Расчет радиаторов отопления по площади калькулятор: Расчёт секций батарей и радиаторов онлайн.
Расчет радиаторов, батарей отопления по площади: онлайн калькулятор
Грамотный расчет отопления частного дома (калькулятор использовать предпочтительнее) задача исключительно сложная. Ведь слишком много факторов следует при этом учесть. Малейшая ошибка или неправильная трактовка исходных данных могут привести к ошибке, из-за которой смонтированная система отопления не будет выполнять поставленные задачи. Либо, что тоже вероятно, режим ее работы будет весьма далек от оптимального, что приведет к значительным и неоправданным тратам. Специалисты компании «Новое место» готовы рассчитать отопление любой специфики оперативно и недорого. Не хотите иметь проблем с теплом в доме – просто позвоните нашему менеджеру.
Точность исходных данных крайне важна
Существует довольно много методик, которые позволяют обычному человеку, не связанному со строительным делом, провести расчет радиаторов отопления частного дома – калькулятор для этих нужд также используется сейчас широко. Однако, на правильные данные можно рассчитывать только в том случае, если входящая информация предоставлена грамотно.
Так, самостоятельно измерить кубатуру помещения (длина, ширина и высота каждой комнаты), подсчитать количество окон и примерно определить тип подключаемого радиатора достаточно просто. Но, далеко не все владельцы жилья смогут разобраться с типом подачи горячей воды, толщиной стен, материалом, из которого они сделаны, а также учесть все нюансы предполагаемого к монтажу отопительного контура.
С другой стороны, для предварительного планирования даже такие методы, неточные, но простые в реализации, подойдут очень хорошо. Они помогут выполнить приблизительный расчет радиатора отопления в частном доме (калькулятор вам понадобится, но вычисления будут очень простыми) и примерно понять, какой отопительный контур будет наиболее оптимальным.
Расчет на основании площади помещения
Самый быстрый и весьма неточный метод, лучше всего подходящий для помещений со стандартной высотой потолков, равной примерно 2,4-2,5 метров. Согласно действующим строительным правилам, на обогрев одного квадратного метра площади понадобится 0,1 кВт тепловой мощности. Следовательно, для типовой комнаты площадью 19 квадратных метров необходимо 1,9 кВт.
Чтобы завершить расчет количества радиаторов отопления в частном доме, осталось разделить полученное значение на показатель теплоотдачи одной секции батареи (этот параметр должен быть указан в сопроводительной инструкции или на упаковке, но для примера возьмем стандартное значение 170 Вт) и при необходимости округлить полученную цифру в большую сторону. Окончательный результат будет равен 12 (1900 / 170 = 11,1764).
Предложенная методика является очень приблизительной, так как не учитывает множество факторов, напрямую влияющих на расчеты. Поэтому для корректировки стоит использовать несколько уточняющих коэффициентов.
- помещение с балконом или комната в торце здания: +20%;
- проект предполагает установку радиаторной батареи в нишу или за декоративный экран: +15%.
Расчет по кубатуре помещения
Предлагаемая методика также не претендует на высокую точность, но по сравнению с расчетом на основе площади помещения она дает результаты, более соответствующие реальному положению дел. Самая большая проблема в данном случае – правильная трактовка норм СНиП, по которым для обогрева одного кубического метра жилой площади необходимо затратить 41 кВт мощности. Так как этот параметр описывает систему организации отопления в стандартном панельном здании, расчет количества радиаторов отопления в частном доме будет не совсем точным. Но примерное представление о том, как ее следует проектировать, он дает.
В первую очередь, нужно перемножить площадь помещения на его высоту. Например, для комнаты в 30 квадратных метров и потолками в 3,5 метра итоговая цифра будет 105 м3(30 * 3,5). После этого ее нужно умножить на 41 (нормы требуемой тепловой мощности для одного «куба»): 105 * 41 = 4305 Вт (примерно 4,3 кВт).
Вычисление оптимального количества радиаторов выполняется очень просто. Прежде всего, выясните теплоотдачу одной сегмента, после чего разделите на это значение полученную ранее цифру. В нашем примере имеем 26 секций (4305 / 170 = 25,3235). Для получения более достоверного результата есть смысл использовать несколько корректирующих коэффициентов:
- угловая комната: +20%;
- батарея задекорирована решеткой или экраном: +20%;
- дом плохо утеплен, основной материал, из которого сделаны стены, – крупногабаритная панель: +10%;
- помещение находится на последнем или первом этаже: +10%;
- в комнате большего одного окна или оно одно, но очень большое: +10%;
- рядом расположены неотапливаемые помещения (особенно, если в них отсутствует часть стен): +10%.
Профессиональный подход
Как рассчитать батареи отопления для частного дома, если нужна очень высокая точность с минимально возможными допусками. В этом случае есть смысл воспользоваться методикой, которая предполагает наличие нескольких уточняющих коэффициентов. Она имеет определенные допуски, но итоговый результат позволит смонтировать такую отопительную систему, которая будет учитывать все особенности помещения.
Формула расчета имеет следующий вид: Q = 100 * S * X1 * X2 * X3 * X4 * X5 * X6 * X7. Q – количество тепла (в ваттах на квадратный метр), которое необходимо обеспечить для конкретного помещения), S – его площадь, а X1-X7 – несколько уточняющих коэффициентов.
X1: класс остекления оконных проемов (особо уточним, он не учитывает количество самих проемов)
- Двойное остекление: 1,27.
- 2-слойный стеклопакет: без коррекции.
- 3-слойный стеклопакет: 0,85.
X2: уровень теплоизоляции стен (может быть скорректирован установкой внешних утепляющих конструкций)
- Недостаточная (одинарная кладка, нет дополнительных навесных блоков): 1,27.
- Хорошая (слой утеплителя или двойная кирпичная кладка): без коррекции.
- Высокая: 0,85.
X3: отношение площади окон и пола
- 50%: 1,2.
- 40%: 1,1.
- 30%: без коррекции.
- 20%: 0,9.
- 10%: 0,8 (часто встречающийся случай в складских помещениях, но в частных домах встречается очень редко).
X4: средневзвешенная температура воздуха для наиболее холодной недели в году (в градусах Цельсия)
- -35 и менее: 1,5.
- От -35 до -25: 1,3.
- От -25 до -20: 1,1.
- От -20 до -15: 0,9.
- От -15 до -10: 0,7.
X5: внешние стены
- Одна: 1,1;
- Две: 1,2;
- Три: 1,3;
- Четыре: 1,4.
X6: тип находящегося над комнатой, для которой производится расчет, помещения
- Чердак, лишенный принудительного отопления: без коррекции.
- Отапливаемый чердак: 0,9.
- Жилое помещение с собственным отоплением: 0,8.
X7: высота потолков (метров)
- Менее 2,5: без коррекции.
- От 2,5 до 3: 1,05.
- От 3 до 3,5: 1,1.
- От 3,5 до 4: 1,15.
- От 4 до 4,5: 1,2.
Как рассчитать количество радиаторов в доме, исходя из предложенной методики? Представим себе, что у нас есть дом из двух комнат – 20 и 25 м2. В одной из них – двойное остекление, в другой – тройной стеклопакет. Уровень теплоизоляции высокий. Соотношение окон и пола – 1:1. Самая низкая температура -17 градусов. В доме 2 внешних стены, над комнатами находится неотапливаемый чердак, а высота стен – 3,1 м.
- 1 комната (S=20 м2). 100 * 20 (S) * 1,27 (X1) * 0,85 (X2) * 1,2 (X3) * 0,9 (X4) * 1,2 (X5) * 1 (X6) * 1,1 (X7) = 3077,87.
- 2 комната (S=15 м2). 100 * 15 (S) * 0,85 (X1) * 0,85 (X2) * 1,2 (X3) * 0,9 (X4) * 1,2 (X5) * 1 (X6) * 1,1 (X7) = 1544,99.
После этого нужно разделить полученные значения на теплоотдачу одной секции радиатора, (например, 170 Вт / м2):
- 1 комната: 3077,87 / 170 = 19 (18,1051).
- 2 комната: 1544,99 / 170 = 10 (9,0881).
Именно такое количество секций будет оптимальным и достаточным.
Виды радиаторов
Приведенное значение теплоотдачи – 170 Вт / м2 является усредненным, а значит реальное положение дел отражает далеко не всегда. Потому его также можно скорректировать для более точного расчета.
Биметаллические радиаторы
Являются в наше время самыми распространенными. Показатели теплоотдачи у разных производителей могут несколько разниться, но общее представление о том, какую они обеспечивают теплоотдачу, получить можно. Основной критерий в данном случае – межосное расстояние:
- 500 мм: 165 Вт.
- 400 мм: 143 Вт.
- 250 мм: 102 Вт.
Алюминиевые радиаторы
Основной показатель здесь тот же – межосное расстояние, а приведенные нами данные верны для продукции итальянских брендов Calidor и Solar.
- 500 мм: от 178 до 182 Вт.
- 350 мм: от 145 до 150 Вт.
Стальные пластинчатые радиаторы
Здесь ситуация несколько сложнее, так как приходится дополнительно учитывать способ врезки в контур отопления, потому нужные параметры теплоотдачи следует выяснить у производителя вашей модели батареи.
Чугунные радиаторы
Классика, доставшаяся нам по наследству со старых советских времен, но не теряющая своей актуальности и в наши дни. Однако здесь следует учитывать, что в реальной жизни показатели могут быть ниже на 10-20 градусов, особенно если коммуникации сильно изношены.
Как рассчитать количество радиаторов в доме, используя предложенную методику? Вы должны четко выяснить необходимые для этого параметры помещения и технико-технические характеристики предполагаемых к использованию радиаторов. Но, так как это не так просто, как может показаться на первый взгляд, это обратитесь за помощью в компанию «Новое место».
Онлайн калькуляторы для расчета системы отопления
Расчет системы отопления – это очень важный этап, от которого во многом зависит последующий комфорт и удобство проживания в доме. Мы подготовили для вас десятки бесплатных онлайн-калькуляторов, которые облегчат расчеты, и все они собраны в рубрике «Система отопления»! Но для начала выясним, как вообще рассчитывается отопительная система?
Этап №1. Вначале рассчитываются теплопотери здания – эти сведения необходимы для того, чтобы определить мощность отопительного котла и каждого из радиаторов в частности. В этом вам поможет наш калькулятор теплопотерь
Этап №2. Далее нужно выбрать температурный режим. В среднем, для расчетов используется значение 75/65/20, что полностью соответствует требованиям EN 442. Если выберите именно этот режим, то уж точно не ошибетесь, ведь на него настроена большая часть всех импортных отопительных котлов.
Этап №3. После этого подбирается мощность радиаторов с учетом полученных теплопотерь в помещении. Также вам может пригодиться бесплатный калькулятор расчета количества секций радиатора отопления.
Этап №4. Для подбора подходящего циркуляционного насоса и труб нужного диаметра производится гидравлический расчет. Чтобы выполнить его, нужны специальные знания и соответствующие таблицы. Также можно воспользоваться калькулятором расчета производительности циркуляционного насоса.
Этап №5. Теперь нужно выбрать котел. Детальнее о выборе отопительного котла можно узнать из статей данной рубрики нашего сайта.
Этап №6. В конце необходимо рассчитать объем системы отопления. Ведь именно от вместительности сети будет зависеть объем расширительного бака. Здесь вам поможет калькулятор расчета общего объема системы отопления.
На заметку! Эти, а также многие другие онлайн-калькуляторы можно найти в данной рубрике сайта. Воспользуйтесь ими, чтобы максимально облегчить рабочий процесс!
Расчет мощности радиаторов отопления по площади калькулятор
Калькулятор расчета радиаторов отопления по площади
Расчетом радиаторов отопления принято называть определение оптимальной мощности обогревательного прибора, необходимой для создания теплового комфорта в пределах жилой комнаты или всей квартиры и выбора соответствующего секционного радиатора как основного функционального элемента нынешних систем отопления.
Расчет мощности радиаторов с помощью калькулятора
Для ориентировочных расчетов достаточно применение несложных алгоритмов, называемых калькулятором расчета радиаторов или батарей отопления. С их помощью даже не специалистам удается подобрать необходимое количество радиаторных секций для обеспечения в своем доме комфортного микроклимата.
Цель расчетов
Нормативная документация по отоплению (СНиП 2.04.05-91, СНиП 3.05-01-85), строительной климатологии (СП 131.13330.2012) и тепловой защите зданий (СНиП 23-02-2003) требует от отопительной аппаратуры жилого дома выполнения следующих условий:
- Обеспечение полной компенсации тепловых потерь жилища в холодное время;
- Поддержание в помещениях частного жилища или здания общественного назначения номинальных температур, регламентированных санитарными и строительными нормами. В частности, для ванной комнаты требуется обеспечение температуры в пределах 25 градусов Ц, а для жилой – значительно ниже, всего лишь 18 градусов Ц.
Понятие теплого комфорта следует трактовать не только в качестве плюсовой температуры произвольного значения, но и как максимально допустимую величину. Нет смысла монтировать батареи с двумя десятками секций для обогрева небольшой по площади детской спальни, если ради свежего воздуха (чересчур нагретые радиаторы «сжигают» кислород вокруг себя) приходится открывать форточку.
Батарея отопления, собранная с излишним количеством секций
С помощью калькулятора расчета отопительной системы определяется тепловая мощность радиатора для эффективного отопления жилой площади или подсобного помещения в установленном температурном диапазоне, после чего корректируется формат радиатора.
Методика расчета по площади
Алгоритм расчета радиаторов отопления по площади заключается в сопоставления тепловой мощности прибора (указывается производителем в паспорте изделия) и площади помещения, в котором планируется монтаж отопления. При постановке задачи, как рассчитать количество радиаторов отопления, сначала определяется количество тепла, которое нужно получить от отопительных приборов для обогрева жилья в соответствии с санитарными нормативами. Для этого теплотехниками введен так называемый показатель мощности отопления, приходящийся на квадратный или кубический метр в объеме помещения. Его усредненные значения определены для нескольких климатических регионов, в частности:
- регионы с умеренным климатом (Москва и Моск. область) – от 50 до 100 Вт/кв. м;
- районы Урала и Сибири – до 150 Вт/кв. м;
- для районов Севера – необходимо уже от 150 до 200 Вт/кв. м.
Проведение расчета мощности радиаторов отопления с использованием показателя площади рекомендуется только для стандартных помещений с высотой потолка не более 2,7-3,0 метра. При превышении стандартных параметров высоты необходимо переходить на методику калькулятора расчетов батарей по объему, в которой для определения числа секций радиатора вводится понятие количества тепловой энергии на обогрев одного кубометра помещения жилого дома. Для панельного дома усредненный показатель принимается равным 40-41 Вт/куб. метр.
Последовательность теплотехнических расчетов отопления частного жилища через площадь обогреваемого помещения следующая:
- Определяется расчетная площадь комнаты S, выраженная в кв. метрах;
- Полученная величина площади S умножается на показатель мощности отопления, принятый для данного климатического региона. Для упрощения расчетов его часто принимают равным 100 Вт на квадратный метр. В результате перемножения S на 100 Вт/кв. метр получается количество тепла Qпом. потребное для обогрева помещения;
- Полученное значение Qпом необходимо разделить на показатель мощности радиатора (теплоотдачу) Qрад .
Для каждого типа батареи производителем декларируется паспортное значение Qрад. зависящее от материала изготовления и размера секций.
- Определяется потребное количество секций радиатора по формуле:
N= Qпом / Qрад. Полученный результат округляется в сторону увеличения.
Параметры теплоотдачи радиаторов
На рынке секционных батарей для отопления жилого дома широко представлены изделия из чугуна, стали, алюминия и биметаллические модели. В таблице представлены показатели теплоотдачи наиболее популярных секционных обогревателей.
Значения параметров теплоотдачи современных секционных радиаторов
Модель радиатора, материал изготовления
Сравнивая табличные показатели чугунных и биметаллических батарей, которые наиболее адаптированы под параметры центрального отопления, нетрудно отметить их тождественность, которая облегчает расчеты при выборе способа обогрева жилого дома.
Тождественность чугунных и биметаллических батарей при расчете мощности
Паспортные значения отопительных приборов указываются для температуры 70-90 градусов Ц. В системах центрального отопления теплоноситель редко нагревается выше 60-80 градусов Ц, поэтому теплоотдача, например, чугунной «гармошки» в комнате высотой 2,7 метра не превышает 60 Вт.
Уточняющие коэффициенты
Для уточняющей корректировки калькулятора определения числа секций для обогрева комнаты в упрощенную формулу N= Qпом / Qрад вводятся поправочные коэффициенты, учитывающие различные факторы, влияющие на теплообмен внутри частного жилища. Тогда значениеQпомопределяется по уточненной формуле:
В этой формуле поправочные коэффициенты учитывают следующие факторы:
- К1 – для учета способа остекления окон. Для обычного остекления К1 =1,27, для двойного стеклопакета К1 =1,0, для тройного К1 =0,85;
- К2 учитывает отклонение высоты потолка от стандартного размера 2,7 метра. К2 определяется делением размера высоты на 2,7 м. Например, для комнаты высотой 3 метра коэффициент К2 =З,0/2,7=1,11;
- К3 корректирует теплоотдачу в зависимости от места установки радиаторных секций.
Значения поправочного коэффициента К3 в зависимости от схемы установки батареи
- К4 соотносит расположение наружных стен с интенсивностью теплоотдачи. Если наружная стена всего одна, то К=1,1. Для угловой комнаты уже две наружных стены, соответственно, К=1,2. Для обособленного помещения с четырьмя наружными стенами К=1,4.
- К5 необходим для корректировки в случае наличия помещения над расчетной комнатой: если имеется сверху холодный чердак, то К=1, для обогреваемого чердака К=0,9 и для отапливаемого помещения сверху К=0,8;
- К6 вносит коррективы по соотношению площадей окон и пола. Если площадь окон всего лишь 10% от площади пола, то К=0,8. Для окон витражного типа площадью до 40% от площади пола К=1,2.
Радиаторная система отопления. Видео
Как устроена радиаторная система отопления, рассказывает видео ниже.
Учесть в расчетах все факторы, влияющие на обогревающие способности радиатора, просто невозможно. Однако используемый метод расчета отопления с использованием соответствующих поправок не даст промахнуться с обеспечением комфортной температуры в жилище.
Интерьер помещения с секционным радиатором
Похожие статьи:
- Расчет количества секций радиаторов отопления При проектировании отопительной системы частного дома или квартиры одним из самых важных является расчет приборов отопления и числа секций на.
- Варианты подключения радиаторов отопления для эффективного обогрева жилища Обустройство системы отопления (далее – СО) в отдельной квартире или в частном доме осуществляется посредством подключения радиаторов отопления к магистрали.
- Подключение радиаторов отопления в доме Эффективность работы отопления зависит от соблюдения технологии во время монтажа радиаторов и остальных элементов системы. Большое значение имеет и правильный.
- Схемы подключения радиаторов отопления в частном доме При устройстве системы водяного отопления в частном доме каждый предварительно задумывается, как все скомпоновать, какие элементы как разместить, чтобы отопление.
- Установка радиатора отопления своими руками: особенности и правила Установка радиаторов отопления своими руками – занятие хоть и хлопотное, но достаточно реальное. Дома самостоятельно можно осуществить эту манипуляцию и.
- Регулировочные краны для радиаторов отопления Установка регуляторов не понадобится, если система отопления была рассчитана правильно. При этом в каждом помещении будет поддерживаться оптимальная температура. Но.
- Биметаллические радиаторы отопления: преимущества и особенности использования Биметаллические радиаторы отопления представляют собой устройства для обогрева помещения, выполненные из стали (или меди) и алюминия, что улучшает процесс теплообмена.
- Какие радиаторы лучше: алюминиевые или биметаллические Когда приходит время определиться с выбором систем отопления и радиаторов для частного дома или квартиры, нужно со вниманием отнестись к.
Добавить комментарий Отменить ответ
Навигация записей
Газовое отопление для обогрева жилого дома
Монтаж отопления в частном доме из полипропиленовых труб своими руками
Вконтакте:
Популярные записи
© 2015–2017. Все права защищены. AQUEO.RU — интернет-энциклопедия про всё, что связано с водой в доме: отопление и водоснабжение.
Допускается использование указанных материалов либо с письменного согласия Автора, либо в объеме достаточном для цитирования с обязательным указанием источника AQUEO.RU в виде активной ссылки.
Калькулятор расчета количества секций радиаторов отопления
В подавляющем числе случаев основными приборами конечного теплообмена в системах отопления остаются радиаторы. Значит, важно не только правильно заранее рассчитать требуемую тепловую мощность котла отопления, но и правильно расставить приборы теплообмена в помещениях дома или квартиры, чтобы обеспечить комфортный микроклимат в каждом из них.
Калькулятор расчета количества секций радиаторов отопления
В этом вопросе поможет калькулятор расчета количества секций радиаторов отопления, который размещен ниже. Он также позволяет определить необходимую суммарную тепловую мощность радиатора, если тот является неразборной моделью.
Если в ходе расчетов будут возникать вопросы, то ниже калькулятора размещены основные пояснения по его структуре и правилам применения.
Калькулятор расчета количества секций радиаторов отопления
Некоторые разъяснения по работе с калькулятором
Часто можно встретить утверждение, что для расчета требуемой тепловой отдачи радиаторов достаточно принять соотношение 100 Вт на 1 м² площади комнаты. Однако, согласитесь, что такой подход совершенно не учитывает ни климатических условий региона проживания, ни специфики дома и конкретного помещения, ни особенностей установки самих радиаторов. А ведь все это имеет определенное значение.
В данном алгоритме за основу также взято соотношение 100 Вт/м², однако, введены поправочные коэффициенты, которые и внесут необходимые коррективы, учитывающие различные нюансы.
- Площадь помещения – хозяевам известна.
- Количество внешних стен – чем их больше, тем выше теплопотери, которые необходимо компенсировать дополнительной мощностью радиаторов. В угловых квартирах часто комнаты имеют по две внешних стены, а в частных домах встречаются помещения и с тремя такими стенами. В то же время бывают и внутренние помещения, в которых теплопотери через стены практически отсутствуют.
- Направление внешних стен по сторонам света. Южная или юго-западная сторона будет получать какой-никакой солнечный «заряд», а вот стены с севера и северо-востока Солнца не видят никогда.
- Зимняя «роза ветров» – стены с наветренной стороны, естественно, выхолаживаются намного быстрее. Если хозяевам этот параметр неизвестен, то можно оставить без заполнения – калькулятор рассчитает для самых неблагоприятных условий.
- Уровень минимальных температур – скажет о климатических особенностях региона. Сюда должны вноситься не аномальные значения, а средние, характерные для данной местности в самую холодную декаду года.
- Степень степенности стен. По большому счету, стены без утепления – вообще не должны рассматриваться. Средний уровень утепления будет соответствовать, примерно, стене в 2 кирпича из пустотного керамического кирпича. Полноценное утепление – выполненное в полном объеме на основании теплотехнических расчетов.
- Немалые теплопотери происходят через перекрытия – полы и потолки. Поэтому важное значение имеет соседство помещения сверху и снизу – по вертикали.
- Количество, размер и тип окон – связь с теплотехническими характеристиками помещения очевидна.
- Количество входных дверей (на улицу, в подъезд или на неотапливаемый балкон) – любое открытие будет сопровождаться «порцией» поступающего холодного воздуха, и это необходимо каким-то образом компенсировать.
- Имеет значение схема врезки радиаторов в контур – теплоотдача от этого существенно изменяется. Кроме того, эффективность теплообмена зависит и от степени закрытости батареи на стене.
- Наконец, последним пунктом будет предложено ввести удельную тепловую мощность одной секции батареи отопления. В результате будет получено требуемое количество секций для размещения в данном помещении. Если расчет проводится для неразборной модели, то этот пункт оставляют незаполненным, а результирующее значение берут из второй строки расчета – она покажет необходимую мощность радиатора в кВт.
В расчетное значение уже заложен необходимый эксплуатационный резерв.
Что необходимо еще знать про радиаторы отопления?
При выборе этих приборов теплообмена следует учитывать ряд важных нюансов. Подробнее об этом можно узнать в публикациях нашего портала, посвящённых стальным . алюминиевым и биметаллическим радиаторам отопления.
Расчет батарей отопления на площадь
Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная. правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.
Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто. батареи стоят под окнами и обеспечиваю т т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты. основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее. можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.
Расчет батарей отопления на площадь
Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .
Кратко о существующих типах радиаторов отопления
Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:
- Стальные радиаторы панельной или трубчатой конструкции.
- Чугунные батареи.
- Алюминиевые радиаторы нескольких модификаций.
- Биметаллические радиаторы.
Стальные радиаторы
Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.
Стальные радиаторы отопления имеют немало недостатков
Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.
В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать. исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.
Чугунные радиаторы
Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .
Знакомый всем с детских лет чугунный радиатор МС-140-500
Возможно, такие батареи МС -140 — 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.
Современные чугунные батареи отопления
В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.
При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:
- Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
- Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
- Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу. Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.
Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.
Алюминиевые радиаторы
Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.
При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы
Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя ( емкость – не более 500 мл).
Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.
Недостатки алюминиевых радиаторов:
- Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
- Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.
Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.
Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.
Биметаллические радиаторы отопления
Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.
Строение биметаллического радиатора отопления
Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.
Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.
Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.
Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.
Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.
Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:
- ТС – трубчатые стальные ;
- Чг – чугунные ;
- Ал – алюминиевые обычные ;
- АА – алюминиевые анодированные ;
- БМ – биметаллические.
Как рассчитать нужное количество секций радиатора отопления
Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.
Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.
Самые простые способы расчета
Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный ме тр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.
Q – требуемая теплоотдача от радиаторов отопления.
S – площадь обогреваемого помещения.
Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :
N – рассчитываемое количество секций.
Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.
Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.
Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2, 7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи. исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.
где h – высота потолка над уровнем пола.
Дальнейший расчет – ничем не отличается от представленного выше.
Подробный расчет с учетом особенностей помещения
А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем. подобные нюансы могут иметь весьма важное значение.
Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:
Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:
А – количество внешних стен в помещении.
Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :
В – ориентация помещения по сторонам света.
Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».
Прогреваемость помещений во многом зависит от их расположения относительно сторон света
Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.
Отсюда – значения коэффициента В.
- Комната выходит на север или восток – В = 1, 1
- Южная или западная комнаты – В = 1, то есть, может не учитываться.
С – коэффициент, учитывающий степень утепленности стен.
Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:
- Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1, 0
- Внешние стены не утеплены – С = 1, 27
- Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.
D – особенности климатических условий региона.
Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.
Е – коэффициент высоты потолков помещения.
Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :
F – коэффициент, учитывающий тип помещения, расположенного выше
Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:
- холодный чердак или неотапливаемое помещение – F= 1, 0
- утепленный чердак (в том числе – и утепленная кровля) – F= 0, 9
- отапливаемое помещение – F= 0, 8
G – коэффициент учета типа установленных окон.
Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :
- обычные деревянные рамы с двойным остеклением – G= 1, 27
- окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1, 0
- однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0, 85
Н – коэффицие нт пл ощади остекления помещения.
Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н :
I – коэффициент, учитывающий схему подключения радиаторов.
От того, как подключены радиаторы к трубам подачи и обратки. зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:
Схемы врезки радиаторов в контур отопления
- а – диагональное подключение, подача сверху, обратка снизу – I = 1, 0
- б – одностороннее подключение, подача сверху, обратка снизу – I = 1, 03
- в – двустороннее подключение, и подача, и обратка снизу – I = 1, 13
- г – диагональное подключение, подача снизу, обратка сверху – I = 1, 25
- д – одностороннее подключение, подача снизу, обратка сверху – I = 1, 28
- е – одностороннее нижнее подключение обратки и подачи – I = 1, 28
J – коэффициент, учитывающий степень открытости установленных радиаторов.
Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :
На теплоотдачу батарей влияет место и способ их установки в помещении
а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0, 9
б – радиатор прикрыт сверху подоконником или полкой – J= 1, 0
в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1, 07
г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — части чно прикрыт декоративным кожухом – J= 1, 12
д – радиатор полностью прикрыт декоративным кожухом – J= 1, 2
⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰
Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.
После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.
Наверняка. многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.
Калькулятор для точного расчета радиаторов отопления
Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета .
Источники: http://aqueo.ru/otoplenie/radiator/kalkulyator-rascheta-radiatorov.html, http://stroyday.ru/kalkulyatory/sistemy-otopleniya/kalkulyator-rascheta-kolichestva-sekcij-radiatorov-otopleniya.html, http://otoplenie-expert.com/radiatory-otopleniya/raschet-batarej-otopleniya-na-ploshhad.html
количество секций на радиаторе, для батарей, тепло в квартире
Правильно рассчитав отопление по площади, можно сделать дом комфортным для проживанияЧтобы рассчитать количество радиаторов в квартире или в частном доме, потребуется для начала подобрать радиаторы. При этом измеряют отапливаемую площадь и берут во внимание другие исходные показатели. Все температурные нормы указаны в соответствующих СНиП. Но не обязательно изучать все это, ведь специальная программа избавит от множества трудностей.
Расчет мощности радиатора отопления: калькулятор и материал батарей
Расчет радиаторов начинается с выбора самих отопительных устройств. Для батарей на батарейке этого не нужно, так как система электронная, но для стандартного отопления придется воспользоваться формулой или калькулятором. Отличают батареи за материалом изготовления. Каждый вариант обладает своей мощностью. Многое зависит от необходимого количества секций и габаритов отопительных приборов.
Виды радиаторов:
- Биметаллические;
- Алюминиевые;
- Стальные;
- Чугунные.
Для биметаллических радиаторов используют 2 вида металла: алюминий и сталь. Внутренняя основа создается из прочной стали. Наружная сторона выполнена из алюминия. Он обеспечивает хорошее увеличение теплообмена прибора. В итоге получается надежная система с хорошей мощностью. На теплоотдачу влияет межосевой интервал и определенная модель радиатора.
Мощность радиаторов Rifar составляет 204 Вт при межосевом интервале 50 см. Другие производители предоставляют изделия меньшей производительности.
Для алюминиевого радиатора тепловая мощность схожая с биметаллическими устройствами. Обычно этот показатель при межосевом расстоянии 50 см составляет 180-190 Вт. Более дорогие устройства имеют мощность до 210 Вт.
Алюминий часто используют, организовывая индивидуальный обогрев в частном доме. Дизайн устройств достаточно простой, но зато приборы отличаются отменной теплоотдачей. К гидроударам такие радиаторы не устойчивы, поэтому их нельзя применять для центрального отопления.
При расчете мощности биметаллического и алюминиевого радиатора учитывается показатель одной секции, так как приборы имеют монолитную конструкцию. Для стальных композиций расчет выполняется для всей батареи при определенных размерах. Выбор таких устройств следует осуществлять с учетом их рядности.
Измерение теплоотдачи чугунных радиаторов колеблется от 120 до 150 Вт. В некоторых случаях мощность может достигать 180 Вт. Чугун устойчив к коррозии и может работать при давлении 10 бар. Их можно использовать в любых строениях.
Минусы чугунных изделий:
- Тяжелые – 70 кг весят 10 секций с расстоянием в 50 см;
- Усложненная установка из-за тяжести;
- Долго прогревается и использует больше тепла.
При выборе, какую батарею покупать, учитывают мощность одной секции. Так определяют прибор с необходимым количеством отделений. При межосевом расстоянии 50 см мощность конструкции составляет 175 Вт. А при расстоянии 30 см показатель измеряется, как 120 Вт.
Калькулятор расчета радиаторов отопления по площади
Калькулятор регистров по площади представляет собой наиболее простой способ определить необходимое количество радиаторов на 1м2. Расчеты делаются на основе норм производимой мощности. Выделяют 2 основных предписания норм, учитывающие климатические особенности региона.
Основные нормы:
- Для умеренных климатов требуемая мощность составляет 60-100 Вт;
- Для северных регионов норма составляет 150-200 Вт.
Многих интересует, почему в нормах такой большой диапазон. Но мощность выбирается исходя из исходных параметров дома. Бетонные строения требуют максимальных показателей мощности. Кирпичные – средних, утепленные – низкие.
Все нормы учитываются со средней максимальной высотой пололка 2,7 м.
Для расчета секций потребуется умножить площадь на норму и поделить на теплоотдачу одной секции. В зависимости от модели радиатора учитывает мощность одной секции. Эту информацию можно найти в технических данных. Все достаточно просто и никаких особых сложностей не представляет.
Калькулятор простого расчета батарей отопления на площадь
Калькулятор является эффективным вариантом расчета. Для комнаты размеров 10 м кв потребуется 1 квт (1000 Вт). Но это при условии, что помещение не угловое и установленные двойные стеклопакеты. Чтобы узнать количество ребер панельных приборов, необходимо требуемую мощность поделить на теплоотдачу одной секции.
При этом учитывают высоту потолков. Если они выше 3,5 м, то потребуется увеличить количество секций на одну. А если помещение угловое, то добавляем плюс один отсек.
Берут в учет запас тепловой мощности. Это 10-20% от расчетного показателя. Это необходимо на случай сильных холодов.
Теплоотдача секций прописана в технических данных. Для алюминиевых и биметаллических батарей учитывают мощность одной секции. Для чугунных приборов берут за основу теплоотдачу всего радиатора.
Калькулятор точного расчета количества секций радиаторов отопления
Простой расчет не учитывают много факторов. В итоге получаются искривленные данные. Тогда одни комнаты остаются холодными, вторые – слишком жаркими. Температуру можно контролировать с помощью запорных вентелей, но лучше заранее все точно посчитать, чтобы использовать нужное количество материалов.
Для точного расчета используют понижающие и повышающие тепловые коэффициенты. Сначала следует обратить внимание на окна. Для одинарного остекления используется коэффициент 1,7. Для двойных окон не нужен коэффициент. Для тройных показатель составляет 0,85.
Дальше учитывают кирпичную кладку. Для стены в два кирпича или с уплотнителем используют коэффициент 1. При наличии теплоизоляции применяет показатель 0,85, при отсутствии – 1,27.
Если окна одинарные, а теплоизоляции нет, то потери тепла будут достаточно крупными.
При расчетах учитывают соотношение площади полов и окон. Идеальное соотношение составляет 30%. Тогда применяют коэффициент 1. При повышении соотношения на 10% коэффициент повышается на 0,1.
Коэффициенты для разной высоты потолков:
- Если потолок ниже 2,7 м, коэффициент не нужен;
- При показателях от 2,7 до 3,5 м используют коэффициент 1,1;
- Когда высота составляет 3,5-4,5 м, потребуется коэффициент 1,2.
При наличии чердаков или верхних этажей также применяет определенные коэффициенты. При теплом чердаке применяют показатель 0,9, жилой комнате – 0,8. Для неотапливаемых чердаков берут 1.
Калькулятора объема для расчета тепла на отопление помещения
Подобные расчеты используют для слишком высоких или слишком низких комнат. При этом рассчитывают по объему комнаты. Так на 1 м куб нужно 51 Вт мощности батареи. Формула расчета имеет такой вид: А=В*41
Расшифровка формулы:
- А — сколько нужно секций;
- В – объем помещения.
Для нахождения объема умножаем длину на высоту и ширину. Если батарея ее разделена на секции, то общая потребность разделяется на мощность целой батареи. Полученные расчеты принято округлять в большую сторону, так как компании нередко увеличивают мощность своего оборудования.
Как рассчитать количество секций радиаторов на комнату: погрешности
Тепловая мощность за формулами рассчитывается с учетом идеальных условий. В идеале температура теплоносителя на входе составляет 90 градусов, а на выходе – 70. Если в доме поддерживать температуру 20 градусов, то теплой напор системы будет составлять 70 градусов. Но при этом один из показателей обязательно будет отличаться.
Сначала потребуется рассчитать температурный напор системы. Берем исходные данные: температура на входе и выходе, в помещении. Дальше определяем дельту системы: потребуется рассчитать среднее арифметическое между показателя на входе и выходе, затем отнимают температуру в комнате.
Полученную дельту следует найти в таблице пересчета и умножить мощность на данный коэффициент. В итоге получает мощность одной секции. Таблица состоит всего из двух столбиков: дельта и коэффициент. Показатель получаем в ватт. Данная мощность используется при расчете количества батарей.
Особенности расчета отопления
Часто утверждается, что для 1 метр квадратный достаточно 100 Вт. Но данные показатели поверхностные. Они не учитывают множество факторов, о которых стоит знать.
Необходимые данные для расчета:
- Площадь комнаты.
- Количество внешних стен. Они холодят помещения.
- Стороны света. Важно солнечная или затененная это сторона.
- Зимняя роза ветров. Там, где в зимнее время достаточно ветряно, то комната будет холодной. Все данные учитывает калькулятор.
- Климат региона – минимальные температуры. Достаточно взять средние показатели.
- Кладка стен – сколько кирпичей использовалось, есть ли утепление.
- Окна. Учитывают их площадь, утепления, тип.
- Количество дверей. Стоит помнить, что они отнимают тепло и заносят холод.
- Схема врезки батарей.
Кроме этого всегда берется во внимание мощность одной секции радиатора. Благодаря этому можно узнать, сколько радиаторов вешать в одну линию. Калькулятор значительно упрощает расчеты, так как многие данные являются неизменными.
Как производится расчет отопления по площади помещения: калькулятор (видео)
Количество ребер на комнату легко определяется с помощью калькулятора. Чтобы правильно все рассчитать, потребуется знать, сколько квадратов обогревается и некоторые особенности частного дома или квартиры. Можно сделать все по нормативу. На основе этого упрощается подбор приборов для обогрева. При этом вывести необходимое количество киловатт можно и самостоятельно за формулой.
Оцените статью: Поделитесь с друзьями!Как рассчитать радиаторы отопления для частного дома
Комфортные условия жизни в зимнее время всецело зависят от достаточности снабжения теплом жилых помещений. Если это новостройка, например, на дачном или приусадебном участке, то необходимо знать, как рассчитать радиаторы отопления для частного дома.
Как рассчитать радиаторы отопления для частного дома
Все операции сводятся к вычислению количества секций радиаторов и подчиняются четкому алгоритму, поэтому нет нужды быть квалифицированным специалистом – каждый человек сможет проделать довольно точное теплотехническое вычисление своего жилища.
Почему необходим точный расчет
Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильных вычислений зависит не только тепло в доме, но также сбалансированность и экономичность системы в целом: недостаточное число установленных секций радиаторов не обеспечит должное тепло в комнате, а излишнее количество секций ударит по карману.
Виды радиаторов отопления
Для вычислений необходимо определиться с типом батарей и системы теплоснабжения. К примеру, расчет алюминиевых радиаторов теплоснабжения для частного дома отличается от других элементов системы. Радиаторы бывают чугунными, стальными, алюминиевыми, алюминиевыми анодированными и биметаллическими:
- Наиболее известны чугунные батареи, так называемые «гармошки». Они долговечны, стойки к коррозии, обладают мощностью секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенный недостаток этих приборов – неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все преимущества материала и делая их конкурентоспособными.
Чугунные батареи отопления
- Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они прочны, обладают легким собственным весом, что дает преимущество при монтаже. Единственный недостаток подверженность к кислородной коррозии. Для его устранения взято на вооружение производство анодированных радиаторов из алюминия.
Алюминиевые радиаторы отопления
- Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению секций при необходимости, подвержены коррозии, поэтому не пользуются популярностью.
Стальные радиаторы
- Биметаллические радиаторы отопления – это сочетание стальных и алюминиевых деталей. Теплоносителями и крепежными деталями в них являются стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.
Биметаллические батареи
По типу системы теплоснабжения различают однотрубное и двухтрубное подключение элементов отопления. В многоэтажных жилых домах в основном применена однотрубная схема системы теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и исходящей воды на разных концах системы, что свидетельствует о неравномерности распределения тепловой энергии по приборам батареям.
Однотрубная и двухтрубная система отопления
Для равномерного распределения тепловой энергии в частных домах можно применять двухтрубную систему теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.
Кроме этого, точное вычисление количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, закрытости приборов декоративными панелями и от других факторов.
Помните! Необходимо правильно рассчитать требуемое число радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.
Таблица для расчета количества секций батареи
Виды расчетов отопления для частного дома
Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть насколько точно вы хотите рассчитать батареи отопления для частного дома. Различают упрощенный и точный методы, а также по площади и по объему рассчитываемого пространства.
По упрощенному или предварительному методу подсчеты сводятся к умножению площади помещения на 100 Вт: стандартную величину достаточной тепловой энергии на метр в квадрате, при этом формула подсчета примет следующий вид:
Q = S*100, где
Q – потребная мощность тепла;
S – расчетная площадь комнаты;
Вычисление нужного числа секций разборных радиаторов ведется по формуле:
N = Q/Qx, где
N – требуемое количество секций;
Qx – удельная мощность секции по паспорту изделия.
Так как эти формулы для высоты комнаты – 2,7 м, для других величин требуется вводить коэффициенты поправки. Вычисления сводятся к определению количества тепла на 1 м3 объема помещения. Упрощенная формула выглядит так:
Q = S*h*Qy, где
H – высота комнаты от пола до потолка;
Qy – средний показатель тепловой мощности в зависимости от вида ограждения, для кирпичных стен равен 34 Вт/м3, для панельных стен – 41 Вт/м3.
Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные вычисления, учитывающие все сопутствующие особенности здания.
Точный расчет приборов отопления
Теплопотери здания
Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:
Q = S*100*(K1*К2*…*Kn-1*Kn), где
K1, K2 … Kn – коэффициенты, зависящие от различных условий.
Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.
K1 – показатель, зависящий от числа наружных стен, чем больше поверхности соприкасается с внешней средой, тем больше потери тепловой энергии:
- при одной наружной стене показатель равен единице;
- если две наружные стены — 1,2;
- если три внешние стены — 1,3;
- если все четыре стены наружные (т.е. здание однокомнатное) — 1,4.
К2 – учитывает ориентацию здания: считается, что комнаты хорошо прогреваются, если расположены в южном и западном направлении, здесь К2 = 1,0, и наоборот недостаточно – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении помещение все же прогревается по утрам, поэтому целесообразнее применить коэффициент 1,05.
Расчитываем, насколько сильно должна греть батарея
К3 – показатель утепления наружных стен, зависит от материала и степени термоизоляции:
- для наружных стен в два кирпича, а также при использовании утеплителя для не утепленных стен показатель равен единице;
- для неутепленных стен – К3 = 1,27;
- при утеплении жилища на основании теплотехнических расчетов по СНиП – К3 = 0,85.
К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:
- до 35 °С К4 = 1,5;
- от 25 °С до 35 °С К4 = 1,3;
- до 20 °С К4 = 1,1;
- до 15 °С К4 = 0,9;
- до 10 °С К4 = 0,7.
Расчет радиаторов отопления по площади
К5 – зависит от высоты помещения от пола до потолка. В качестве стандартной высоты принята h = 2,7 м с показателем равной единице. Если высота комнаты отличается от стандартной, вводится поправочный коэффициент:
- 2,8-3,0 м – К5 = 1,05;
- 3,1-3,5 м – К5 = 1,1;
- 3,6-4,0 м – К5 = 1,15;
- более 4 м – К5 = 1,2.
К6 – показатель, учитывающий характер помещения, находящегося сверху. Полы жилых зданий всегда утепляются, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно повлияет на микроклимат рассчитываемого пространства:
- для холодного чердака, а также если помещение сверху не отапливается, показатель будет равен единице;
- при утепленном чердаке или кровле – К6 = 0,9;
- если сверху расположено отапливаемая комната – К6 = 0,8.
К7 – показатель, учитывающий тип оконных блоков. Конструкция окна существенным образом влияет на потери тепла. При этом величина коэффициента К7 определяется следующим образом:
- так как окна из дерева с двойным остеклением недостаточно защищают комнату, показатель самый высокий К7 = 1,27;
- стеклопакеты обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
- улучшенный однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет, состоящий из трех стекол К7 = 0,85.
Однотрубная и двухтрубная система отопления
К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Соотношение площади окон к площади комнаты должно быть урегулировано таким образом, чтобы коэффициент имел низшие значения. В зависимости от отношения площади окон к площади помещения определяется искомый показатель:
- менее 0,1 – К8 = 0,8;
- от 0,11 до 0,2 – К8 = 0,9;
- от 0,21 до 0,3 – К8 = 1,0;
- от 0,31 до 0,4 – К8 = 1,1;
- от 0,41 до 0,5 – К8 = 1,2.
Схемы подключения отопительных приборов
К9 – учитывает схему подключения приборов. В зависимости от способа подключения горячей и вывода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении требуемой площади приборов теплоснабжения. С учетом схемы подключения:
- при диагональном расположении труб подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
- при подключении подачи и обратки с одной стороны и сверху, и снизу одной секции К9 = 1,03;
- примыкание труб с двух сторон подразумевает и подачу, и обратку снизу, при этом коэффициент К9 = 1,13;
- вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
- вариант одностороннего подключения с подачей снизу, обраткой сверху и одностороннее нижнее подключение К9 = 1,28.
Потеря теплоотдачи из-за установки экрана радиатора
К10 – коэффициент, зависящий от степени закрытости приборов декорирующими панелями. Открытость приборов для свободного обмена теплом с пространством помещения имеет немаловажное значение, так как создание искусственных барьеров снижает теплоотдачу батарей.
Имеющиеся или искусственно созданные преграды могут изрядно понизить отдачу батареи из-за ухудшения обмена теплом с комнатой. В зависимости от этих условий коэффициент равен:
- при открытом расположении радиатора на стене со всех сторон 0,9;
- если прибор прикрыт сверху единице;
- когда радиаторы прикрыты сверху ниши стены1,07;
- если прибор прикрыт подоконником и декоративным элементом 1,12;
- когда радиаторы полностью прикрыты декоративным кожухом 1,2.
Правила установки радиаторов отопления.
Кроме этого, существуют специальные нормы расположения приборов отопления, которые необходимо соблюдать. То есть батарею располагать не менее, чем на:
- 10 см от низа подоконника;
- 12 см от пола;
- 2 см от поверхности наружной стены.
Подставляя все необходимые показатели, можно получить достаточно точное значение требуемой тепловой мощности помещения. Путем разделения полученных результатов на паспортные данные отдачи тепла одной секции выбранного прибора и, округлив до целого числа, получаем количество требуемых секций. Теперь можно, не опасаясь последствий, подобрать и установить необходимое оборудование с нужной тепловой отдачей.
Установка батареи отопления в доме
Способы упрощения расчетов
Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат велико. Упростить расчеты поможет применение специальных калькуляторов, размещаемых на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно воспользоваться и табличным методом, так как алгоритм вычисления достаточно прост и однообразен.
Точный расчет количества радиаторов (секций) отопления
Можно провести расчет радиаторов отопления по площади, с помощью калькулятора, размещенного на каком-либо сайте. Но данные не будут точными. Калькуляторов (программ) расчета секций радиаторов отопления много, но точную информацию можно получить только в том случае, если провести расчет вручную индивидуально для каждого помещения.
Упрощенные варианты расчета радиаторов отопления в доме
Первый способ: Расчет по объему комнат
Он прописан в положениях СНиП и применим для панельных домов, Правила предлагают в качестве нормы взять 41 Вт мощности отопления на один кубический метр отапливаемого помещения. Чтобы рассчитать количество необходимых секций достаточно объем комнаты разделить на мощность одной секции устанавливаемых радиаторов (этот параметр указывается производителем в сопроводительной технической документации).
Второй способ: Расчет по площади помещений
Данный способ расчета ориентирован на помещения с потолками до 2500 мм, и за норму берется 100 Вт мощности на один квадрат площади. Для расчёта количества секций необходимо разделить площадь помещения на мощность одной секции (указывается в технической документации радиаторов).
Примерный расчет количества секций радиатора для типового помещения
N=S/P*100, где:
- N — Количество секций (дробная часть округляется по правилам математического округления))
- S — Площадь комнаты в м2
- P — Теплоотдача 1 секции, Ватт
Для этих вариантов расчета применим ряд поправок. Например, если в помещении имеется балкон, или более двух окон, или оно находится на углу здания, то к полученному количеству секций рекомендуется приплюсовать еще 20%. Если при расчете получается конечный результат (количество секций) дробное число, то его следует округлять до целого в большую сторону.
Обратите внимание: полученное значение рассчитано для идеальных условий. То есть, в доме нет дополнительных теплопотерь, сама система отопления работает эффективно, окна и двери герметично закрываются, а соседние помещения также отапливаются. В реальных условиях секций может потребоваться больше.
Точный расчет необходимого количества секций радиаторов
Выше приведены упрощенные способы расчета радиаторов, которые актуальны для типовых квартир со стандартными параметрами. С их помощью получить адекватный результат для частных жилых домов и квартир в современных новостройках нереально. Для этого следует использовать специальную формулу:
КТ = 100Вт/м2 * S * К1 * К2 * К3 * К4 * К5 * К6 * К7,
Где за основу также берется норма в 100 Вт на квадратный метр, общая площадь помещения и дополняется коэффициентами, значения которых приведены ниже:
K1 — коэффициент, учитывающий остекление оконных проемов:
- для окон с обычным двойным остеклением: 1.27;
- для окон с двойным стеклопакетом: 1.0;
- для окон с тройным стеклопакетом: 0.85;
K2 — коэффициент теплоизоляции стен:
- низкая степень теплоизоляции: 1.27;
- хорошая теплоизоляция (кладка в два крипича или слой утеплителя): 1.0;
- высокая степень теплоизоляции: 0.85;
K3 — соотношение площади окон и пола в помещении:
- 50%: 1.2;
- 40%: 1.1;
- 30%: 1.0;
- 20%: 0.9;
- 10%: 0.8;
K4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:
- для -35°C: 1.5;
- для -25°C: 1.3;
- для -20°C: 1.1;
- для -15°C: 0.9;
- для -10°C: 0.7;
K5 — корректирует потребность в тепле с учетом количества наружных стен:
- одна стена: 1.1;
- две стены: 1.2;
- три стены: 1.3;
- четыре стены: 1.4;
K6 — учет типа помещения, которое расположено выше:
- холодный чердак: 1.0;
- отапливаемый чердак: 1.0;
- отапливаемое жилое помещение: 1.0;
K7 — коэффициент, учитывающий высоту потолков:
- при 2.5 м: 1.0;
- при 3.0 м: 1.05;
- при 3.5 м: 1.1;
- при 4.0 м: 1.15;
- при 4.5 м: 1.2;
По этой формуле вы сможете рассчитать общее количества тепла, необходимого для того или иного помещения. Для определения количества секций радиаторов, вам необходимо полученный результат разделить на мощность одной секции.
Стальные радиаторы отопления. Расчет мощности стальных радиаторов отопления с учетом площади помещения и теплопотерь.
Все про стальные радиаторы отопления: расчет мощности (таблица), определение с учетом теплопотерь, процентное увеличение и вычисление по площади помещения, а также как подобрать панельные батареи.
От того, насколько правильно и грамотно был произведен расчет мощности стального радиатора, настолько же можно ожидать от него тепла.
В данном случае нужно учесть, чтобы совпали технические параметры отопительной системы и обогревателя.
Расчет по площади помещения
Чтобы теплоотдача стальных радиаторов была максимальной, можно воспользоваться расчетом их мощностей, исходя из размера комнаты.
Если взять в качестве примера помещение с площадью 15 м2 и потолками высотой 3 м, то, высчитав его объем (15х3=45) и умножив на количество требуемых Вт (по СНиП – 41 Вт/м3 для панельных домов и 34 Вт/ м3 для кирпичных), то получится, что потребляемая мощность равна 1845 Вт (панельное здание) или 1530 Вт (кирпичное).
После этого достаточно проследить, чтобы расчет мощности стальных радиаторов отопления (можно свериться с таблицей, которую предоставляет производитель) соответствовал полученным параметрам. Например, при покупке обогревателя типа 22 нужно отдать предпочтение конструкции, имеющей высоту 500 мм, а длину 900 мм, которой свойственна мощность 1851 Вт.
Если предстоит замена старых батарей на новые или переустройство всей отопительной системы, то следует тщательно ознакомиться с требованиями СНиП. Это избавит от возможных недочетов и нарушений при монтажных работах.
Стальные радиаторы отопления: расчет мощности (таблица)
Определение мощности с учетом теплопотерь
Кроме показателей, связанных с материалом, из которого построен многоквартирный дом и указанных в СНиП, в расчетах можно использовать температурные параметры воздуха на улице. Этот способ основан на учете теплопотерь в помещении.
Для каждой климатической зоны определен коэффициент в соответствии с холодными температурами:
- при -10 ° C – 0.7;
- — 15 ° C – 0.9;
- при — 20 ° C – 1.1;
- — 25 ° C – 1.3;
- до — 30 ° C – 1.5.
Теплоотдача стальных радиаторов отопления (таблица предоставляется фирмой-производителем) должна быть определена с учетом количества наружных стен. Так если в комнате она одна, то результат, полученный при расчете стальных радиаторов отопления по площади, нужно умножить на коэффициент 1.1, если их две или три, то он равен 1.2 или 1.3.
Например, если температура за окном – 25 ° C, то при расчете стального радиатора типа 22 и требуемой мощностью 1845 Вт (панельный дом) в помещении, где 2 наружные стены, получится следующий результат:
- 1845х1.2х1.3 = 2878.2 Вт. Этому показателю соответствуют панельные конструкции 22-го типа 500 мм высоты и 1400 мм длины, имеющие мощность 2880 Вт.
Так подбираются панельные радиаторы отопления (расчет по площади с учетом коэффициента теплопотерь). Подобный подход к выбору мощности панельной батареи обеспечит максимально эффективную ее работу.
Чтобы было легче произвести расчет стальных радиаторов отопления по площади, калькулятор онлайн сделает это в считанные секунды, достаточно внести в него необходимые параметры.
Процентное увеличение мощности
Можно учитывать теплопотери не только по стенам, но и окнам.
Например, прежде чем выбирать стальной радиатор отопления, расчет по площади нужно увеличить на определенное количество процентов в зависимости от количества окон в помещении:
- При наличии двух наружных стен и одного окна показатель увеличивается на 20%.
- Если и окон, и стен, выходящих наружу по два, то прибавляется 30%.
- Когда стены внутренние, но окно выходит на север, то на 10%.
- Если квартира расположена внутри дома, а обогреватели закрыты решетками, то теплоотдача стальных панельных радиаторов должна быть увеличена на 15%.
Учет подобных нюансов перед установкой панельных батарей из стали позволяет правильно выбрать нужную модель. Это сэкономит средства на ее эксплуатации при максимальной теплоотдаче.
Поэтому не следует думать только о том, как подобрать стальные радиаторы отопления по площади помещения, но и учитывать его теплопотери и даже расположение окон. Такой комплексный подход позволяет учесть все факторы, влияющие на температуру в квартире или доме.
Калькулятор потерь тепла| Калькулятор БТЕ
Как базовая, так и расширенная программы потери тепла являются онлайн-платформами. Вы можете войти в расширенную программу из любого места, чтобы получить доступ к своей учетной записи. Все ваши предыдущие проекты будут сохранены и могут быть легко скопированы, что сэкономит ваше время и нервы.
Основная программа потери тепла
Воспользуйтесь этим калькулятором потерь тепла, чтобы быстро оценить, сколько тепла вам нужно для вашей комнаты или проекта.
Калькулятор основных тепловых потерь Stelrad делает различные предположения на основе вашего выбора и может не учитывать все факторы, относящиеся к вашим конкретным требованиям.Если вам требуется более подробный расчет, воспользуйтесь расширенной версией программы на сайте starsapp.co.uk. Мы не несем ответственности за любые ошибки, возникшие в результате представленных оценок. Расчеты основаны на Delta-T 50 ° C (Δ-T50 ° C) в соответствии с BS EN 442. Использование вами основного калькулятора тепловых потерь Stelrad регулируется настоящими условиями.
Расширенная программа защиты от тепловых потерь
Расширенная программа потери тепла, также известная как STARS (технически усовершенствованная радиаторная система Stelrad), это онлайн-программа по потере тепла, разработанная Stelrad для всех, кому необходимо рассчитать теплопотери для комнаты, чтобы выбрать правильные требования к отоплению.
Используйте эту программу потерь тепла для всестороннего расчета, в который вы можете ввести все параметры, влияющие на потери тепла в вашей комнате.
Усовершенствованная программа по потере тепла проводит пользователя через простой пошаговый процесс ввода ключевой информации для любого типа помещения, включая размеры стен, пола и потолка, выбора материалов стен, а также типов дверей и окон. Он позволяет мгновенно рассчитывать потери тепла с помощью уникального планировщика помещений, в котором вы можете просто перетащить стены и рассчитать выходную мощность в реальном времени.
После завершения спецификации помещения программа потери тепла предлагает выбор подходящих радиаторов из портфеля продукции Stelrad. Затем можно выбрать продукт, который заменит тепло, теряемое в помещении. STARS также рассчитает потребности в отоплении для всего здания и предложит подходящие котлы (комбинированные или только отопительные).
График работы радиатора и спецификацию котла можно распечатать или сохранить.
Базовая программа — Чтобы ознакомиться с дополнительными условиями и предположениями, щелкните здесь.
Прочие важные термины
Мы можем обновлять, изменять и изменять это предположение и Условия время от времени без предварительного уведомления. Каждый раз, когда вы используете программы, применяются предположения, использованные в то время.
Нажмите здесь, чтобы узнать больше о расширенной программе потери тепла.
.
|
|
Расчет радиаторов отопления по площади. Расчет радиаторов отопления частного дома
Перед покупкой и установкой секционных радиаторов (обычно биметаллических и алюминиевых) у большинства возникает вопрос, как рассчитать радиаторы на площадь помещения.
В этом случае наиболее правильным будет произвести расчет теплопотерь. Но при этом используется огромное количество коэффициентов, и в результате получается что-то заниженное или, наоборот, завышенное.В связи с этим многие используют упрощенные варианты. Рассмотрим их подробнее.
Основные настройки
Обращаем ваше внимание, что правильность работы системы отопления, а также ее эффективность во многом зависят от ее типа. Однако есть и другие параметры, так или иначе влияющие на этот показатель. К таким параметрам относятся:
- Мощность котла.
- Кол-во отопительных приборов.
- Мощность циркуляционного насоса.
Проведенные расчеты
В зависимости от того, какой из вышеперечисленных параметров будет подлежать детальному изучению, производится соответствующий расчет.Например, определение необходимой мощности насоса или газового котла.
Кроме того, очень часто необходимо произвести расчет нагревателей. В процессе этого расчета также необходимо рассчитать теплопотери здания. Это связано с тем, что произведя расчет, например, необходимого количества радиаторов, вы легко можете ошибиться при выборе насоса. Аналогичная ситуация возникает, когда помпа не справляется с снабжением всех радиаторов необходимым количеством теплоносителя.
Увеличенный расчет
Расчет радиаторов отопления по площади можно сделать наиболее демократичным способом. В регионах Урала и Сибири этот показатель составляет 100-120 Вт, в центральной полосе России — 50-100 Вт. Стандартный обогреватель (восемь секций, межцентровое расстояние одной секции — 50 см). имеет теплоотдачу 120-150 Вт. У биметаллических радиаторов мощность несколько выше — около 200 Вт. Если это стандартный теплоноситель (горячая вода), то для комнаты 18-20 м 2 высотой 2.5-2,7 м потребуется два чугунных устройства на 8 секций.
От чего зависит количество устройств
Есть много факторов, которые рекомендуется учитывать при расчете радиаторов частного дома:
- Теплопередача парового теплоносителя намного больше, чем у водяного.
- Чем больше оконных проемов в комнате, тем холоднее.
- Если высота помещения более 3 метров, то теплоноситель рассчитывается исходя из объема помещения, а не из его площади.
- В угловой комнате всегда холоднее, так как две ее стороны выходят на улицу.
- Материал, из которого изготовлен нагревательный прибор, имеет собственную теплопроводность.
- Теплоизоляция ограждающих конструкций повышает теплоизоляцию помещения.
- Чем ниже температура наружного воздуха, тем соответственно необходимо установить больше радиаторов.
- При одностороннем присоединении трубопроводов к отопительным приборам не требуется установка более 10 секций.
- Современные стеклопакеты повышают теплоизоляцию помещения.
- Наличие системы вентиляции увеличивает мощность обогрева.
- При перемещении горячей воды в системе сверху вниз ее мощность увеличивается примерно на 20%.
Расчет радиаторов отопления по площади
С учетом вышеперечисленных факторов можно произвести расчет. Итак, на 1 м 2 потребуется 100 ватт, то есть для обогрева помещения в 20 метров 2, потребуется 2000 ватт.Один чугунный радиатор из 8 секций способен выделить 120 Вт. Разделите 2000 на 120 и получите 17 разделов. Как уже упоминалось ранее, этот параметр довольно увеличен.
Са
.Калькулятор площади с использованием карт
Этот планиметр можно использовать для измерения замкнутой области определенной полилинии на карте.
[11 июля 2018] К сожалению, из-за значительного повышения цен на серверные услуги мы больше не можем предлагать некоторые функции на этой странице.
Инструкции
Для использования калькулятора площади:
- Увеличивайте масштаб и перемещайте карту, чтобы найти интересующую область.
- Щелкните на карте, чтобы разместить вершины ломаной линии
- Щелкните столько раз, сколько необходимо, чтобы определить полилинию
Огражденная площадь будет выводиться в квадратных метрах и квадратных километрах
Вы можете нажать кнопку [Удалить последнюю точку], если вы допустили ошибку, или нажать [Очистить все] точки, чтобы удалить все точки с карты и начать заново.
Вы также можете изменить положение маркеров после того, как они были размещены на карте, перетащив их.
Чтобы нарисовать новую область, нажмите кнопку [Начать новую область] или нажмите Alt + n
Информация
Инструмент калькулятора площади позволяет определить площадь, заключенную внутри замкнутой полилинии, наложенной на карту.
Контрольные точки
Измерение озера Лох-Ней в Северной Ирландии. Сообщается, что площадь озера Лох-Ней составляет 388 км² [1], так что значение 380 823 442 м² не за горами.
Использование в будущем и идеи
- Разрешить пользователю изменять цвет полилиний и заливку области (в том числе прозрачную)
- Разрешить сохранение области для дальнейшего использования
- Экспорт в KML вариант
История версий
- 17 июня 2015 г. — маркеры теперь показывают широту и долготу при наведении на них курсора
- 18 декабря 2014 — Общая площадь теперь рассчитана
- 23 марта 2014 — Добавлен выход га.
- 6 августа 2013 г. — Исправлена проблема с выводом периметра
- 21 февраля 2013 — Добавлен вывод квадратных футов
- 8 января 2012 г. — обновление до Google Maps API V3 и некоторые новые функции.
- 20 июля 2010 — Добавлены перекрестия и возможность включения / выключения перекрестия
- 17 июня 2010 г. — добавлена опция загрузки KML (бета)
- 2 июня 2010 г. — элемент управления масштабом перемещен в верхнюю часть карты, чтобы избежать конфликта с панелью поиска Google.
- 2 февраля 2010 г. — Добавлен вывод периметра в метрах и километрах
- 25 марта 2008 г. — Добавлены перетаскиваемые маркеры, возможность щелкать внутри многоугольника и выводить данные в акрах.
- 26 июня 2007 г. — добавлен расчет базовой площади
- 24 июня 2007 г. — Страница создана