вала 6 от посадочных поверхностей 22 и 23 основания 1 и головки 4.

Кроме того, подпятник 9 выполнен в виде корпуса 24 с опорной поверхностью 11, контактирующей с пятой 8 образованием пары трения, и сопрягаемого с ним основания 25. Поверхность 26 корпуса 24 подпятника 9, противоположная опорной поверхности 11, выполнена сферической или торовой, а сопрягаемая с ней поверхность 27 основания 25 подпятника 9 выполнена конической или сферической. Выполнение поверхности 26 корпуса 24 сферической или торовой, а поверхности 27 основания 25 подпятника конической или сферической зависит от технологических возможностей изготовителя и материалов сопрягаемых пар. Два штифта 28 одним концом закреплены на основании 25 подпятника 9 со стороны конической (или сферической) поверхности 27, а другим своим концом размещены в отверстиях, выполненных на торце корпуса 24 подпятника 9, содержащего сферическую (или торовую) поверхность 26, фиксируя его от вращения относительно продольной оси основания 25. Основание 25 подпятника 9 закреплено в корпусе 3 опорного узла с помощью втулок распорных 19. На контактируемой с пятой 8 поверхности 11 подпятника 9 выполнены радиальные каналы 29.

Кроме того, опорная поверхность 11 подпятника 9 может содержать гидродинамические уклоны 30.

Кроме того, опорная поверхность 11 подпятника 9 опорной секции 7 может быть выполнена на упругих площадках-секторах 31. Упругие площадки-сектора 31 могут быть расположены на ребрах 32, соединяющих эти площадки 31 с основанием 33 корпуса 24 подпятника 9, размещенным на основании 25 пяты 9. Опорная поверхность 11 площадок-секторов 31 подпятника 9 может содержать гидродинамические уклоны 30.

Кроме того, опорный узел содержит упор-ограничитель 34, содержащий опорную секцию 35, имеющую пяту 36 и подпятник 37 и расположенную на валу 6 симметрично остальным опорным секциям 7, при этом подпятник 37 закреплен в корпусе 3 опорного узла с помощью втулок распорных 38. Пята 36 закреплена на валу 6 без возможности вращения относительно вала 6 и установлена с возможностью передачи усилия от вала 6 на подпятник 37. Пята 36 может быть установлена на валу 6 с помощью шпонки 15 или шпонок. Для восприятия пятой 36 осевой силы со стороны вала 6 на валу 6 может быть установлено упорное кольцо 39 с упором 40. Упорное кольцо 39 предназначено для восприятия осевой нагрузки (при возникновении таковой) от вала 6, противоположной осевым нагрузкам, воспринимаемым упорными кольцами 16 от вала 6. Опорная поверхность 10 пяты 36 твердосплавным покрытием 12 может контактировать с твердосплавным покрытием 13 опорной поверхности 11 подпятника 37, образуя пару трения. Упорное кольцо 39 ограничивает перемещение вала 6 в одном направлении вдоль оси опорного узла, а упорное кольцо 16 ограничивает перемещение вала 6 в другом направлении вдоль оси опорного узла. Таким образом, все опорные секции 7, 35 и вал 6 находятся зафиксированными в корпусе 3 опорного узла в продольном направлении, при этом основную продольную (осевую) нагрузку воспринимают опорные секции 7. При возникновении обратной осевой нагрузки эту нагрузку воспринимает опорная секция 35. Для циркуляции рабочей жидкости (масла) вокруг опорных секций с целью их охлаждения между упором 40 и пятой 36 может быть установлен переходник 41 с отверстиями 42 и выполнены отверстия 43 в пяте 36. Для обеспечения необходимого зазора или натяга между пятой и подпятником опорной секции 35 может быть установлено одно или несколько компенсационных колец 44.

Кроме того, между основанием 1 и головкой 4 перед опорными секциями 7, 35 могут быть установлены один или более теплообменников 45, содержащие корпус 46, закрепленный в корпусе 3 опорного узла, и циркуляционный насос 47 в виде шнека, закрепленный на валу 6. Циркуляционный насос 47 в виде шнека скреплен посредством шпонки 48 с валом 6 с возможностью вращения относительно корпуса 46 теплообменника 45. Теплообменник может содержать фильтр 49 для очистки рабочей жидкости (масла). На наружной поверхности корпуса 46 теплообменника 45 для передачи тепла на корпус 3 опорного узла и далее в окружающую среду выполнены каналы 50. По этим каналам 50 рабочая жидкость проходит между корпусом 46 теплообменника 45 и корпусом 3 опорного узла.

В процессе работы опорного узла осевая нагрузка от вала 6 равномерно распределяется между всеми опорные секциями 7. Упорные кольца 16, установленные на валу 6, передают осевое усилие от вала 6 посредством упоров 17 пятам 8 опорных секций 7. Передача осевых усилий от упоров 17 пятам 8 может проводиться посредством упругих элементов 18. Упругие элементы 18 способствуют одновременному контакту в опорных секциях 7 всех опорных поверхностей 10 пят 8 и с опорными поверхностями 11 подпятников 9 при работе и компенсируют зазоры в опорных секциях 7, возникающих при изготовлении опорного узла вследствие технологических допусков на размеры деталей опорного узла. Пята 8, закрепленная на валу 6, например, с помощью шпонки 15 или шпонок, в процессе работы вращается совместно с валом и передает осевое усилие подпятнику 9. Подпятник 9 выполнен с возможностью восприятия осевой силы со стороны пяты 8 и закреплен в корпусе 3 с помощью втулок распорных 19. Для компенсации зазоров между подпятником 9 и втулок распорных 19 могут быть применены шайбы 21. Подпятник 9 посредством втулок распорных 19 и шайбы 21 передает осевое усилие корпусу 3. Радиальные нагрузки от вала 6 воспринимают радиальные подшипники 2 и 5, встроенные в основание 1 и головку 4 опорного узла. Опорная поверхность 10 пяты 8 и опорная поверхность 11 подпятника 9 содержат твердосплавные покрытия 12 и 13 соответственно, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля. Опорная поверхность 10 пяты 8 твердосплавным покрытием 12 контактирует с твердосплавным покрытием 13 опорной поверхности 11 подпятника 9, образуя пару трения.

Твердосплавное покрытие на опорные поверхности может наноситься, например, методом сверхзвукового газовоздушного напыления. При этом обеспечивается повышенная адгезия слоя твердого материала к опорным поверхностям за счет диффузии расплавленного сплава в материал опорной поверхности, механического сцепления с неровностями опорной поверхности, химического соединения сплава с материалом опорной поверхности. Это позволяет получить особо прочные твердосплавные покрытия. После нанесения покрытия поверхности трения обрабатываются с шероховатостью, необходимой для поверхностей трения подшипников скольжения. Высокая твердость опорных поверхностей из твердосплавных покрытий увеличивает срок службы пар трения опорного узла, как пяты, так и подпятника, приводит к увеличению грузоподъемности, повышению надежности, снижению себестоимости упорного подшипника и к увеличению межремонтного периода эксплуатации опорного узла, соответственно и установки, в которую установлен опорный узел. Высокая температурная стойкость твердосплавного покрытия по сравнению полимерными, композиционными, металлическими, например, баббитовыми, покрытиями позволяет повысить грузоподъемность и надежность опорного узла особенно при работе их при высоких оборотах вала и при высоких температурах окружающей среды. Высокая теплопроводность твердосплавного покрытия способствует повышенному отводу тепла из зоны трения пар трения, что повышает надежность и долговечность работы опорного узла. Малая толщина твердосплавного покрытия по сравнению с вставками и кольцами из антифрикционных материалов, как карбид кремния и твердые сплавы, позволяет уменьшить стоимость, габариты опорного узла.

Метод сверхзвукового газовоздушного напыления позволяет получить нано структурированные покрытия при использовании нанопорошка исходного материала, например, карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля. Это позволяет получить сверхпрочные твердосплавные покрытия для пар трения опорного узла.

Толщина твердосплавного покрытия выполняется исходя из применяемого метода нанесения покрытия, из условий работы опорного узла, в первую очередь она зависит от удельной осевой нагрузки на пяту, соответственно и на подпятник, частоты вращения вала, соответственно пяты, и необходимого срока службы опорного узла. В современном машиностроении востребованы упорные подшипники (опорные узлы) способные работать при повышенных температурах окружающей среды, высоких осевых нагрузках и повышенных частотах вращения вала. Например, сегодня возникает необходимость добычи пластовой жидкости с высокой температурой, более 170°С, из глубоких и сверхглубоких скважин, 4000 м и более. Это накладывают на упорные подшипники (опорные секции) устройств для гидравлической защиты погружного электродвигателя все более повышенные требования по надежности и грузоподъемности, требования по восприятию значительных осевых нагрузок при высоких температурах пластовой жидкости. Это особенно актуально для насосных установок с насосами без осевых опор компрессионной схемы исполнения насосов. При необходимости работы при высоких температурах окружающей среды относительно непродолжительное время (1-2 года) и с частотой вращения вала до 3000 об/мин, толщина твердосплавного покрытия на опорных поверхностях пар трения выполняется в пределах 0,1-0,3 мм. При частотах вращения вала до 6000 об/мин при средней продолжительности работы опорного узла толщина твердосплавного покрытия на опорных поверхностях выполняется в пределах 0,2-0,5 мм. Для высоконагруженных опорных секций опорных узлов с высокой частой вращения вала, более 6000 об/мин, например, для гидравлических защит погружных электродвигателей, работающих в высокотемпературной среде, для насосных установок без осевой опоры в секциях насосов с компрессионной схемой сборки в зависимости от напора насосной установки, частоты вращения вала насоса, глубины добычи нефти, продолжительного срока службы (5 лет и более) опорного узла толщина твердосплавного покрытия на опорных поверхностях пар трения выполняется в пределах 0,4-1,0 мм и более. Применение того или иного карбида вольфрама со связкой из кобальта или того или иного карбида вольфрама со связкой из никеля определяется наличием компонентов для твердосплавного покрытия и необходимостью получения требуемых характеристик твердосплавного покрытия. Поверхности пар трения могут формироваться и из других твердых сплавов.

Упругие элементы 18 пяты 8, закрепленные на валу 6 со стороны, противоположной опорной поверхности 10 с твердосплавным покрытием 12, позволяют одновременно во всех опорных секциях обеспечить равномерный контакт опорных поверхностей 10 пят 8 и с опорными поверхностями 11 подпятников 9 и компенсировать зазоры, возникающие при изготовлении опорного узла. Упругие элементы 18 позволяют подпятнику самоустанавливаться в процессе работы, способствуя прилеганию трущихся поверхностей 10 и 11 пяты 8 и подпятника 9. Тем самым создается благоприятные условия для долговечной работы опорного узла за счет равномерного распределения осевой нагрузки по поверхности пяты 8 и подпятника 9, что значительно снижает износ трущихся поверхностей 10 и 11, повышает надежность, долговечность опорного узла, повышает межремонтный период опорного узла.

Выполнение подпятника 9 в виде корпуса 24 с опорной поверхностью 11, контактирующей с пятой 8 образованием пары трения, и сопрягаемого с ним основания 25, где поверхность 26 корпуса 24 подпятника 9, противоположная опорной поверхности 11, выполнена сферической или торовой, а сопрягаемая с ней поверхность 27 основания 25 подпятника 9 выполнена конической или сферической, при работе опорного узла позволяет за счет возможности смещения сферической (или торовой) поверхности 26 корпуса 24 подпятника 9 относительно конической (или сферической) поверхности 27 основания 25 подпятника 9 обеспечить параллельность трущихся поверхностей 10 и 11 пяты 8 и подпятника 9. Это приводит к полному контакту этих сопрягающихся поверхностей 10 и 11 трения, приводит к увеличению поверхности трения, приводит к снижению удельного давления на единицу площади и уменьшению вибраций. Это позволит повысить грузоподъемность, надежность, увеличит межремонтный период и долговечность опорного узла.

Радиальные канавки 29 на контактируемой с пятой поверхности подпятника 9, постоянно пропуская через себя циркулирующее масло, способствуют эффективному охлаждению трущихся поверхностей пяты 8 и подпятника 9, тем самым повышают надежность и долговечность работы опорного узла.

Гидродинамические уклоны 30 на опорной поверхности 11 подпятника 9 при работе опорного узла способствуют вращающейся пяте 8 увлекать рабочую жидкость в клиновой зазор 51 между трущимися поверхностями 10 и 11 пяты 8 и подпятника 9. Гидродинамические уклоны 30 при меньших частотах вращения вала 6, соответственно и пяты 8, позволяют созданию условий, при котором между поверхностями трения 10 и 11 появляется устойчивый слой рабочей жидкости, например, масла, воды или газа, полностью разделяющий их. Тем самым способствуют созданию и повышению гидродинамической подъемной силы на пяту 8, снижению износа поверхностей трения 10 и 11 опорного узла, повышению грузоподъемности, надежности, долговечности опорного узла, увеличению межремонтного периода опорного узла, соответственно и установки в которую установлен опорный узел.

Выполнение опорной поверхности 12 подпятника 9 на упругих площадках-секторах 31 позволяет каждой отдельно взятой площадке 31 за счет своей упругости, также за счет упругости ребра 32, на котором он установлен, в зависимости от нагрузки на опорную секцию 7 и в зависимости от частоты вращения вала 6, соответственно и пяты 8, занимать соответствующее положение вследствие гидродинамических сил, возникающих при вращении пяты 8, и создать подъемную силу на пяту 8. Тем самым исключается прямой контакт трущихся поверхностей 10 и 11, резко снижается трение и выделение тепла в паре трения опорной секции 7, повышается надежность и долговечность работы узла опоры. Также развитая поверхность подпятника 9 за счет площадок-секторов 31, ребер 32 и основания 33 корпуса 24 подпятника 9 способствует усиленному теплоотводу от поверхностей трения 10 и 12, тем самым увеличивая надежность и долговечность опорного узла.

Гидродинамические уклоны 30 опорной поверхности подпятника при работе опорного узла способствуют вращающейся пяте 8 увлекать масло в клиновой зазор 51 между трущимися поверхностями 10 и 11 пяты 8 и подпятника 9. Гидродинамические уклоны 30 при меньших частотах вращения вала 6, соответственно и пяты 8, позволяют созданию условий, при котором между поверхностями трения 10 и 11 появляется устойчивый слой рабочей жидкости (масла), полностью разделяющей их. Тем самым гидродинамические уклоны способствуют созданию и повышению гидродинамической подъемной силы на пяту 8, способствуют увеличению грузоподъемности, снижению износа пар трения опорной секции, повышению надежности, долговечности опорного узла, увеличению межремонтного периода опорного узла.

Размещение между основанием 1 и головкой 2 перед опорными секциями 7 и 35 одного или более теплообменников 45, содержащих корпус 46, закрепленный в корпусе 3 опорного узла, циркуляционный насос 47 в виде шнека, закрепленный на валу 3, обеспечивает при работе опорного узла интенсивный отвод тепла из зоны трения опорных поверхностей 10 и 11 за счет циркуляции масла вокруг корпуса 46 теплообменника 45. При этом циркуляционный насос 47 подает охлажденную рабочую жидкость (масло) в зону трения, тем самым охлаждает трущиеся поверхности 10 и 11. Корпус 46 теплообменника 45 отводит тепло к корпусу 3 опорного узла за счет циркуляции масла, корпус 3 опорного узла передает тепло окружающей ей среде. Это создает благоприятные условия для работы опорного узла, предотвращает перегрев рабочей жидкости (масла), что повышает грузоподъемность, надежность, увеличивает межремонтный период опорного узла.

Выполнение таким образом опорного узла позволяет увеличить грузоподъемность опорного узла, повысить надежность его работы, увеличить межремонтный период и долговечность его работы путем создания конструкции опорного узла работоспособной при повышенных осевых нагрузках, частотах вращения вала и температуре окружающей рабочей среды.







Изучение конструкции погружного центробежного насоса. Основные узлы установки и их назначение уэцн

Эксплуатация скважин установками погружных центробежных насосов (УЭЦН) является в настоящее время основным способом добычи нефти в России. Данными установками извлекается на поверхность около двух третей от общей годовой добычи нефти в нашей стране.

Электроцентробежные скважинные насосы (ЭЦН) относятся к классу динамических лопастных насосов, характеризующихся большими подачами и меньшими напорами по сравнению с объемными насосами.

Диапазон подач скважинных электроцентробежных насосов — от 10 до 1000 м 3 /сутки и более, напор — до 3500 м. В области подач свыше 80 м 3 /сут ЭЦН имеет самый высокий КПД среди всех механизированных способов добычи нефти. В интервале подач от 50 до 300 м 3 /сут КПД насоса превышает 40 %.

Назначение электроцентробежных скважинных насосов – отбор из скважины нефти с содержанием воды до 99%, содержанием механических примесей до 0,01% (0,1 г/л) твердостью до 5 баллов по Моосу; сероводорода до 0,001%, содержанием газа до 25%. В коррозионностойком исполнении содержание сероводорода может быть до 0,125% (до 1,25 г/л). В износостойком исполнении содержание мехпримесей – до 0,5 г/л. Допустимый темп набора кривизны ствола скважины — до 20 на 10 м. Угол отклонения оси ствола скважины от вертикали – до 400.

Достоинством ЭЦН являются большие возможности по автоматизации работы и дистанционного контроля состояния по сравнению со штанговыми установками. Кроме того ЭЦН меньше подвержены влиянию кривизны скважины.

Недостатками электроцентробежных насосов является ухудшение работы в условиях коррозионно-агрессивной среды, при выносе песка, в условиях высокой температуры и высокого газового фактора, снижение параметров работы с увеличением вязкости жидкости (при вязкости более 200 сП эксплуатация ЭЦН становится невозможной).

Основными производителями погружных центробежных насосов в России являются Альметьевский насосный завод (АО «АЛНАС»), Лебедянский машиностроительный завод (АО «ЛЕМАЗ»), московский завод «Борец». Интересные разработки предлагаются и другими организациями, например, пермским заводом АО «Новомет», изготавливающим методом порошковой металлургии оригинальные ступени погружных центробежных насосов.

УЭЦН в России изготавливаются в соответствии с техническими условиями ТУ, за рубежом – в соответствии требованиями API.

Наиболее известные зарубежные производители установок ЭЦН – компания «REDA», «Centrilift», «ODI» и «ESP» (CША). В последние годы большую активность проявляют также изготовители УЭЦН из Китайской Народной Республики (фирма Temtext).

В данных методических указаниях приводятся основные конструктивные схемы УЭЦН, особенности их устройства и принципа действия.

Для самостоятельной проверки полученных знаний в конце методических указаний приводится перечень контрольных вопросов.

Цель данной лабораторной работы – изучение конструкции погружного центробежного насоса.

2.1. Общая схема установки погружного электроцентробежного насоса

На сегодняшний день предложено большое число различных схем и модификаций установок ЭЦН. На рисунке 2.1 приведена одна из схем оборудования добывающей скважины установкой погружного центробежного электронасоса.

Рис. 2.1. Схема установки погружного центробежного насоса в скважине

На схеме обозначены: компенсатор 1, погружной электродвигатель (ПЭД) 2, протектор 3, приёмная сетка 4 с газосепаратором 5, насос 6, ловильная головка 7, обратный клапан насосный 8, спускной клапан 9, колонна насосно-компрессорных труб (НКТ) 10, колено 11, выкидная линия 12, обратный клапан устьевой 13, манометры 14 и 16, устьевая арматура 15, кабельная линия 17, соединительный вентиляционный ящик 18, станция управления 19, трансформатор 20, динамический уровень жидкости в скважине 21, пояса 22 для крепления кабельной линии к НКТ и насосному агрегату и эксплуатационная колонна скважины 23.

При работе установки насос 6 откачивает жидкость из скважины на поверхность по насосно-компрессорным трубам 10. Насос 6 приводится в действие погружным электродвигателем 2, электроэнергия к которому подводится с поверхности по кабелю 17. Охлаждение двигателя 2 производится потоком скважинной продукции.

Наземное электрооборудование – станция управления 19 с трансформатором 20 – предназначено для преобразования напряжения промысловой электросети до величины, обеспечивающей оптимальное напряжение на входе в электродвигатель 2 с учётом потерь в кабеле 17, а

Рисунок 1.1 — Схема установки погружного центробежного насоса в скважине.

также для управления работой погружной установки и её защиты при аномальных режимах.

Допустимое по отечественным техническим условиям максимальное содержание свободного газа на входе в насос составляет 25%. При наличии газосепаратора на приёме ЭЦН допустимое газосодержание увеличивается до 55%. Зарубежные фирмы-производители УЭЦН рекомендуют применять газосепараторы во всех случаях, когда входное газосодержание составляет более 10 %.

2.2. Конструкции основных узлов и деталей насоса

Основными элементами любого центробежного насоса являются рабочие колеса, вал, корпус, радиальные и осевые опоры (подшипники), уплотнения, предупреждающие внутренние и внешние утечки жидкости.

Электроцентробежные скважинные насосы – многоступенчатые. Рабочие колеса располагаются последовательно на валу. Каждое колесо имеет направляющий аппарат, в котором преобразуется скоростная энергия жидкости в энергию давления с последующим направлением ее в следующее за ним колесо. Колесо и направляющий аппарат образуют ступень насоса.

В многоступенчатых насосах с последовательным расположением колес предусматриваются узлы для разгрузки осевых сил.

2.2.1. Ступени насоса

Насосная ступень является основным рабочим органом скважинного центробежного насоса, посредством которой передается энергия от насоса жидкости. Ступень состоит (рис. 2.2) из рабочего колеса 3 и направляющего аппарата 1.

Рис. 2.2. Ступень ЭЦН

5 – нижняя опорная шайба; 6 – защитная втулка;

7 – верхняя опорная шайба; 8 — вал

Напор одной ступени составляет от 3 до 7 м водяного столба. Небольшая величина напора определяется малой величиной внешнего диаметра рабочего колеса, ограниченного внутренним диаметром обсадной колонны. Требуемые значения напора в насосе достигаются последовательной установкой рабочих колес и направляющих аппаратов.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции может размещаться от 39 до 200 ступеней (максимальное количество ступеней в насосах достигает 550 штук).

Для возможности сборки ЭЦН с таким количеством ступеней и разгрузки вала от осевой силы применяется плавающее рабочее колесо. Такое колесо не фиксируется на валу в осевом направлении, а свободно перемещается в промежутке, ограниченном опорными поверхностями направляющих аппаратов. От проворота колесо удерживает призматическая шпонка.

Индивидуальная осевая опора каждой ступени состоит из опорного бурта направляющего аппарата предыдущей ступени и антифрикционной износостойкой (текстолитовой) шайбы, запрессованной в расточку рабочего колеса (поз.5, рис. 2.2). Эта опора (пята) одновременно является передним уплотнением колеса, снижающим внутренние утечки в насосе.

На режимах, примерно на 10% превышающих подачу, соответствующую нулевой осевой силе, рабочее колесо может «всплыть» — переместиться вверх. Для обеспечения для колеса надежного упора предусматривают верхнюю осевую опору. На верхней индивидуальной опоре рабочее колесо может работать и при кратковременных пусковых режимах. Верхняя опора состоит из опорного бурта на направляющем аппарате и шайбы, запрессованной в расточку рабочего колеса (поз.7, рис. 2.2).

Основные элементы ступени насоса могут иметь различное конструктивное исполнение. В соответствии с этим, ступени и, собственно, насосы классифицируют следующим образом.

1. По конструкции лопастного аппарата рабочего колеса:

· с цилиндрическими (радиальными) лопастями (рис. 2.3, а) и с наклонно-цилиндрическими (радиально-осевыми) лопастями (рис. 2.3, б).

В ступенях с радиальными направляющими лопастями переводные каналы расположены радиально. Гидравлически они более совершенны, но номинальная подача ограничивается до 125 м 3 /сут в насосах с наружным диаметром 86 и 92 мм и до 160 м 3 /сут в насосах с наружным диаметром 103 мм и 114 мм.

У рабочих колес с наклонно-цилиндрическими лопастями, лопатки входят в область поворота из осевого направления в радиальное, что приводит к

Основные узлы и детали центробежных и осевых насосов

К основным узлам и деталям центробежных насосов относятся рабочее колесо, направляющий аппарат, корпус насоса, вал, подшипники и сальники.
Рабочее колесо —• важнейшая деталь насоса. Оно предназначено для передачи энергии от вращающегося вала насоса жидкости. Различают рабочие колеса с односторонним и двусторонним входом воды, закрытые, полуоткрытые, осевого типа.

Закрытое рабочее колесо с односторонним входом воды (рис. 2.2, а) состоит из двух дисков: переднего (наружного) и заднего (внутреннего), между которыми расположены лопасти. Диск 3 с помощью втулки закреплен на валу насоса. Обычно рабочее колесо отливается целиком (диски и лопасти) из чугуна, бронзы или других металлов. Но в некоторых насосах применяют сборные конструкции рабочих колес, в которых лопасти вварены или вклепаны между двумя дисками.

Полуоткрытое рабочее колесо (см. рис. 2.2, о) отличается тем, что у него отсутствует передний диск, а лопасти примыкают (с некоторым зазором) к неподвижному диску, закрепленному в корпусе насоса. Полуоткрытые колеса применяют в насосах, предназначенных для перекачивания суспензий и сильно загрязненных жидкостей (например, илов или осадка), а также в некоторых конструкциях скважинных насосов.
Рабочее колесо с двусторонним входом жидкости (см. рис. 2.2, в) имеет два наружных диска и один внутренний диск с втулкой для крепления на валу. Конструкция колеса обеспечивает впуск жидкости с двух сторон, вследствие чего создается более устойчивая работа насоса и компенсируется осевое давление.
Колеса центробежных насосов обычно имеют шесть — восемь лопастей. В насосах, предназначенных для перекачивания загрязненных жидкостей (например канализационных), устанавливают рабочие колеса с минимальным числом лопастей (2—4).
Рабочее колесо насосов осевого типа (см. рис. 2.2, д) представляет собой втулку, на которой закреплены лопасти крыловидного профиля.
На рис. 2.2, г показана схема рабочего колеса с импеллерами, которые служат для разгрузки осевого усилия или защиты уплотнений от попадания твердых частиц.
Очертания и размеры внутренней (проточной) части колеса определяются гидродинамическим расчетом. Форма и конструктивные размеры колеса должны обеспечивать его необходимую механическую прочность, а также удобство отливки и дальнейшей механической обработки.
Материал для рабочих колес выбирают с учетом его коррозионной стойкости к воздействию перекачиваемой жидкости. В большинстве случаев рабочие колеса насосов изготовляют из чугуна. Колеса крупных насосов, выдерживающие большие механические нагрузки, изготовляют из стали. В тех случаях, когда эти насосы предназначены для перекачки неагрессивной жидкости, для изготовления колес используется углеродистая сталь. В насосах, предназначенных для перекачивания жидкостей с большим содержанием абразивных веществ (пульп, шламов и т. п.), применяются рабочие колеса из марганцовистой стали повышенной твердости. Кроме того, в целях повышения долговечности рабочие колеса таких насосов иногда снабжают сменными защитными дисками из абразивно-стойких материалов.
Рабочие колеса насосов, предназначенных для перекачивания агрессивных жидкостей, изготовляют из бронзы, кислотоупорных чугунов, нержавеющей стали, керамики и различных пластмасс.
Корпус насоса объединяет узлы и детали, служащие для подвода жидкости к рабочему колесу и отвода ее в напорный трубопровод. На корпусе монтируют подшипники, сальники и другие детали насоса.

  

Рис. 2.3. Многоступенчатый насос с торцевым разъемомРис. 2.4. Насос с осевым разъемом и колесом двустороннего входа

 

Корпус насосов может быть с торцевым или осевым разъемом. В насосах с торцевым разъемом корпуса (рис. 2.3) плоскость разъема перпендикулярна оси насоса, а в насосах с осевым разъемом «(рис. 2.4) она проходит через ось насоса.
Корпус насоса включает в себя подводящее и отводящее устройства.
Подвооящее устройство (подвод) — участок проточной полости насоса от входного патрубка до входа в рабочее колесо — предназначено для обеспечения подвода жидкости во всасывающую область насоса с наименьшими гидравлическими потерями, а также для равномерного распределения скоростей жидкости по живому сечению всасывающего отверстия.
Конструктивно насоси изготовляют с осевым (рис. 2.5, а), боковым в виде колена (рис. 2.5, б), боковым кольцевым (рис. 2.5, в) и боковым полуспиральным (рис. 2.5, г) входом.
Осевой вход характеризуется наименьшими гидравлическими потерями, однако при изготовлении насосов с таким входом увеличиваются размеры насосов в осевом направлении, что не всегда удобно конструктивно. Боковой кольцевой вход создает наибольшие гидравлические потери, но обеспечивает компактность насоса и удобное взаимное расположение всасывающего и напорного патрубков.
 

 Рис. 2.5. Схемы входа жидкости в рабочие колеса центробежных насосов 

 

В насосах с двусторонним входом рабочие колеса разгружены от осевого давления, возникающего при работе насоса. В этих насосах применяют, как правило, боковой полуспиральный вход, который обеспечивает равномерное поступление жидкости в рабочее колесо.
Отводящее устройство (отвод) — это участок, предназначенный для отвода жидкости от рабочего колеса в напорный патрубок насоса. Жидкость выходит из рабочего колеса с большой скоростью. При этом поток обладает высокой кинетической энергией, а движение жидкости сопровождается большими гидравлическими потерями. Для уменьшения скорости движения жидкости, выходящей из рабочего колеса, преобразования кинетической энергии в потенциальную (увеличения давления) и уменьшения гидравлических сопротивлений применяют отводящие устройства, а также направляющие аппараты.
 

 
 Рис. 2.6. Схемы отводов центробежных насосов

   

Различают спиральный, полуспиральный, двухзавитковый и кольцевой отводы, а также отводы с направляющими аппаратами.
Спиральный отвод — это канал в корпусе насоса, охватывающий рабочее колесо по окружности (рис. 2.6, а). Поперечное сечение этого канала увеличивается соответственно расходу жидкости, поступающей в него из рабочего колеса, а средняя скорость движения жидкости в нем уменьшается по мере приближения к выходу или остается примерно постоянной. Спиральный канал оканчивается выходным диффузором, в котором происходит дальнейшее уменьшение скорости и преобразование кинетической энергии жидкости в потенциальную.
Кольцевой отвод — это канал постоянного сечения, который охватывает рабочее колесо так же, как и спиральный отвод (см.рис. 2.6,6). Кольцевой отвод применяют обычно в насосах, предназначенных для перекачивания загрязненных жидкостей. Гидравлические потери в кольцевых отводах значительно больше, чем в спиральных.
Полуспиральный отвод — это кольцевой канал, переходящий в спиральный расширяющийся отвод.
Направляющий аппарат (см. рис. 2.6, в) представляет собой два кольцевых диска, между которыми размещены направляющие лопасти, изогнутые в сторону, противоположную направлению изгиба лопастей рабочего колеса. Направляющие аппараты — более сложные устройства, чем спиральные отводы, гидравлические потери в них больше и потому их применяют только в некоторых конструкциях многоступенчатых насосов.
В крупных насосах иногда применяются составные отводы (см. рис. 2.6, г), представляющие собой сочетание направляющего аппарата и спирального отвода.
Вал насоса служит для передачи рабочему колесу вращения от двигателя насоса. Колеса закрепляют на валу с помощью шпонок и установочных гаек. Для изготовления валов чаще всего применяют кованые стали.
Подшипники, в которых вращается вал насоса, бывают шариковыми и скользящего трения с вкладышами. Шариковые подшипники применяют, как правило, в горизонтальных насосах. В некоторых конструкциях подшипников крупных насосов предусматриваются устройства для охлаждения и принудительной циркуляции масла. По расположению подшипниковых опор различают насоси с выносными опорами, изолированными от перекачиваемой жидкости, и насосы с внутренними опорами, в которых подшипники соприкасаются с перекачиваемой жидкостью.
Сальники служат для уплотнения отверстий в корпусе насоса, через которые проходит вал. Сальник, расположенный со стороны нагнетания, должен предотвращать утечку воды из насоса, а сальник, расположенный со стороны всасывания, — предупреждать поступление воздуха в насос.
 

4.3.4. Основные узлы штанговых насосов

vk.com/club152685050 | vk.com/id446425943

для металлического плунжера

H (Hard – тяжёлый) – толстостенный цилиндр; W (Weak – слабый) – тонкостенный цилиндр; для плунжера с мягким уплотнением

S (Soft – мягкий) – толстостенный цилиндр;

Х5 – расположение замковой опоры для вставных насосов: А – верхнее; В – нижнее;

Т – нижнее с подвижным цилиндром; Х6 – тип замковой опоры:

С – манжетная; М – механическая;

Х7 – длина цилиндра в футах (1 фут = 0,3048 м) или число втулок, если цилиндр втулочный;

Х8 – номинальная длина плунжера в футах; Х9 – общая длина удлинителей в фунтах, если таковые имеются.

Основными узлами штанговых насосов являются: плунжер, цилиндр и клапаны, а для вставных насосов ещё и узлы замковой опоры.

Цилиндры могут быть цельными и составными. Цельные цилиндры изготавливают как по импортным, так и по отечественным технологиям. Стандарт предусматривает выпуск цилиндров условными диаметрами 29, 32, 38, 44, 57, 70, 95 и 102 мм. Толщина стенки цилиндра составляет 6,5 мм для вставных и 6,5÷8,0 мм для невставных насосов. Длина цилиндров в зависимости от его конструкции и длины хода плунжера изменяется от 3 300 до 8 700 мм. Цельные цилиндры просты и надёжны. Однако для их изготовления необходимы высокие технологии, так как к качеству изготовления внутренней поверхности предъявляются высокие требования.

Стандартом предусмотрен выпуск составных (втулочных) цилиндров. В этом случае конструкция цилиндра сложнее, но легче в изготовлении. Она представляет собой кожух, в котором устанавливаются втулки. Длина втулок всех типов и размеров насосов принята равной 300 мм, толщина стенки от 2,8 до 5,75 мм. Торцы втулок обработаны. Втулки надевают на специальный сборочный стержень и в собранном виде вставляют в кожух. Набор втулок стягивают по концам кожуха стяжными муфтами, наворачиваемыми на концы кожуха (рис. 4.16). Число втулок в цилиндре может быть от 2 до 27 в зависимости от типа насоса и длины хода плунжера.

Top 10 лучших погружных насосов для глубоких скважин (2020)

Если вы покупаете товар через наш сайт, прошедший независимую проверку, мы получаем партнерскую комиссию. Прочтите наше партнерское раскрытие.

Чистая питьевая вода может быть легко доступна для жителей, проживающих в районах, где уровень грунтовых вод близок к поверхности. Тем не менее, в горных или чрезвычайно засушливых регионах уровень грунтовых вод низкий, что делает практически невозможным доступ к чистой питьевой воде. Также совершенно очевидно, что большинство насосов, доступных на рынке в настоящее время, предназначены для работы на глубине до 25 футов.Есть лишь несколько исключений, когда сложные струйные насосы могут забирать воду с глубины до 120 футов. Лучшие погружные насосы для глубоких скважин позволяют забирать воду с глубины до 400 футов. Эти насосы обеспечивают безупречно чистую питьевую воду, как если бы она была на кране у кухонной мойки. Все это стало возможным благодаря их уникальному дизайну.

Конструкция погружных насосов для глубоких скважин

Погружной насос для глубоких скважин имеет цилиндрическую конструкцию.Обычно его прикрепляют к пластиковой водопроводной трубе и опускают на поверхность колодца. Как только насос касается поверхности воды, он может выталкивать воду со дна колодца в резервуар или резервуар, расположенный на земле. Фактически, одиночный погружной насос для глубоких скважин способен выталкивать воду на многие сотни футов от скважины.

Трубопровод, по которому вода выходит из колодца, соединен с напорным баком, в котором есть реле давления.Этот переключатель соединяет колодец с резервуаром и регулирует давление воды в зависимости от использования воды в доме. Когда вода используется в доме, давление в резервуаре падает, в результате чего реле давления забирает больше воды из насоса. Это запускает процесс откачки, заполняя резервуар до достижения максимального давления. Затем переключатель гаснет, пока давление снова не упадет.

Лучшие погружные насосы для глубоких скважин

10. TOTOOL 0.Погружной насос для глубоких скважин 5HP / 0,37 кВт

Best Deep Well Submersible Pumps - TOTOOL Deep Well Submersible Pump Best Deep Well Submersible Pumps - TOTOOL Deep Well Submersible Pump

Этот насос с корпусом из нержавеющей стали, оснащенный высокопроизводительным двигателем, предназначен для глубоких скважин. Он обеспечивает желаемую скорость потока для удовлетворения потребностей в воде для большинства операций. В частности, его рабочие колеса имеют высочайшие характеристики, обеспечивая непрерывный поток воды в течение длительного времени. Это подтверждается тем фактом, что насос изготовлен из нержавеющей стали, устойчивой к коррозии и ржавчине. Таким образом, вам гарантирован долгий срок службы.

Помните также, что этот насос не требует заливки или текущего обслуживания. Он тихо работает под землей, и никто никогда не заметит, что у вас есть насос. Мотор является энергосберегающим, обеспечивая скорость 25 галлонов в минуту и ​​может забирать воду с максимального напора 150 футов. Он связан с источником питания электрическим шнуром длиной 5 футов. Насос также имеет обратный клапан, который также помогает предотвратить обратный поток.

Характеристики
  • Это погружной насос для глубоких скважин с мощностью 0,5 л.с., 0,37 кВт и 7.Мотор 5 А. Максимальная голова 150 футов и напряжение 220 В / 50 Гц.
  • Поставляется с 6 мощными крыльчатками, которые обеспечивают максимальную гидравлическую эффективность и предотвращают перегрузку.
  • Насос изготовлен из прочной нержавеющей стали, то есть корпус, напорная головка и переходник двигателя. Это гарантирует максимальную производительность и более длительный срок службы.
  • Двигатель промышленного класса, приводящий в действие насос, обеспечивает максимальную производительность и бесшумную работу. Он также герметичен и имеет термозащиту, предотвращающую перегрев.
  • Наличие нескольких проточных каналов помогает удерживать частицы песка на расстоянии от поверхности подшипников.
  • Насос также оснащен встроенным обратным клапаном, который поддерживает постоянный поток воды и поддерживает давление в насосной системе. Также имеется встроенный отсос, защищающий рабочие колеса от засорения мусором.
  • Размеры продукта 18,1 x 9,1 x 11,8 дюймов, вес 22 фунта.
Плюсы и минусы

Плюсы

  • Тихая работа.
  • Высокоэффективный скважинный насос.
  • Прочный корпус и компоненты насоса.
  • Более долговечный и мощный двигатель.
  • Энергоэффективный мотор.
  • Стабильная подача давления без обратного потока.
  • Максимальный расход воды для надежной подачи воды.
  • Доступный скважинный насос.
  • Не требует обслуживания.
  • Насос промышленного качества.
  • Насос, устойчивый к коррозии и ржавчине.
  • Длинный шнур питания.
  • Простота установки.

Минусы

  • Негативов не отмечено.
Проверить цену

9. Скважинный насос Happybuy 0,5 л.с.

Best Deep Well Submersible Pumps - Happybuy 0.5 HP Deep Well Pump Best Deep Well Submersible Pumps - Happybuy 0.5 HP Deep Well Pump

Погружной насос для глубоких скважин от Happybuy занимает лидирующие позиции в отношении производительности и эффективности. Он может похвастаться двигателем мощностью 0,5 л.с., который работает от 220 В, обеспечивая максимальную скорость потока 25 галлонов в минуту. Он имеет 5 рабочих колес, которые обеспечивают неизменно высокую производительность. Этот насос может забирать воду из колодцев с максимальным напором до 125 футов.Он изготовлен из нержавеющей стали, а его двигатель герметичен, чтобы предотвратить перегрев. Доступен также электрический шнур длиной 5 футов в дополнение к встроенному обратному клапану. Насос достаточно мощный, чтобы удовлетворить потребности большинства домашних хозяйств и промышленных предприятий.

Характеристики
  • Погружной насос для скважин глубиной 4 дюйма может быть установлен в скважину с обсадной трубой диаметром 4 дюйма.
  • Поставляется с электрическим шнуром длиной 5 футов.
  • Обеспечивает лучший в своем классе расход 25 галлонов в минуту.
  • Поставляется со встроенным обратным клапаном.
  • Энергоэффективный двигатель имеет тепловую защиту, предотвращающую его перегрев.
  • Насос имеет 5 рабочих колес, обеспечивающих выдающуюся производительность.
  • Изготовлен из прочной и долговечной нержавеющей стали.
  • Может выдерживать уровни pH от 6,5 до 8,5 и температуры до 40 ℃.
  • Размер упаковки 18 x 9 x 12 дюймов, вес в упаковке 25 фунтов.
  • Поставляется с руководством пользователя.
Плюсы и минусы

Плюсы

  • Легко собрать.
  • Энергоэффективный мотор.
  • Двигатель имеет тепловую защиту от перегрева.
  • Имеет длинный шнур питания.
  • Универсальный насос, идеально подходящий для большинства операций.
  • Имеет блок управления, который упрощает использование насоса.
  • Долговечность благодаря конструкции из нержавеющей стали.
  • Качество за деньги.

Минусы

  • Заземляющий провод недостаточно длинный.
Проверить цену

8. Погружной насос для глубоких скважин XtremepowerUS X5150

Best Deep Well Submersible Pumps - XtremepowerUS X5150 Deep Well Submersible Pump Best Deep Well Submersible Pumps - XtremepowerUS X5150 Deep Well Submersible Pump

Эта модель от XtremepowerUS соответствует стандартам производителя, представляет собой высококачественный, простой в использовании и надежный скважинный насос. Устройство может похвастаться конструкцией из нержавеющей стали, что означает более прочный и долговечный насос. Те, кому нужна надежная подача воды, найдут насос наиболее полезным, учитывая его скорость потока 20 галлонов в минуту.

Характеристики
  • Насос изготовлен из нержавеющей стали.
  • Насос потребляет 120 В, 6,2 А.
  • Максимальный напор насоса составляет 150 футов при 5 галлонах в минуту для перекачки в открытый резервуар или резервуар.
  • Он имеет электрический шнур длиной 10 футов.
  • Весит 30 фунтов.
Плюсы и минусы

Плюсы

  • Отличный исполнитель.
  • Простота использования.
  • Мотор с более длительным сроком службы.
  • Надежный насос.
  • Устойчив к коррозии и истиранию.
  • Доступно.
  • Тихая работа.
  • Энергоэффективный насос.
  • Работает, как и ожидалось.
  • Не требует грунтования.

Минусы

  • Без блока управления.
  • При доставке необходимо установить обратный клапан.
Проверить цену

7. Red Lion 14942405 Погружной насос для глубоких скважин

.

Sp Deep Well Diving Electric Pump Скважина погружная

Суммируем:

SP Погружной погружной электронасос для глубоководных скважин представляет собой насос, устанавливаемый непосредственно в скважину, объединяющий двигатель и насос. Его можно использовать в качестве оборудования для всасывания воды из грунтовых вод, рек, водохранилищ и каналов и т. Д. Этот насос в основном используется для орошения в сельском хозяйстве, водоснабжения людей и животных на плато и в горных районах, а также для отвода воды в городе, на заводах, в железнодорожной системе, зона добычи и строительная площадка и т. д.

Характеристики:

1. Мотор и насос объединены в одно целое, работают под водой, надежнее.

2. Особых требований к обсадной колонне и подъемной трубе нет. (Он может работать в стальном трубчатом колодце, колодце для извести, грунтовом колодце и т. Д. В разумном диапазоне давления стальная труба, резиновая трубка и пластиковый шланг могут использоваться в качестве подъемной трубы.)

3. Простота установки, эксплуатации и технического обслуживания, меньшая занимаемая площадь, насосная станция не требуется

4.Простая конструкция, меньшая стоимость

Заявка:

1. Оборудование для всасывания грунтовой воды

2. Подъем воды в реках, водохранилищах и каналах

3. Орошение сельского хозяйства

4. Водоснабжение людей и животных на плато и в горах

5. Водоотведение в городе, на заводах, в железнодорожной сети, в горнодобывающих районах и на стройплощадке

6. Водоснабжение в любых возможных местах

Подробная информация о продукте:

Принцип работы: Центробежный
Материал корпуса насоса: Чугун, SS304, SS316
Материал рабочего колеса: Чугун, SS304, SS316
Диапазон температур: Нормальный ≤ 70 C, Специальный ≤ 100 C
Драйвер: Двигатель двигателя
Характеристики мощности: 220 В, 240 В, 380 В, 400 В, 415 В, 440 В, 460 В, 660 В, 50 Гц / 60 Гц
Максимальный расход: 1000 м3 / ч
Максимальное давление нагнетания: 1000 м
Тип подключения: Быстроразъемная муфта, резьба, фланец
Тип уплотнения вала: Манжета масляная, торцевое уплотнение,
Подшипник скольжения: Хорошие асейсмические характеристики
Мощность двигателя:

0.55 квт ~ 400 квт

Условия использования:

(1). Отклонение напряжения 380 В не более ± 5%, частота 50 Гц, трехфазное отклонение мощности не более ± 1%.

(2). Полость мотора должна быть заполнена водой.

(3). Рабочее колесо первой ступени насоса должно находиться более чем на 2 мм ниже поверхности движущейся воды, насосный агрегат

должен находиться менее чем на 70 м ниже статического уровня воды.

(4). Расстояние от днища двигателя до днища колодца должно быть более 3 метров.

(5). Температура воды должна быть не более 20 ° C.

(6). Содержание песка в воде (по массе) должно быть не более 0,01%.

(7). Значение pH воды 6,5-8,5.

(8). Содержание сероводорода в воде не должно превышать 1,5 мг / л.

(9). Содержание хлорид-иона в воде не должно превышать 400 мг / л.

(10). Расход воды из источника воды должен обеспечивать непрерывную работу насоса.

Запасные части:

.

солнечный насос водяной помпы глубокой скважины 2 дюймов для солнечной водяной помпы глубокой скважины

2-дюймовый водяной насос для глубоких скважин солнечный насос для глубоких скважин солнечный водяной насос для глубоких скважин

Описание продукта

2 inch deep well water pump solar pump for deep well solar deep well water pump 2 inch deep well water pump solar pump for deep well solar deep well water pump

Описание продукта Глубокий центробежный погружной насос 2 дюйма
Погружной насос серии QJD состоит из двух основных частей: электродвигателя и корпуса универсального насоса. Корпус насоса состоит из рабочего колеса, направляющей, корпуса насоса, узла впуска воды, узла выпуска воды, вала насоса, втулки вала и направляющего подшипника.

В двигателе используется двухстороннее механическое уплотнение.

Резиновое уплотнительное кольцо используется в качестве статического уплотнения.

Применение Глубокий погружной центробежный насос 2 дюйма

2 inch deep well water pump solar pump for deep well solar deep well water pump 2 inch deep well water pump solar pump for deep well solar deep well water pump

ДИСПЛЕЙ ПРОДУКТА

2 inch deep well water pump solar pump for deep well solar deep well water pump 2 inch deep well water pump solar pump for deep well solar deep well water pump

ПРОФИЛЬ КОМПАНИИ

Chengan Trade Co., Ltd. , представляет собой комплексное предприятие, которое объединяет НИОКР, инновации, производство, продажи, техническую поддержку, проектирование, установку, техническое обслуживание водяных насосов высокого давления и послепродажное обслуживание водяных насосов высокого давления.Нас поддержали более 200 производителей в Китае, и мы установили долгосрочные и хорошие отношения сотрудничества. Мы создали динамичную рыночную систему обслуживания высоконапорных водяных насосов и систему технической поддержки для высоконапорных водяных насосов с быстрым реагированием, чтобы обеспечить эффективное и своевременное обслуживание пользователей высоконапорных водяных насосов посредством поддержки удаленного технического обслуживания, быстрого реагирования, режима работы на месте обучение, для достижения стандартизации продукции для высоконапорных водяных насосов, профессионального обслуживающего персонала, стандартизации поведения при обслуживании, модернизации управления услугами, чтобы вы могли пользоваться нашим своевременным и эффективным обслуживанием клиентов с высоконапорными водяными насосами, где бы вы ни находились.Мы приложим неустанные усилия, чтобы обеспечить клиентам доверие и послепродажное обслуживание, а также предоставить высококачественные водяные насосы высокого давления.

2 inch deep well water pump solar pump for deep well solar deep well water pump 2 inch deep well water pump solar pump for deep well solar deep well water pump

ВЫСТАВКА

2 inch deep well water pump solar pump for deep well solar deep well water pump

2 inch deep well water pump solar pump for deep well solar deep well water pump

ОБЕСПЕЧЕНИЕ ТОРГОВЛИ

2 inch deep well water pump solar pump for deep well solar deep well water pump

2 inch deep well water pump solar pump for deep well solar deep well water pump

СПОСОБ ОПЛАТЫ

2 inch deep well water pump solar pump for deep well solar deep well water pump

2 inch deep well water pump solar pump for deep well solar deep well water pump

FAQ

2 inch deep well water pump solar pump for deep well solar deep well water pump

2 inch deep well water pump solar pump for deep well solar deep well water pump5

.

По

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *