Расчет тепловой энергии: Методика расчета тепловой энергии на отопление

Авг 27, 1981 Разное

Расчет тепловой энергии: Методика расчета тепловой энергии на отопление

Содержание

Порядок определения объема переданной тепловой энергии при расчетах с РСО — Статьи

Перед нашей компанией была поставлена задача проверить законность и обоснованность расчета РСО, а также соответствие заключенного договора теплоснабжения действующему законодательству.

Суть дела.

Изучив представленные УК документы, нами было установлено следующее. УК по договору теплоснабжения приобретает у РСО тепловую энергию для оказания коммунальных услуг по отоплению и горячему водоснабжению (ГВС) собственникам и нанимателям жилых помещений в многоквартирных домах. В соответствии с данным договором УК заказала у РСО определенный объем тепловой энергии, рассчитанный исходя из установленных нормативов потребления по отоплению и ГВС для населения. Однако РСО поставила тепловую энергию в большем объеме, чем предусмотрено договором, мотивируя это тем, что температура наружного воздуха в зимний период была значительно ниже предполагаемой, что и привело к необходимости отпуска тепла в большем объеме. РСО определила объем отпущенной тепловой энергии, исходя из показаний общедомовых и групповых приборов учета, а по домам, не имеющим таких приборов, – расчетным путем (исходя из суммарного отпуска тепла с ТЭЦ). При этом РСО изменяла показания общедомовых и групповых приборов учета, увеличивая либо уменьшая их на величину потерь и объемы потребления иных лиц, находящихся под учетом данных приборов, а также применяла штрафные санкции за недоиспользование тепловой энергии – возврат излишков горячей воды в обратный трубопровод.

 Исходя из методики, описанной в договоре теплоснабжения, учет потребляемой тепловой энергии производится в соответствии с Правилами учета отпуска тепловой энергии ПР 34-70-010-85, утвержденными Главным техническим управлением по эксплуатации энергосистем Минэнерго СССР 22.07.1985, Главгосэнергонадзором 31.07.1985 (далее – Правила ПР 34-70-010-85), Правилами учета отпуска тепловой энергии и теплоносителя, утвержденными Минтопэнерго России 12.09.1995 № Вк-4936 (далее – Правила № Вк-4936), и Методикой определения количества тепловой энергии и теплоносителя в водяных системах коммунального теплоснабжения, утвержденной Приказом Госстроя России от 06.05.2000 № 105 (далее – Методика № 105), на основании полученных от УК показаний приборов учета (при их наличии), а при отсутствии у потребителя таких приборов – по тепловому балансу источника тепла за вычетом показаний коммерческих приборов учета и тепловых потерь в сетях (пропорционально договорным расчетным тепловым нагрузкам).

 Также договором предусмотрено, что при наличии групповых приборов учета расчет потребленной тепловой энергии производится пропорционально договорным тепловым нагрузкам согласно прилагаемому перечню групповых приборов учета. По данным приборов, установленных не на границе балансовой принадлежности тепловых сетей, а в индивидуальных тепловых пунктах жилых домов на сетях абонента, такой расчет производится с учетом тепловых потерь.

 

Ничтожность условий публичного договора, не соответствующих требованиям законодательства.

 

Проанализировав действующее законодательство и практику рассмотрения споров по аналогичным делам, мы пришли к выводу о незаконности включения в договор теплоснабжения указанных положений по следующим причинам.

 Включение в договор условий о порядке учета тепловой энергии, соответствующих Правилам ПР 34-70-010-85, неправомерно, поскольку данный документ утратил силу с момента введения в действие Правил № Вк-4936, зарегистрированных в Минюсте 25.09.1995 № 954.

 В свою очередь, Правила № Вк-4936 имеют ограниченную сферу действия и регулируют организацию учета только на основании показаний учетных приборов. Иного правового акта, принятого в установленном порядке и регламентирующего применение расчетного метода определения количества поставленной тепловой энергии в отсутствие приборов учета, в настоящее время не имеется.

 Инструктивное письмо Минтопэнерго России от 20.12.1995 № 42-4-2/18, согласно которому до выхода соответствующих нормативных документов определение расхода тепловой энергии у потребителей при временном отсутствии приборов учета нужно осуществлять на основании утратившего силу разд. 5 Правил ПР 34-70-010-85, официально не опубликовано и в Минюсте не зарегистрировано, в связи с чем применение данного документа необоснованно.

 Аналогичная позиция изложена в Постановлении ФАС ВВО от 27.07.2010 по делу № А31-7682/2009. Суд признал неосновательным представление РСО расчета корректировки объема фактического потребления тепловой энергии применительно к Правилам ПР 34-70-010-85 ввиду невозможности определения фактического объема энергии, потребленной ответчиком (абонентом).

 Применение Методики № 105 также неправомерно, так как она не является нормативным правовым актом и не зарегистрирована в Минюсте, следовательно, не может быть использована при определении объема фактического потребления тепловой энергии. Данная позиция выражена в Постановлении ФАС ВВО от 02.08.2010 по делу № А43-24577/2009. Кроме того, суд указал на незаконное включение сторонами в договор условия о применении Методики № 105 при установлении объема тепловой энергии, поставленной для бытовых нужд в жилые дома.

 Таким образом, недопустимо включение в договор методов, описанных в Правилах ПР 34-70-010-85 и Методике № 105, для определения объема фактического потребления тепловой энергии и корректировки в отсутствие приборов учета. Применение же Правил № Вк-4936 возможно только при наличии данных приборов.

 Согласно п. 4 ст. 421 ГК РФ условия договора определяются по усмотрению сторон, кроме ситуаций, когда содержание соответствующего условия предписано законом или иными правовыми актами (ст. 422 ГК РФ). Поскольку в силу п. 1 ст. 426 ГК РФ договор теплоснабжения является публичным, на него распространяется норма п. 4 названной статьи, на основании которой в случаях, предусмотренных законом, Правительство РФ и уполномоченные им федеральные органы исполнительной власти могут издавать правила, обязательные для соблюдения сторонами при заключении и исполнении публичных договоров, а также положение п. 5 той же статьи о ничтожности условий публичного договора, не соответствующих указанным правилам.

 В силу п. 8 Правил предоставления коммунальных услуг условия договора о приобретении коммунальных ресурсов и водоотведении (приеме (сбросе) сточных вод), заключаемого с РСО с целью оказания потребителю коммунальных услуг, не должны противоречить данным Правилам и иным нормативным правовым актам РФ.

 Исходя из приведенных положений о публичном договоре и учитывая норму п. 8 Правил предоставления коммунальных услуг, Президиум ВАС РФ в Постановлении от 15.07.2010 № 2380/10 пришел к выводу о недопустимости согласования сторонами метода определения количества поставленной тепловой энергии при отсутствии приборов учета, не соответствующего положениям ЖК РФ и названным Правилам. Высшие арбитры посчитали, что вопрос о количестве потребленной тепловой энергии при отсутствии приборов учета должен решаться исходя из установленных органами местного самоуправления нормативов потребления коммунальных услуг. В данном Постановлении указано, что содержащееся в нем толкование правовых норм является общеобязательным и подлежит применению при рассмотрении арбитражными судами аналогичных дел.

 В соответствии со ст. 166 ГК РФ сделка недействительна по основаниям, установленным Гражданским кодексом, в силу признания ее таковой судом (оспоримая сделка) либо независимо от этого признания (ничтожная сделка). Требование о применении последствий недействительности ничтожной сделки может быть предъявлено любым заинтересованным лицом. Суд вправе применить такие последствия по собственной инициативе. Согласно ст. 168 ГК РФ сделка, не соответствующая требованиям закона или иных правовых актов, ничтожна, если законом не установлено, что данная сделка оспорима, или не предусмотрено иных последствий нарушения. В силу ст. 180 ГК РФ недействительность части сделки не влечет недействительности ее прочих частей, если можно предположить, что сделка была бы совершена и без включения в нее недействительной части.

 Так как положения договора теплоснабжения о методах и порядке учета тепловой энергии противоречат нормам ст. 426 ГК РФ, ст. 157 ЖК РФ и Правилам предоставления коммунальных услуг, в этой части договор является ничтожным. Суд при рассмотрении спора может применить последствия недействительности ничтожной сделки, но ГК РФ не исключает возможности предъявления исков о признании недействительной ничтожной сделки по заявлению любого заинтересованного лица. Споры по таким требованиям подлежат разрешению судом в общем порядке (Постановление Пленума ВС РФ № 6, Пленума ВАС РФ № 8 от 01.07.1996).

 Добавим: РСО, обратившись в суд с иском по данному спору, ходатайствовала о проведении экспертизы с целью проверки правильности результатов расчетов отпущенной тепловой энергии и произведения таких расчетов. Суд, удовлетворив ходатайство истца, вынес определение о назначении судебной экспертизы. Однако эксперты для обоснования своих расчетов использовали также Методику № 105 и Правила ПР 34-70-010-85, что недопустимо по причине несоответствия действующему законодательству, в то время как расчет экспертов является необоснованным.

 

Определение объема тепловой энергии. 

 

В соответствии со ст. 544 ГК РФ оплачивается фактически принятое абонентом количество энергии на основании данных учета, если иное не установлено законом, другими правовыми актами или соглашением сторон. Иное как раз и предусмотрено ст. 157 ЖК РФ и Правилами предоставления коммунальных услуг.

 В силу ст. 157 ЖК РФ размер платы за коммунальные услуги рассчитывается исходя из объема потребляемых коммунальных услуг, определяемого по показаниям приборов учета, а при их отсутствии – на основании нормативов потребления коммунальных услуг, утверждаемых органами государственной власти субъектов РФ в порядке, установленном Правительством РФ. Правила предоставления, приостановки и ограничения предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных и жилых домах, а также правила, обязательные для соблюдения при заключении управляющей организацией (ТСЖ) либо жилищным кооперативом (иным специализированным потребительским кооперативом) договоров с РСО, устанавливаются Правительством РФ.

 В соответствии с п. 15 Правил предоставления коммунальных услуг размер платы за холодное и горячее водоснабжение, отопление, водоотведение, электро- и газоснабжение рассчитывается по тарифам, установленным для РСО в порядке, определенном законодательством РФ. Если исполнителем является ТСЖ, жилищно-строительный, жилищный или иной специализированный потребительский кооператив либо УК, расчет размера платы за коммунальные услуги, а также приобретение исполнителем холодной и горячей воды, услуг водоотведения, газа, электрической и тепловой энергии осуществляется по тарифам, установленным на основании законодательства РФ и используемым для расчета размера платы за коммунальные услуги.

 В пункте 2 Постановления Пленума ВАС РФ от 05.10.2007 № 57 также указывается, что ТСЖ не является хозяйствующим субъектом с самостоятельными экономическими интересами, отличными от интересов членов ТСЖ. Соответствующие обязательства ТСЖ перед организациями, непосредственно оказывающими услуги (выполняющими работы), не могут быть большими, чем в случае заключения этими организациями прямых договоров с жильцами – членами ТСЖ, в связи с чем при реализации услуг по регулируемым ценам (тарифам) (например, услуг по энергоснабжению) ТСЖ оплачивает такие услуги, предназначенные жильцам, по тарифам, утвержденным для населения, а не для юридических лиц. Арбитражные суды применяют этот вывод на практике и в отношении управляющих организаций. В Постановлении Президиума ВАС РФ от 27.07.2010 № 3779/10 указано, что после введения в действие Правил предоставления коммунальных услуг исполнитель таких услуг вправе рассчитываться с РСО по тарифу, установленному в соответствии с законодательством РФ и используемому для расчета размера платы за коммунальные услуги.

 В силу п. 19 Правил предоставления коммунальных услуг при отсутствии коллективных (общедомовых), общих (квартирных) и индивидуальных приборов учета размер платы за коммунальные услуги в жилых помещениях определяется по формуле исходя из нормативов потребления.

 Так как в соответствии с договором теплоснабжения УК является исполнителем коммунальных услуг, приобретающим тепловую энергию у РСО для оказания коммунальных услуг гражданам, метод и порядок учета тепловой энергии должны определяться на основании ст. 157 ЖК РФ и Правил предоставления коммунальных услуг по показаниям приборов учета (а при их отсутствии – исходя из нормативов потребления коммунальных услуг, утверждаемых органами государственной власти субъектов РФ в порядке, установленном Правительством РФ), а услуги – оплачиваться по тарифам, утвержденным для населения, а не для юридических лиц. Аналогичные выводы содержатся в постановлениях Президиума ВАС РФ от 09.06.2009 № 525/09, от 21.04.2009 № 15791/08.

 В разделе 3 Правил предоставления коммунальных услуг описан порядок расчета и внесения платы за коммунальные услуги, который зависит от наличия или отсутствия в помещениях индивидуальных, общих (квартирных) и коллективных (общедомовых) приборов учета. В приложении 2 к Правилам предоставления коммунальных услуг приведены формулы для определения размера платы за коммунальные услуги в каждом соответствующем случае.

 При этом указанная в п. 19, 20, 21, 23, 25 Правил предоставления коммунальных услуг корректировка размера платы (раз в год) не производится, несмотря на то что Решением ВС РФ от 12.01.2011 № ГКПИ10-1499 признаны законными положения Правил предоставления коммунальных услуг о корректировке платы за коммунальные услуги. Дело в том, что в рамках действующего законодательства применение на практике данных формул невозможно, поскольку они предусматривают включение показателей, определяемых РСО расчетным путем в порядке, установленном законодательством РФ. В настоящее время не имеется принятого в установленном порядке правового акта, регламентирующего применение расчетного метода определения количества поставленной тепловой энергии в отсутствие приборов учета.

 Изложенная в Постановлении ФАС ВВО от 02.08.2010 по делу № А43-24577/2009 позиция по поводу проведения корректировки размера платы за коммунальные услуги была поддержана ВАС РФ в Определении от 09.09.2010 № ВАС-12238/10. Суд не принял доводы заявителя о применении Методики № 105 для расчета количества фактически поставленных ответчику коммунальных ресурсов в целях корректировки размера оплаты последним этих ресурсов, определенного по соответствующим нормативам потребления. Заявитель не указал, какой нормативно-правовой акт допускает проведение корректировки по формулам, описанным в Правилах предоставления коммунальных услуг, по причине отсутствия данного документа.

 Кроме того, утверждаемые органами государственной власти субъектов РФ нормативы устанавливаются на основании ст. 157 ЖК РФ и Правил установления и определения нормативов потребления коммунальных услуг, утвержденных Постановлением Правительства РФ от 23.05.2006 № 306. В соответствии с п. 25 Правил установления и определения нормативов потребления коммунальных услуг при определении таких нормативов учитываются нормативные технологические потери коммунальных ресурсов (технически неизбежные и обоснованные потери холодной и горячей воды, тепловой и электрической энергии, газа во внутридомовых инженерных коммуникациях и оборудовании многоквартирного дома) и не учитываются расходы коммунальных ресурсов, возникшие в результате нарушения требований технической эксплуатации внутридомовых инженерных коммуникаций и оборудования, правил пользования жилыми помещениями и содержания общего имущества в многоквартирном доме. Иначе говоря, в норматив потребления коммунальных услуг уже включены технологические потери коммунальных ресурсов, следовательно, применение корректировки для учета потерь недопустимо.

 В отношении групповых приборов учета, предусмотренных сторонами в договоре теплоснабжения, следует сказать, что определение приборов учета такого вида в Правилах предоставления коммунальных услуг отсутствует. Следовательно, использование показаний данных приборов учета противоречит действующему законодательству.

 

Рассмотрение спора в арбитражном суде.

 

В целях защиты по иску, предъявленному РСО к УК, о взыскании долга по оплате поставленной тепловой энергии нами был подготовлен и предъявлен от УК (ответчика) в рамках данного дела встречный иск о признании недействительным ничтожного договора в части и о применении последствий недействительности ничтожной сделки. В обоснование своей позиции мы руководствовались вышеизложенными нормами законодательства и на их основании произвели свой расчет поставленной тепловой энергии, который в значительной степени отличался от расчета истца. Суд не принял во внимание расчет, произведенный экспертами в связи с назначенной судебной экспертизой, так как он не основывался на положениях действующего законодательства.

 В результате оказанного правового сопровождения по данному делу и участия нашей компании в судебном разбирательстве от истца поступило предложение об урегулировании спора путем заключения мирового соглашения. Стороны подписали данное соглашение, утвержденное арбитражным судом, в соответствии с которым размер уплачиваемой УК суммы РСО за тепловую энергию был значительно снижен.

Миронова А. Р.,
руководитель юридического департамента КГ «Аюдар»

Расчет за тепловую энергию без счетчика

]]>

Подборка наиболее важных документов по запросу Расчет за тепловую энергию без счетчика (нормативно–правовые акты, формы, статьи, консультации экспертов и многое другое).

Судебная практика: Расчет за тепловую энергию без счетчика Открыть документ в вашей системе КонсультантПлюс:
Подборка судебных решений за 2019 год: Статья 13 «Общие положения об отношениях теплоснабжающих организаций, теплосетевых организаций и потребителей тепловой энергии» Федерального закона «О теплоснабжении»»Удовлетворяя исковые требования теплосети в части, руководствуясь положениями статей 309, 310, 330, 539, 541, 544, 548 Гражданского кодекса РФ, статей 4, 157 Жилищного кодекса РФ, статей 13, 19 Федерального закона N 190-ФЗ от 27.07.2010 «О теплоснабжении», пунктами 38, 40, 42 Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных постановлением Правительства Российской Федерации от 06.05.2011 N 354 (далее — Правила 354;), Основами ценообразования в сфере теплоснабжения, утвержденных постановлением Правительства Российской Федерации от 22.10.2012 N 1075, а также распоряжением Министерства жилищно-коммунального хозяйства Московской области от 09.12.2014 N 162-РВ «Об утверждении нормативов потребления коммунальных услуг в отношении холодного и горячего водоснабжения, водоотведения, электроснабжения и отопления», суды первой и апелляционной инстанции исходили из доказанности материалами дела факта оказания услуг в полном объеме. Однако, суды пришли к выводу, что расчет количества тепловой энергии на основании показателей приборов учета без применения норматива расхода тепловой энергии используемого на подогрев холодной воды, сделан без учет требований законодательства.» Открыть документ в вашей системе КонсультантПлюс:
Подборка судебных решений за 2019 год: Статья 19 «Организация коммерческого учета тепловой энергии, теплоносителя» Федерального закона «О теплоснабжении»»Удовлетворяя исковые требования теплосети в части, руководствуясь положениями статей 309, 310, 330, 539, 541, 544, 548 Гражданского кодекса РФ, статей 4, 157 Жилищного кодекса РФ, статей 13, 19 Федерального закона N 190-ФЗ от 27.07.2010 «О теплоснабжении», пунктами 38, 40, 42 Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных постановлением Правительства Российской Федерации от 06.05.2011 N 354 (далее — Правила 354;), Основами ценообразования в сфере теплоснабжения, утвержденных постановлением Правительства Российской Федерации от 22.10.2012 N 1075, а также распоряжением Министерства жилищно-коммунального хозяйства Московской области от 09.12.2014 N 162-РВ «Об утверждении нормативов потребления коммунальных услуг в отношении холодного и горячего водоснабжения, водоотведения, электроснабжения и отопления», суды первой и апелляционной инстанции исходили из доказанности материалами дела факта оказания услуг в полном объеме. Однако, суды пришли к выводу, что расчет количества тепловой энергии на основании показателей приборов учета без применения норматива расхода тепловой энергии используемого на подогрев холодной воды, сделан без учет требований законодательства.»

Статьи, комментарии, ответы на вопросы: Расчет за тепловую энергию без счетчика Открыть документ в вашей системе КонсультантПлюс:
Ситуация: В каких случаях и в каком порядке производится перерасчет платы за отопление?
(«Электронный журнал «Азбука права», 2021)Так, при перерывах в предоставлении услуги, превышающих установленную продолжительность, а также при перерывах в предоставлении услуги для проведения ремонтных и профилактических работ в пределах установленной продолжительности перерывов размер платы за услугу, рассчитываемый при отсутствии приборов учета, снижается на размер платы за объем непредоставленной услуги, который рассчитывается в случаях отсутствия коллективного (общедомового) прибора учета тепловой энергии или отсутствия в части помещений индивидуальных или общих (квартирных) приборов учета тепловой энергии (п. п. 99, 100 Правил).

Нормативные акты: Расчет за тепловую энергию без счетчика «Обзор судебной практики Верховного Суда Российской Федерации N 2 (2016)»
(утв. Президиумом Верховного Суда РФ 06.07.2016)При несовершении ресурсоснабжающими организациями указанных действий и отсутствии коллективных (общедомовых) приборов учета в многоквартирном доме, который полностью оборудован индивидуальными приборами учета, с 1 июня 2013 г. размер платы за поставленную тепловую энергию исчисляется исходя из показаний индивидуальных приборов учета. Выпадающий доход, вызванный отсутствием учета поставленной на общедомовые нужды тепловой энергии, ложится в таком случае на ресурсоснабжающую организацию, которая, вопреки положениям ч. 12 ст. 13 Закона об энергосбережении, не предприняла необходимых мер по оборудованию многоквартирного дома коллективным (общедомовым) прибором учета.

Расчёт затрат на тепловую и электрическую энергию

Расчёт затрат на тепловую и электрическую энергию

Расчёт затрат на тепловую и электрическую энергию

На источниках и насосных станциях при выполнении поверочного расчёта определяются часовые затраты на тепловую, электрическую энергию и затраты на тепловые потери в трубопроводах. Результаты расчетов записываются в базу данных и выводятся в протокол расчёта. Стоимость энергоресурсов указывается пользователем, это может быть рубли или любая другая валюта.

Это позволяет при моделировании различных ситуаций сравнить экономические затраты на эксплуатацию.

Затраты на электроэнергию

Затраты на электроэнергию рассчитываются как произведение полезной мощности насоса (P) и стоимости электроэнергии, определяются по формуле:

Рисунок 158. Затраты на электроэнергию

, где G — расход воды, т/ч.

g — ускорение свободного падения, м/с2.

H — напор развиваемый насосом (или располагаемый напор на источнике), м.

Costэ — стоимость электроэнергии за 1 кВт (значение поля базы данных Затраты на электроэнергию , Costs_w).

Суммарные затраты на тепловую энергию

Определяются как произведение полей Суммарная тепловая нагрузка, Гкал/ч и Стоимость тепловой энергии.

Затраты на тепловые потери в трубопроводах

Определяются как произведение полей Тепловые потери в тепловых сетях, Гкал/ч и Стоимость тепловой энергии.

Расчет затрат

Для расчета затрат на тепловую и электроэнергию следует:

  1. Добавить поля в БД. Для добавления полей в структуру слоя надо Обновить структуру таблиц.

  2. В настройках расчетов на вкладке протокол расчёта включить опцию Вычислять затраты на тепло и электроэнергию.

  3. Внести в поля на насосах исходные данные:

  4. Внести в поля на источнике исходные данные:

    • Стоимость тепловой энергии (Cost_q) — указывается стоимость тепловой энергии.

    • Стоимость электроэнергии (Cost_w) — указывается стоимость электрической энергии.

  5. Провести поверочный расчет.

Смотрите также:

Расчет тепловой энергии на отопление помещений

Расчет тепловых потерь является одним из самых важных документов, благодаря которому человек с легкостью может определить как суточное, так и годовое потребление тепла для какого-либо сооружения.

Схема радиаторов отопления.

При расчете тепловой энергии необходимо учитывать достаточно много факторов.

Схема вентиляционной системы отопления.

Во-первых, необходимо принимать во внимание тип сооружения – будь то частный дом, одноэтажное или, наоборот, многоэтажное сооружение или другой вид здания. Во-вторых, для проведения необходимых расчетов, необходимо учитывать еще и количество проживающих (работающих) в этом здании людей. Разумеется, что наряду с типом здания необходимо принимать во внимание еще и такие факторы, как его функциональное предназначение, а также конструкции крыши, стен и полов этого сооружения. Помимо этого учитываются габариты крыш, полов, стен и т.д. И последним фактором, на который необходимо обращать внимание, является температурный режим каждого отдельно взятого помещения в сооружении, где будет производиться расчет тепловой энергии, при этом расчеты никак не зависят от того, что будет потреблять котел в качестве топлива. Использование котла на газе, количество потребления топлива – все эти факторы имеют свое значение.

Если расчеты произвести верно, можно будет с легкостью определить мощность, которую должен иметь котел (его потребление материалов), подобрать необходимое оборудование и получить ТУ.

Расчеты энергии

В первом случае перед тем, как приобрести котел того или иного вида, необходимо произвести определенный тепловой расчет, исходя из которого можно будет подобрать котел, который будет работать наиболее эффективно, и вы сможете получить бесперебойное горячее водоснабжение и хороший обогрев всего сооружения целиком. Мощность будущей отопительной системы определяется достаточно легко. Она представляет собой сумму тепловых затрат на обогрев всего помещения и на другие нужды подобного рода.

Схема организации системы отопления двухэтажного частного дома.

Далеко не каждый котел сможет подойти, а это значит, что необходимо приобретать котел именно такой мощности, который будет работать даже при самых максимальных нагрузках, и при этом срок эксплуатации подобного оборудования не сократится. Для того чтобы добиться необходимых результатов при выборе, необходимо обращать пристальное внимание на этот аспект. Примерно то же касается и выбора оптимального оборудования для отопления помещения в целом. Правильный расчет тепловой энергии не только позволит приобрести те приборы отопления, которые прослужат долго, но и даст возможность немного сэкономить на покупке, а значит, затраты на отопление помещения тоже могут снизиться.

Что касается получения ТУ и согласования на газификацию объекта, то расчет энергии в данном случае является основополагающим фактором. Подобного рода разрешения необходимо получать тогда, когда в качестве топлива предполагается использование природного газа под котел. Чтобы получить документацию такого рода, нужно предоставить показатели годового расхода топлива и сумму мощности отопительных источников (Гкал/час). Разумеется, что получить такую информацию можно только исходя из проведенного расчета тепловой энергии, а затем можно будет приобрести отопительный прибор, который помимо всего прочего сведет к минимуму затраты на отопление. Использование природного газа в качестве топлива под котел сегодня является одним из наиболее популярных способов на отопление помещения.

Вернуться к оглавлению

Первая и вторая формулы для расчета

Схема однотрубной системы отопления.

Основная формула, которую используют для расчета: Qгв=Gгв×(tгв – tхв)/1000= … Гкал, где Qгв является количеством тепловой энергии, Gгв – расход горячей воды, tгв – температура горячей воды, tхв – температура холодной воды (не учитывается количество затрат газа на отопление). Все температуры рассчитываются в данном случае в градусах Цельсия. Может быть использована формула Qт(кВт/час)=V×DT×K/860 (не учитывается количество затрат газа), где Qт – тепловая нагрузка на помещение, К – коэффициент расхода тепла всего сооружения, V – объем помещения, а DT – разница между температурами внутри сооружения и снаружи. Благодаря этим формулам количество расхода газа на отопление сможет определить каждый самостоятельно.

Коэффициент расхода тепла напрямую зависит от типа конструкции отапливаемого сооружения, а также от изоляции. Чтобы упростить расчеты, можно использовать следующие значения: К=0,6-0,9, если в помещении имеется сравнительно небольшое количество окон, устройство которых состоит из сдвоенных рам, стены с изоляцией, крыша из хорошего материала и др. Этот коэффициент отображает наивысшую степень теплоизоляции помещения. К=1-1,9 – в том случае, если сооружение, для которого производится расчет, имеет среднюю степень теплоизоляции, то есть небольшое количество окон, стены состоят из двойной кирпичной кладки и т.д. К=2-2,9 – используется, когда уровень теплоизоляции помещения низкий – конструкция состоит не из вышеперечисленных материалов, а из других, из-за чего количество расхода тепла увеличивается. Последний уровень коэффициента – от 3 до 4 – используется, если теплоизоляция полностью отсутствует либо очень плохая.

Расчет тепла снаружи и внутри дома необходимо в этом случае производить исходя из степени комфорта, которую можно будет получить, подключив необходимую тепловую установку. Для определения коэффициента разницы между температурами принято использовать значения, которые определены СНиП 2.04.05-91, а именно: +18 градусов Цельсия должно быть в общественных помещениях и в различных производственных помещениях, +12 градусов должны иметь складские помещения, +5 – гаражи и складские помещения, которым не нужно постоянное обслуживание.

Вернуться к оглавлению

Лучшая формула для расчета

Таблица примеров расчета воды радиаторов в системе отопления.

Стоит сказать о том, что ни первая, ни вторая формула не позволит человеку рассчитать различия между тепловыми потерями здания в зависимости от используемых в здании ограждающих конструкций и конструкций утепления. Для того чтобы наиболее точно произвести необходимые расчеты, должна быть использована несколько усложненная формула, благодаря которой можно будет избавиться от значительных затрат. Эта формула выглядит следующим образом: Qт(кВт/час)=(100 Вт/м2×S (м2)×К1×К2×К3×К4×К5×К6×К7)/1000 (не учитывается количество затрат газа на отопление). В данном случае S – площадь комнаты. Вт/м2 представляет собой удельную величину теплопотерь, сюда входят все показатели расхода тепла – стены, окна и др. Каждый коэффициент умножается на последующий и в этом случае обозначает тот или иной показатель утечки тепла.

К1 – коэффициент расхода тепловой энергии через окна, имеющий значения 0,85, 1, 1,27, которые будут меняться в зависимости от качества используемых окон и их утепления. К2 – количество расхода тепла через стены. Этот коэффициент имеет такие же показатели, как и в случае с потерей тепла через окна. Он может варьироваться в зависимости от теплоизоляции стен (плохая теплоизоляция – 1,27, средняя (при использовании специальных утеплителей) – 1, высокий уровень теплоизоляции имеет коэффициент 0,854). К3 – такой показатель, который определяет соотношение площадей как окон, так и пола (50% – 1,2, 40% – 1,1, 30% – 1,0, 20% – 0,9, 10% – 0,8), следующий коэффициент – температура снаружи помещения (К4=-35 градусов – 1,5; -25 градусов – 1,3; -20 градусов – 1,1; -15 градусов – 0,9; -10 градусов – 0,7).

К5 в данной формуле представляет собой такой коэффициент, который отображает количество стен, выходящих наружу (4 стены – 1,4; 3 стены – 1,3; 2 стены – 1,2; 1 стена – 1,1). К6 представляет тип теплоизоляции помещения, которое находится над тем, для которого производится этот расчет. Если оно обогревается, тогда коэффициент будет равен 0,8, если имеется теплая мансарда, тогда – 0,9, если это помещение никак не обогревается, коэффициент будет равен 1. И последний коэффициент, который применяется при расчете по этой формуле, обозначает высоту потолков в помещении. Если высота равна 4,5 метра, тогда коэффициент равен 1,2; 4 метра – 1,15; 3,5 метра – 1,1; 3 метра – 1,05; 2,5 метра – 1.

Вернуться к оглавлению

Подведение итогов

Итак, именно вторая формула является наиболее точной для проведения расчетов тепловой энергии на отопление (не учитывается количество затрат газа на отопление). Она имеет намного больше коэффициентов, что позволит наиболее точно определить все параметры мощности будущей системы отопления в помещении, благодаря которой затраты на отопление могут снизиться до минимума. Таким образом, если все расчеты будут произведены верно и в соответствии с приведенными выше формулами, можно будет избежать лишних материальных затрат, а также и временных затрат, которые зависят от потребления, например, газа.

Значит, первая, вторая или третья формулы являются обязательными при расчете, так как именно благодаря им можно вычислить оптимальную мощность отопительной системы и свести количество материальных затрат к минимуму.

Расчет тепловой энергии на отопление здания онлайн-калькулятором: как посчитать площадь дома

В осенне-зимний период обогрев помещений является главным пунктом затрат предприятий и владельцев домов и квартир, поэтому многие устанавливают индивидуальную отопительную систему. Чтобы приобрести оборудование, надо рассчитать количество батарей для подсоединения к системе отопления и произвести расчёт тепловой энергии на отопление здания. Калькулятор онлайн сможет помочь в этой работе.

Определение количества батарей

Количество батарей обусловлено зависимостью от теплопотерь в помещениях.

Методик расчётов существует несколько. В стандартных комнатах производят простые расчёты или пользуются коэффициентами, позволяющими учитывать специфические особенности каждой конкретной комнаты:

  • угловое помещение;
  • балконная дверь;
  • «французский» оконный проём.

Посчитать необходимое количество батарей для каждого помещения можно несколькими методами. Все они направлены на определение максимальных теплопотерь в помещении, а на основании полученных данных можно решить, сколько штук батарей будет установлено в каждой комнате. Но существуют сложные расчёты по формуле, которая состоит из тех же коэффициентов.

Существует приём определения фактических теплопотерь специальным устройством, которое называется «тепловизор». Этот прибор может определять реальную тепловую потерю. Принимая во внимание все показатели тепловизора, выносится заключение, какое количество батарей необходимо установить в отопительную систему для восполнения тепловых потерь.

Таким прибором пользуются для определения, в каком месте комнаты теплопотери происходят наиболее активно. Также с его помощью можно определить дефекты в стройматериалах, например, образование трещины. Снимки с тепловизоров точно показывают, в каком месте необходимо будет исправить обнаруженные недостатки.

Методы подсчётов

Самая простая методика состоит из подсчётов необходимой теплоты для определённой площади комнаты, в которой установят отопительные элементы. Если площади каждого помещения известны, то потребности в тепле определяются строительными нормами СНиП. По этим нормам высчитывают, какое количество теплоэнергии требуется подать в определённую комнату.

Для квартиры или дома, которые расположены в обычных погодных условиях, расчёт отопления помещения проводится по формуле.

Например, для комнаты размером 12 кв. м необходимо 1200 Вт тепла, а если зимы не очень холодные, то потребуется всего 720 Вт.

Запас мощности отопления

В отопительных системах нужны небольшие резервы мощностей, так как мощность системы возрастёт при увеличении количества батарей. Для абонентов, подключенных к центральной системе отопления, такое решение не критично. А вот для индивидуальных потребителей тепла большие объёмы приносят дополнительные траты на обогрев.

Проведя тепловой расчёт помещения, можно будет выявить необходимость в потреблении тепла в достаточном объёме и определить число требующихся приборов отопления. Любая отопительная батарея выделяет заданный объём теплоты, указанный в технической документации.

Расчёт тепловой нагрузки на отопление здания калькулятор сможет произвести как для частных домов, так и для производственных организаций.

Также он помогает в случаях отсутствия проектных данных при расчётах точных коэффициентов теплопроводимости стен, а также их состава. Такая методика с успехом служит при рассмотрении дел в судах по судебным спорам ЖКХ.

Вычисления понятны даже обычным абонентам, которые в тонкостях теплотехнических вопросов не разбираются. С помощью них перепроверяют правильность установки отопительных котлов в частных домах или квартирах.

При вычислении показателей тепловых нагрузок на отопительные элементы в здании, необходимо учитывать:

  • предназначение помещения;
  • характеристики стен, дверей, окон, крыш и систем вентиляции;
  • размер здания;
  • наличие помещений специальных предназначений;
  • наличие оборудования технического назначения;
  • горячее водоснабжение;
  • кондиционеры;
  • дополнительные балконы, лоджии и санузлы в жилище;
  • климат регионов.

Рассчитывая теплопотери, учитывают уличную температуру. При незначительных перепадах температур, на компенсирование затрат потребуется меньше теплоэнергии. Если же уличная температура очень низкая, то потребуется большее расходование тепла.

Особенности методик вычисления

Параметрами, находящимися в СНиПах и ГОСТах, пользуются для проведения расчётов тепловых нагрузок. Документация включает в себя:

  • цифровую характеристику разных отопительных радиаторов и котлов;
  • расходование энергии часовой деятельности обогревающего устройства;
  • рекордное число теплоты, исходящее от одной батареи;
  • общая затрата теплоэнергии в разные сезоны.

При необходимости почасового расчёта нагрузок на тепловые сети расчёты проводят, учитывая суточный перепад температуры.

Полученные результаты сверяют с площадями тепловых отдач систем. Показатели получаются очень точными, правда, небольшие неточности иногда бывают.

Для промышленного строения надо учесть снижающееся потребление теплоэнергии в нерабочие дни, а в частных домах и квартирах — ночью. Методы, используемые при расчёте отопительной системы, обладают несколькими степенями достоверности. Чтобы погрешность свести минимально, надо сделать несколько сложных вычислений. Не очень точные схемы используются в тех случаях, когда целью не служит оптимизирование трат на системы отопления.

Число секций радиаторов

По высоте потолка и площади комнаты тоже можно произвести подсчёт количества секций радиаторов. Определив объёмы комнаты, по нормам СНиП узнают, какое количество теплоты необходимо на её отопление. Обязательно учитывается специфика комнат и уличная температура за окном.

При расчёте по площади комнат с нестандартной высотой потолков применяют пропорциональное увеличение или уменьшение количества секций с помощью коэффициента инфильтрации здания в расчёте тепловой нагрузки. Производить округление полученных результатов можно как в сторону уменьшения в кухне, так как в ней всегда имеются дополнительные тепловые источники, так и в сторону увеличения, например, в комнатах с большими окнами, балконами, лоджиями, в угловых помещениях.

При помощи более простой системы подсчётов неточностей избежать не получится, так как потолки могут отличаться по высоте, а стены разных комнат изготавливаются из разных материалов. Следовательно, рассчитать количество рёбер отопительных батарей с помощью СНиП предельно точно не получится, всё равно придётся корректировать полученные результаты.

Для получения наиболее точных расчётов, необходимо учитывать множество обстоятельств, уменьшающих или увеличивающих тепловые потери. Существование коэффициентов помогает определить очень точно величину всех тепловых потерь. Конкретные цифры зависят от размера окон и от качества их утопления. Существует пара соответственных показателей: это зависимость площадей окон к площадям полов и евроостекление.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Изменились ли формулы расчёта платы за отопление: объясняет юрист

С 1 января 2019 года начали действовать новые формулы расчёта платы за отопление. Вид у них, мягко скажем, отпугивающий. Наш постоянный эксперт Елена Шерешовец объяснила, как изменились формулы расчёта платы за отопление и кому не понравятся нововведения.

Как в 2019 году изменилась система расчётов платы за отопление МКД

Что случилось

Елена Шерешовец рассказывает, на самом ли деле изменились формулы

Постановление Правительства РФ от 28.12.2018 № 1708 года внесло изменения в Правила предоставления коммунальных услуги утвердило новые формулы расчёта платы за отопление.

Для домов, которые не оборудованы общедомовыми приборами учёта, действуют две формулы: формула 2(3) для расчёта размера платы за отопление равномерно в течение года и формула 2(4) для расчёта платы в отопительный период.

Если в доме установлен общедомовый прибор учёта, расчёт размера платы будет зависеть от наличия в доме индивидуальных счётчиков тепла. Если индивидуальных приборов нет, расчёт производится по формуле 3, она переписана в новом виде.

Если помещения оборудованы индивидуальными приборами учёта частично, работает формула 3(1), это новая формула. Когда все помещения оборудованы ИПУ, расчёт ведётся по формуле 3(3), которая переписана.

Вот как это выглядит в виде схемы:

На первый взгляд кажется, что формулы сильно изменились. Елена Шерешовец уточняет, что формулы поменялись только для многоквартирных домов, где есть помещения, которые отказались от централизованного отопления и перешли на индивидуальные источники тепла или где есть помещения, которые не являются общим имуществом. В этих помещениях в принципе не предусмотрено наличие приборов отопления.

Для домов, где таких помещений нет, всё осталось без изменений. Рассмотрим на примерах.

Почему КС РФ потребовал пересмотреть систему расчётов за отопление

Дом не оборудован ОДПУ или используются ИПУ

Формула 2(3) предназначена для расчёта отопления в многоквартирном доме, не оборудованном общедомовым прибором учёта.

Если в МКД нет помещений, где не предусмотрены приборы отопления или используются индивидуальные источники отопления, то Sинд равна нулю. В таком случае формула приобретает прежний вид:

Вот как это получилось:

Настоящий квест для ценителей математических расчётов

Дом оборудован ОДПУ, индивидуальных приборов учёта нет

Для расчёта платы за отопление в домах, которые оборудованы общедомовым прибором учёта тепла, но индивидуальных приборов учёта там нет, действует формула 3.

Если в таком многоквартирном доме нет помещений с автономным отоплением, то Sинд становится равна нулю, и формула приобретает прежний вид. Это действует и для регионов, где расчёт ведётся равномерно в течение отопительного сезона, и для регионов, где начисления производятся только в отопительный период.

Посмотрите, как это получилось:

Взыскание задолженности за отопление при отсутствии радиаторов

Дом оборудован ОДПУ и хотя бы в одном помещении есть ИПУ

Для случая, когда многоквартирный дом оборудован общедомовым прибором учёта тепловой энергии и хотя бы в одном, но не во всех жилых и нежилых помещениях установлены индивидуальные приборы учёта тепловой энергии, предусмотрена новая формула:

Размер платы за отопление складывается из двух частей:

  • Vi – это плата за тепловую энергию, потреблённую в помещении;
  • страшная дробь – плата за тепловую энергию, потреблённую на общедомовые нужды.

Если индивидуальными приборами учёта оборудовано небольшое количество помещений, то числитель дроби получается большим, в таком случае размер платы за ОДН тоже увеличивается.

Елена Шерешовец объяснила, что в определённом случае есть опасность применить эту новую формулу и получить отрицательное значение ОДН. Так происходит, когда кто-либо из потребителей неправильно передаст показания – завысит их. Это может случиться вследствие технической ошибки или человеческого фактора.

По нашей новой формуле при расчете общедомовой платы от Vд – это объём тепловой энергии по показаниям общедомового прибора – отнимается сумма всех показаний индивидуальных приборов учёта. Если кто-то из потребителей ошибётся с показаниями, средний расход за помещения с ИПУ превысит средний расход по дому. Получится отрицательное значение. ОДН будет отрицательный.

Делаем вывод – необходимо постоянно контролировать и проверять корректность переданных показаний, даже если они снимаются в автоматическом режиме.

Нужна новая формула расчетов платы за отопление в домах с ИТП и счетчиками тепла — КС РФ | Российское агентство правовой и судебной информации

САНКТ-ПЕТЕРБУРГ, 2 июн — РАПСИ, Михаил Телехов. Правила предоставления коммунальных услуг должны предусматривать при определении платы за отопление возможность учета показаний индивидуальных приборов учета в многоквартирных домах (МКД), подключенных к централизованным сетям теплоснабжения через индивидуальный тепловой пункт (ИТП), самостоятельно нагревающий воду для системы отопления, говорится в новом Постановлении Конституционного суда (КС) РФ, опубликованном на его официальном сайте.

Считали без счетчика

«Жалобу в КС РФ направила жительница такого дома в подмосковной Балашихе Татьяна Задубровская. После рассмотрения ее дела положения Правил предоставления коммунальных услуг, а именно абзац 3 пункта 40, абзацы 1 и 4 пункта 54, регулирующие расчет платы за отопление, признаны не соответствующими Конституции РФ, поскольку они не предусматривают формул расчетов для МКД с ИТП, оборудованным кроме того общедомовым прибором учета и индивидуальными счетчиками тепла в квартирах. Решение основано на ранее вынесенных правовых позициях суда», — пояснили в пресс-службе КС РФ.

Как разъясняет далее пресс-служба суда, ИТП — это специальное оборудование для передачи тепловой энергии без теплоносителя, то есть холодная вода в ИТП нагревается и подается в систему отопления здания и в сеть горячего водоснабжения.

Как писала в своей жалобе Задубровская, ее дом оборудован ИТП, общедомовым прибором учета, а большинство помещений, в том числе и ее квартира, оснащены индивидуальными счетчиками тепла. Но несмотря на исправно действующий счетчик, она оплачивает отопление без учета его показаний, а исходя из приходящейся на ее помещение доли от объема общедомового потребления. Задубровская обратилась в мировой суд, но он, а потом и вышестоящие инстанции, указав на то, что система отопления ее дома самостоятельно производит тепло, признали такую практику правомерной, и дело дошло до КС РФ.

Тепло зависимое и независимое

В мотивировочной части постановления КС РФ отметил, что к числу проблем в сфере ЖКХ относится ограниченная мотивация потребителей энергии к повышению энергоэффективности, что констатировано в Энергетической стратегии Российской Федерации на период до 2035 года, и согласно которой стимулом для потребителей энергетических ресурсов к эффективному и рациональному их использованию является нормативное закрепление зависимости размера платы за поставленные ресурсы прежде всего от объема их потребления, определяемого с помощью приборов учета.

Жилищный кодекс РФ, по мнению КС РФ, не предполагает определения размера платы за отопления в МКД с индивидуальными счетчиками тепла в квартирах без учета их показаний. Но Правила предоставления коммунальных услуг связывают особенности определения размера платы за коммунальную услугу по отоплению прежде всего с наличием либо отсутствием в многоквартирном доме централизованной системы теплоснабжения. Вместе с тем, как отмечает КС РФ, понятие централизованной системы теплоснабжения МКД нормативно не установлено, что создает правовую неопределенность в части выбора правил для расчета платы за коммунальную услугу по отоплению, применимых к многоквартирным домам, присоединенным к централизованным сетям через ИТП.

«Размещенные в государственной информационной системе жилищно-коммунального хозяйства электронные паспорта таких домов, содержащие общедоступную информацию, в частности, о внутридомовой системе отопления, характеризуют ее как центральную. Это вызывает у жильцов, обеспечивающих сохранность индивидуальных приборов учета тепловой энергии, обоснованные ожидания того, что применению подлежит абзац 4 пункта 42.1 Правил, позволяющий учитывать при расчете платы за отопление показания таких приборов. Однако эта норма распространяется на многоквартирные дома, подключенные к централизованным сетям по зависимой схеме. Расчет же размера платы за коммунальную услугу по отоплению в многоквартирных домах, присоединенных к централизованным сетям теплоснабжения по независимой схеме, через индивидуальные тепловые пункты, производится на основании абзаца третьего пункта 40, абзацев первого и четвертого пункта 54 Правил – о самостоятельном производстве исполнителем этой услуги. То есть расчет производится исходя из объема коммунального ресурса, использованного при производстве коммунальной услуги, и тарифа на него», — разъясняет положение дел КС РФ и отмечает, что такой подход нарушает конституционный принцип равенства, требующий создания равных условий для реализации прав и законных интересов лиц, относящихся к одной категории, и не допускающий различий без объективного оправдания.

Пересмотр дела невозможен

По мнению КС РФ, оспоренные нормы в ущерб интересам законопослушных собственников и пользователей помещений в конкретном многоквартирном доме, поощряют недобросовестное поведение потребителей этой услуги, позволяя им расходовать тепловую энергию за счет отнесения части платы за нее на иных потребителей (в том числе экономно ее расходующих).

«Кроме того, реализация данных положений ведет, в нарушение статьи 58 Конституции Российской Федерации, к не отвечающему общественным интересам росту потребления тепловой энергии в многоквартирных домах и тем самым к ее перепроизводству, усиливающему негативное воздействие на окружающую среду, и в конечном счете препятствует – вследствие необеспечения сохранности дорогостоящих приборов учета энергетических ресурсов и отсутствия экономических стимулов для их установки потребителями коммунальных услуг в добровольном порядке – достижению долгосрочных целей государственной политики энергосбережения», — провозглашает в своем постановлении КС РФ.

Правительству РФ надлежит внести необходимые изменения в Правила предоствления коммунальных услуг, в том числе, предусмотреть для случаев, аналогичных рассмотренному, порядок определения платы за отопление с учетом показаний как общедомового, так и индивидуальных приборов учета тепловой энергии многоквартирного дома. А до внесения изменений расчеты для дома, где живет Задубровская, и аналогичных МКД надлежит производить в соответствии с абзацем четвертым пункта 42.1 Правил предоставления коммунальных услуг.

Пр этом КС РФ отметил, что пересмотр дела Задубровской невозможен, поскольку для этого должны быть известны показания всех имеющихся в доме приборов учета тепловой энергии за спорный период, но они не фиксировались управляющей организацией. Но указал, что заявительница, как лицо, инициировавшее вопрос о проверке нормы, неконституционность которой подтверждена, имеет право на компенсацию, а ее размер должен определить мировой суд, куда она изначально обратилась с иском.

Калькулятор удельной теплоемкости

Этот калькулятор удельной теплоемкости представляет собой инструмент, который определяет теплоемкость нагретого или охлажденного образца. Удельная теплоемкость — это количество тепловой энергии, которое необходимо подать на образец весом 1 кг, чтобы повысить его температуру на 1 K . Прочтите, чтобы узнать, как правильно применить формулу теплоемкости для получения достоверного результата.

Как рассчитать удельную теплоемкость

  1. Определите, хотите ли вы нагреть образец (дать ему немного тепловой энергии) или охладить (отобрать немного тепловой энергии).
  2. Укажите количество подаваемой энергии как положительное значение. Если вы хотите охладить образец, введите вычтенную энергию как отрицательное значение. Например, предположим, что мы хотим уменьшить тепловую энергию образца на 63 000 Дж. Тогда Q = -63 000 Дж .
  3. Определите разницу температур между начальным и конечным состоянием образца и введите ее в калькулятор теплоемкости. Если образец остынет, разница будет отрицательной, а если нагретый — положительной.Допустим, мы хотим охладить образец на 3 градуса. Тогда ΔT = -3 K . Вы также можете перейти в расширенный режим , чтобы ввести начальное и конечное значения температуры вручную.
  4. Определите массу образца. Примем м = 5 кг .
  5. Рассчитайте удельную теплоемкость как c = Q / (мΔT) . В нашем примере это будет равно c = -63,000 Дж / (5 кг * -3 K) = 4200 Дж / (кг · K) . Это типичная теплоемкость воды.

Если у вас возникли проблемы с единицами измерения, воспользуйтесь нашими калькуляторами преобразования температуры или веса.

Формула теплоемкости

Формула для определения теплоемкости выглядит так:

c = Q / (мΔT)

Q — количество подводимого или отведенного тепла (в джоулях), м — масса образца, а ΔT — разница между начальной и конечной температурами. Теплоемкость измеряется в Дж / (кг · К).

Типовые значения удельной теплоемкости

Вам не нужно использовать калькулятор теплоемкости для большинства обычных веществ.Ниже приведены значения удельной теплоемкости некоторых из самых популярных.

  • лед: 2,100 Дж / (кг · К)
  • вода: 4,200 Дж / (кг · К)
  • водяной пар: 2,000 Дж / (кг · К)
  • базальт: 840 Дж / (кг · К)
  • гранит: 790 Дж / (кг · К)
  • алюминий: 890 Дж / (кг · К)
  • железо: 450 Дж / (кг · К)
  • медь: 380 Дж / (кг · К)
  • свинец: 130 Дж / (кг · К)

Имея эту информацию, вы также можете рассчитать, сколько энергии вам нужно подать на образец, чтобы повысить или понизить его температуру.Например, вы можете проверить, сколько тепла вам нужно, чтобы довести до кипения воду, чтобы приготовить макароны.

Хотите знать, что на самом деле означает результат? Воспользуйтесь нашим калькулятором потенциальной энергии, чтобы проверить, насколько высоко вы поднимете образец с таким количеством энергии. Или проверьте, насколько быстро может двигаться образец, с помощью этого калькулятора кинетической энергии.

Что такое удельная теплоемкость при постоянном объеме?

Удельная теплоемкость — это количество тепла или энергии, необходимое для изменения одной единицы массы вещества постоянного объема на 1 ° C .Формула: Cv = Q / (ΔT ⨉ m) .

Какова формула удельной теплоемкости?

Формула для удельной теплоемкости C вещества с массой м равна C = Q / (м ⨉ ΔT) . Где Q — добавленная энергия, а ΔT — изменение температуры. Удельная теплоемкость во время различных процессов, таких как постоянный объем Cv и постоянное давление Cp , связаны друг с другом отношением удельной теплоемкости ɣ = Cp / Cv или газовой постоянной R = ЦП - ЦВ .

В каких единицах указывается удельная теплоемкость?

Удельная теплоемкость измеряется в Дж / кг K или Дж / кг C , поскольку это тепло или энергия, необходимая во время процесса постоянного объема для изменения температуры вещества с единичной массой на 1 ° C или 1 ° K. .

Какое значение удельной теплоемкости воды?

Удельная теплоемкость воды составляет 4179 Дж / кг K , количество тепла, необходимое для повышения температуры 1 г воды на 1 градус Кельвина.

Какие британские единицы измерения удельной теплоемкости?

Удельная теплоемкость измеряется в БТЕ / фунт ° F в британских единицах и в Дж / кг K в единицах СИ.

Какова удельная теплоемкость меди?

Удельная теплоемкость меди 385 Дж / кг K . Вы можете использовать это значение для оценки энергии, необходимой для нагрева 100 г меди на 5 ° C, то есть Q = m x Cp x ΔT = 0,1 * 385 * 5 = 192,5 Дж.

Какова удельная теплоемкость алюминия?

Удельная теплоемкость алюминия 897 Дж / кг K .Это значение почти в 2,3 раза больше теплоемкости меди. Вы можете использовать это значение для оценки энергии, необходимой для нагрева 500 г алюминия на 5 ° C, то есть Q = m x Cp x ΔT = 0,5 * 897 * 5 = 2242,5 Дж.

Как рассчитать количество выделяемого тепла

Обновлено 12 февраля 2020 г.

Клэр Гиллеспи

Проверено: Lana Bandoim, B.S.

Некоторые химические реакции выделяют энергию за счет тепла. Другими словами, они передают тепло своему окружению.Они известны как экзотермических реакций: «Экзо» относится к внешним или внешним, а «термический» означает тепло.

Некоторые примеры экзотермических реакций включают горение (горение), реакции окисления (ржавление) и реакции нейтрализации между кислотами и щелочами. Многие предметы повседневного обихода, такие как грелки для рук и самонагревающиеся банки для кофе и других горячих напитков, подвергаются экзотермическим реакциям.

TL; DR (слишком долго; не читал)

Для расчета количества тепла, выделяемого в химической реакции, используйте уравнение Q = mc ΔT , где Q — тепловая энергия перенесенная (в джоулях), м — масса нагреваемой жидкости (в килограммах), c — удельная теплоемкость жидкости (джоуль на килограмм градусов Цельсия), а ΔT — изменение температуры жидкости (градусы Цельсия).

Разница между теплом и температурой

Важно помнить, что температура и тепло — это не одно и то же. Температура — это мера того, насколько что-то горячее, измеряется в градусах Цельсия или Фаренгейта, а тепла — это мера тепловой энергии, содержащейся в объекте, измеряется в джоулях.

Когда тепловая энергия передается объекту, его повышение температуры зависит от:

  • массы объекта
  • вещества, из которого сделан объект
  • количества энергии, приложенной к объекту

Чем больше тепловой энергии переносится на объект, тем больше увеличивается его температура.

Удельная теплоемкость

Удельная теплоемкость ( c ) вещества — это количество энергии, необходимое для изменения температуры 1 кг вещества на 1 единицу температуры. Различные вещества имеют разную удельную теплоемкость, например, вода имеет удельную теплоемкость 4 181 джоулей / кг градусов C, кислород имеет удельную теплоемкость 918 джоулей / кг градусов C, а свинец имеет удельную теплоемкость 128 джоулей / кг градусов C.

Калькулятор тепловой энергии

Для расчета энергии, необходимой для повышения температуры вещества с известной массой, вы используете формулу удельной теплоемкости:

Q — переданная энергия в джоулях, м — масса вещества в кг, c — удельная теплоемкость в Дж / кг градусов C, а ΔT — изменение температуры в градусах C в формуле удельной теплоемкости.

Калькулятор тепловыделения

Представьте, что 100 г кислоты были смешаны со 100 г щелочи, что привело к повышению температуры с 24 до 32 градусов Цельсия.

Уравнение реакции нейтрализации между кислотой и щелочью может быть уменьшено до:

H + + OH -> h3O

Используемая формула: Q = mc ∆T

Масса = м = 100 г + 100 г / 1000 г на кг = 0,2 г (одно значащее число)

Удельная теплоемкость воды = c = 4,186 Дж / кг градусов C
Изменение температуры = ΔT = 24 градуса C — 32 градуса C = -8 градусов C

Q = (0.2 кг) (4,186 Дж / кг ° C) (-8 ° C)
Q = -6,688 Дж, что означает выделение 6688 джоулей тепла.

Урок физики

На предыдущей странице мы узнали, что тепло делает с объектом, когда оно накапливается или выделяется. Прирост или потеря тепла приводят к изменениям температуры, изменению состояния или выполнения работы. Тепло — это передача энергии. Когда объект приобретается или теряется, внутри этого объекта будут происходить соответствующие изменения энергии. Изменение температуры связано с изменением средней кинетической энергии частиц внутри объекта.Изменение состояния связано с изменением внутренней потенциальной энергии, которой обладает объект. А когда работа сделана, происходит полная передача энергии объекту, над которым она выполняется. В этой части Урока 2 мы исследуем вопрос Как измерить количество тепла, полученного или выделенного объектом?

Удельная теплоемкость

Предположим, что несколько объектов, состоящих из разных материалов, нагреваются одинаково.Будут ли предметы нагреваться одинаково? Ответ: скорее всего, нет. Разные материалы будут нагреваться с разной скоростью, потому что каждый материал имеет свою удельную теплоемкость. Удельная теплоемкость относится к количеству тепла, необходимому для изменения температуры единицы массы (скажем, грамма или килограмма) на 1 ° C. В учебниках часто указывается удельная теплоемкость различных материалов. Стандартные метрические единицы — Джоуль / килограмм / Кельвин (Дж / кг / К). Чаще используются единицы измерения — Дж / г / ° C.Используйте виджет ниже, чтобы просмотреть удельную теплоемкость различных материалов. Просто введите название вещества (алюминий, железо, медь, вода, метанол, дерево и т. Д.) И нажмите кнопку «Отправить»; результаты будут отображены в отдельном окне.


Удельная теплоемкость твердого алюминия (0,904 Дж / г / ° C) отличается от удельной теплоемкости твердого железа (0,449 Дж / г / ° C). Это означает, что для повышения температуры данной массы алюминия на 1 ° C потребуется больше тепла, чем для повышения температуры той же массы железа на 1 ° C.Фактически, для повышения температуры образца алюминия на заданное количество потребуется примерно вдвое больше тепла по сравнению с тем же изменением температуры того же количества железа. Это связано с тем, что удельная теплоемкость алюминия почти вдвое больше, чем у железа.

Теплоемкость указана из расчета на грамм или на килограмм . Иногда значение указывается на основе на моль , и в этом случае оно называется молярной теплоемкостью. Тот факт, что они указаны из расчета на количество , указывает на то, что количество тепла, необходимое для повышения температуры вещества, зависит от того, сколько вещества в нем содержится.Эту истину, несомненно, знает всякий, кто варил на плите кастрюлю с водой. Вода закипает при температуре 100 ° C на уровне моря и при слегка пониженной температуре на возвышенностях. Чтобы довести кастрюлю с водой до кипения, ее сначала нужно поднять до 100 ° C. Это изменение температуры достигается за счет поглощения тепла горелкой печи. Быстро замечаешь, что для того, чтобы довести до кипения полную кастрюлю с водой, требуется значительно больше времени, чем для того, чтобы довести до кипения наполовину полную. Это связано с тем, что полная кастрюля с водой должна поглощать больше тепла, чтобы вызвать такое же изменение температуры.Фактически, требуется вдвое больше тепла, чтобы вызвать такое же изменение температуры в двойной массе воды.

Удельная теплоемкость также указана из расчета на K или на ° C . Тот факт, что удельная теплоемкость указана из расчета на градус , указывает на то, что количество тепла, необходимое для повышения данной массы вещества до определенной температуры, зависит от изменения температуры, необходимого для достижения этой конечной температуры.Другими словами, важна не конечная температура, а общее изменение температуры. Для изменения температуры воды с 20 ° C до 100 ° C (изменение на 80 ° C) требуется больше тепла, чем для повышения температуры того же количества воды с 60 ° C до 100 ° C (изменение на 40 ° C). ° С). Фактически, для изменения температуры данной массы воды на 80 ° C требуется вдвое больше тепла по сравнению с изменением на 40 ° C. Человек, который хочет быстрее довести воду до кипения на плите, должен начать с теплой водопроводной воды вместо холодной.

Это обсуждение удельной теплоемкости заслуживает одного заключительного комментария. Термин «удельная теплоемкость» в некоторой степени неправильный , неправильное обозначение . Этот термин означает, что вещества могут обладать способностью удерживать вещь , называемую теплотой. Как уже говорилось ранее, тепло — это не то, что содержится в объекте. Тепло — это то, что передается к объекту или от него. Объекты содержат энергию в самых разных формах. Когда эта энергия передается другим объектам с другой температурой, мы называем переданную энергию теплом или тепловой энергией .Хотя это вряд ли приживется, более подходящим термином будет удельная энергоемкость.


Связь количества тепла с изменением температуры

Удельная теплоемкость позволяет математически связать количество тепловой энергии, полученной (или потерянной) образцом любого вещества, с массой образца и ее результирующим изменением температуры. Связь между этими четырьмя величинами часто выражается следующим уравнением.

Q = m • C • ΔT

где Q — количество тепла, переданного объекту или от него, m — масса объекта, C — удельная теплоемкость материала, из которого состоит объект, а ΔT — результирующее изменение температуры объекта. Как и во всех других ситуациях в науке, значение дельта (∆) для любой величины вычисляется путем вычитания начального значения количества из окончательного значения количества. В этом случае ΔT равно T final — T initial .При использовании приведенного выше уравнения значение Q может быть положительным или отрицательным. Как всегда, положительный и отрицательный результат расчета имеет физическое значение. Положительное значение Q указывает, что объект получил тепловую энергию из окружающей среды; это соответствовало бы повышению температуры и положительному значению ΔT. Отрицательное значение Q указывает на то, что объект выделяет тепловую энергию в окружающую среду; это соответствовало бы снижению температуры и отрицательному значению ΔT.

Знание любых трех из этих четырех величин позволяет человеку вычислить четвертое количество. Обычная задача на многих уроках физики включает решение проблем, связанных с отношениями между этими четырьмя величинами. В качестве примеров рассмотрим две проблемы ниже. Решение каждой проблемы разработано для вас. Дополнительную практику можно найти в разделе «Проверьте свое понимание» внизу страницы.

Пример проблемы 1
Какое количество тепла требуется для повышения температуры 450 граммов воды с 15 ° C до 85 ° C? Удельная теплоемкость воды 4.18 Дж / г / ° C.

Как и любая проблема в физике, решение начинается с определения известных величин и соотнесения их с символами, используемыми в соответствующем уравнении. В этой задаче мы знаем следующее:

м = 450 г
С = 4,18 Дж / г / ° C
T начальный = 15 ° C
T окончательный = 85 ° C

Мы хотим определить значение Q — количество тепла.Для этого мы использовали бы уравнение Q = m • C • ΔT. Буквы m и C известны; ΔT можно определить по начальной и конечной температуре.

T = T окончательный — T начальный = 85 ° C — 15 ° C = 70 ° C

Зная три из четырех величин соответствующего уравнения, мы можем подставить и решить для Q.

Q = m • C • ΔT = (450 г) • (4,18 Дж / г / ° C) • (70 ° C)
Q = 131670 Дж
Q = 1.3×10 5 J = 130 кДж (округлено до двух значащих цифр)

Пример задачи 2
Образец 12,9 грамма неизвестного металла при температуре 26,5 ° C помещают в чашку из пенополистирола, содержащую 50,0 граммов воды при температуре 88,6 ° C. Вода охлаждается, и металл нагревается, пока не будет достигнуто тепловое равновесие при 87,1 ° C. Предполагая, что все тепло, теряемое водой, передается металлу, а чашка идеально изолирована, определите удельную теплоемкость неизвестного металла.Удельная теплоемкость воды составляет 4,18 Дж / г / ° C.


По сравнению с предыдущей проблемой это гораздо более сложная проблема. По сути, эта проблема похожа на две проблемы в одной. В основе стратегии решения проблем лежит признание того, что количество тепла, теряемого водой (Q вода ), равно количеству тепла, полученного металлом (Q металл ). Поскольку значения m, C и ΔT воды известны, можно вычислить Q water .Это значение Q воды равно значению металла Q . Как только значение металла Q известно, его можно использовать со значением m и ΔT металла для расчета металла Q . Использование этой стратегии приводит к следующему решению:

Часть 1: Определение потерь тепла водой

Дано:

м = 50,0 г
С = 4,18 Дж / г / ° C
Т начальная = 88,6 ° С
Т финальный = 87.1 ° С
ΔT = -1,5 ° C (T конечный — T начальный )

Решить для Q воды :

Q вода = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (-1,5 ° C)
Q вода = -313,5 Дж (без заземления)
(Знак — означает, что вода теряет тепло)

Часть 2: Определите стоимость металла C

Дано:

Q металл = 313.5 Дж (используйте знак +, так как металл нагревается)
m = 12,9 г
T начальный = 26,5 ° C
T окончательная = 87,1 ° C
ΔT = (T конечный — T начальный )

Решить для C металл :

Переставьте Q из металла = m из металла • C из металла • ΔT из металла , чтобы получить C из металла = Q из металла / (m из металла • ΔT из металла )

C металл = Q металл / (м металл • ΔT металл ) = (313.5 Дж) / [(12,9 г) • (60,6 ° C)]
C металл = 0,40103 Дж / г / ° C
C металл = 0,40 Дж / г / ° C (округлено до двух значащих цифр)


Тепло и изменения состояния

Приведенное выше обсуждение и соответствующее уравнение (Q = m • C • ∆T) связывает тепло, получаемое или теряемое объектом, с результирующими изменениями температуры этого объекта. Как мы узнали, иногда тепло накапливается или теряется, но температура не меняется.Это тот случай, когда вещество претерпевает изменение состояния. Итак, теперь мы должны исследовать математику, связанную с изменениями состояния и количества тепла.

Чтобы начать обсуждение, давайте рассмотрим различные изменения состояния, которые можно наблюдать для образца вещества. В таблице ниже перечислены несколько изменений состояния и указаны имена, обычно связанные с каждым процессом.

Процесс

Изменение состояния

Плавка

От твердого до жидкого

Замораживание

От жидкости к твердому веществу

Испарение

От жидкости к газу

Конденсация

Газ — жидкость

Сублимация

Твердое тело в газ

Депонирование

Газ в твердое вещество


В случае плавления, кипения и сублимации к образцу вещества должна быть добавлена ​​энергия, чтобы вызвать изменение состояния.Такие изменения состояния называют эндотермическими. Замораживание, конденсация и осаждение экзотермичны; энергия высвобождается образцом материи, когда происходят эти изменения состояния. Таким образом, можно заметить, что образец льда (твердая вода) тает, когда его помещают на горелку или рядом с ней. Тепло передается от горелки к образцу льда; энергия приобретается льдом, вызывая изменение состояния. Но сколько энергии потребуется, чтобы вызвать такое изменение состояния? Есть ли математическая формула, которая могла бы помочь в определении ответа на этот вопрос? Безусловно, есть.

Количество энергии, необходимое для изменения состояния образца материи, зависит от трех вещей. Это зависит от того, что такое субстанция, от того, сколько субстанции претерпевает изменение состояния, и от того, какое изменение состояния происходит. Например, для плавления льда (твердая вода) требуется другое количество энергии, чем для плавления железа. И для таяния льда (твердая вода) требуется другое количество энергии, чем для испарения того же количества жидкой воды. И, наконец, для плавления 10 требуется другое количество энергии.0 граммов льда по сравнению с таянием 100,0 граммов льда. Вещество, процесс и количество вещества — это три переменные, которые влияют на количество энергии, необходимое для того, чтобы вызвать конкретное изменение состояния. Используйте виджет ниже, чтобы исследовать влияние вещества и процесса на изменение энергии. (Обратите внимание, что теплота плавления — это изменение энергии, связанное с изменением состояния твердое-жидкое.)


Значения удельной теплоты плавления и удельной теплоты парообразования указаны из расчета на количество .Например, удельная теплота плавления воды составляет 333 Дж / грамм. Чтобы растопить 1,0 грамм льда, требуется 333 Дж энергии. Чтобы растопить 10 граммов льда, требуется в 10 раз больше энергии — 3330 Дж. Такое рассуждение приводит к следующим формулам, связывающим количество тепла с массой вещества и теплотой плавления и испарения.

Для плавления и замораживания: Q = m • ΔH плавление
Для испарения и конденсации: Q = m • ΔH испарение

где Q представляет количество энергии, полученной или высвобожденной во время процесса, m представляет собой массу образца, ΔH плавления представляет собой удельную теплоту плавления (на грамм) и ΔH испарения представляет собой удельную теплоемкость плавления. испарение (из расчета на грамм).Подобно обсуждению Q = m • C • ΔT, значения Q могут быть как положительными, так и отрицательными. Значения Q положительны для процесса плавления и испарения; это согласуется с тем фактом, что образец вещества должен набирать энергию, чтобы плавиться или испаряться. Значения Q отрицательны для процесса замораживания и конденсации; это согласуется с тем фактом, что образец вещества должен терять энергию, чтобы замерзнуть или конденсироваться.

В качестве иллюстрации того, как можно использовать эти уравнения, рассмотрим следующие два примера задач.

Пример задачи 3
Элиза кладет в свой напиток 48,2 грамма льда. Какое количество энергии будет поглощено льдом (и высвобождено напитком) в процессе таяния? Теплота плавления воды 333 Дж / г.

Уравнение, связывающее массу (48,2 грамма), теплоту плавления (333 Дж / г) и количество энергии (Q): Q = m • ΔH fusion .Подстановка известных значений в уравнение приводит к ответу.

Q = м • ΔH плавление = (48,2 г) • (333 Дж / г)
Q = 16050,6 Дж
Q = 1,61 x 10 4 Дж = 16,1 кДж (округлено до трех значащих цифр)

Пример Задачи 3 включает в себя довольно простое вычисление типа «подключай и исправляй». Теперь мы попробуем пример задачи 4, который потребует более глубокого анализа.

Пример задачи 4
Какое минимальное количество жидкой воды на 26.5 градусов, которые потребуются, чтобы полностью растопить 50,0 граммов льда? Удельная теплоемкость жидкой воды составляет 4,18 Дж / г / ° C, а удельная теплота плавления льда — 333 Дж / г.

В этой задаче лед тает, а жидкая вода остывает. Энергия передается от жидкости к твердому телу. Чтобы растопить твердый лед, на каждый грамм льда необходимо передать 333 Дж энергии. Эта передача энергии от жидкой воды ко льду охлаждает жидкость.Но жидкость может охладиться только до 0 ° C — точки замерзания воды. При этой температуре жидкость начнет затвердевать (замерзнуть), а лед полностью не растает.

Мы знаем следующее о льду и жидкой воде:

Информация о льду:

м = 50,0 г
ΔH плавление = 333 Дж / г

Информация о жидкой воде:

С = 4.18 Дж / г / ° C
T начальный = 26,5 ° C
T окончательный = 0,0 ° C
ΔT = -26,5 ° C (T конечный — T начальный )

Энергия, полученная льдом, равна энергии, потерянной из воды.

Q лед = -Q жидкая вода

Знак — указывает, что один объект получает энергию, а другой объект теряет энергию. Мы можем вычислить левую часть приведенного выше уравнения следующим образом:

Q лед = m • ΔH плавление = (50.0 г) • (333 Дж / г)
Q лед = 16650 Дж

Теперь мы можем установить правую часть уравнения равной m • C • ΔT и начать подставлять известные значения C и ΔT, чтобы найти массу жидкой воды. Решение:

16650 Дж = -Q жидкая вода
16650 Дж = -м жидкая вода • C жидкая вода • ΔT жидкая вода
16650 Дж = -м жидкая вода • (4.18 Дж / г / ° C) • (-26,5 ° C)
16650 Дж = -м жидкая вода • (-110,77 Дж / ° C)
м жидкая вода = — (16650 Дж) / (- 110,77 Дж / ° C)
м жидкая вода = 150,311 г
м жидкая вода = 1,50×10 2 г (округлено до трех значащих цифр)


Еще раз о кривых нагрева и охлаждения

На предыдущей странице Урока 2 обсуждалась кривая нагрева воды.Кривая нагрева показывала, как температура воды увеличивалась с течением времени по мере нагрева образца воды в твердом состоянии (т. Е. Льда). Мы узнали, что добавление тепла к образцу воды может вызвать либо изменение температуры, либо изменение состояния. При температуре плавления воды добавление тепла вызывает преобразование воды из твердого состояния в жидкое состояние. А при температуре кипения воды добавление тепла вызывает преобразование воды из жидкого состояния в газообразное.Эти изменения состояния произошли без каких-либо изменений температуры. Однако добавление тепла к образцу воды, не имеющей температуры фазового перехода, приведет к изменению температуры.

Теперь мы можем подойти к теме кривых нагрева на более количественной основе. На диаграмме ниже представлена ​​кривая нагрева воды. На нанесенных линиях есть пять помеченных участков.


Три диагональных участка представляют собой изменения температуры пробы воды в твердом состоянии (участок 1), жидком состоянии (участок 3) и газообразном состоянии (участок 5).Две горизонтальные секции представляют изменения в состоянии воды. На участке 2 проба воды тает; твердое вещество превращается в жидкость. В секции 4 образец воды подвергается кипению; жидкость превращается в газ. Количество тепла, передаваемого воде в секциях 1, 3 и 5, связано с массой образца и изменением температуры по формуле Q = m • C • ΔT. А количество тепла, переданного воде в секциях 2 и 4, связано с массой образца и теплотой плавления и испарения формулами Q = m • ΔH fusion (секция 2) и Q = m • ΔH испарение (раздел 4).Итак, теперь мы попытаемся вычислить количество тепла, необходимое для перевода 50,0 граммов воды из твердого состояния при -20,0 ° C в газообразное состояние при 120,0 ° C. Для расчета потребуется пять шагов — по одному шагу для каждого раздела приведенного выше графика. Хотя удельная теплоемкость вещества зависит от температуры, в наших расчетах мы будем использовать следующие значения удельной теплоемкости:

Твердая вода: C = 2,00 Дж / г / ° C
Жидкая вода: C = 4,18 Дж / г / ° C
Газообразная вода: C = 2.01 Дж / г / ° C

Наконец, мы будем использовать ранее сообщенные значения ΔH слияния (333 Дж / г) и ΔH испарения (2,23 кДж / г).

Раздел 1 : Изменение температуры твердой воды (льда) с -20,0 ° C до 0,0 ° C.

Используйте Q 1 = m • C • ΔT

, где m = 50,0 г, C = 2,00 Дж / г / ° C, T начальная = -200 ° C и T конечная = 0,0 ° C

Q 1 = m • C • ΔT = (50.0 г) • (2,00 Дж / г / ° C) • (0,0 ° C — -20,0 ° C)
Q 1 = 2,00 x10 3 Дж = 2,00 кДж

Раздел 2 : Таяние льда при 0,0 ° C.

Используйте Q 2 = m • ΔH сварка

, где m = 50,0 г и ΔH плавление = 333 Дж / г

Q 2 = m • ΔH плавление = (50,0 г) • (333 Дж / г)
Q 2 = 1,665 x10 4 J = 16.65 кДж
Q 2 = 16,7 кДж (округлено до 3 значащих цифр)

Раздел 3 : Изменение температуры жидкой воды с 0,0 ° C на 100,0 ° C.

Используйте Q 3 = m • C • ΔT

, где m = 50,0 г, C = 4,18 Дж / г / ° C, T начальная = 0,0 ° C и T конечная = 100,0 ° C

Q 3 = m • C • ΔT = (50,0 г) • (4,18 Дж / г / ° C) • (100,0 ° C — 0,0 ° C)
Q 3 = 2.09 x10 4 Дж = 20,9 кДж

Раздел 4 : Кипячение воды при 100,0 ° C.

Используйте Q 4 = m • ΔH испарение

, где m = 50,0 г и ΔH испарение = 2,23 кДж / г

Q 4 = m • ΔH испарение = (50,0 г) • (2,23 кДж / г)
Q 4 = 111,5 кДж
Q 4 = 112 кДж (округлено до 3 значащих цифр)

Раздел 5 : Изменение температуры жидкой воды со 100.От 0 ° C до 120,0 ° C.

Используйте Q 5 = m • C • ΔT

, где m = 50,0 г, C = 2,01 Дж / г / ° C, T начальная = 100,0 ° C и T конечная = 120,0 ° C

Q 5 = m • C • ΔT = (50,0 г) • (2,01 Дж / г / ° C) • (120,0 ° C — 100,0 ° C)
Q 5 = 2,01 x10 3 J = 2,01 кДж

Общее количество тепла, необходимое для превращения твердой воды (льда) при -20 ° C в газообразную воду при 120 ° C, является суммой значений Q для каждого участка графика.То есть

Q итого = Q 1 + Q 2 + Q 3 + Q 4 + Q 5

Суммирование этих пяти значений Q и округление до нужного количества значащих цифр приводит к значению 154 кДж в качестве ответа на исходный вопрос.


В приведенном выше примере есть несколько особенностей решения, над которыми стоит задуматься:

  • Первое: длинная задача была разделена на части, каждая из которых представляет собой одну из пяти частей графика.Поскольку было вычислено пять значений Q, они были обозначены как Q 1 , Q 2 и т. Д. Этот уровень организации требуется в многоступенчатой ​​задаче, такой как эта.
  • Секунда: внимание было уделено знаку +/- на ΔT. Изменение температуры (или любой величины) всегда рассчитывается как конечное значение величины за вычетом начального значения этой величины.
  • Третий: На протяжении всей задачи внимание уделялось подразделениям.Единицы Q будут либо в Джоулях, либо в килоджоулях, в зависимости от того, какие количества умножаются. Отсутствие внимания к устройствам — частая причина сбоев в подобных проблемах.
  • Четвертый: На протяжении всей задачи внимание уделялось значащим цифрам. Хотя это никогда не должно становиться основным акцентом какой-либо проблемы в физике, это, безусловно, деталь, на которую стоит обратить внимание.

Мы узнали здесь, на этой странице, как рассчитать количество тепла, задействованного в любом процессе нагрева / охлаждения и в любом процессе изменения состояния.Это понимание будет иметь решающее значение, когда мы перейдем к следующей странице Урока 2, посвященной калориметрии. Калориметрия — это наука, связанная с определением изменений энергии системы путем измерения теплообмена с окружающей средой.

Проверьте свое понимание

1. Вода имеет необычно высокую удельную теплоемкость. Какое из следующих утверждений логически следует из этого факта?

а.По сравнению с другими веществами горячая вода вызывает сильные ожоги, потому что хорошо проводит тепло.
б. По сравнению с другими веществами вода при нагревании быстро нагревается до высоких температур.
c. По сравнению с другими веществами, образец воды требует значительного количества тепла, чтобы немного изменить ее температуру.

2. Объясните, почему в больших водоемах, таких как озеро Мичиган, в начале июля может быть довольно прохладно, несмотря на то, что температура наружного воздуха около или выше 90 ° F (32 ° C).

3. В таблице ниже описан термический процесс для различных объектов (выделен красным жирным шрифтом). Для каждого описания укажите, набирается или теряется тепло объектом, является ли процесс эндотермическим или экзотермическим, и является ли Q для указанного объекта положительным или отрицательным значением.

Процесс

Получено или потеряно тепло?

Эндо- или экзотермический?

Q: + или -?

а.

Кубик льда помещается в стакан с лимонадом комнатной температуры, чтобы охладить напиток.

г.

Стакан холодного лимонада стоит на столе для пикника под жарким полуденным солнцем и нагревается до 32 ° F.

г.

Конфорки на электроплите выключаются и постепенно остывают до комнатной температуры.

г.

Учитель вынимает из термоса большой кусок сухого льда и опускает его в воду. Сухой лед возгоняется, образуя газообразный диоксид углерода.

e.

Водяной пар в увлажненном воздухе ударяется о окно и превращается в каплю росы (каплю жидкой воды).

4. Образец металлического цинка массой 11,98 грамма помещают в баню с горячей водой и нагревают до 78,4 ° C. Затем его удаляют и помещают в чашку из пенополистирола, содержащую 50,0 мл воды комнатной температуры (T = 27,0 ° C; плотность = 1,00 г / мл). Вода прогревается до температуры 28.1 ° С. Определите удельную теплоемкость цинка.

5. Джейк берет из туалета банку с газировкой и выливает ее в чашку со льдом. Определите количество тепла, теряемого содой комнатной температуры при плавлении 61,9 г льда (ΔH fusion = 333 Дж / г).

6. Теплота сублимации (ΔH сублимация ) сухого льда (твердый диоксид углерода) составляет 570 Дж / г. Определите количество тепла, необходимое для превращения 5,0-фунтового мешка сухого льда в газообразный диоксид углерода.(Дано: 1,00 кг = 2,20 фунта)

7. Определите количество тепла, необходимое для повышения температуры 3,82-граммового образца твердого пара-дихлорбензола с 24 ° C до жидкого состояния при 75 ° C. Пара-дихлорбензол имеет температуру плавления 54 ° C, теплоту плавления 124 Дж / г и удельную теплоемкость 1,01 Дж / г / ° C (твердое состояние) и 1,19 Дж / г / ° C (жидкое состояние).

3.12: Расчеты энергоемкости и теплоемкости

Цели обучения

  • Связать теплопередачу с изменением температуры.

Тепло — знакомое проявление передачи энергии. Когда мы прикасаемся к горячему объекту, энергия перетекает от горячего объекта к нашим пальцам, и мы воспринимаем эту поступающую энергию как «горячий» объект. И наоборот, когда мы держим кубик льда в ладонях, энергия перетекает из руки в кубик льда, и мы воспринимаем эту потерю энергии как «холод».«В обоих случаях температура объекта отличается от температуры нашей руки, поэтому мы можем сделать вывод, что разница температур является основной причиной теплопередачи.

Удельную теплоемкость вещества можно использовать для расчета изменения температуры, которому подвергнется данное вещество при нагревании или охлаждении. Уравнение, связывающее тепло \ (\ left (q \ right) \) с удельной теплоемкостью \ (\ left (c_p \ right) \), массой \ (\ left (m \ right) \) и изменением температуры \ (\ left (\ Delta T \ right) \) показан ниже.

\ [q = c_p \ times m \ times \ Delta T \]

Поглощаемое или выделяемое тепло измеряется в джоулях. Масса измеряется в граммах. Изменение температуры определяется выражением \ (\ Delta T = T_f — T_i \), где \ (T_f \) — конечная температура, а \ (T_i \) — начальная температура.

Каждое вещество имеет характерную удельную теплоемкость, которая выражается в единицах кал / г • ° C или кал / г • К, в зависимости от единиц, используемых для выражения Δ T .\text{o} \text{C} \right)\)»> 0.233

Направление теплового потока не показано в heat = mc Δ T . Если энергия поступает в объект, общая энергия объекта увеличивается, и значения тепла Δ T положительны. Если энергия исходит из объекта, общая энергия объекта уменьшается, а значения тепла и Δ T являются отрицательными.

Пример \ (\ PageIndex {1} \)

A \ (15.0 \: \ text {g} \) кусок металлического кадмия поглощает \ (134 \: \ text {J} \) тепла, поднимаясь из \ (24.\ text {o} \ text {C} \]

Пример \ (\ PageIndex {2} \)

Какое количество тепла передается при нагревании блока металлического железа весом 150,0 г с 25,0 ° C до 73,3 ° C? Какое направление теплового потока?

Решение

Мы можем использовать heat = mc Δ T , чтобы определить количество тепла, но сначала нам нужно определить Δ T . Поскольку конечная температура утюга составляет 73,3 ° C, а начальная температура составляет 25,0 ° C, Δ T имеет следующий вид:

Δ T = T конечный T начальный = 73.\ circ C) = 782 \: cal} \]

Обратите внимание, как единицы измерения грамм и ° C отменяются алгебраически, оставляя только единицу калорий, которая является единицей тепла. Поскольку температура железа увеличивается, энергия (в виде тепла) должна течь в металл .

Упражнение \ (\ PageIndex {1} \)

Какое количество тепла передается при охлаждении блока металлического алюминия массой 295,5 г с 128,0 ° C до 22,5 ° C? Какое направление теплового потока?

Ответ
Тепло уходит из алюминиевого блока.

Пример \ (\ PageIndex {2} \)

Образец красновато-коричневого металла массой 10,3 г выделил 71,7 кал тепла при снижении его температуры с 97,5 ° C до 22,0 ° C. Какова удельная теплоемкость металла? Можете ли вы идентифицировать металл по данным в Таблице \ (\ PageIndex {1} \)?

Решение

Вопрос дает нам тепло, конечную и начальную температуры и массу образца. Значение Δ T составляет:

Δ T = T конечный T начальный = 22.\ circ C)}} \)

c = 0,0923 кал / г • ° C

Это значение удельной теплоемкости очень близко к значению, приведенному для меди в таблице 7.3.

Упражнение \ (\ PageIndex {2} \)

Кристалл хлорида натрия (NaCl) массой 10,7 г имеет начальную температуру 37,0 ° C. Какова конечная температура кристалла, если на него было подано 147 кал тепла?

Ответ

Сводка

Проиллюстрированы расчеты удельной теплоемкости.

Авторы и авторства

Эта страница была создана на основе содержимого следующими участниками и отредактирована (тематически или всесторонне) командой разработчиков LibreTexts в соответствии со стилем, представлением и качеством платформы:

Калькулятор удельной теплоемкости — определение теплоемкости веществ

Онлайн-калькулятор удельной теплоемкости помогает определить удельную теплоемкость, тепловую энергию, массу вещества, начальную и конечную температуру любого вещества.Когда дело доходит до анализа удельной теплоемкости воды или любого другого вещества, он сообщает нам формулу теплоемкости вместе со всем раствором для соответствующего вещества.

Вы попробуете этот калькулятор удельной теплоемкости, чтобы определить теплоемкость нагретого или охлажденного образца.

Хорошо, прочтите данный контекст, чтобы понять, как вычислить удельную теплоемкость (шаг за шагом) и с помощью калькулятора уравнения q = mc∠† t. Но давайте начнем с основ!

Что такое удельная теплоемкость?

Это количество тепла, необходимое для изменения температуры единицы массы любого вещества всего на один градус.Чтобы найти удельную теплоемкость, мы можем сказать, что это мера общей энергии, необходимой для нагрева 1 килограмма любого материала до 1 ° Цельсия или 1 Кельвина. Эти явления должны происходить в диапазоне температур, в котором вещество не меняет своего состояния, например в случае воды она не должна закипать.

Для удобства используйте этот бесплатный, но лучший калькулятор закона Ома для расчета напряжения (В) и сопротивления (R). Ток (I) и мощность (P).

Формула удельной теплоемкости:

Формула теплоемкости:

$$ C = \ frac {Q} {m \ times \ Delta T} $$

А:

  • \ (C \) представляет собой удельную теплоемкость
  • \ (Q \) представляет наведенную тепловую энергию
  • \ (м \) представляет собой массу
  • \ (\ Delta T \) — разница температур
  • \ (J \) — это
  • джоулей
  • \ (° C \) — градусы Цельсия или
  • Цельсия
  • \ (K \) —
  • кельвинов

Пример:

Если у вас есть кусок любого металла весом \ (15 г \), который поглощает \ (134 Дж \) тепла, увеличиваясь с \ (24.От 0 ° C \) до \ (62,7 ° C \). Как вы рассчитаете его удельную теплоемкость?

  • С учетом тепла \ (q = 134 Дж \)
  • Заданная масса \ (m = 15,0 г \)
  • Изменение температуры: \ (\ Delta T = 62,7 — 24,0 = 38,7 \)

Чтобы найти удельную теплоемкость, введите значения в приведенное выше уравнение теплоемкости: \ (\ frac {q} {m \ times \ Delta T} = \ frac {134} {15 \ times 38,7} = 0,231 \). Однако калькулятор удельной теплоемкости может помочь вам найти значения без каких-либо ручных расчетов.

Однако плотность имеет решающее значение для определения чистоты веществ, поэтому попробуйте онлайн-калькулятор плотности, чтобы найти взаимосвязь между плотностью, массой и весом объекта.

Единица удельной теплоемкости:

Определение удельной теплоемкости показало, что это количество тепла, необходимое для повышения температуры 1 килограмма любого вещества на 1 кельвин. Следовательно, его производная единица \ (SI \) равна \ (J kg − 1 K − 1 \). Калькулятор удельной теплоемкости служит для получения результатов вместе со стандартизованными единицами измерения.

Удельная теплоемкость воды? Удельная теплоемкость воды

имеет одно из максимальных значений удельной теплоемкости среди обычных веществ.Это примерно \ (4182 Дж / (К · кг) при 20 ° C \). В случае льда это всего \ (2093 Дж / (К · кг) \).

Как рассчитать удельную теплоемкость (шаг за шагом)?

С поддержкой формулы удельной теплоемкости расчет удельной теплоемкости является простым процессом. Посмотрите ниже и выполните несколько простых шагов:

Шаг 1:

Прежде всего, вы должны определить, хотите ли вы нагреть вещество или охладить его. Теперь представьте количество подаваемой энергии как положительное значение.Охлаждая образец, вы должны дать вычтенную энергию как отрицательное значение. Например, предположим, что мы хотим уменьшить тепловую энергию дегустатора на \ (63000 Дж \). Тогда \ (Q \) будет \ (- 63 000 Дж \).

Шаг 2:

Теперь определите разницу между начальным и конечным состоянием образца. Предположим, что разница равна \ (ΔT = -3 K \), а m равно 5 кг.

Шаг 3:

Просто введите значения в уравнение теплоемкости как \ (c = Q / (m x ΔT) \).В этом примере это будет равно c = \ (- 63 000 Дж / (5 кг * -3 K) = 4 200 Дж / (кг • K) \).

Это типичная теплоемкость воды, которую также можно рассчитать с помощью калькулятора удельной теплоемкости за один раз.

Удельная теплоемкость некоторых распространенных веществ:

Нет необходимости использовать калориметрический калькулятор, чтобы определить удельную теплоемкость обычных веществ, как мы их перечислили ниже:

Стол:

Как пользоваться калькулятором удельной теплоемкости?

Онлайн-калькулятор удельной теплоемкости помогает определить теплоемкость различных веществ.Просто выполните следующие действия, чтобы получить точные результаты для веществ:

Ввод:

  • Прежде всего, выберите вариант, вы хотите найти тепловую энергию, удельную теплоемкость, массу, начальную температуру, конечную температуру любого вещества
  • Затем выберите вариант, в котором необходимо выполнить расчеты по изменению температуры \ (ΔT) \) или начальной и конечной температуры
  • Теперь вы можете добавлять значения в назначенные поля для выбранных опций
  • Затем выберите вещество, например (вода, почва, алюминий, асфальт и т. Д.), Для которого вам нужно найти удельную теплоемкость (это поле необязательно).
  • Нажмите кнопку «рассчитать»

Выход:

Калькулятор удельной теплоемкости вычисляет:

  • Тепловая энергия, удельная теплоемкость, масса, начальная или конечная температура вещества
  • Удельная теплоемкость данного вещества
  • Формула для выбранного варианта
  • Пошаговое решение по формуле по выбранному варианту

Примечание: Калькулятор удельной теплоемкости поддерживает различные единицы измерения, чтобы предоставить вам точные результаты для веществ.

Сколько энергии требуется для повышения температуры одного грамма воды на 1 градус?

Калории определяются как количество тепла, которое требуется при давлении 1 для повышения температуры 1 грамма воды при \ (1 ° \) Цельсия. Кроме того, калории были определены в джоулях, и одна калория равна примерно \ (4,2 джоуля \). Следовательно, мы можем сказать, что для повышения температуры 1 грамма воды требуется \ (4,2 джоуля \) энергии. Однако калькулятор теплоемкости — лучший способ получить безошибочный ответ.

Часто задаваемые вопросы:

Почему у воды такая высокая теплоемкость?

Высокая теплоемкость воды обусловлена ​​водородными связями между ее молекулами. Когда тепло поглощается водой, связи водородных тормозов и молекул воды начинают свободно перемещаться. При понижении температуры воды водородные связи выделяют значительное количество энергии.

Сколько тепла нужно, чтобы растопить 200 г льда?

Обычно \ (250 × 332 джоулей \) энергии, необходимой для плавления \ (200 нг \) льда.

Сколько энергии нужно, чтобы растопить лед?

Если вы хотите растопить, требуется 1 г льда с \ (0 ° C \) общим \ (334 Джоуля \) энергии. Его еще называют скрытой теплотой плавления. Калькулятор удельной теплоемкости может рассчитать джоули энергии для нескольких граммов любого вещества за несколько секунд.

На вынос:

У всех нас есть некоторое представление о том, что такое удельная теплоемкость, как мы изучали физику в наших академических кругах. Это количество тепла, которое необходимо для повышения температуры определенного материала на определенное количество, и это количество тепла будет изменяться для разнородных веществ.Конкретный калькулятор — лучший способ найти количество тепла, необходимое для повышения температуры \ (1 (г) \) вещества \ (1 (° C) \).

Каталожные номера:

Из информационного источника Википедии: Удельная теплоемкость

Из источника викторины: тепловая энергия (практические задачи)

От источника искры (ИОП): полное обсуждение теплоемкости

Требования к тепловой энергии

Целью любого нагревательного устройства является повышение или поддержание температуры твердого вещества, жидкости или газа до или на уровне, подходящем для конкретного процесса или применения.Большинство систем отопления можно разделить на две основные ситуации; приложения, требующие поддержания постоянной температуры, и приложения или процессы, требующие нагрева рабочего продукта до различных температур. Принципы и процедуры расчета аналогичны для любой ситуации.

Приложения с постоянной температурой

Большинство применений с постоянной температурой — это особые случаи, когда температура твердого тела, жидкости или газа поддерживается на постоянном уровне независимо от температуры окружающей среды.Расчетные коэффициенты и расчеты основаны на установившемся режиме при фиксированной разнице температур. Потери тепла и потребности в энергии оцениваются с использованием условий «наихудшего случая».

По этой причине определить потребность в тепловой энергии для применения с постоянной температурой относительно просто. Комфортный обогрев (постоянная температура воздуха) и защита трубопроводов от замерзания являются типичными примерами приложений с постоянной температурой. Уравнения и процедуры для расчета потребности в тепле для нескольких приложений обсуждаются далее в этом разделе.


Приложения с переменной температурой

Приложения с переменной температурой (технологические процессы) обычно включают последовательность запуска и имеют множество рабочих переменных. Общая потребность в тепловой энергии для технологических процессов определяется как сумма этих расчетных переменных. В результате расчет тепловой энергии обычно более сложен, чем для приложений с постоянной температурой. Переменные:

Общая поглощенная тепловая энергия — Сумма всей тепловой энергии, поглощенной во время запуска или работы, включая рабочий продукт, скрытую теплоту плавления (или испарения), материалы, контейнеры и оборудование.

Общие потери тепловой энергии — Сумма потерь тепловой энергии из-за теплопроводности, конвекции, излучения, вентиляции и испарения во время запуска или работы.

Расчетный коэффициент безопасности — Коэффициент для компенсации неизвестных факторов в процессе или применении.


Технологические приложения

Выбор и определение размеров установленного оборудования в технологическом процессе основывается на большем из двух рассчитанных требований к тепловой энергии.В большинстве технологических процессов параметры запуска и эксплуатации представляют собой два совершенно разных состояния одного и того же процесса. Тепловая энергия, необходимая для запуска, обычно значительно отличается от энергии, необходимой для рабочих условий. Чтобы точно оценить требования к теплу для приложения, необходимо оценить каждое условие. Сравнительные значения определены следующим образом:

  • Расчетная тепловая энергия, необходимая для запуска процесса в течение определенного периода времени.
  • Расчетная тепловая энергия, необходимая для поддержания температуры процесса и рабочих условий в течение определенного времени цикла.

Определение поглощенной тепловой энергии

Первым шагом в определении общей потребности в тепловой энергии является определение поглощенной тепловой энергии. Если изменение состояния происходит как прямая или косвенная часть процесса, тепловая энергия, необходимая для изменения состояния, должна быть включена в расчеты.Это правило применяется независимо от того, происходит ли изменение во время запуска или позже, когда материал находится при рабочей температуре. Факторы, которые следует учитывать при расчетах поглощения тепла, показаны ниже:

Требования к запуску (начальный нагрев)
  • Тепло, поглощаемое при запуске:
    • Рабочие продукты и материалы
    • Оборудование (цистерны, стеллажи и др.)
  • Скрытое поглощение тепла при запуске или во время запуска:
    • Теплота плавления
    • Теплота испарения
  • Коэффициент времени
Рабочие требования (процесс)
  • Тепло, поглощаемое во время работы:
    • Рабочий продукт в процессе
    • Оборудование погрузочное (ремни, стойки и др.))
    • Макияжные материалы
  • Скрытое поглощение тепла при работе:
    • Теплота плавления
    • Теплота испарения
  • Коэффициент времени (или цикла), если применимо
Требования к запуску (начальный нагрев)
  • Тепло, поглощаемое при запуске:
    • Рабочие продукты и материалы
    • Оборудование (цистерны, стеллажи и др.))
  • Скрытое поглощение тепла при запуске или во время запуска:
    • Теплота плавления
    • Теплота испарения
  • Коэффициент времени
Рабочие требования (процесс)
  • Тепло, поглощаемое во время работы:
    • Рабочий продукт в процессе
    • Оборудование погрузочное (ремни, стойки и др.)
    • Макияжные материалы
  • Скрытое поглощение тепла при работе:
    • Теплота плавления
    • Теплота испарения
  • Коэффициент времени (или цикла), если применимо

Определение потерь тепловой энергии

Объекты или материалы, температура которых превышает температуру окружающей среды, теряют тепловую энергию за счет теплопроводности, конвекции и излучения.Жидкие поверхности, контактирующие с атмосферой, теряют тепловую энергию за счет испарения. При расчете общей потребности в тепловой энергии необходимо учитывать эти потери и обеспечивать достаточное количество энергии для их компенсации. Тепловые потери оцениваются как для условий запуска, так и для условий эксплуатации и добавляются в соответствующий расчет. Тепловые потери при запуске — Первоначально тепловые потери при запуске равны нулю, поскольку все материалы и оборудование находятся при температуре окружающей среды. Тепловые потери увеличиваются до максимума при рабочей температуре.Следовательно, потери тепла при запуске обычно основываются на среднем значении потерь при запуске и потерь при рабочей температуре. Потери тепла при рабочей температуре — тепловые потери максимальны при рабочей температуре. Тепловые потери при рабочей температуре принимаются за полную стоимость и добавляются к общей потребности в энергии.


Оценка коэффициентов тепловых потерь

Обсуждаемые теплопотери можно оценить, используя коэффициенты из диаграмм и графиков, представленных в этом разделе.Общие потери включают излучение, конвекцию и теплопроводность от различных поверхностей и выражаются в ваттах в час на единицу площади поверхности на градус температуры (Вт / час / фут 2 / ° F).

Примечание — Поскольку значения в таблицах уже выражены в ваттах в час, на них не влияет фактор времени «t» в уравнениях тепловой энергии.

Расчетный коэффициент безопасности

Во многих системах отопления фактические условия эксплуатации, тепловые потери и другие факторы, влияющие на процесс, можно только оценить.В большинстве расчетов рекомендуется использовать коэффициент запаса прочности, чтобы компенсировать такие неизвестные факторы, как вентиляционный воздух, теплоизоляция, материалы для подпитки и колебания напряжения. Например, колебание (или падение) напряжения на 5% приводит к изменению выходной мощности нагревателя на 10%.

Коэффициенты безопасности варьируются от 10 до 25% в зависимости от уровня уверенности проектировщика в оценке неизвестных. Коэффициент запаса прочности применяется к сумме рассчитанных значений поглощенной и потерянной тепловой энергии.

Общая потребность в тепловой энергии

Общая тепловая энергия (Q T ), необходимая для конкретного применения, является суммой ряда переменных. Основное уравнение полной энергии:

Q T = Q M + Q L + коэффициент безопасности

Где:

  • Q T = Общая необходимая энергия в киловаттах
  • Q M = Общая энергия в киловаттах, поглощенная рабочим продуктом, включая скрытую теплоту, вспомогательные материалы, емкости и оборудование
  • Q L = Общая энергия в киловаттах, теряемая поверхностями из-за теплопроводности, конвекции, излучения, вентиляции и испарения
  • Коэффициент безопасности = от 10% до 25%

Хотя Q T традиционно выражается в британских тепловых единицах (BTU), при использовании электрических нагревателей удобнее использовать ватты или киловатты.В этом случае выбор оборудования может основываться непосредственно на номинальной мощности нагревателя. Уравнения и примеры в этом разделе преобразованы в ватты.

Основные уравнения тепловой энергии

Следующие уравнения описывают вычисления, необходимые для определения переменных в приведенном выше уравнении полной энергии. Уравнения 1 и 2 используются для определения тепловой энергии, поглощаемой рабочим продуктом и оборудованием. Удельная теплоемкость и скрытая теплота различных материалов указаны в этом разделе в таблицах свойств неметаллических твердых тел, металлов, жидкостей, воздуха и газов.Уравнения 3 и 4 используются для определения потерь тепловой энергии. Потери тепловой энергии с поверхностей можно оценить, используя значения из кривых в таблицах G-114S, G-125S, G-126S или G-128S. Потери проводимости рассчитываются с использованием коэффициента теплопроводности или коэффициента «k», указанного в таблицах свойств материалов.

Уравнение 1 — Тепловая энергия, необходимая для повышения температуры материалов (без изменения состояния)

Поглощенная тепловая энергия определяется по весу материалов, удельной теплоемкости и изменению температуры.Некоторые материалы, такие как свинец, имеют разную удельную температуру в разных состояниях. Когда происходит изменение состояния, для этих материалов требуются два расчета: один для твердого материала и один для жидкости после того, как твердое тело расплавится.

Q A = фунтов x C P x Δ T 3412 БТЕ / кВт

Где:

  • Q A = кВтч, необходимый для повышения температуры
  • фунтов = вес материала в фунтах
  • C p = Удельная теплоемкость материала (БТЕ / фунт / ° F)
  • Δ T = изменение температуры в ° F [ T 2 (окончание) T 1 (начало) ]
Уравнение 2 — Тепловая энергия, необходимая для изменения состояния материалов

Поглощенная тепловая энергия определяется на основе веса материалов и скрытой теплоты плавления или испарения.

Q F или Q v = фунтов x H fus или H vap 3412 BTU / кВт

Где:

  • Q F = кВтч, необходимый для преобразования материала из твердого в жидкое
  • Q v = кВтч, необходимый для преобразования материала из жидкости в пар или газ
  • фунтов = вес материала в фунтах
  • H fus = Теплота плавления (БТЕ / фунт / ° F)
  • H vap = Теплота испарения (БТЕ / фунт / ° F)
Уравнение 3 — Тепловая энергия, теряемая с поверхностей

Тепловая энергия, теряемая поверхностями из-за излучения, конвекции и испарения, определяется по площади поверхности и скорости потерь в ваттах на квадратный фут в час.

Где:

  • Q LS = кВт-ч, потерянное с поверхностей из-за излучения, конвекции и испарения
  • A = Площадь поверхностей в квадратных футах
  • L S = Коэффициент потерь в ваттах на квадратный фут при конечной температуре (Вт / фут 2 / час по графикам)
Уравнение 4 — Тепловая энергия, теряемая из-за проводимости через материалы или изоляцию

Тепловая энергия, теряемая за счет теплопроводности, определяется площадью поверхности, теплопроводностью материала, толщиной и разницей температур в материале.

Q LC = A x k x Δ T d x 3412 БТЕ / кВт

Где:

  • Q LC = кВтч, потерянное из-за теплопроводности
  • A = Площадь поверхностей в квадратных футах
  • k = теплопроводность материала в британских тепловых единицах на дюйм на квадратный фут в час (британские тепловые единицы на дюйм на фут 2 на час)
  • Δ T = Разница температур в ° F по материалу [T2 — T1]
  • d = Толщина материала в дюймах

Обобщение требований к энергии

Уравнения 5a и 5b используются для суммирования результатов всех других уравнений, описанных на этой странице.Эти два уравнения определяют общую потребность в энергии для двух условий процесса: запуска и эксплуатации.

Уравнение 5a — Тепловая энергия, необходимая для запуска
Q T = ( Q A + Q F [или Q V ] т + Q LS + Q LC 2) (1 + SF)

Где:

  • Q T = Общая требуемая энергия в киловаттах
  • Q A = кВтч, необходимый для повышения температуры
  • Q F = кВтч, необходимый для преобразования материала из твердого в жидкое
  • Q V = кВтч, необходимый для преобразования материала из жидкости в пар или газ
  • Q LS = кВтч, потерянное с поверхностей из-за излучения, конвекции и испарения
  • Q LC = кВтч, потерянное из-за теплопроводности
  • SF = коэффициент безопасности (в процентах)
  • t = Время запуска в часах 2
Уравнение 5b — Тепловая энергия, необходимая для поддержания работы или процесса 3
Q T = ( Q A + Q F [или Q V ] + Q LS + Q LC ) (1 + SF)

Где:

  • Q T = Общая требуемая энергия в киловаттах
  • Q A = кВтч, необходимый для повышения температуры добавляемого материала
  • Q F = кВтч, необходимый для изменения добавленного материала с твердого на жидкое
  • Q V = кВтч, необходимый для замены добавляемого материала с жидкости на пар или газ
  • Q LS = кВтч, потерянное с поверхностей из-за излучения, конвекции и испарения
  • Q LC = кВтч, потерянное из-за теплопроводности
  • SF = коэффициент безопасности (в процентах)

Размер и выбор оборудования

Размер и номинальные характеристики установленного нагревательного оборудования основаны на большем из результатов расчетов по уравнениям 5a или 5b.

Банкноты

Коэффициенты потерь из таблиц в этом разделе включают потери от излучения, конвекции и испарения, если не указано иное.

Время ( t ) учитывается в уравнении запуска, поскольку запуск процесса может варьироваться от минут или часов до дней.

Требования к эксплуатации обычно основаны на стандартном периоде времени в один час ( t = 1). Если продолжительность цикла и потребность в тепловой энергии не совпадают с часовыми интервалами, их следует пересчитать на почасовую основу.

Удельная теплоемкость — энергия, температура и изменение состояния — OCR Gateway — GCSE Physics (Single Science) Revision — OCR Gateway

Если энергия передается блоку свинца путем нагревания, частицы свинца получают энергию. Когда свинец находится в твердом состоянии, его частицы только колеблются, но при нагревании они колеблются быстрее. В твердом состоянии частицы расположены близко друг к другу, поэтому они могут столкнуться друг с другом и передать энергию. Энергия передается через блок быстро, поэтому температура блока быстро повышается.

Изменение температуры системы зависит от:

  • количества тепловой энергии, переданной системе
  • массы вещества
  • природы самого вещества

Удельная теплоемкость вещества равна мера количества тепловой энергии, необходимой для повышения температуры данного вещества.

Удельная теплоемкость вещества — это количество тепловой энергии, необходимое для повышения температуры 1 кг вещества на 1 ° C.

Различные вещества имеют разную удельную теплоемкость. Например, удельная теплоемкость воды составляет 4180 Дж / кг ° C, а удельная теплоемкость свинца составляет всего 129 Дж / кг ° C.

Расчет изменений тепловой энергии

Изменение тепловой энергии из-за изменений температуры рассчитывается по следующему уравнению:

изменение тепловой энергии = масса × удельная теплоемкость × изменение температуры

Это когда:

  • изменение тепловая энергия измеряется в джоулях (Дж)
  • масса измеряется в килограммах (кг)
  • удельная теплоемкость измеряется в джоулях на килограмм на градус Цельсия (Дж / кг ° C)
  • изменение температуры измеряется в градусах Цельсия (° C)

Слово «удельная» в слове «удельная теплоемкость» означает на единицу массы, обычно на килограмм.

Пример

Удельная теплоемкость для меди составляет 385 Дж / кг ° C. Рассчитайте изменение тепловой энергии при изменении температуры 2,00 кг меди на 10,0 ° C.

изменение тепловой энергии = масса × удельная теплоемкость × изменение температуры

= 2,00 × 385 × 10,0

= 7,700 Дж (7,7 кДж)

Вопрос

Удельная теплоемкость воды составляет 4180 Дж / кг ° C. Рассчитайте изменение тепловой энергии при охлаждении 0,200 кг воды со 100 ° C до 25 ° C.0 ° С.

Показать ответ

изменение температуры = (100-25) = 75,0 ° C

изменение тепловой энергии = масса × удельная теплоемкость × изменение температуры

= 0,200 × 4,180 × 75,0

= 62,700 Дж (62,7 кДж)

Вопрос

Удельная теплоемкость кирпича составляет 840 Дж / кг ° C. Рассчитайте изменение температуры при передаче 400 кДж тепловой энергии на кирпич весом 3,50 кг.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *