Расчет печи в квт помещение: Калькулятор тепла для расчёта тепловой мощности камина или печи.

Май 3, 2021 Разное

Расчет печи в квт помещение: Калькулятор тепла для расчёта тепловой мощности камина или печи.

Содержание

Мощность отопительного прибора: как определить на 1м2

Мощность — этот тот объем тепла, который будет выделять отопительный прибор.

Важно привести несколько цифр:
а) 1квт обогревает 10 м2 площади (при высоте потолков 2,5м).
б) 1 кг сухих дров (березовых) при сгорании выделяет примерно 4квт тепла.

Подбирая отопительный прибор необходимо понимать какой объем помещения нужно отопить (см. п.”а”) . Т.е. если Вам требуется отопить 120 м2 (при высоте потолка 2,5м) , то мощность должна быть не менее 12квт.
  
Далее следует обратить внимание на теплопотери дома. Если дом плохо утеплен — большая часть тепловой энергии будет уходить на улицу. Соответственно мощность отопительного прибора должна быть больше.


Различают минимальную, номинальную и максимальную мощность. Выбирая отопительный прибор ориентироваться нужно на номинальную. Это нормальный режим работы оборудования.

Номинальная мощность, это та мощность под которую предназначен (сконструирован) отопительный прибор.

Реальное кол-во выделяемой энергии (мощность) зависит от того, какой объем дров Вы заложили в топку (так же имеет значение какой влажности дрова и порода древесины). Т.е. чем больше топка, тем большее кол-ва тепла Вы получите.

Пример: Вы заложили в топку 10кг сухих березовых дров; от момента растопки до окончания горения выделится примерно 40квт тепла (см. п. “б”). Скорость получения этого тепла из дров определяется подачей кислорода на горение (чем больше кислорода подается в топочную камеру, тем быстрее сгорают дрова, тем большее кол-во тепла выделяется при горении).

Отсюда следует, что при максимальной подаче воздуха на горение Вы получите максимальную мощность. Она, как правило, значительно выше номинальной. Но долго эксплуатировать оборудование в таком режиме нельзя (оборудование придет в негодность). Максимальный режим используется при розжиге, когда нужно быстро прогреть дымоход и саму топочную камеру.

Аналогично с минимальной мощностью — будет возникать конденсат, излишнее образование золы и кислот, что в конечном итоге может привести к дымоходному пожару.

Поэтому выбирая отопительный прибор следует ориентироваться именно на номинальную мощность. Закладывать именно то кол-во топлива, которое указано в инструкции.

Таким образом, алгоритм подбора мощности отопительного прибора выглядит следующим образом:

  1. Выяснить объем отапливаемого жилища
  2. Выяснить теплопотери жилища
  3. Исходя из первых двух пунктов выбрать необходимую номинальную мощность.

Важно.
Следует помнить, что теплый воздух распространяется по дому неравномерно. В изолированных помещениях будет холоднее. Чем дальше помещение от источника тепла, тем дольше оно будет прогреваться.
Для более быстрой доставки тепла можно использовать разводку воздуха через вентиляционные гофры, которые тянутся от топки в соседние помещения (если данная опция присутствует у выбранного оборудования).

Важно.
Для приборов с водяным контуром может указываться 2 параметра мощности — мощность воздушного отопления и мощность водяного отопления.
Наличие водяного контура позволяет передавать тепло в соседние помещения (по аналогии с разводкой воздуха).
Т.е. помещение в котором установлен прибор будет нагреваться за счет воздуха, а соседние помещения — за счет водяного отопления.


Мощность камина от объёма помещения для дома

Решающим фактором при выборе котла, отопителя, очага и любых других источников тепла является мощность, то есть, способность аппарата поднять температуру в помещении определенного объема до нужного уровня. Конечно. При этом очень важны степень теплоизоляции комнаты, наличие системы вентиляции, да и назначение помещения. Все это также необходимо учитывать при выборе любого обогревателя, в том числе и печи-камина.

Особенности автономного камина

По своим функциям это устройство объединяет качества очага, классической печи и современного отопителя.

  • С первым его роднит наличие смотрового окна, правда, закрытого защитным экраном, которой и позволяет получать эстетическое удовольствие от вида пламени. Наличествует и недостаток, свойственный этими конструкциям: воздух для сжигания забирается из помещения, правда, в данном случае – в минимально необходимом объеме.
  • Со вторым устройство объединяет способ обогрева – конвекционный. Пламя нагревает корпус аппарата и последний излучает тепло в комнату. Так же, как и традиционная печь, если нет специальных дополнительных устройств, он может обогревать 2, максимум 3 смежные комнаты и только при открытых дверях, разумеется.
  • Общее свойство с современным отопителем – электрическим очагом, например, точно рассчитанная мощность, позволяющая подобрать оптимальный результат. Второе сходное свойство с электрическим аналогом – аппарат можно установить в доме в любой момент, если наличествует дымоход. Сооружение фундамента или усиления основания здесь не нужно.

Мощность печи-камина

Величина измеряется в кВт как для дровяных модификаций, так и для электрических – 6 кВт, 9кВт м так далее. Причем показатели эти описывают работу прибора в разных режимах, что необходимо учитывать при расчетах.

  • Средняя – то есть, показатель, которого достигает печь при нормальной работе (при докладке дров или угля). Это штатный режим, который может поддерживаться длительное время.
  • Минимальная – при такой мощности аппарат будет работать максимально долго на одной закладке топлива.
  • Пиковая – максимальная. Этот режим может осуществляться не более 3 часов, после чего печи будет перегреваться, что может закончиться неприятностями.

На выбор влияет и материал конструкции. Дело в том, что разные материалы по–разному проводят тепло. Мощность электрического камина, например, указывается таким же образом, но какую площадь он обогреет, зависит только от нее. Очаги дровяные выпускаются стальные и чугунные, а некоторые имеют еще и каменную облицовку, что влияет на теплотворную способность аппарата.

Сталь быстро нагревается и хорошо проводит тепло, однако не удерживает его. Способность поддерживать температуру в прогретой комнате у нее меньше. Чугун передает тепло в 1,5 раза быстрее и при этом дольше его удерживает. Иногда производители включают в конструкцию чугунные вставки, чтобы сделать аппарат более эффективным, как, например, в модели Бавария от ABX.

Для этого используют кафельную или каменную облицовку, поскольку этот материал удерживает тепло и дольше отдает его комнате. Та же Бавария предлагается и в кафельном исполнении. На фото можно видеть эту модель.

Расчет мощности для помещения

Очевидно, что для дома в 100 м и комнат в 30 м необходимы разные устройства. Какая площадь обогревается тем или иным аппаратом, приблизительно устанавливают следующим образом:

  • в паспорте находят среднюю величину;
  • мощность каминов в кВт умножают на 10 кв. м., при высоте потолков в квартире или доме не более 2,5 м;
  • полученное произведение и означает, какую площадь может отопить камин.

Так, например, при величине в 6 кВт, максимальная площадь помещения или двух смежных комнат будет равна: 6кВт*10=60 кв. м.

Печь-камин Бавария мощность 9 кВт обогреет больше. Площадь будет равна: 9*10=90 кв. м.

Для дома в 100 м потребуется чуть более мощный очаг – в 11 кВт.
Однако при более высоких потолках в расчетах придется использовать объем помещения.

Искомая мощность аппарата будет равна произведению 24 и объема помещения. Какая площадь при этом обогревается, вычисляется по объему.

Какая мощность печи нужна для отопления. Как рассчитать тепловую мощность печи

При выборе дровяной печи каждый покупатель должен учитывать ряд важных характеристик, Ключевой, важной характеристикой для правильного выбор печи для вашего дома является выбор размер тепловой мощности, которая измеряется в киловаттах (кВт) и колеблется от 3 кВт до более 15 кВт.

Важно – выбирать печь оптимальной мощности для вашего дома!

Если Вы выберете печь недостаточной мощности для отопления вашего дома, такая печь просто не сможет отдавать необходимое количество тепла, что бы обогреть помещения Вашего дома. Так же печь малой мощности, Вам придется эксплуатировать под максимальной нагрузкой, на приделе её возможностей. Это конечно негативно скажется на её качестве и сроках использования.

Если вы купите печь, которая имеет слишком большую мощность для вашего дома, в конечном итоге вы придется постоянно открывать окна, чтобы обеспечить доступ воздух для комфортного дыхания и остудить помещения. В результате вы будете неэффективно расходовать топливо, отапливая воздух на улице. Кроме того, если Вы постоянно будите использовать печь на низком уровне горения, вы получите большое количество сажи, так как тяга дымохода и температура в топки будут недостаточными для удаления и прогорания сажи. Результатом будет постоянно закопченное стекло, а в долгосрочной перспективе испортите дымоход, так как большое количество сажи и копоти, оседая на стенках дымохода, смешиваясь с влагой от конденсата, образует кислотную среду, разрушающую дымоход.

Печи работают в диапазоне мощности от минимального до максимального

Печи камины, в зависимости от размеров топки, могут вмещать различное количество дров, и соответственно отдавать различное количество тепла. При этом печи с герметичными топками, могут регулировать доступ кислорода в камеру сгорания, и таким образом регулировать тепловую мощность печи.

В любом случае, при выборе печи следует опираться на среднее значение — оптимальную мощность печи.

Обычно производители и продавцы указывают в каком диапазоне мощности работает печь. Однако при выборе и покупке печи необходимо быть осторожным и внимательным, так как многие не добросовестные производители и продавцы печей каминов бывает указывают только максимальный уровень мощности. Принимать во внимание при покупке печи эти показатели не стоит. Рекомендуем выбирать проверенных временем производителей, и покупать печи, только у продавцов которые смогут не только дать полную достоверную информацию о печах но и обеспечат гарантийные обязательства.

Размер, который вам нужен, может зависеть от:

  • Размер помещения. Вам нужно измерить высоту, ширину и длину.
  • Планировка вашего дома. Например, наличие этажей, перекрытий для доступа теплого воздух в соседние комнаты.
  • Возможные тепло потери и энргоэффективность дома. К примеру размеры окон и есть ли у вас стеклопакеты, есть ли в помещении какая-либо изоляция, например, изоляция стен.

Чтобы обогреть Ваше жилое помещение до 21 ° C, когда на улице 1 ° C, вам потребуется 1 кВт тепловой мощности на каждые 14 кубических метров пространства. В качестве приблизительного ориентира, умножьте высоту, ширину и длину комнаты в метрах, а затем разделите это на 14.

Формула расчета тепловой мощности печи от объема помещения.

Тепловая мощность печи (кВт) = Высота * Ширина * Высота / 14

Вы можете использовать наш инструмент ниже, чтобы сделать это. Это даст вам оценку того, какой размер печи вам нужен в кВт.

Калькулятор мощности печи

Используйте наш инструмент, чтобы определить, какой размер мощности печи вам понадобится. Помните, что это приблизительная оценка, которая также зависит от того, насколько энергоэффективен ваш дом.

Размеры помещения (длина/ширина/высота):

Те не менее, и мы рекомендуем использовать эти данные в качестве только в качестве руководства, и прежде чем покупать печь получить консультацию специалиста, например в магазинах Тульского Печного Центра.

Дело в том, что каждый дом индивидуален, и условия использования и установки печей различны. Помимо мощности и цены печи-камина есть ряд других факторов, которые помогут сделать Вам оптимальный выбор и купить печь лучше всего подходящую для отопления Вашего дома, при этом сэкономить на установке и дымоходе.

важные моменты проектирования. Методика расчета печи с формулами и допусками

Одним из наиболее значимых элементов электропечи является ее нагреватель. Именно он напрямую влияет на мощность, рабочую температуру и общие функциональные характеристики оборудования. Абсолютно неважно, о каких типах приборов идет речь — трубчатых электропечах, шахтных или муфельных моделях. Для всех применимы базовые правила расчета.

Как определить мощность и силу тока печи

Начинается расчет печи с ее будущей мощности. Также определяется сила тока, которая будет проходить по телу нагревателя. Для этого можно использовать базовые эмпирические нормы соотношения размера камеры прибора к ее мощности.

Если объем насчитывает от 1 до 5 литров, желательно, чтобы мощность оборудования была в диапазоне от 300 до 500 Вт на литр. Когда камера планируется для промышленного использования, и ее объем достигает 100 литров и более, расчет муфельной печи должен учитывать примерно 50-60 Вт на каждый из них.

Детальная таблица рекомендуемых норм мощности для различных объемов камер

algoritm rascheta nagrevatelnyh 1

Провести нужные вычисления совсем несложно. Сам объем легко рассчитывается исходя из данных о высоте, ширине и глубине камеры, а потом умножается на нужный показатель. К примеру, печь на 5 литров и нагрузкой 300 Вт/л будет иметь общую мощность 1500 Вт.

Определить силу тока также достаточно просто. Базовое напряжение сети известно, и составляет 220 В.

После этого производится расчет печей, формула которого имеет следующий вид:

I=P/U

P – предварительно рассчитанная мощность, в нашем случае 1500 Вт.

U – напряжение сети.

Таким образом, имеем: 1500/220 = 6.8 А.

Как рассчитать наименьшее сечение нагревательного элемента электропечи

Расчет электрических печей должен обязательно проводиться с учетом особенностей самого нагревательного элемента. Ведь если через него пройдет сила тока, больше чем он может вынести – выход из строя неизбежен. Планируя конструкцию муфельной или шахтной электропечи, обязательно учитывайте будущий диаметр нагревателя.

Рассчитывать его можно, зная силу тока и предполагаемую рабочую температуру. Рекомендуемые нормы указаны на фото ниже.

Таблица определения параметров нагревателя электропечи. Узнаем нужный диаметр и сечение

algoritm rascheta nagrevatelnyh 1

Если в таблице отсутствует точное значение, которое совпадает с Вашим расчетом, это не критично. Когда наша сила тока будет равна 6.8 А, стоит брать за основу показатель 7.7, то есть, ближайший больший. Минимальный диаметр и сечение обеспечат бесперебойный и безопасный процесс обжига.

Можно даже заложить в расчет нагревательной печи более мощный элемент для накала. Уменьшать параметры категорически нельзя, поскольку тогда он очень быстро перегорит

Как рассчитать длину проволоки нагревателя для создания спирали

Методика расчета печи также подразумевает определение оптимальной длины проволоки для основы нагревательного элемента. Это очень важно, ведь именно от нее зависит создание необходимого резистивного нагрева.

Для того чтобы провести точный расчет закалочной печи нам потребуются такие данные как:

  • Напряжение сети.
  • Сила тока.
  • Площадь сечения нагревателя.
  • Удельное сопротивление проводника.

Последний показатель можно найти на фото представленном ниже.

Величина удельного сопротивления, в зависимости от диаметра и материала нагревателя

algoritm rascheta nagrevatelnyh 1

Далее расчет термических печей идет по формуле:

L= (U / I) x S/ p

В нашем случае, если использовать для нагревателя нихромовый сплав Х20Н80-Н, длина проволоки будет составлять: (220/6.8) х 0.785/1.11. То есть, приблизительно 23 метра.

Как проверить правильность поверхностной мощности нагревательного элемента

Если Вы планируете создать долговечные трубчатые печи, расчет обязательно должен включать и пункт проверки поверхностной мощности нагревательного элемента с допустимым значением. Это поможет вовремя обнаружить возможный выход из строя и определить грани возможностей данной составляющей оборудования.

Поверхностная удельная мощность указывает сколько тепловой энергии нужно получать с каждой единицы площади нагревателя

Методика расчета трубчатых печей вначале подразумевает поиск допустимого значения. Его можно получить по формуле:

βдоп = βэф х α

βдоп – непосредственно допустимая мощность.

βэф – мощность, которая зависит от диапазона рабочих температур.

α – коэффициент эффективности излучения тепла нагревательным элементом.

В расчет печи для обжига включаем показатель βэф и α из таблиц, представленных на фото ниже.

Таблица для расчета эффективной мощности на основе температуры заготовок и самого нагревателя

algoritm rascheta nagrevatelnyh 1

Коэффициент α также подбирается из табличных данных. Он напрямую зависит от местоположения спирали нагревателя внутри конструкции печи.

Значения поправочного коэффициента – важный аспект, который стоит учитывать, выполняя расчет шахтных печей

algoritm rascheta nagrevatelnyh 1

Впоследствии эти 2 показателя умножаются между собой и дают нам граничное значение допустимой мощности.

Это станет последним этапом проектирования оборудования.

Как видите, расчет нагревательных элементов – дело достаточно непростое. Поэтому, проще и лучше заказать электропечи для обжига и других видов термообработки от надежного производителя. Именно таким является литовский изготовитель SNOL, продукция которого представлена на нашем сайте. Не откладывайте и скорее выбирайте нужную модель!

Почему мощность печи указывают в кВт

Определение и измерение мощности

Действительно, существует единица измерения Килова́тт-час (кВт⋅ч), которая показывает количество энергии, производимое или потребляемое, а также в других подобных случаях (измерение проделанной работы).


Преимущественно эту единицу измерения используют в энергетике и в быту для измерения электроэнергии.

Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, Умноженная на время). Написание «кВт/ч» (киловатт в час со знаком Деления), которое часто употребляется во многих документах — неправильное. Для удобства чтения стали использовать упрощённое обозначение кВт (киловатт), под которым понимается количество киловатт в час.

Понятие кВт используется в одинаковой мере по всему миру, поэтому для обозначения тепловой мощности стали использовать именно его. Исследования показали, что один килограмм любой древесины при влажности 20% производит 4,16 кВт тепла. Другое дело, что разные породы дерева имеют разную плотность (разный вес), и при одинаковых внешних размерах поленья разных пород дадут разное количество тепла.

Почему печи разной мощности и как подобрать себе печь

Все производители рекомендуют использовать дрова лиственных пород и чаще всего для отопления используются дрова березы. Для удобства исчисления принято считать 4 кВт на килограмм. Таким образом мощность печи зависит от её размеров. Чем больше дров можно положить в печь, тем она мощнее.

Теперь мы понимаем, что в печь мощностью 8 кВт можно положить два килограмма дров, а в печь 12 кВт помещается три килограмма. Точнее бы сказать наоборот: печь в которую можем положить три килограмма дров должна дать 12 кВт тепла, так как если в ту же печь положим только два килограмма дров, то получим 8 кВт тепла. Таким образом, мы можем протопить помещение на большей мощности, а потом использовать меньшую.

Как понять сколько дров можно положить в печь

Часто в устройствах есть метка указывающая на максимальный уровень дров. Без такой метки рекомендуется закладывать не более двух третей топки. Переполнение топки топливом может отрицательно сказаться на её можности и даже привести к поломке устройства. Например, сейчас набирают популярность дровяные брикеты. Они имеют большую плотность и маленькую влажность. При аккуратных размерах брикетов, по весу их помещатся в топку больше, чем дров и такой перегруз камина может привести к его поломке.

Если камин нужен для интерьера, то его мощность не столь важна. Конечно в маленьком помещении камин лучше не делать, чтобы не устроить сауну. Тем не менее, при нехватке тепла ничего не случится, а при избытке можно хорошо проветрить. Другое дело когда нужна печь для отопления. Тогда к вопросу выбора нужно подходить более внимательно. В среднем на 10 квадратных метров площади отопления берётся 1 кВт мощности печи. Это при потолках не более 2.7 метра и при низких теплопотерях дома.

Например, когда нужно обогреть 80 квадратных метров, нужно выбирать печь 9-11 кВт, рассматривая запас мощности, учитывая погодные и другие условия. Например, печь Jotul F8. Мы знаем, что если взять два разных термоса и одновременно налить в них кипяток из одного чайника, то в одном вода остынет быстрее, а в другом медленнее. Также и с домами. Всё индивидуально, в первую очередь хозяин знает особенности своего дома и свои предпочтения.

Опять немного физики

Киловатт-час равен количеству энергии, потребляемой или производимой устройством мощностью один киловатт в течение одного часа.

Интересный факт, что даже люди являются потребителями и производителями энергии. Все мы знаем, что на упаковках любых продуктов указанна энергетическая ценность продукта. Как правило, энергетичность еды измеряют в Килокалориях (ккал), в то же время американцы измеряют её в Джоулях (Дж). Слово Калория от латинского означает — тепло.

Ранее калория широко использовалась для измерения энергии, работы и теплоты. Калорийностью называлась теплота сгорания топлива. А под калорийностью или энергетической ценностью пищи, подразумевается количество энергии, которое получает организм при полном её усвоении.


Все три единицы измерения: Ватт, Джоуль, Калория пересекаются между собой. Подробнее о них можно узнать, например в Википедии. Человек также является производителем тепла и один врослый человек находясь в комнате площадью десять квадратных метров и высотой два с половиной метра, может повысить температуру этой комнаты на два градуса. Не зря про кого-то говорят «энергичный человек», а про других наоборот. Именно из-за этого в местах переполненных народом душно.

Цифры


Киловатт-час равен количеству энергии, потребляемой или производимой устройством мощностью один киловатт в течение одного часа.


1 Вт⋅с = 1 Дж

1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6 МДж.
1Дж = 0,239 Калории
1 кВт⋅ч = 0,86МКал

Познавательно

  • Для обогрева одного метра площади понадобится примерно 20-25 лампочек накаливания с обычной спиралью и мощностью 60 Вт, при потолках 2,5 метра. Это будет 1,2-1,5 кВт часть энергии которых уйдёт на свет, а остальная на тепло.
  • Бытовым, домашним утюгом можно обогреть полкомнаты, то есть на обогрев комнаты 15 метров понадобится два утюга, с учётом периодичности включения и выключения утюгов.
  • Даже если взрослый человек будет просто лежать он выделяет до одного киловатта тепла, поэтому при выборе кондиционера нужно учитывать площадь комнаты и сколько человек могут одновременно там находиться.

Как рассчитать мощность дровяной печи — Статьи — Печи-екб.рф

Дровяная печь — отличный вариант для отопления небольших зданий. Однако при выборе той или иной отопительной конструкции перед потребителем встает вопрос: как рассчитать мощность дровяной печи для дома, чтобы не замерзнуть или не платить за дрова огромные суммы? Есть ряд советов.

Вычисляем площадь и объем помещения

Посчитайте площадь комнаты или помещения, которое необходимо обогреть. Чтобы вычислить объем, умножьте площадь на высоту потолков.

Важно! Учтите также толщину стен, утеплителя и прочих элементов здания, минимизирующих теплопотери. Помимо этого посчитайте дверные проемы, арки, окна – факторы, увеличивающие «уход» тепла из помещения. Если выделяемое тепло восполняет возможные теплопотери, температура в комнате будет стабильной.

Рассчитываем мощность

Если не вдаваться в серьезные формулы для вычисления, то расчет выглядит примерно так: на 1 куб отапливаемого помещения должен приходиться 1 кВт мощности дровяной печи.

Обратитесь к инструкции

К каждому отопительному изделию в комплекте идет инструкция, в которой четко указаны параметры обогреваемого помещения и мощность печи. Если вы сомневаетесь в верности представленных нами формул, то воспользуйтесь руководством к прибору. В любом случае вам необходимо знать площадь и объем комнаты, ориентируясь на эти показатели, вы без труда сделаете верный выбор.

Также в магазине вы можете получить консультацию специалиста, который порекомендует вам оптимальный вариант. Учитывайте, что профессионал с опытом оперирует не только официальными сведениями о моделях, но и статистикой пользователей, а также сервисных центров, обслуживающих печи.

Экономить не нужно

В магазинах представлено множество печей на любой вкус и кошелек. Выбирая печь для собственного дома, бани или коттеджа, руководствуйтесь нашими советами, но учитывайте, на какой уровень закладки дров вы будете ориентироваться. Если вы рассчитываете на низкий расход деревянных поленьев, максимальной отдачи от выбранной тепловой конструкции не ждите. В данном случае работает принцип «чем больше дров, тем больше тепла».

Расчет мощности твердотопливных котлов отопления

Для того чтобы выбрать котёл, работающий на твёрдом топливе, необходимо обратить внимание на мощность. Данный параметр показывает, какое количество тепла может создать конкретное устройство при подключении к системе отопления. От этого напрямую зависит, можно ли с помощью такого оборудования обеспечить дом теплом в нужном количестве или нет. твердотопливный котел

Например, в помещении, где установлен пеллетный котёл с небольшой мощностью, будет в лучшем случае прохладно. Также не лучшим вариантом является установка котла с избыточной мощностью, потому что он постоянно будет работать в экономном режиме, а это заметно снизит показатель КПД.

Итак, чтобы выполнить расчет мощности котла для отопления частного дома, вам нужно следовать определенным правилам.

Содержание:

  1. Как рассчитать мощность отопительного котла, зная объём отапливаемого помещения
  2. Как рассчитать, сколько тепла необходимо для нагрева воды
  3. Подбор котла по площади частного дома. Как произвести расчёт?
  4. Расчёт реальной мощности котла длительного горения на примере «Купер ПРАКТИК-8»
  5. Сколько энергии дают разные типы горючего
Как рассчитать мощность отопительного котла

Как рассчитать мощность отопительного котла, зная объём отапливаемого помещения?

Тепловая мощность котла определяется по формуле:

Q = V × ΔT × K / 850


  • Q – количество тепла в кВт/ч
  • V – объём отапливаемого помещения в кубометрах
  • ΔT – разница между температурой снаружи и внутри дома
  • К – коэффициент потери тепла
  • 850 – число, благодаря которому произведение трёх вышеуказанных параметров можно перевести в кВт/ч

Показатель К может иметь следующие значения:

  • 3-4 – если конструкция здания упрощённая и деревянная или если оно сделано из профлиста
  • 2-2,9 – у помещения небольшая теплоизоляция. Такое помещение имеет простую конструкцию, длина 1 кирпича равна толщине стены, окна и крыша имеют упрощённую постройку
  • 1-1,9 – конструкция здания считается стандартной. У таких домой двойная кирпичная вкладка и мало простых окон. Кровля крыши обычная
  • 0,6-0,9 – конструкция здания считается улучшенной. Такое здание имеет окна с двойными стеклопакетами, основа пола толстая, стены кирпичные и имеют двойную теплоизоляцию, крыша имеет теплоизоляцию, сделанную из хорошего материала

Ниже приведена ситуация, в которой подбирается котел отопления по объему отапливаемого помещения.

Дом имеет площадь 200 м², высота его стен 3 м, теплоизоляция является первоклассной. Показатель температуры окружающего воздуха рядом с домом не падает ниже -25 °С. Получается, что ΔT = 20 — (-25) = 45 °С. Получается, чтобы узнать количество тепла, которое требуется для отопления дома, необходимо произвести следующий расчёт:

Q = 200 × 3 × 45 × 0,9/850 = 28,58 кВт/ч

Полученный результат пока что не следует округлять, ведь к котлу может быть еще подключена система горячего водоснабжения.

Если вода для мытья нагревается другим способом, то результат, который получен самостоятельно не нуждается в корректировке и эта стадия расчёта является завершающей.

Как рассчитать, сколько тепла необходимо для нагрева воды?

Чтобы произвести расчет расхода тепла в этом случае необходимо самостоятельно прибавить к предыдущему показателю расход тепла для горячего водоснабжения. Для его расчета можно воспользоваться следующей формулой:

Qв = с × m × Δt


  • с – удельная теплоёмкость воды, которая всегда равна 4200 Дж/кг·К,
  • m – масса воды в кг
  • Δt – разница температуры нагретой воды и поступающей воды из водопровода.

К примеру, среднестатистическая семья в среднем потребляет 150 л тёплой воды. Теплоноситель, который нагревает котёл имеет температуру равную 80 °С, а температура воды, поступающей из водопровода равна 10 °С, тогда Δt = 80 — 10 = 70 °С.

Следовательно:

Qв = 4200 × 150 × 70 = 44 100 000 Дж или 12,25 кВт/ч

После необходимо поступить следующим образом:

  1. Допустим, нужно нагреть 150 л воды за один раз, значит ёмкость косвенного теплообменника равна 150 л, следовательно, к 28,58 кВт/ч необходимо прибавить 12,25 кВт/ч. Делается потому что показатель Qзаг меньше 40,83, следовательно, в помещении будет прохладнее ожидаемых 20 °С.
  2. В случае, если нагрев воды происходит порционно, то есть ёмкость косвенного теплообменника составляет 50 л, показатель 12,25 нужно разделить на 3 и далее прибавить самостоятельно к 28,58. После этих расчётов Qзаг равен 32,67 кВт/ч. Полученный показатель это и есть мощность, котла, которая необходима для отопления помещения.

Подбор котла по площади частного дома. Как произвести расчёт?

Такой расчёт является более точным, потому что учитывает огромное количество нюансов. Производится он по следующей формуле:

Q = 0,1 × S × k1 × k2 × k3 × k4 × k5 × k6 × k7


  1. 0,1 кВт – норма необходимого тепла на 1 м².
  2. S – площадь помещения, которое нужно отопить.
  3. k1 показывает тепло, которое потерялось из-за строения окон, и имеет следующие показатели:

  • 1,27 – у окна одинарное стекло
  • 1,00 – окно со стеклопакетом
  • 0,85 – у окна тройное стекло

  1. k2 показывает, тепло которое потерялось из-за площади окна (Sw). Sw относится к площади пола Sf. Его показатели следующие:

  • 0,8 — при Sw/Sf = 0,1;
  • 0,9 — при Sw/Sf = 0,2;
  • 1,0 — при Sw/Sf = 0,3;
  • 1,1 — при Sw/Sf = 0,4;
  • 1,2 — при Sw/Sf = 0,5.

  1. k3 показывает утечку тепла сквозь стены. Может быть следующим:

  • 1,27 – некачественная теплоизоляция
  • 1 – стена дома имеет толщину 2-ух кирпичей или утеплитель толщиной 15 см
  • 0,854 – хорошая теплоизоляция

  1. k4 показывает количество потерянного тепла из-за температуры снаружи здания. Имеет следующие показатели:

  • 0,7, когда tз = -10 °С;
  • 0,9 для tз = -15 °С;
  • 1,1 для tз = -20 °С;
  • 1,3 для tз = -25 °С;
  • 1,5 для tз = -30 °С.

  1. k5 показывает сколько тепла потерялось из-за наружных стен. Имеет следующие значения:

  • 1,1 в здании 1 внешняя стена
  • 1,2 в здании 2 внешних стены
  • 1,3 в здании 3 внешних стены
  • 1,4 в здании 4 внешних стены

  1. k6 показывает количество тепла, которое необходимо дополнительно и зависит от высоты потолка (Н):

  • 1 — для высоты потолка 2,5 м;
  • 1,05 — для для высоты потолка 3,0 м;
  • 1,1 — для высоты потолка 3,5 м;
  • 1,15 — для высоты потолка 4,0 м;
  • 1,2 — для для высоты потолка 4,5 м.

  1. k7 показывает сколько тепла была потеряно. Зависит от типа постройки, которая расположена над отапливаемым помещением. Имеет следующие показатели:

  • 0,8 отапливаемое помещение;
  • 0,9 тёплый чердак;
  • 1 холодный чердак.

В качестве примера возьмем те же исходные условия, кроме параметра окон, которые имеют тройной стеклопакет и составляют 30% от площади пола. Постройка имеет 4 наружных стены, а сверху над ней расположен холодный чердак.

Тогда расчет будет выглядеть так:

Q = 0,1 × 200 × 0,85 × 1 × 0,854 × 1,3 × 1,4 × 1,05 × 1 = 27,74 кВт/ч

Данный показатель необходимо увеличить, для этого нужно самостоятельно добавить количество тепла, которое требуется для ГВС, если она подключена к котлу.

Если нет необходимости выполнять точные расчеты, то можно воспользоваться универсальной таблицей. С помощью нее можно определить мощность котла по площади дома. Например, для отопления помещения 150 кв м подойдет котел с мощностью 19 кВт, а для отопления 200 кв.м. потребуется уже 22 кВт.

Вышеприведённые методы очень полезны, рассчитать мощность котла для отопления дома.

Расчёт реальной мощности котла длительного горения на примере «Куппер ПРАКТИК-8»


Конструкция большинства котлов рассчитана под конкретный вид топлива, на котором будет работать это устройство. В случае использования для котла другой категории топлива, которая не переназначена для него, КПД значительно сократиться. Также необходимо помнить о возможных последствиях использования того топлива, которое не предусмотрено производителем котельного оборудования.

Теперь продемонстрируем процесс расчёта на примере котла «Теплодар», модель «Куппер ПРАКТИК-8». Это оборудование предназначено для системы отопления жилых домов и других помещений, которые имеют площадь меньше, чем 80 м². Также этот котёл является универсальным и может работать не только в закрытых системах отопления, но и в открытых с принудительной циркуляцией теплоносителя. Данный котел обладает следующими техническими характеристиками:

  1. возможность использовать в качестве топлива дрова;
  2. в среднем за час, он сжигает 10 дров;
  3. мощность данного котла составляет 80кВт;
  4. загрузочная камера имеет объём 300л;
  5. КПД равен 85%.

Допустим, что для отопления помещения хозяин использует в качестве топлива дрова осинового дерева. 1 кг данного вида дров даёт 2,82 кВт/ч. За один час, котёл потребляет 15кг дров, следовательно, он выдаёт тепла 2,82 × 15 × 0,87 = 36,801 кВт/ч тепла (0,87 является КПД).

Этого оборудования недостаточно для отопления помещения, которое имеет теплообменник объёмом 150 л, но если ГВС имеет теплообменник объёмом 50 л, то мощности данного котла будет вполне достаточно. Для того чтобы получить нужный результат 32,67 кВт/ч необходимо потратить 13,31 кг осиновых дров. Производим расчёт по формуле (32,67 / (2,82 × 0,87) = 13,31). В данном случае необходимое тепло было определённо методом расчёта по объёму.

Также можно произвести самостоятельный расчёт и узнать время, которое потребуется котлу для того, чтобы сжечь все дрова. 1 л дров осиного дерева имеет вес 0,143 кг. Следовательно, в отделении для загрузки поместится 294 × 0,143 = 42 кг дров. Столько дров будет достаточно для поддержания тепла более чем 3 часа. Это слишком непродолжительное время, поэтому в данном случае необходимо найти котёл, у которого размер топки в 2 раза больше.

Также можно поискать топливный котёл, который рассчитан на несколько видов топлива. Например, котёл от того же производителя «Теплодар», только модели «Куппер ПРО-22», который может работать не только на дровах, но и на углях. В данном случае при использовании разных видов топлива будет разная мощность. Расчёт проводится самостоятельно, учитывая эффективность каждого вида топлива отдельно, а позже выбирается наилучший вариант.

Сколько энергии дают разные типы горючего?

В данном случае показатели будут следующие:

  1. При сгорании 1 кг высушенных опилок или небольшой стружки хвойного дерева выдача 3,2 кВт/ч. При условии, что 1 л высушенных опилок весит 1,100 кг.
  2. Ольха имеет более высокую теплоотдачу и даёт 3 кВт в час, при весе 300 грамм.
  3. Деревья, которые относятся к видам твердолиственных, дают 1 кВт, имея вес 300 грамм.
  4. Уголь из камня даёт почти 5 кВт, при весе 400 грамм.
  5. Торф из Белоруссии даёт 2 кВт, при весе в 340 грамм.

Некоторые производители топлива в информации пишут срок сгорания одной загрузки, но не предоставляют информацию о том, сколько топлива выгорает за 1 час.

В такой ситуации необходимо произвести дополнительные расчёты:

  • Определить максимальную массу горючего, которая способна уместиться в отделении для загрузки горючего.
  • Узнать, сколько тепла может отдать котёл, работающий на данном виде сырья;
  • Какая уровень теплоотдачи будет за 1 час. Данное число необходимо самостоятельно разделить на тот период, за который выгорит всё количество дров.

Подводя итог, можно сказать, что данные, которые будут получены в результате всех расчётов, и будут показывать настоящую мощность твердотопливного котельного оборудования, которую он сможет выдать в течение 1 часа.

Киловатт (кВт) в ампер калькулятор преобразования электрической энергии

Как преобразовать киловатты в амперы

Для однофазной цепи переменного тока формула преобразования киловатт (кВт) в амперы выглядит так:

амперы = (кВт × 1000) ÷ вольт

Можно найти силу тока в киловаттах, если вы знаете напряжение цепи, используя закон Ватта. Закон Ватта гласит, что ток = мощность ÷ напряжение. По закону Ватта мощность измеряется в ваттах, а напряжение — в вольтах.Формула найдет ток в амперах.

electric meter showing power used measured in kilowatt hours

Сначала начните с преобразования киловатт в ватты, что можно сделать, умножив мощность в кВт на 1000, чтобы получить количество ватт.

Наконец, примените формулу закона Ватта и разделите количество ватт на напряжение, чтобы найти амперы.

Power triangle illustrating the formula to convert kilowatts to amps with amps being equal to kilowatts times 1,000 divided by volts

Например, , найдите ток в цепи мощностью 1 кВт при 120 вольт.

ампер = (кВт × 1000) ÷ вольт
ампер = (1 × 1000) ÷ 120
ампер = 1000 ÷ 120
ампер = 8.33А

Преобразование киловатт в амперы с использованием коэффициента мощности

Оборудование часто не на 100% эффективно с точки зрения энергопотребления, и это необходимо учитывать, чтобы определить количество доступных ампер. Например, большинство генераторов имеют КПД 80%. КПД устройства можно преобразовать в коэффициент мощности, переведя процент в десятичную дробь, это коэффициент мощности.

Чтобы узнать коэффициент мощности вашей цепи, попробуйте наш калькулятор коэффициента мощности.

Формула для определения силы тока с использованием коэффициента мощности:

амперы = (кВт × 1000) ÷ (PF × вольт)

Например, , найдите ток генератора мощностью 5 кВт с КПД 80% при 120 вольт.

амперы = (кВт × 1000) ÷ (PF × вольт)
ампер = (5 × 1000) ÷ (0,8 × 120)
ампер = 5000 ÷ 96
ампер = 52,1 A

Как найти ток в трехфазной цепи переменного тока

Формула для определения силы тока для трехфазной цепи переменного тока немного отличается от формулы для однофазной цепи:

амперы = (кВт × 1000) ÷ (√3 × PF × вольт)

Например, , найдите ток трехфазного генератора мощностью 25 кВт с КПД 80% при 240 вольт.

Ампер = (кВт × 1000) ÷ (√3 × PF × В)
А = (25 × 1000) ÷ (1,73 × 0,8 × 240
А = 75,18 А

Для преобразования ватт в амперы используйте наш калькулятор преобразования ватт в амперы.

Номинальный ток генератора (трехфазный переменный ток)

Номинальный ток генератора основан на выходной мощности в киловаттах при трехфазном переменном токе 120, 208, 240, 277 и 480 В с коэффициентом мощности 0,8
Мощность Ток при 120 В Ток при 208 В Ток при 240 В Ток при 277В Ток при 480 В
1 кВт 6.014 A 3,47 А 3,007 А 2,605 А 1,504 А
2 кВт 12.028 А 6,939 А 6,014 А 5,211 А 3,007 А
3 кВт 18.042 А 10,409 А 9.021 А 7,816 А 4,511 А
4 кВт 24,056 А 13,879 А 12.028 А 10.421 A 6,014 А
5 кВт 30,07 А 17,348 А 15.035 А 13,027 А 7,518 А
6 кВт 36.084 А 20,818 А 18.042 А 15,632 А 9.021 А
7 кВт 42,098 А 24,288 А 21.049 А 18,238 А 10,525 А
8 кВт 48.113 А 27,757 А 24,056 А 20,843 А 12.028 А
9 кВт 54,127 А 31,227 А 27.063 А 23,448 А 13,532 А
10 кВт 60,141 А 34,697 А 30,07 А 26.054 А 15.035 А
15 кВт 90,211 А 52.045 А 45,105 А 39.081 A 22,553 А
20 кВт 120,28 А 69,393 А 60,141 А 52,107 А 30,07 А
25 кВт 150,35 А 86,741 А 75,176 А 65.134 А 37,588 А
30 кВт 180,42 А 104,09 А 90,211 А 78,161 А 45,105 А
35 кВт 210.49 А 121,44 А 105,25 А 91.188 А 52,623 А
40 кВт 240,56 А 138,79 А 120,28 А 104,21 А 60,141 А
45 кВт 270,63 А 156,13 А 135,32 А 117,24 А 67.658 А
50 кВт 300,7 А 173,48 А 150,35 А 130.27 А 75,176 А
55 кВт 330,77 А 190,83 А 165,39 А 143,3 А 82,693 А
60 кВт 360,84 А 208,18 А 180,42 А 156,32 А 90,211 А
65 кВт 390,91 А 225,53 А 195,46 А 169,35 А 97,729 А
70 кВт 420.98 А 242,88 А 210,49 А 182,38 А 105,25 А
75 кВт 451,05 А 260,22 А 225,53 А 195,4 А 112,76 А
80 кВт 481,13 А 277,57 А 240,56 А 208,43 А 120,28 А
85 кВт 511,2 А 294,92 А 255,6 А 221.46 А 127,8 А
90 кВт 541,27 А 312,27 А 270,63 А 234,48 А 135,32 А
95 кВт 571,34 А 329,62 А 285,67 А 247,51 А 142,83 А
100 кВт 601,41 А 346,97 А 300,7 А 260,54 А 150,35 А
125 кВт 751.76 А 433,71 А 375,88 А 325,67 А 187,94 А
150 кВт 902,11 А 520,45 А 451,05 А 390,81 А 225,53 А
175 кВт 1052,5 А 607,19 А 526,23 А 455,94 А 263,12 А
200 кВт 1 202,8 А 693,93 А 601.41 А 521,07 А 300,7 А
225 кВт 1353,2 А 780,67 А 676,58 А 586,21 А 338,29 А
250 кВт 1 503,5 А 867,41 А 751,76 А 651,34 А 375,88 А
275 кВт 1653,9 А 954,15 А 826,93 А 716,48 А 413.47 А
300 кВт 1804,2 А 1040,9 А 902,11 А 781,61 А 451,05 А
325 кВт 1 954,6 А 1 127,6 А 977,29 А 846,75 А 488,64 А
350 кВт 2104,9 А 1214,4 А 1052,5 А 911,88 А 526,23 А
375 кВт 2,255.3 А 1 301,1 А 1 127,6 А 977.01 А 563,82 А
400 кВт 2405,6 А 1387,9 А 1 202,8 А 1042,1 А 601,41 А
425 кВт 2,556 А 1474,6 А 1 278 A 1 107,3 ​​А 638,99 А
450 кВт 2706,3 А 1561,3 А 1,353.2 А 1172,4 А 676,58 А
475 кВт 2 856,7 А 1648,1 А 1428,3 А 1237,6 А 714,17 А
500 кВт 3 007 А 1734,8 А 1 503,5 А 1 302,7 А 751,76 А
525 кВт 3 157,4 А 1821,6 А 1578,7 А 1367,8 А 789.35 А
550 кВт 3307,7 А 1908,3 А 1653,9 А 1433 А 826,93 А
575 кВт 3 458,1 А 1 995,1 А 1729 А 1498,1 А 864,52 А
600 кВт 3608,4 А 2081,8 А 1804,2 А 1563,2 А 902,11 А
625 кВт 3,758.8 А 2168,5 А 1879,4 А 1628,4 А 939,7 А
650 кВт 3 909,1 А 2255,3 А 1 954,6 А 1693,5 А 977,29 А
675 кВт 4 059,5 А 2342 А 2029,7 А 1758,6 А 1014,9 А
700 кВт 4209,8 А 2428,8 А 2,104.9 А 1823,8 А 1052,5 А
725 кВт 4360,2 А 2515,5 А 2180,1 А 1888,9 А 1090 А
750 кВт 4510,5 А 2 602,2 А 2255,3 А 1 954 А 1 127,6 А
775 кВт 4 660,9 А 2 689 А 2330,5 А 2019,2 А 1,165.2 А
800 кВт 4811,3 А 2775,7 А 2405,6 А 2084,3 А 1 202,8 А
825 кВт 4961,6 А 2862,5 А 2480,8 А 2149,4 А 1240,4 А
850 кВт 5112 А 2949,2 А 2,556 А 2214,6 А 1 278 A
875 кВт 5 262.3 А 3035,9 А 2 631,2 А 2279,7 А 1315,6 А
900 кВт 5 412,7 А 3 122,7 А 2706,3 А 2344,8 А 1353,2 А
925 кВт 5 563 А 3 209,4 А 2781,5 А 2,410 А 1390,8 А
950 кВт 5713,4 А 3296,2 А 2,856.7 А 2475,1 А 1428,3 А
975 кВт 5863,7 А 3382,9 А 2 931,9 А 2540,2 А 1465,9 А
1000 кВт 6 014,1 А 3469,7 А 3 007 А 2605,4 А 1 503,5 А

Номинальный ток генератора (однофазный переменный ток)

Номинальные значения тока генератора основаны на выходной мощности в киловаттах при однофазном переменном токе 120 и 240 В с коэффициентом мощности.8
Мощность Ток при 120 В Ток при 240 В
1 кВт 10,417 А 5,208 А
2 кВт 20,833 А 10,417 А
3 кВт 31,25 А 15,625 А
4 кВт 41,667 А 20,833 А
5 кВт 52.083 А 26.042 A
6 кВт 62,5 А 31,25 А
7 кВт 72,917 А 36,458 А
8 кВт 83.333 А 41,667 А
9 кВт 93,75 А 46,875 А
10 кВт 104,17 А 52.083 А
15 кВт 156,25 А 78,125 А
20 кВт 208.33 А 104,17 А
25 кВт 260,42 А 130,21 А
30 кВт 312,5 А 156,25 А
35 кВт 364,58 А 182,29 А
40 кВт 416,67 А 208,33 А
45 кВт 468,75 А 234,38 А
50 кВт 520,83 А 260.42 А
55 кВт 572,92 А 286,46 А
60 кВт 625 А 312,5 А
65 кВт 677.08 А 338,54 А
70 кВт 729,17 А 364,58 А
75 кВт 781,25 А 390,63 А
80 кВт 833,33 А 416,67 А
85 кВт 885.42 А 442,71 А
90 кВт 937,5 А 468,75 А
95 кВт 989,58 А 494,79 А
100 кВт 1041,7 А 520,83 А
125 кВт 1 302,1 А 651,04 А
150 кВт 1562,5 А 781,25 А
175 кВт 1822,9 А 911.46 А
200 кВт 2083,3 А 1041,7 А
225 кВт 2343,8 А 1171,9 А
250 кВт 2 604,2 А 1 302,1 А
275 кВт 2 864,6 А 1432,3 А
300 кВт 3,125 А 1562,5 А
325 кВт 3385,4 А 1,692.7 А
350 кВт 3645,8 А 1822,9 А
375 кВт 3906,3 А 1 953,1 А
400 кВт 4 166,7 А 2083,3 А
425 кВт 4 427,1 А 2213,5 А
450 кВт 4687,5 А 2343,8 А
475 кВт 4947,9 А 2474 А
500 кВт 5,208.3 А 2 604,2 А
525 кВт 5468,8 А 2734,4 А
550 кВт 5729,2 А 2 864,6 А
575 кВт 5 989,6 А 2994,8 А
600 кВт 6250 А 3,125 А
625 кВт 6 510,4 А 3 255,2 А
650 кВт 6770.8 А 3385,4 А
675 кВт 7 031,3 А 3515,6 А
700 кВт 7 291,7 А 3645,8 А
725 кВт 7 552,1 А 3776 А
750 кВт 7 812,5 А 3906,3 А
775 кВт 8 072,9 А 4036,5 А
800 кВт 8 333.3 А 4 166,7 А
825 кВт 8 593,8 А 4296,9 А
850 кВт 8 854,2 А 4 427,1 А
875 кВт 9 114,6 А 4557,3 А
900 кВт 9 375 А 4687,5 А
925 кВт 9 635,4 А 4817,7 А
950 кВт 9 895.8 А 4947,9 А
975 кВт 10 156 А 5 078,1 А
1000 кВт 10 417 А 5 208,3 А
.

Киловатт-часов (кВтч) в Киловатт (кВт) калькулятор преобразования

Преобразуйте киловатт-часы в мощность в киловаттах, указав энергию (в кВтч) и время (в часах) ниже.

Вы хотите перевести киловатт в киловатт-час?

Как перевести киловатт-часы в киловатты

Киловатт-час , выраженный в кВтч или кВт · час, представляет собой меру потребления электроэнергии, эквивалентную одному киловатту мощности, используемой в течение одного часа. Электроэнергетическая компания использует это измерение, например, для расчета суммы, выставляемой клиентам.

Киловатт , сокращенно кВт, это мера электрической мощности. Чтобы преобразовать энергию в кВтч в мощность в кВт, используйте формулу ниже.

кВт = кВтч ÷ часов

Таким образом, мощность в киловаттах равна энергии в киловатт-часах, деленной на период времени, измеренный в часах.

Например, преобразует 48 кВтч энергии, потребляемой за 24 часа, в кВт.

кВт = 48 кВтч ÷ 24 часа
кВт = 2 кВт

Общее преобразование кВтч в кВт

Эквивалентная энергия в киловатт-часах и мощность в киловаттах для различных периодов времени.
Энергия в кВтч Время в часах Мощность, кВт
100 кВтч 1 час 100 кВт
100 кВтч 2 часа 50 кВт
100 кВтч 3 часа 33,33 кВт
100 кВтч 4 часа 25 кВт
100 кВтч 5 часов 20 кВт
100 кВтч 6 часов 16.67 кВт
100 кВтч 7 часов 14,29 кВт
100 кВтч 8 часов 12,5 кВт
100 кВтч 9 часов 11,11 кВт
100 кВтч 10 часов 10 кВт
100 кВтч 15 часов 6,67 кВт
100 кВтч 20 часов 5 кВт
100 кВтч 25 часов 4 кВт
100 кВтч 30 часов 3.33 кВт
100 кВтч 35 часов 2,86 кВт
100 кВтч 40 часов 2,5 кВт
100 кВтч 45 часов 2,22 кВт
100 кВтч 50 часов 2 кВт
100 кВтч 55 часов 1,82 кВт
100 кВтч 60 часов 1,67 кВт
100 кВтч 65 часов 1.54 кВт
100 кВтч 70 часов 1,43 кВт
100 кВтч 75 часов 1,33 кВт
100 кВтч 80 часов 1,25 кВт
100 кВтч 85 часов 1,18 кВт
100 кВтч 90 часов 1,11 кВт
100 кВтч 95 часов 1,05 кВт
100 кВтч 100 часов 1 кВт

Возможно, вас заинтересует наш калькулятор из кВт / ч в ватт.

.

Индия Формула продаж Расчет мощности вращающейся печи

Краткое описание формулы расчета мощности вращающаяся печь

1. Обжиговая печь для активной извести относится к оборудованию для строительных материалов, которое можно разделить на цементную печь, печь для металлургии, химическую печь и печь для обжига извести в зависимости от материала.

2. Цементная печь используется для производства цементного клинкера, и существуют сухой и мокрый методы производства цемента.

3. Химическая печь в металлургии используется в металлургической промышленности и на металлургических заводах для обогащения бедной железной руды, хромовой руды и кальцима ферроникелевой руды.

4. Печь для обжига активной извести используется для кальцимации высокой алюминиевой вандальной охры в промышленности огнеупорных материалов, кальцина кальота и гидроксида алюминия на производстве алюминия, получения хромовой песчаной руды и хромовой порошковой руды на химическом заводе.

Конструкция Особенности формулы расчета мощности вращающейся печи

1. Корпус печи изготовлен из листового проката; его структура оптимизирована с помощью компьютерного программного обеспечения, и показывает»продольный и поперечный гибкий жесткий», который улучшил загрузку опорного устройства и стабильность огнеупорной футеровки,

2.Опорные роликовые подшипники имеют меньшее отношение ширины к диаметру L / D, что обеспечивает более высокую надежность.

3. В качестве привода применяется специальный высокомоментный двигатель для вращающейся печи цементной промышленности.

4. Уплотнение лабиринта плюс пружина с прикрепленными слоями теплоизоляции асбеста применяется выше, так что достигается надежность и более длительный срок службы уплотнения.

Применение формулы расчета мощности вращающейся печи

1.Активная печь для обжига извести обычно используется в процессе производства каталитического агента, молекулярного сита, оксида цинка и т. Д.

2. В результате вы можете найти вращающуюся печь в различных отраслях промышленности, таких как отжиг стали и выплавка цветных металлов, металлургия. области химии, строительства и др.

3. Обжиговая печь Active Lim, которую также называют вращающейся обжиговой печью, представляет собой широко используемую машину для производства строительных материалов. Вращающаяся печь, классифицируемая по свойствам материала, подразделяется на цементные печи, печи для обжига химических веществ в металлургии и печи для обжига извести.

Принцип работы вращающейся печи

1. При определенном наклоне к уровню весь корпус печи поддерживается роликами и снабжен упорными роликами для управления движением корпуса печи вверх и вниз.

2. Помимо основного привода для приводной системы, он также оснащен вспомогательным приводным узлом, чтобы гарантировать, что корпус печи все еще может вращаться, когда главный двигатель выключен, и предотвратить его деформацию.

3. В головке печи используется уплотнение кожухового типа, а в задней части печи используется осевой контактный узел уплотнения, что обеспечивает надежность уплотнения.

Основные технические параметры формулы расчета мощности вращающейся печи / p>

Модель (мм) Размер корпуса Производительность (т / ч) Скорость вращения (об / мин) Мощность ( кВт) Вес (т)
Диаметр (мм) Длина (мм) Наклон (%)
1,4 × 33 1,4 33 3 0,9-1,3 0,39–3,96 18.5 47,5
1,6 × 36 1,6 36 4 1,2-1,9 0,26-2,63 22 52
1,8 × 45 1,8 45 4 1,9–2,4 0,16–1,62 30 78,2
1,9 × 39 1,9 39 4 1,65–3 0,29–2,93 30 77,59
2.0 × 40 2 40 3 2,5-4 0,23-2,26 37 119,1
2,2 × 45 2,2 45 3,5 3,4-5,4 0,21-2,44 45 128,3
2,5 × 40 2,5 40 3,5 9,0-10,5 0,44-2,44 55 149,61
2,5 × 50 2.5 50 3 6,25-7,4 0,62-1,86 55 187,37
2,5 × 54 2,5 54 3,5 6,9-8,5 0,48-1,4 55 196,29
2,7 × 42 2,7 42 3,5 10,0-11,0 0,10-1,52 55 198,5
2,8 × 44 2,8 44 3.5 12,5-13,5 0,437-2,18 55 201,58
3,0 × 45 3 45 3,5 12,8-14,5 0,5-2,47 75 210,94
3,0 × 48 3 48 3,5 25,6-29,3 0,6-3,448 100 237
3,0 × 60 3 60 3,5 12 .3-14,1 0,3-2 100 310
3,2 × 50 3,2 50 4 40,5-42 0,6-3 125 278

Фотографии вращающейся печи для расчета мощности по формуле

Запасные части вращающейся печи для расчета мощности по формуле

Гарантия на вращающуюся печь для расчета мощности по формуле

1.От одного до трех лет (рассчитывается по доставке товара в порт назначения). Если какие-либо детали (за исключением легко повреждаемых деталей) будут обнаружены дефектными по качеству в первый год, мы заменим их бесплатно. Через год детали можно будет заменить на льготной основе. Мы можем отправить нашего инженера для установки и пробного запуска у вас. Но соответствующая стоимость будет внесена в ваш счет (авиабилет туда и обратно, питание и проживание).

2. Наши профессиональные услуги включают в себя: Бесплатное обучение, установку инструкций и отладку.

3. Если у вас возникнут вопросы, свяжитесь с нами. Наша команда послепродажного обслуживания в режиме онлайн сделает все возможное, чтобы вовремя выполнить ваше искреннее требование.

.

Преобразовать килокалории в час в киловатты (ккал / ч → кВт)

1 Килокалорий в час = 0,0012 Киловатт 10 Килокалорий в час = 0,0116 Киловатт 2500 Килокалорий в час = 2.9075 Киловатт
2 Килокалорий в час = 0,0023 Киловатт 20 Ккал в час = 0.0233 Киловатт 5000 Килокалорий в час = 5,815 Киловатт
3 Килокалорий в час = 0,0035 Киловатт 30 Килокалорий в час = 0,0349 Киловатт 10000 Килокалорий в час = 11,63 Киловатт
4 Ккал в час = 0.0047 Киловатт 40 Килокалорий в час = 0,0465 Киловатт 25000 Килокалорий в час = 29,075 Киловатт
5 Килокалорий в час = 0,0058 Киловатт 50 Килокалорий в час = 0,0581 Киловатт 50000 Килокалорий в час = 58,15 Киловатт
6 Ккал в час = 0.007 Киловатт 100 Килокалорий в час = 0,1163 Киловатт 100000 Килокалорий в час = 116,3 Киловатт
7 Килокалорий в час = 0,0081 Киловатт 250 Килокалорий в час = 0,2907 Киловатт 250000 Килокалорий в час = 290,75 Киловатт
8 Ккал в час = 0.0093 Киловатт 500 Килокалорий в час = 0,5815 Киловатт 500000 Килокалорий в час = 581,5 Киловатт
9 Килокалорий в час = 0,0105 Киловатт 1000 Килокалорий в час = 1,163 Киловатт 1000000 Килокалорий в час = 1163 Киловатт
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *