Расчетные тепловые нагрузки на отопление: Расчет Тепловой Нагрузки • Договор с МОЭК • Сокращение Затрат

Мар 26, 1970 Разное

Расчетные тепловые нагрузки на отопление: Расчет Тепловой Нагрузки • Договор с МОЭК • Сокращение Затрат

Содержание

Расчет и определение тепловой нагрузки на отопление: методики расчета, вывод

Тепловая нагрузка подразумевает под собой количество тепловой энергии, необходимое для поддержания комфортной температуры в доме, квартире или отдельной комнате. Под максимальной часовой нагрузкой на отопление подразумевается количество тепла, необходимое для поддержания нормированных показателей в течение часа в самых неблагоприятных условиях.

Факторы, влияющие на тепловую нагрузку

  • Материал и толщина стен. К примеру, стена из кирпича в 25 сантиметров и стена из газобетона в 15 сантиметров способны пропустить разное количество тепла.
  • Материал и структура крыши. Например, теплопотери плоской крыши из железобетонных плит значительно отличаются от теплопотерь утепленного чердака.
  • Вентиляция. Потеря тепловой энергии с отработанным воздухом зависит от производительности вентиляционной системы, наличия или отсутствия системы рекуперации тепла.
  • Площадь остекления. Окна теряют больше тепловой энергии по сравнению со сплошными стенами.
  • Уровень инсоляции в разных регионах. Определяется степенью поглощения солнечного тепла наружными покрытиями и ориентацией плоскостей зданий по отношению к сторонам света.
  • Разность температур между улицей и помещением. Определяется тепловым потоком через ограждающие конструкции при условии постоянного сопротивления теплопередаче.

Распределение тепловой нагрузки

При водяном отоплении максимальная тепловая мощность котла должна равняться сумме тепловой мощности всех устройств отопления в доме. На распределение устройств отопления влияют следующие факторы:

  • Площадь помещения и высота потолка;
  • Расположение внутри дома. Угловыми и торцевыми помещениями теряется больше тепла, чем помещениями, расположенными в середине здания;
  • Удаленность от источника тепла;
  • Желаемая температура в комнатах.

СНиП рекомендует следующие значения:

  • Жилые комнаты в середине дома – 20 градусов;
  • Угловые и торцевые жилые комнаты – 22 градуса. При этом за счет более высокой температуры не промерзают стены;
  • Кухня – 18 градусов, поскольку в ней имеются собственные источники тепла – газовые или электрические плиты и пр.
  • Ванная комната – 25 градусов.

При воздушном отоплении тепловой поток, который поступает в отдельное помещение, зависит от пропускной способности воздушного рукава. Зачастую простейшим способом его регулировки является подстройка положения решеток вентиляции с контролем температуры вручную.

При системе отопления, где применяется распределительный источник тепла (конвектора, теплые полы, электрообогреватели и т.д.), необходимый режим температуры устанавливается на термостате.

Методики расчета

Для определения тепловой нагрузки существует несколько способов, обладающие различной сложностью расчета и достоверностью полученных результатов. Далее представлены три наиболее простые методики расчета тепловой нагрузки.

Метод №1

Согласно действующему СНиП, существует простой метод расчета тепловой нагрузки. На 10 квадратных метров берут 1 киловатт тепловой мощности. Затем полученные данные умножаются на региональный коэффициент:

  • Южные регионы имеют коэффициент 0,7-0,9;
  • Для умеренно-холодного климата (Московская и Ленинградская области) коэффициент равен 1,2-1,3;
  • Дальний Восток и районы Крайнего Севера: для Новосибирска от 1,5; для Оймякона до 2,0.

Расчет на примере:

  1. Площадь здания (10*10) равна 100 квадратных метров.
  2. Базовый показатель тепловой нагрузки 100/10=10 киловатт.
  3. Это значение умножается на региональный коэффициент, равный 1,3, в итоге получается 13 кВт тепловой мощности, которые требуются для поддержания комфортной температуры в доме.

Обратите внимание! Если использовать эту методику для определения тепловой нагрузки, то необходимо еще учесть запас мощности в 20 процентов, чтобы компенсировать погрешности и экстремальные холода.

Метод №2

Первый способ определения тепловой нагрузки имеет много погрешностей:

  • Разные строения имеют разную высоту потолков. Учитывая то, что обогревается не площадь, а объем, этот параметр очень важен.
  • Через двери и окна проходит больше тепла, чем через стены.
  • Нельзя сравнивать городскую квартиру с частным домом, где снизу, сверху и за стенами не квартиры, а улица.

Корректировка метода:

  • Базовый показатель тепловой нагрузки равняется 40 ватт на 1 кубический метр объема помещения.
  • Каждая дверь, ведущая на улицу, добавляет к базовому показателю тепловой нагрузки 200 ватт, каждое окно – 100 ватт.
  • Угловые и торцевые квартиры многоквартирного дома имеют коэффициент 1,2-1,3, на который влияет толщина и материал стен. Частный дом обладает коэффициентом 1,5.
  • Региональные коэффициенты равны: для Центральных областей и Европейской части России – 0,1-0,15; для Северных регионов – 0,15-0,2; для Южных регионов – 0,07-0,09 кВт/кв.м.

Расчет на примере:

  1. Объем здания 300 квадратных метров (10*10*3=300).
  2. Базовый показатель тепловой нагрузки 12000 ватт (300*40).
  3. С учетом восьми окон и двух дверей тепловая мощность равна 13200 ватт (12000+(8*100)+(2*200)).
  4. Для частного дома тепловая нагрузка умножается на региональный коэффициент и получается 19800 ватт (13200*1,5).
  5. 19800*1,3=25740 ватт (с учетом регионального коэффициента для Северных регионов). Следовательно, для обогрева потребуется 28-киловаттный котел.

Метод №3

Не стоит обольщаться – второй способ расчета тепловой нагрузки также весьма несовершенен. В нем весьма условно учтено тепловое сопротивление потолка и стен; разность температур между наружным воздухом и воздухом внутри.

Стоит отметить, чтобы поддерживать внутри дома постоянную температуру необходимо такое количество тепловой энергии, которое будет равняться всем потерям через вентиляционную систему и ограждающие устройства. Однако, и в этом методе расчеты упрощены, так как невозможно систематизировать и измерить все факторы.

На теплопотери влияет материал стен – 20-30 процентов потери тепла. Через вентиляцию уходит 30-40 процентов, через крышу – 10-25 процентов, через окна – 15-25 процентов, через пол на грунте – 3-6 процентов.

Чтобы упростить расчеты тепловой нагрузки, подсчитываются тепловые потери через ограждающие устройства, а затем это значение просто умножается на 1,4. Дельта температур измеряется легко, но взять данные про термическое сопротивление можно только в справочниках. Ниже приведены некоторые популярные значения термического сопротивления:

  • Термическое сопротивление стены в три кирпича равно 0,592 м2*С/Вт.
  • Стены в 2,5 кирпича составляет 0, 502.
  • Стены в 2 кирпича равно 0,405.
  • Стены в один кирпич (толщина 25 см) равно 0,187.
  • Бревенчатого сруба, где диаметр бревна 25 см – 0,550.
  • Бревенчатого сруба, где диаметр бревна 20 сантиметров – 0,440.
  • Сруба, где толщина сруба 20 см – 0,806.
  • Сруба, где толщина 10 см – 0,353.
  • Каркасной стены, толщина которой 20 см, утепленной минеральной ватой – 0,703.
  • Стены из газобетона, толщина которой 20 см – 0,476.
  • Стены из газобетона, толщина которой 30 см – 0,709.
  • Штукатурки, толщина которой 3 см – 0,035.
  • Потолочного или чердачного перекрытия – 1,43.
  • Деревянного пола – 1,85.
  • Двойной деревянной двери – 0,21.

Расчет по примеру:

  1. Дельта температур в период пика морозов равна 50 градусов: внутри дома плюс 20 градусов, снаружи – минус 30 градусов.
  2. Потери тепла через один метр квадратный 50/1,85 (показатель термического сопротивления пола из дерева) равно приблизительно 27 ватт. Весь пол будет иметь 27*100=2700 ватт.
  3. Теплопотери через потолок составляют (50/1,43)*100 и равно приблизительно 3500 ватт.
  4. Площадь стен (10*3)*4 и равна 120 квадратных метров. К примеру, стены изготовлены из бруса с толщиной 20 см, термическое сопротивление = 0,806. Следовательно, теплопотери составят (50/0,806)*120=7444 ватта.
  5. Все полученные значения потерь тепла складываются, и получается значение 13644 ватт. Именно такое количество тепла будет терять дом через стены, пол и потолок.
  6. Далее полученное значение умножается на коэффициент 1,4 (потери на вентиляционную систему) и получается 19101 ватт. Следовательно, для отопления такого дома понадобится 20-киловаттный котел.

Вывод

Как видно из расчетов, способы определения тепловой нагрузки обладают существенными погрешностями. К счастью, избыточный показатель мощности котла не навредит:

  • Работа газового котла на уменьшенной мощности осуществляется без падения коэффициента полезного действия, а работа конденсационных устройств при неполной нагрузке осуществляется в экономичном режиме.
  • То же относится и к соляровым котлам.
  • Показатель коэффициента полезного действия электрического нагревательного оборудования равен 100 процентам.

Обратите внимание! Работа твердотопливных котлов на мощности меньше номинального значения мощности противопоказана.

Расчет тепловой нагрузки на отопление является важным фактором, вычисления которого обязательно необходимо выполнять перед началом создания системы отопления. В случае подхода к процессу с умом и грамотного выполнения всех работ гарантируется безотказная работа отопления, а также существенно экономятся деньги на лишних затратах.

Оцените статью: Поделитесь с друзьями!

Расчет тепловой нагрузки на отопление

Как рассчитать тепловую нагрузку

Спросите у любого специалиста, как правильно организовать систему отопления в здании. При этом не важно — жилой это объект или промышленный. И профессионал ответит, что главное — это точно составить расчеты и грамотно выполнить проектирование. Речь, в частности, идет о расчете тепловой нагрузки на отопление. От этого показателя зависит объем потребления тепловой энергии, а значит, и топлива. То есть экономические показатели стоят рядом с техническими характеристиками.

Выполнение точных расчетов позволяет получить не только полный список необходимой для проведения монтажных работ документации, но и подобрать нужное оборудование, дополнительные узлы и материалы.

Тепловые нагрузки — определение и характеристики

Что обычно подразумевают под термином «тепловая нагрузка на отопление»? Это количество теплоты, которое отдают все приборы отопления, установленные в здании. Чтобы избежать лишних трат на производство работ, а также покупку ненужных приборов и материалов, и необходим предварительный расчет. С его помощью можно отрегулировать правила установки и распределения теплоты по всем помещениям, причем сделать это можно экономично и равномерно.

Но и это еще не все. Очень часто специалисты проводят расчеты, полагаясь на точные показатели. Они касаются размеров дома и нюансов строительства, где учитывается разнообразие элементов здания и их соответствие требованиям теплоизоляции и прочего. Именно точные показатели дают возможность правильно сделать расчеты и, соответственно, получить максимально приближенные к идеалу варианты распределения тепловой энергии по помещениям.

Но нередко случаются ошибки в расчетах, что приводит к неэффективной работе отопления в целом. Подчас приходится переделывать в ходе эксплуатации не только схемы, но и участки системы, что приводит к дополнительным расходам.

Какие же параметры влияют на расчет тепловой нагрузки в целом? Здесь необходимо разделить нагрузку на несколько позиций, куда входят:

  • Система центрального отопления.
  • Система теплый пол, если таковой установлен в доме.
  • Система вентиляции — как принудительной, так и естественной.
  • Горячее водоснабжение здания.
  • Ответвления на дополнительные бытовые нужды. К примеру, на сауну или баню, на бассейн или душ.

Основные характеристики

Профессионалы не упускают из виду ни одну мелочь, которая может повлиять на правильность расчета. Отсюда и достаточно больший список характеристик системы отопления, которые следует принимать во внимание. Вот только некоторые из них:

  1. Назначение объекта недвижимости или его тип.
    Это может быть жилое здание или промышленное. У поставщиков тепловой энергии есть нормы, которые распределяются по типу зданий. Именно они часто становятся основополагающими при проведении расчетов.
  2. Архитектурная часть здания. Сюда можно включить ограждающие элементы (стены, кровля, перекрытия, полы), их габаритные размеры, толщину. Обязательно учитываются всевозможные проемы — балконы, окна, двери и прочее. Очень важно принять во внимание наличие подвалов и чердаков.
  3. Температурный режим для каждого помещения в отдельности. Это очень важно, потому что общие требования к температуре в доме не дают точной картины распределения тепла.
  4. Назначение помещений. В основном это относится к производственным цехам, в которых необходимо более строгое соблюдение температурного режима.
  5. Наличие специальных помещений. К примеру, в жилых частных домах это могут быть бани или сауны.
  6. Степень технического оснащения. Учитывается наличие системы вентиляции и кондиционирования, горячего водоснабжения, тип используемого отопления.
  7. Количество точек, через которые проводится отбор горячей воды. И чем больше таких точек, тем большей тепловой нагрузке подвергается система отопления.
  8. Количество находящихся на объекте людей. От этого показателя зависят такие критерии, как влажность внутри помещений и температура.
  9. Дополнительные показатели. В жилых помещениях можно выделить количество санузлов, отдельных комнат, балконов. В промышленных зданиях — количество смен работающих, число дней в году, когда работает сам цех в технологической цепочке.

Что включают в расчет нагрузок

Схема отопления

Расчет тепловых нагрузок на отопление проводят еще на стадии проектирования здания. Но при этом обязательно учитывают нормы и требования различных стандартов.

К примеру, теплопотери ограждающих элементов здания. Причем в расчет берутся все помещения в отдельности. Далее, это мощность, которая необходима для нагрева теплоносителя. Приплюсуем сюда количество тепловой энергии, требующейся для нагрева приточной вентиляции.

Без этого расчет будет не очень точным. Прибавим также энергию, которая затрачивается на обогрев воды для бани или бассейна. Специалисты обязательно принимают во внимание и дальнейшее развитие теплосистемы. Вдруг через несколько лет вам вздумается устроить в собственном частном доме турецкий хамам. Поэтому необходимо прибавить к нагрузкам несколько процентов — обычно до 10%.

Рекомендация! Рассчитывать тепловые нагрузки с «запасом» необходимо для загородных домов. Именно запас позволит в будущем избежать дополнительных финансовых затрат, которые часто определяются суммами в несколько нулей.

Особенности расчета тепловой нагрузки

Параметры воздуха, а точнее, его температура берутся из ГОСТов и СНиПов. Здесь же подбираются коэффициенты теплопередачи. Кстати, паспортные данные всех видов оборудования (котлы, радиаторы отопления и прочее) берутся в расчет обязательно.

Что обычно включают в традиционный расчет нагрузки тепла?

  • Во-первых, максимальный поток тепловой энергии, исходящей от приборов отопления (радиаторов).
  • Во-вторых, максимальный расход тепла за 1 час эксплуатации отопительной системы.
  • В-третьих, общие тепловые затраты за определенный период времени. Обычно подсчитывают сезонный период.

Если все эти расчеты соизмерить и сопоставить с площадью теплоотдачи системы в целом, то получится достаточно точный показатель эффективности обогрева дома. Но придется учитывать и небольшие отклонения. К примеру, снижение потребления тепла в ночное время. Для промышленных объектов также придется учитывать выходные и праздничные дни.

Методы определения тепловых нагрузок

Проектирование теплого пола

В настоящее время специалисты пользуются тремя основными способами расчета тепловых нагрузок:

  1. Расчет основных теплопотерь, где учитываются только укрупненные показатели.
  2. Учитываются показатели, основанные на параметрах ограждающих конструкций. Сюда обычно добавляются потери на нагрев внутреннего воздуха.
  3. Производится расчет всех систем, которые входят в отопительные сети. Это и отопление, и вентиляция.

Есть еще один вариант, который называется укрупненным расчетом. Его обычно применяют в том случае, когда отсутствуют какие-либо основные показатели и параметры здания, необходимые для стандартного расчета. То есть фактические характеристики могут отличаться от проектных.

Для этого специалисты используют очень простую формулу:

Q max от.=α x V x q0 x (tв-tн.р.) x 10 -6

α — это поправочный коэффициент, зависящий от региона строительства (табличная величина)

V — объем здания по наружным плоскостям
q0 — характеристика отопительной системы по удельному показателю, обычно определяется по самым холодным дням в году

Виды тепловых нагрузок

Тепловые нагрузки, которые используются в расчетах системы отопления и подборе оборудования, имеют несколько разновидностей. К примеру, сезонные нагрузки, для которых присущи следующие особенности:

  1. Изменение температуры снаружи помещений в течение всего отопительного сезона.
  2. Метеорологические особенности региона, где построен дом.
  3. Скачки нагрузки на систему отопления в течение суток. Этот показатель обычно проходит по категории «незначительные нагрузки», потому что ограждающие элементы предотвращают большое давление на отопление в целом.
  4. Все, что касается тепловой энергии, связанной с системой вентиляции здания.
  5. Тепловые нагрузки, которые определяются в течение всего года. Например, потребление горячей воды в летней сезон снижается всего лишь на 30-40%, если сравнивать его с зимним временем года.
  6. Сухое тепло. Эта особенность присуща именно отечественным отопительным системам, где учитывается достаточно большой ряд показателей. К примеру, количество оконных и дверных проемов, количество проживающих или находящихся постоянно в доме людей, вентиляция, воздухообмен через всевозможные щели и зазоры. Для определения этой величины используют сухой термометр.
  7. Скрытая тепловая энергия. Существует и такой термин, который определяется испарениями, конденсацией и так далее. Для определения показателя используют влажный термометр.

Регуляторы тепловых нагрузок

Программируемый контроллер, диапазон температур — 5-50 C

Современные отопительные агрегаты и приборы обеспечиваются комплектом разных регуляторов, с помощью которых можно изменять тепловые нагрузки, чтобы тем самым избежать провалов и скачков тепловой энергии в системе. Практика показала, что с помощью регуляторов можно не только снизить нагрузки, но и привести систему отопления к рациональному использованию топлива. А это уже чисто экономическая сторона вопроса. Особенно это относится к промышленным объектам, где за перерасход топлива приходится выплачивать достаточно большие штрафы.

Если же вы не уверены в правильности своих расчетов, то воспользуйтесь услугами специалистов.

Давайте рассмотрим еще пару формул, которые касаются разных систем. К примеру, системы вентиляции и горячего водоснабжения. Здесь вам потребуются две формулы:

Qв.=qв.V(tн.-tв.) — это касается вентиляции.
Здесь:
tн. и tв — температура воздуха снаружи и внутри
qв. — удельный показатель
V — внешний объем здания

Qгвс.=0,042rв(tг.-tх.)Пgср — для горячего водоснабжения, где

tг.-tх — температура горячей и холодной воды
r — плотность воды
в — отношение максимальной нагрузки к средней, которая определяется ГОСТами
П — количество потребителей
Gср — средний показатель расхода горячей воды

Комплексный расчет

В комплексе с расчетными вопросами обязательно проводят исследования теплотехнического порядка. Для этого применяют различные приборы, которые выдают точные показатели для расчетов. К примеру, для этого обследуют оконные и дверные проемы, перекрытия, стены и так далее.

Именно такое обследование помогает определить нюансы и факторы, которые могут оказать существенное влияние на теплопотери. К примеру, тепловизорная диагностика точно покажет температурный перепад при прохождении определенного количества тепловой энергии через 1 квадратный метр ограждающей конструкции.

Так что практические измерения незаменимы при проведении расчетов. Особенно это касается узких мест в конструкции здания. В этом плане теория не сможет точно показать, где и что не так. А практика укажет, где необходимо применить разные методы защиты от теплопотерь. Да и сами расчеты в этом плане становятся точнее.

Заключение по теме

Расчетная тепловая нагрузка — очень важный показатель, получаемый в процессе проектирования системы отопления дома. Если подойти к делу с умом и провести все необходимые расчеты грамотно, то можно гарантировать, что отопительная система будет работать отлично. И при этом можно будет сэкономить на перегревах и прочих затратах, которых можно просто избежать.

Расчетная тепловая нагрузка системы теплоснабжения

Расчетная тепловая нагрузка системы теплоснабжения

Расчетная тепловая нагрузка системы теплоснабжения — сумма расчетных тепловых нагрузок всех потребителей в системе теплоснабжения и тепловых потерь трубопроводами всей тепловой сети при расчетной температуре наружного воздуха.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Расчетная тепловая нагрузка потребителя (расчетное тепловое потребление)
  • Расчетная теплопроводность

Смотреть что такое «Расчетная тепловая нагрузка системы теплоснабжения» в других словарях:

  • Тепловая нагрузка системы теплоснабжения расчетная — Расчетная тепловая нагрузка системы теплоснабжения сумма расчетных тепловых нагрузок всех потребителей в системе теплоснабжения и тепловых потерь трубопроводами всей тепловой сети при расчетной температуре наружного воздуха… Источник:… …   Официальная терминология

  • Расчетная тепловая нагрузка потребителя (расчетное тепловое потребление) — сумма часовых тепловых нагрузок систем отопления и вентиляции потребителя при расчетной температуре наружного воздуха для отопления и среднечасовой за неделю нагрузки системы горячего водоснабжения потребителя. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Часть I. Методические указания по составлению режимных характеристик систем теплоснабжения и гидравлической энергетической характеристики тепловой сети — Терминология Часть I. Методические указания по составлению режимных характеристик систем теплоснабжения и гидравлической энергетической характеристики тепловой сети: Автоматизированная система горячего водоснабжения система, на тепловом пункте… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 54860-2011: Теплоснабжение зданий. Общие положения методики расчета энергопотребности и эффективности систем теплоснабжения — Терминология ГОСТ Р 54860 2011: Теплоснабжение зданий. Общие положения методики расчета энергопотребности и эффективности систем теплоснабжения оригинал документа: 3.1.1 аккумулированное тепло (heat gains): Сохранение и накопление тепла в… …   Словарь-справочник терминов нормативно-технической документации

  • максимальная — максимальная: Максимально возможная длина ЗО, в пределах которой выполняются требования настоящего стандарта и технических условий (ТУ) на извещатели конкретных типов, Источник: ГОСТ Р 52651 2006: И …   Словарь-справочник терминов нормативно-технической документации

  • СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО «Газпром». Термины и определения — Терминология СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО «Газпром». Термины и определения: 3.1.31 абонент энергоснабжающей организации : Потребитель электрической энергии (тепла), энергоустановки которого присоединены к сетям… …   Словарь-справочник терминов нормативно-технической документации

  • температура — 3.1 температура: Средняя кинетическая энергия частиц среды, обусловленная их разнонаправленным движением в среде, находящейся в состоянии термодинамического равновесия. Источник: ГОСТ Р ЕН 306 2011: Теплообменники. Измерения и точность измерений… …   Словарь-справочник терминов нормативно-технической документации

  • Описание — 3.2. Описание СИЗОД фильтрующие с принудительной подачей воздуха, используемые с масками, полумасками и четвертьмасками обычно состоят из следующих элементов: а) одного или нескольких фильтров, через который (которые) проходит весь воздух,… …   Словарь-справочник терминов нормативно-технической документации

расчет часовых и годовых показателей

На чтение 8 мин Просмотров 1.8к. Опубликовано Обновлено

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Распределение тепловых потерь в доме

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Санитарно-эпидемиологические требования для жилых домов

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Таблица поправочных коэффициентов для различных климатических зон России

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где — удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше,  – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Таблица удельных тепловых характеристик зданий

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Расчет тепловой нагрузки на отопление дома

РАСЧЕТ ТЕПЛОВОЙ НАГРУЗКИ НА ОТОПЛЕНИЕ ДОМА ПО УКРУПНЕННЫМ ИЗМЕРИТЕЛЯМ

Расчет тепловой нагрузки на отопление дома произведен по удельной теплопотере, потребительский подход определения приведенных коэффициентов теплопередачи — вот главные вопросы, которые мы с вами рассмотрим в данном посте. Здравствуйте, дорогие друзья!  Мы произведем с вами расчет тепловой нагрузки на отопление дома (Qо.р) различными способами по укрупненным измерителям. Итак, что нам известно на данный момент:1. Расчетная зимняя температура наружного воздуха для проектирования отопления tн = -40 оС. 2. Расчетная (усредненная) температура воздуха внутри отапливаемого дома tв = +20 оС. 3. Объем дома по наружному обмеру V = 490,8 м3. 4. Отапливаемая площадь дома Sот = 151,7 м2 (жилая – Sж = 73,5 м2). 5. Градусо сутки отопительного периода ГСОП = 6739,2 оС*сут.

Расчет тепловой нагрузки на отопление дома

1. Расчет тепловой нагрузки на отопление дома по отапливаемой площади. Здесь все просто – принимается, что теплопотери составляют 1 кВт * час на 10 м2 отапливаемой площади дома, при высоте потолка до 2,5м. Для нашего дома расчетная тепловая нагрузка на отопление будет равна Qо.р = Sот * wуд = 151,7 * 0,1 = 15,17 кВт. Определение тепловой нагрузки данным способом не отличается особой точностью. Спрашивается, откуда же взялось данное соотношение и насколько оно соответствует нашим условиям. Вот здесь то и надо сделать оговорочку, что данное соотношение справедливо для региона Москвы (tн = до -30 оС) и дом должен быть нормально утепленным. Для других регионов России удельные теплопотери wуд , кВт/м2 приведены в Таблице 1.

Таблица 1

Регионwуд , кВт/м2
Москва, Московская область, Центральные области Европейской части России (включая Ленинградскую на севере и Курскую на юге)0,10-0,15
Северные регионы (Карелия, Архангельская область, республика Коми и др.)0,15-0,2
Южные регионы (Воронежская, Волгоградская области, Краснодарский край и др.)0,07-0,09

Что еще надо учесть при выборе коэффициента удельных теплопотерь? Cолидные проектные организации требуют от «Заказчика» до 20-ти дополнительных данных и это оправдано, так как правильный расчет потерь тепла домом — один из основных факторов, определяющий, насколько комфортно будет находиться в помещении. Ниже приведены характерные требования с разъяснениями:
— суровость климатической полосы – чем ниже температура «за бортом», тем сильнее придется топить. Для сравнения: при -10 градусах – 10 кВт, а при -30 градусах – 15 кВт;
— состояние окон – чем герметичней и больше количество стекол, тем потери уменьшаются. К примеру (при -10 градусах): стандартная двойная рама – 10 кВт, двойной стеклопакет – 8 кВт, тройной стеклопакет – 7 кВт;
— отношения площадей окон и пола – чем больше окна, тем больше потерь. При 20 % — 9 кВт, при 30 % — 11 кВт, а при 50 % — 14 кВт;
— толщина стен или теплоизоляция напрямую влияют на потери тепла. Так при хорошей теплоизоляции и достаточной толщине стен (3 кирпича – 800 мм) требуется 10 кВт, при 150 мм утеплителя или толщине стены в 2 кирпича – 12 кВт, а при плохой изоляции или толщине в 1 кирпич – 15 кВт;
— число наружных стен – напрямую связанно со сквозняками и многосторонним воздействием промерзания. Если помещение имеет одну внешнюю стену, то требуется 9 кВт, а если — 4, то – 12 кВт;
— высота потолка хоть и не так значительно, но все же влияет на увеличение потребляемой мощности. При стандартной высоте в 2,5 м требуется 9,3 кВт, а при 5 м – 12 кВт.
Данное пояснение показывает, что грубый расчет требуемой мощности 1 кВт котла на 10 м2 отапливаемой площади, имеет обоснование.

2. Расчет тепловой нагрузки на отопление дома по укрупненным показателям согласно § 2.4 СНиП Н-36-73. Чтобы определить тепловую  нагрузку на отопление данным способом, нам надо знать жилую площадь дома. Если она не известна, то принимается в размере 50% от общей площади дома. Зная расчетную температуру наружного воздуха для проектирования отопления, по таблице 2 определяем укрупненный показатель максимально-часового расхода тепла на 1 м2 жилой площади.

Таблица 2

Расчетная температура наружного воздуха для воздуха для проектирования отопления, оС0-10-20-30-40
Укрупненный показатель максимально-часового расхода тепла на отопление жилых зданий (на 1 м2 жилой площади), кДж/(ч*м2)335461545628670

Для нашего дома расчетная тепловая нагрузка на отопление будет равна Qо.р = Sж * wуд.ж = 73,5 * 670 = 49245 кДж/ч или 49245/4,19=11752 ккал/ч или 11752/860=13,67 кВт

3. Расчет тепловой нагрузки на отопление дома по удельной отопительной характеристике здания. Определять тепловую нагрузку  по данному способу будем по  удельной тепловой характеристике (удельная теплопотеря тепла) и объема дома по формуле:

Qо.р = α * qо * V * (tв – tн ) * 10-3 , кВт

Qо.р – расчетная тепловая нагрузка на отопление, кВт;
α — поправочный коэффициент, учитывающий климатические условия района и применяемый в случаях, когда расчетная температура наружного воздуха tн отличается от -30 оС, принимается по таблице 3;
qо – удельная отопительная характеристика здания, Вт/м3 * оС;
V – объем отапливаемой части здания по наружному обмеру, м3;
tв – расчетная температура воздуха внутри отапливаемого здания, оС;
tн – расчетная температура наружного воздуха для проектирования отопления, оС.
В данной формуле все величины, кроме удельной отопительной характеристики дома qо, нам известны. Последняя является теплотехнической оценкой строительной части здания и показывает тепловой поток, необходимый для повышения температуры 1 м3 объема постройки на 1 °С. Численное нормативное значение данной характеристики, для жилых домом и гостиниц, приведено в таблице 4.

Поправочный коэффициент α

Таблица 3

-10-15-20-25-30-35-40-45-50
α1,451,291,171,0810,950,90,850,82

Удельная отопительная характеристика здания, Вт/м3 * оС

Таблица 4

Тип зданияСтроительный объем здания V,тыс.м3Удельная отопительная характеристика на отопление qо, Вт/м3 * оС
Жилые дома, гостиницы, общежитиядо 3
до 5
до 10
0,49
0,44
0,39

Итак, Qо.р =  α* qо * V * (tв – tн ) * 10-3 = 0,9 * 0,49 * 490,8 * (20 – (-40) ) * 10-3 = 12,99 кВт. На стадии технико-экономического обоснования строительства (проекта) удельная отопительная характеристика должна являться одним из контрольных ориентиров. Все дело в том, что в справочной литературе, численное значение ее разное, поскольку приведена она для разных временных периодов, до 1958года, после 1958года, после 1975года и т.д. Кроме того, хоть и не значительно, но менялся также и климат на нашей планете. А нам бы хотелось знать значение удельной отопительной характеристики здания на сегодняшний день. Давайте попробуем определить ее самостоятельно.

ПОРЯДОК ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ОТОПИТЕЛЬНОЙ ХАРАКТЕРИСТИКИ

1. Предписывающий подход к выбору сопротивления теплопередаче наружных ограждений. В этом случае расход тепловой энергии не контролируется, а значения сопротивлений теплопередаче отдельных элементов здания должно быть не менее нормируемых значений, смотри таблицу 5. Здесь уместно привести формулу Ермолаева для расчета удельной отопительной характеристики здания. Вот эта формула

qо = [Р/S * ((kс + φ * (kок — kс)) + 1/Н * (kпт + kпл)], Вт/м3 * оС

φ – коэффициент остекления наружных стен, принимаем φ = 0,25. Данный коэффициент принимается в размере 25% от площади пола; Р – периметр дома, Р = 40м; S – площадь дома (10 *10), S = 100 м2; Н – высота здания, Н = 5м; kс, kок, kпт, kпл – приведенные коэффициенты теплопередачи соответственно наружной стены, световых проемов (окон), кровли (потолка), перекрытия над подвалом (пола). Определение приведенных коэффициентов теплопередачи, как при предписывающем подходе, так и при потребительском подходе, смотри таблицы 5,6,7,8. Ну что ж, со строительными размерами дома мы определились, а как быть с ограждающими конструкциями дома? Из каких материалов должны быть изготовлены стены, потолок пол, окна и двери? Дорогие друзья, вы должны четко понять, что на данном этапе нас не должен волновать выбор материала ограждающих конструкций. Спрашивается, почему? Да потому, что в выше приведенную формулу мы поставим значения нормируемых приведенных коэффициентов теплопередачи ограждающих конструкций. Так вот, независимо из какого материала будут выполнены эти конструкции и какова их толщина, сопротивление должно быть определенным. (Выписка из СНиП II-3-79* Строительная теплотехника).

Нормируемое сопротивление теплопередаче ограждающих конструкций
(предписывающий подход)

Таблица 5

ЗданияГСОП, оС*сутСопротивление теплопередаче ограждающих конструкций Rо, м2 * оС/Вт (не менее)
СтенПоловПотолковОкон
Жилые2000
4000
6000
8000
10000
12000
6739,2
2,1
2,8
3,5
4,2
4,9
5,6
3,76
3,2
4,2
5,2
6,2
7,2
8,2
5,57
2,8
3,7
4,6
5,5
6,4
7,3
4,93
   0,3
0,45
0,6
0,7
0,75
0,8
0,47

Определение приведенных коэффициентов теплопередачи ограждающих конструкций
(предписывающий подход)

Таблица 6

ЗданияГСОП, оС*сутПриведенные коэффициенты теплопередачи ограждающих конструкций kпр = 1/ Rо, Вт/ м2 * оС (не менее)
СтенПоловПотолковОкон
Жилые6739,20,2660,180,2032,13

И вот только теперь, зная ГСОП = 6739,2 оС*сут, методом интерполяции мы определяем нормируемые сопротивления теплопередаче ограждающих конструкций, смотри таблицу 5. Приведенные коэффициенты теплопередачи будут равны соответственно: kпр = 1/ Rо и приведены в таблице 6. Удельная отопительная характеристика дома qо = = [Р/S * ((kс + φ * (kок — kс)) + 1/Н * (kпт + kпл)] = [40/100 * ((0,266 + 0,25 * (2,13 – 0,266)) + 1/5 * (0,203 + 0,18)] = 0,37 Вт/м3 * оС
Расчетная тепловая нагрузка на отопление при предписывающем подходе будет равна Qо.р =  α* qо * V * (tв – tн ) * 10-3 = 0,9 * 0,37 * 490,8 * (20 – (-40) ) * 10-3 = 9,81 кВт

2. Потребительский подход к выбору сопротивления теплопередаче наружных ограждений. В данном случае, сопротивление теплопередаче наружных ограждений можно снижать в сравнении с величинами указанными в таблице 5, пока расчетный удельный расход тепловой энергии на отопление дома не превысит нормируемый. Сопротивление теплопередаче отдельных элементов ограждения не должно быть ниже минимальных величин: для стен жилого дома Rс = 0,63Rо, для пола и потолка Rпл = 0,8Rо, Rпт = 0,8Rо, для окон Rок = 0,95Rо. Результаты расчета приведены в таблице 7. В таблице 8 приведены приведенные коэффициенты теплопередачи при потребительском подходе. Что касается удельного расхода тепловой энергии за отопительный период, то для нашего дома эта величина равна 120 кДж/ м2 * оС* сут. И определяется она по СНиП 23-02-2003. Мы же определим данную величину когда будем производить расчет тепловой нагрузки на отопление более подробным способом – с учетом конкретных материалов ограждений и их теплофизических свойств (п. 5 нашего плана по расчету отопления частного дома).

Нормируемое сопротивление теплопередаче ограждающих конструкций
(потребительский подход)

Таблица 7

ЗданияГСОП, оС*сутСопротивление теплопередаче ограждающих конструкций Rо, м2 * оС/Вт (не менее)
СтенПоловПотолковОкон
Жилые6739,2 2,13,76*0,63 =2,375,57*0,8 = 4,46 4,93* 0,8 = 3,94  0,47* 0,95 = 0,446

Определение приведенных коэффициентов теплопередачи ограждающих конструкций
(потребительский подход)

Таблица 8

ЗданияГСОП, оС*сутПриведенные коэффициенты теплопередачи ограждающих конструкций kпр = 1/ Rо, Вт/ м2 * оС (не менее)
СтенПоловПотолковОкон
Жилые6739,20,4220,2240,2542,24

Удельная отопительная характеристика дома qо = = [Р/S * ((kс + φ * (kок — kс)) + 1/Н * (kпт + kпл)] = [40/100 * ((0,422 + 0,25 * (2,24 – 0,422)) + 1/5 * (0,254 + 0,224)] = 0,447 Вт/м3 * оС. Расчетная тепловая нагрузка на отопление при потребительском подходе будет равна Qо.р = α * qо * V * (tв – tн ) * 10-3 = 0,9 * 0,447 * 490,8 * (20 – (-40) ) * 10-3 = 11,85 кВт

Расчет тепловой нагрузки на отопление дома

Основные выводы:
1. Расчетная тепловая нагрузка на отопление по отапливаемой площади дома, Qо.р = 15,17 кВт.
2. Расчетная тепловая нагрузка на отопление по укрупненным показателям согласно § 2.4 СНиП Н-36-73. отапливаемой площади дома, Qо.р = 13,67 кВт.
3. Расчетная тепловая нагрузка на отопление дома по нормативной удельной отопительной характеристике здания, Qо.р = 12,99 кВт.
4. Расчетная тепловая нагрузка на отопление дома по предписывающему подходу к выбору сопротивления теплопередаче наружных ограждений, Qо.р = 9,81 кВт.
5. Расчетная тепловая нагрузка на отопление дома по потребительскому подходу к выбору сопротивления теплопередаче наружных ограждений, Qо.р = 11,85 кВт.
Как видите, дорогие друзья, расчетная тепловая нагрузки на отопление дома при разном подходе к ее определению, разнится довольно таки значительно – от 9,81 кВт до 15,17 кВт. Какую же выбрать и не ошибиться? На этот вопрос мы и постараемся ответить в следующих постах. Сегодня мы с вами выполнили 2-ой пункт нашего плана по расчету системы отопления дома. Кто еще не успел присоединяйтесь!

С уважением, Григорий Володин

Расчет тепловой нагрузки (мощности) для системы отопления помещения

Установка системы автономного отопления для частного дома или городской квартиры всегда начинается с создания проекта. Одной из главных задач, стоящих перед специалистами на этой стадии, является определение полной потребности имеющихся площадей в энергии нагретого теплоносителя для нужд отопления и, если необходимо, горячего водоснабжения.

Пример системы отопления частного дома

Для этого обычно выполняется расчет величины тепловых нагрузок или теплотехнический расчёт помещения. [contents]

Зачем нужен расчет тепловых нагрузок

Расчёт тепловой энергии на отопление необходим для правильного определения характеристик системы с учетом индивидуальных особенностей объекта: тип и назначение здания, количество проживающих людей, материал и конфигурация каждого помещения, географическое положение и многие другие. Вычисление размера тепловой нагрузки является отправной точкой для дальнейших расчетов параметров оборудования отопления:

  • Подбор мощности котла. Это самый важный фактор, определяющий эффективность системы отопления в целом. Производительность котла должна обеспечивать бесперебойную работу всех потребителей в любых условиях, в том числе и при наиболее низких температурах (в самую холодную пятидневку). Вместе с тем при избыточной мощности котла часть вырабатываемой энергии, а следовательно, и денег хозяев будет в буквальном смысле вылетать в трубу;
  • Согласование подключения к газовой сети. Для того чтобы получить разрешение на присоединение к газотранспортной магистрали, необходимо разработать ТУ на подключение. В заявке обязательно указывается планируемый годовой расход газа и оценка суммарной тепловой мощности всех потребителей;
  • Расчет периферийного оборудования. Тип и характеристики батарей, длина и сечение труб, производительность циркуляционного насоса и многие другие параметры также определяются в результате расчета тепловых нагрузок.

Приблизительные методики оценки

Точный расчет отопления помещения – это сложная инженерная задача, которая требует определенной квалификации и наличия специальных знаний. Именно поэтому ее чаще всего поручают специалистам.

Однако, как и в некоторых других случаях, существуют более простые способы, которые дают приблизительную оценку величины необходимой тепловой энергии и могут быть выполнены самостоятельно.

Можно выделить следующие методы определения тепловой нагрузки:

  • Расчёт по площади помещения. Существует мнение, что строительство жилых домов обычно производится по проектам, которые уже учитывают климатические особенности конкретного региона и предполагают использование материалов, обеспечивающих необходимый тепловой баланс. Поэтому при устройстве системы отопления с достаточной долей точности можно использовать коэффициент удельной мощности, который не зависит от конкретных особенностей здания.

    Для Москвы и области этот коэффициент обычно берется равным 100–150 Вт/м2, а полная нагрузка вычисляется его умножением на общую площадь помещения.

  • Учет объема и температуры. Немного более сложный алгоритм позволяет принять во внимание высоту потолков, уровень комфорта в зоне отопления, а также, очень приблизительно, учесть особенности самого здания.

    Тепловая нагрузка вычисляется по формуле: Q = V*ΔT*K/860. Здесь V – объем (произведение длины, ширины и высоты помещения), ΔT – разница температур внутри и снаружи, К – коэффициент потерь энергии тепла.

    Именно с помощью коэффициента К в расчет и закладываются конструктивные особенности здания. Например, для сооружений из двойной кирпичной кладки с обычной кровлей значение К берется из диапазона 1,0–1,9, а для упрощенных деревянных конструкций оно может достигать 3,0–4,0.

  • Метод укрупненных показателей. Этот метод похож на предыдущий, но используется для определения тепловой нагрузки при устройстве системы отопления больших объектов, например, многоквартирных зданий.

Несмотря на простоту и доступность, указанные методы дают лишь примерную оценку тепловой нагрузки вашего дома или квартиры. Результаты, полученные с их помощью, могут отличаться от реальных как в большую, так и в меньшую сторону. Недостатки устройства маломощной системы отопления очевидны, но и сознательно закладывать необоснованный запас по мощности также нежелательно. Использование более производительного, чем требуется, оборудования приведет к его быстрому износу, перерасходу электрической энергии и топлива.

Применять приведенные выше формулы на практике рекомендуется с большой долей осторожности. Такие расчеты могут быть оправданы в самых простых случаях, например, при выборе циркуляционного насоса для имеющегося котла или для получения грубых оценок величины затрат на отопление.

Точный расчет тепловой нагрузки

Эффективность теплоизоляции любого помещения зависит от его конструктивных особенностей. Известно, что основная часть тепловых потерь (до 40%) приходится на наружные стены, 20% – на оконные системы, по 10% – на крышу и пол. Остальное тепло уходит через двери и вентиляцию. Очевидно, что расчёт величины нагрузки на отопление обязательно должен учитывать эти особенности распределения тепловой энергии. Для этого используются соответствующие коэффициенты:

  • К1 – учитывает тип окон. Для двухкамерных стеклопакетов его значение равно 1, для трехкамерных – 0,85, для обычного остекления – 1, 27;
  • К2 – теплоизоляция стен. Может изменяться от 1 для пенобетона с улучшенной теплопроводностью до 1,5 для кладки в полтора кирпича или бетонных блоков;
  • К3 – конфигурация помещения (соотношение площади окон и пола). Естественно, чем больше окон, тем больше тепловой энергии уходит на улицу. При размерах остекления в 20% от площади пола этот коэффициент равен единице, при увеличении доли окон до 50% он также возрастает до 1,5;
  • К4 – минимальная уличная температура в течение всего сезона. Здесь логика также очевидна – чем холоднее на улице, тем большие коррективы необходимо вносить в расчет тепловых нагрузок. За единицу берется температура -20 °C, далее прибавляется или вычитается по 0,1 на каждые 5 °C;
  • К5 – количество наружных стен. Для одной стены коэффициент равен 1, для двух и трех – 1,2, для четырех – 1,33;
  • К6 – тип помещения над рассматриваемой комнатой. Если сверху жилой этаж – то 0,82, если теплый чердак – 0,91, для холодного чердака значение коэффициента равно 1,0;
  • К7 – учитывает высоту потолков. Чаще всего это 1,0 для высоты 2,5 м или 1,05 – для 3 м.

Определив все поправочные коэффициенты, можно рассчитать тепловые нагрузки для каждого помещения:

Qi=q*Si*K1*K2*K3*K4*K5*K6*K7,

где q =100 Вт/м2, а Si – площадь помещения. Из формулы видно, что каждый из указанных коэффициентов увеличивает расчетную величину теплопотерь, если его значение больше единицы, и уменьшает ее в противном случае.

Просуммировав теплопотери всех помещений, получаем общую величину мощности системы отопления:

Q=Σ Qi, i = 1…N,

где N – количество помещений в доме. Эту величину обычно увеличивают на 15–20% для создания запаса тепловой энергии на непредвиденные случаи: очень сильные морозы, нарушение теплоизоляции, разбитое окно и т. д.

Практический пример расчёта

В качестве примера рассмотрим расчет мощности оборудования, необходимой для отопления помещений брусового дома площадью 150 м2, имеющего теплый чердак, три внешние стены и окна из двойных стеклопакетов. Площадь остекления – 25%, высота стен 2,5 м. Температуру на улице в самую холодную пятидневку будем считать равной -28 °C.

Определяем поправочные коэффициенты:

  • К1=1,0 (двухкамерный стеклопакет).
  • К2=1,25 (материал стен – брус).
  • К3=1,1 (для площади остекления 21 – 29%).
  • К4=1,16 (считаем методом интерполяции для крайних значений: 1,1 при -25 °C и 1,2 при -30 °C).
  • К5=1,22 – три наружные стены.
  • К6=0,91 – наверху теплый чердак.
  • К7=1,0 – высота потолков 2,5 м.

Считаем полную тепловую нагрузку:

Q=100 Вт/м2*135 м2*1,0*1,25*1,1*1,16*1,22*0,91*1,0 = 23,9 кВт.

Теперь определяем мощность системы отопления: W=Q*1,2 = 28,7 кВт.

Отметим, что если бы для расчета мы использовали упрощенную методику, основанную на учете только площади помещения, то получили 15­–22,5 кВт (100–150 Вт х 150 м2). Система работала бы на пределе, без запаса по мощности. Таким образом, данный пример еще раз подчеркивает важность применения точных методик определения тепловых нагрузок на отопление.

Приложение 14 [к: МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАЗРАБОТКЕ СХЕМ ТЕПЛОСНАБЖЕНИЯ] — последняя редакция

Приложение N 14
к Методическим указаниям
по разработке схем теплоснабжения

П14.1. Определение расчетной тепловой нагрузки

П14.1.1. Для определения расчетной тепловой нагрузки должны учитываться индексы аналогичные, указанным на рисунке П13.1 приложения N 13 к Методическим указаниям по разработке схем теплоснабжения. В поселении, городском округе, городе федерального значения действуют множество J источников тепловой энергии с зонами действия J, установленными по конечным точкам тепловых сетей, обеспечивающих циркуляцию теплоносителя для передачи тепловой энергии от источника тепловой энергии к потребителю.

П14.1.2. Все РЭДТ в поселении, городском округе, городе федерального значения должны быть пронумерованы с индексом I.

П14.1.3. В каждой зоне действия J-того источника тепловой энергии должны быть пронумерованы РЭДТ с индексом Ij. Для каждой зоны действия J-того источника тепловой энергии должно быть выполнено условие, Ij

П14.1.4. В каждом РЭДТ с индексом Ij должны быть пронумерованы объекты теплопотребления с индексами: Kj — для жилых зданий, Mj — для общественно-деловых зданий; Lj — для производственных объектов.

П14.1.5. Расчет тепловой нагрузки в зоне действия J-того источника тепловой энергии, системы теплоснабжения должен быть выполнен в соответствии со следующей формулой (П14.1):

(П14.1)

где,

— суммарная расчетная тепловая нагрузка в зоне действия j-того источника тепловой энергии в ретроспективный период Гкал/ч;

— суммарная расчетная тепловая нагрузка (отопление, вентиляция, горячее водоснабжение) k-того жилого здания в зоне действия j-того источника тепловой энергии в ретроспективный период (A), Гкал/ч;

— суммарная расчетная тепловая нагрузка (отопление, вентиляция, холодоснабжение, горячее водоснабжение) m-ного общественно-делового здания в зоне действия j-того источника тепловой энергии в ретроспективный период, Гкал/ч;

— суммарная расчетная тепловая нагрузка (отопление, вентиляция, горячее водоснабжение, производственная) l-ного производственного объекта в зоне действия j-того источника тепловой энергии в ретроспективный период, Гкал/ч;

Kj — общее количество жилых зданий в зоне действия j-того источника тепловой энергии в ретроспективный период;

Mj — общее количество общественно-деловых зданий в зоне действия j-того источника тепловой энергии в ретроспективный период;

Lj — общее количество производственных объектов в зоне действия j-того источника тепловой энергии в ретроспективный период.

П14.2. Определение расчетной тепловой нагрузки
с использованием данных приборов учета

П14.2.1. В целях определения расчетной тепловой нагрузки должны быть представлены следующие данные, зарегистрированные прибором учета:

расход тепловой энергии за сутки, Гкал/сутки;

температура наружного воздуха средняя за те же сутки, °C.

П14.2.2. Данные с приборов учета тепловой энергии, по которым устанавливается расчетная тепловая нагрузка, не удовлетворяющих требованиям к приборам учета тепловой энергии, не должны рассматриваться.

П14.2.3. Данные с приборов учета, отражающие «спрямления» и «срезки» температурного графика в диапазонах температур наружного воздуха > +8 °C и °C, не должны рассматриваться.

П14.2.4. Обработанные данные должны отражаться в прямоугольной системе координат: по оси абсцисс — средняя за сутки температура наружного воздуха, °C, , по оси ординат — среднее за сутки часовое потребление тепловой энергии на цели отопления, вентиляции и горячего водоснабжения ;

П14.2.5. По отображенным данным должна находиться приближенная функциональная линейная зависимость (простая линейная регрессия, позволяющая найти прямую линию, максимально приближенную к точкам данных с приборов учета тепловой энергии) в виде:

(П14.2)

где,

b0 — сдвиг линейной функции относительно начала координат;

b1 — наклон прямой;

— температура наружного воздуха средняя за сутки, °C.

П14.2.6. Для вычисления коэффициентов линейной регрессии применяются любые табличные процессоры.

П14.2.7. Расчетная тепловая нагрузка должна быть определена при температуре наружного воздуха, принимаемой для проектирования систем отопления, например = минус 36 °C (рисунок П14.1).

П14.2.8. Расчетная тепловая нагрузка, вычисленная подобным образом, должна включать тепловую нагрузку потребителей, присоединенных к тепловым сетям, образующим зону действия источника тепловой энергии, потери тепловой мощности в тепловых сетях при передаче тепловой энергии, расход тепловой мощности на хозяйственные нужды в тепловых сетях.

П14.2.9. Распределение полученной оценки расчетной тепловой нагрузки по видам тепловой нагрузки (отопление, вентиляция, горячее водоснабжение, технология, потери в тепловых сетях и расход мощности на хозяйственные нужды) должно быть основано на пропорциональном методе оценки договорных тепловых нагрузок.

Рисунок П14.1. Определение расчетной тепловой нагрузки

П14.3. Определение средневзвешенной плотности
тепловой нагрузки

П14.3.1. Средневзвешенная плотность тепловой нагрузки должна определяться как частное от деления расчетной тепловой нагрузки потребителей, присоединенных к тепловым сетям системы теплоснабжения, на площадь зоны действия системы теплоснабжения по формуле:

(П14.3)

где,

— суммарная тепловая нагрузка в зоне действия j-того источника тепловой энергии (системы теплоснабжения) в ретроспективный период, Гкал/ч;

Fj,A — площадь зоны действия j-того источника тепловой энергии, установленной по конечным точкам тепловых сетей, обеспечивающих циркуляцию теплоносителя для передачи тепловой энергии от источника к потребителю, га;

A — год актуализации схемы теплоснабжения.

П14.3.2. Площадь зоны действия системы теплоснабжения должна определяться по данным электронной модели системы теплоснабжения, как площадь (в гектарах), ограниченная контуром, построенным по конечным точкам подключения объектов теплопотребления к тепловым сетям системы теплоснабжения.

П14.3.3. Средневзвешенная плотность тепловой нагрузки по поселению, городскому округу, городу федерального значения должна определяться как частное от деления расчетной тепловой нагрузки потребителей, присоединенных к тепловым сетям всех систем теплоснабжения, действующих в поселении, городском округе, городе федерального значения, на площадь застроенной территории (по данным утвержденного генерального плана поселения, городского округа, города федерального значения).

Как рассчитать тепловую нагрузку

Важным аспектом правильного планирования системы центрального кондиционирования является включение расчета BTU, чтобы гарантировать, что ваша система HVAC может адекватно обогревать и охлаждать ваш дом или офис. Прежде чем объяснять , как рассчитать тепловую нагрузку , мы должны ответить на важный вопрос:

Что такое тепловая нагрузка?

Очевидно, что климат снаружи влияет на температуру в помещении. В экстремальных климатических условиях системы HVAC должны усердно работать, чтобы поддерживать комфортную среду.«Тепловая нагрузка» описывает количество охлаждения или нагрева, необходимое для достижения желаемой температуры в доме.

Оценка вашего расчета тепловой нагрузки

Для точного измерения, , мы рекомендуем обратиться к специалисту по HVAC , потому что существует множество факторов, которые могут иметь значение. Эти факторы включают изоляцию, строительные материалы, количество окон, размер и расположение окон, бытовую технику, электронику (компьютеры, принтеры и т. Д.).все откладывать тепло), сколько людей обычно занимают дома и многое другое. Тепловая нагрузка измеряется в БТЕ (британских тепловых единицах). Одна БТЕ составляет приблизительно 1055 джоулей и определяется количеством энергии, необходимой для нагрева или охлаждения одного фунта воды на один градус. Вот простая в использовании формула . Он не предназначен для того, чтобы быть эталоном истины, но он определенно даст вам представление о том, в каком направлении следует двигаться при планировании вашей системы HVAC:

Формула для расчета тепловой нагрузки

  1. Возьмите квадратный метр вашего дома
  2. Умножьте это на среднюю высоту потолка в вашем доме
  3. Умножается на разницу желаемой температуры и наружной температуры
  4. Умножьте множитель, который означает, что целевое здание представляет собой герметичное сооружение (.135)

Чтобы проиллюстрировать эту точку зрения, вот пример расчета : если вы сталкиваетесь с 30-градусной температурой в вашем регионе и хотите, чтобы она составляла 70 градусов в доме площадью 3000 квадратных футов с 8-футовыми потолками, ваш расчет будет выглядеть так: 3000 x 8 x 40 x 0,135 = 129 600 БТЕ. Имейте в виду, что это очень консервативная оценка , что означает, что вам, вероятно, не понадобится система HVAC, которая выдает 129 000 БТЕ. Когда вы рассчитываете тепловую нагрузку, вместо того, чтобы обращаться к профессионалу, вы получите менее точную цифру.Для справки: профессиональные расчеты, как правило, находятся в диапазоне 65-80% от того, что рассчитывается по приведенной выше формуле. Пример: профессионал, скорее всего, сочтет, что для этого дома требуется от 80 000 до 100 000 БТЕ. Как говорится, лучше проявить осторожность. Как уже упоминалось, для правильного планирования мы настоятельно рекомендуем вам профессионально измерить тепловую нагрузку.

Купить запчасти и аксессуары для систем отопления, вентиляции и кондиционирования воздуха в Интернете

Помните, что если вам нужно заменить какой-либо компонент вашей системы, PlumbersStock предлагает отличные цены на огромный выбор запчастей HVAC .Если у вас возникли проблемы с поиском того, что вам нужно, свяжитесь с нами. Не забудьте обновить HVAC tools . Если вы все еще не совсем понимаете, как рассчитать тепловую нагрузку, свяжитесь с нами. Отапливаете ли вы свой дом с помощью котла , печи или просто обогревателя , у нас есть все необходимое.

Ресурсы по теме:
Какой размер системы HVAC необходим?
Какой размер котла купить?

Калькулятор нагрузки HVAC — Highseer

Простой в использовании инструмент HVAC для расчета необходимой тепловой мощности (в БТЕ)

Этот инструмент основан на методе квадратных футов с добавлением вычислений для наиболее важных включенных значений, таких как изоляция, окна и другие факторы.

Система предварительно настроена на внутреннюю температуру 72 градуса и наружную температуру 95 градусов.

Выберите свой регион и введите высоту зоны, а также площадь (длина, умноженная на ширину). В инструменте предварительно установлены различные коэффициенты с наиболее часто используемыми значениями, но их можно изменить по желанию, нажав кнопку «Дополнительные факторы», чтобы открыть эти дополнительные поля.

Поскольку большинство блоков кондиционирования воздуха поставляются с шагом ½ тонны (6000 БТЕ / час), эта система должна быть достаточно близка к фактическим единицам, которые будут использоваться.

Примечание : Этот инструмент предоставляется строго как быстрый метод вычисления общих условий размера и стоимости. Методы квадратного фута считаются практическим правилом для использования в быстрых вычислениях. Точную тепловую нагрузку можно определить с помощью анализа полной тепловой нагрузки.

Заявление об отказе от ответственности

Рекомендуемые нагрузки в БТЕ были определены добросовестно и предназначены только для общих информационных целей. Мы не несем ответственности и не гарантируем полноту, надежность или точность этой информации.В некоторых приложениях может быть несколько других уникальных факторов, которые существенно влияют на эти значения или даже искажают их. Вы всегда должны консультироваться с лицензированным инженером-проектировщиком для получения наиболее точных измерений и значений, которые могут быть действительно получены только после того, как будет проведена тщательная проверка рабочей площадки и определены все связанные факторы.

Разрешить сценарии!

ЕСЛИ ВЫ ВИДИТЕ ЖЕЛТУЮ ПОЛОСКУ ПОД АДРЕСНОЙ БЛОКОЙ, ВЫ ДОЛЖНЫ НАЖАТЬ ЕГО, ЧТОБЫ РАЗРЕШИТЬ СЦЕНАРИИ. Этот сценарий не причинит вреда вашему компьютеру и не регистрирует никакой информации о вас. Для использования этого калькулятора в вашем браузере должен быть включен JavaScript.

% PDF-1.7 % 2553 0 объект > эндобдж xref 2553 87 0000000016 00000 н. 0000003771 00000 н. 0000004094 00000 н. 0000004148 00000 п. 0000004278 00000 н. 0000004623 00000 н. 0000005297 00000 н. 0000005336 00000 н. 0000005451 00000 п. 0000005722 00000 н. 0000006384 00000 п. 0000007047 00000 н. 0000007606 00000 н. 0000007863 00000 н. 0000008471 00000 п. 0000009024 00000 н. 0000009275 00000 п. 0000009876 00000 н. 0000010239 00000 п. 0000055144 00000 п. 0000081857 00000 п. 0000111042 00000 н. 0000113693 00000 н. 0000123521 00000 н. 0000123779 00000 п. 0000124128 00000 н. 0000189671 00000 н. 0000189746 00000 н. 0000189834 00000 н. 0000189992 00000 н. 00001 00000 н. 00001

00000 н. 00001

00000 н. 00001

00000 н. 00001

00000 н. 00001

00000 н. 00001

00000 н. 00001 00000 н. 00001 00000 н. 00001 00000 н. 00001

00000 н. 00001 00000 н. 00001 00000 н. 00001

00000 н. 00001 00000 н. 0000191861 00000 н. 0000191917 00000 н. 0000192025 00000 н. 0000192149 00000 н. 0000192287 00000 н. 0000192343 00000 н. 0000192455 00000 н. 0000192511 00000 н. 0000192633 00000 н. 0000192689 00000 н. 0000192799 00000 н. 0000192855 00000 н. 0000192971 00000 н. 0000193027 00000 н. 0000193145 00000 н. 0000193201 00000 н. 0000193257 00000 н. 0000193449 00000 н. 0000193505 00000 н. 0000193631 00000 н. 0000193687 00000 н. 0000193797 00000 н. 0000193853 00000 н. 0000193997 00000 н. 0000194053 00000 н. 0000194175 00000 н. 0000194231 00000 п. 0000194287 00000 н. 0000194343 00000 н. 0000194487 00000 н. 0000194543 00000 н. 0000194599 00000 н.

Интернет-курсов PDH.PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии.

курсов. «

Russell Bailey, P.E.

Нью-Йорк

«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей компании

имя другим на работе. «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком.

с подробной информацией о Канзасе

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

в моей работе ».

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал. «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что позволили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получает викторину «

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам. »

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основе какой-то неясной раздел

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация «

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

Доступно и просто

использовать. Большое спасибо «.

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Джозеф Фриссора, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев «.

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA в проектировании объектов «очень полезен.Модель

испытание потребовало исследований в

документ но ответов были

в наличии. «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курсов. Процесс прост, и

намного эффективнее, чем

приходится путешествовать «.

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов.

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

пора исследовать где на

получить мои кредиты от. «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утром

до метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

пониженная цена

на 40%. «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительно

сертификация. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими.

хорошо организовано. «

Глен Шварц, П.Е.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, никакой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и демонстрировали понимание

материала. Полная

и всесторонний ».

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили этот курс.

поможет по моей линии

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, П.Е.

Монтана

«Легко выполнить. Никакой путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличное освежение ».

Луан Мане, П.Е.

Conneticut

«Мне нравится, как зарегистрироваться и читать материалы в автономном режиме, а затем

Вернуться, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Материалы обзора и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродский П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Глэдд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

сертификат. Спасибо за создание

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Положительный опыт.Быстро нашел курс, который соответствовал моим потребностям, и закончил

одночасовое PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея заплатить за

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не являющихся электротехниками».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в онлайн-викторине и получение сразу

Сертификат . «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

по своей специализации без

надо ехать.»

Гектор Герреро, П.Е.

Грузия

Как рассчитываются тепловые и охлаждающие нагрузки

Наличие блока HVAC подходящего размера позволит максимально повысить энергоэффективность, сохраняя при этом комфорт в вашем доме в Джефферсоне, штат Луизиана. Узнайте, как профессиональные подрядчики HVAC из Bryans United Air Conditioning заботятся о выборе оборудования специально для вашего дома, тщательно рассчитывая тепловые и охлаждающие нагрузки.

Почему наши специалисты рассчитывают нагрузки на отопление и охлаждение

Небольшая печь или кондиционер не могут обеспечить комфорт в вашем доме, в то время как установка негабаритного размера будет работать с коротким циклом.Короткие циклы происходят, когда блок HVAC останавливается и запускается неоднократно, никогда не достигая максимальной эффективности.

Напротив, установка HVAC правильного размера обеспечивает комфорт в вашем доме при экстремальных температурах и бесперебойную работу, достигая максимальной эффективности. Чтобы порекомендовать кондиционер или обогреватель подходящего размера, наши специалисты рассчитают тепловую и охлаждающую нагрузку вашего дома.

Расчеты начинаются со стандартов

Отраслевые стандарты для расчета нагрузок на отопление и охлаждение можно найти в Руководстве для американских подрядчиков по кондиционированию воздуха J.Используя расчеты, приведенные в Руководстве J, наши специалисты собирают измерения для каждой комнаты и отмечают особенности, характерные для вашего дома.

Расчет тепловой нагрузки

Мы правильно подбираем размер отопительного агрегата для вашего дома, используя Руководство J, чтобы определить тепловую нагрузку вашего дома, количество тепла, необходимое для поддержания тепла в доме самой холодной ночью в году.

В расчетах

вручную J учитываются такие факторы, как размер ваших комнат, количество мебели в каждой комнате и планировка вашего дома.Чтобы учесть потерю тепла, в расчеты включаются данные об окнах, дверях и вентиляционных отверстиях, а также измерения изоляции вашего дома.

Расчет нагрузки охлаждения

Чтобы определить охлаждающий агрегат подходящего размера для вашего дома, мы также рассчитываем охлаждающую нагрузку вашего дома — количество тепла, которое необходимо отвести из дома, чтобы поддерживать его прохладу в полдень самого жаркого месяца в году.

Точный расчет охлаждающей нагрузки учитывает источники тепла в вашем доме, такие как люди, домашние животные, освещение и бытовые приборы.Этот расчет также включает тепло, которое поступает в ваш дом через окна, крышу и наружные вентиляционные отверстия.

В Bryans United Air Conditioning мы используем отраслевые стандарты для измерения эффективных тепловых и охлаждающих нагрузок для вашего дома. Позвоните нам по телефону 504-208-2071, чтобы помочь вам правильно выбрать размер нового оборудования HVAC для вашего дома в Джефферсоне.

Изображение предоставлено Shutterstock

Как рассчитать тепловую нагрузку в электрическом или электронном шкафу

Общая тепловая нагрузка складывается из теплоотдачи снаружи панели и тепла, рассеиваемого внутри блока управления.

Полезные термины и преобразования:

1 БТЕ / час = 0,293 Вт
1 БТЕ / час — 0,000393 л.с.
1 Вт = 3,415 БТЕ / час
1 л.с. = 2544 БТЕ / час
1 Вт = 0,00134 л.с.
1 квадратный фут = 0,0929 квадратных метров
1 квадратный метр = 10,76 квадратных футов

Типичная мощность вентилятора:

4-дюймовый вентилятор: 100 куб. Фут / мин (2832 л / мин)
6-дюймовый вентилятор: 220 куб. Фут / мин (6230 л / мин)
8-дюймовый вентилятор: 340 куб. Фут / мин (9628 л / мин)
вентилятор 10 дюймов 550 куб. / Мин (15574 л / мин)

БТЕ / час.охлаждающий эффект от вентилятора 1,08 x (температура внутри панели в ºF — температура снаружи панели в градусах F) x CFM

Ватт охлаждающего эффекта от вентилятора: 0,16 x (температура внутри панели в ºC — температура снаружи панели в градусах C) x LPM

Расчет БТЕ / час. или Вт:

  1. Определите количество тепла, выделяемого внутри шкафа. Может потребоваться приближение. Например, если вы знаете мощность, генерируемую внутри устройства, предположите, что 10% энергии рассеивается в виде тепла.
  2. Для теплопередачи снаружи рассчитайте площадь, подверженную воздействию атмосферы, за исключением верхней части панели управления.
  3. Выберите желаемую внутреннюю температуру и выберите разницу температур между ней и максимальной ожидаемой внешней температурой.
  4. Из приведенной ниже таблицы преобразования определите БТЕ / час. на квадратный фут (или ватт на квадратный метр) для разницы температур.
  5. Умножьте площадь поверхности панели на БТЕ / час. на квадратный фут (или ватт на квадратный метр), чтобы получить внешнюю теплопередачу в БТЕ / час или в ваттах.
  6. Суммирует рассчитанные внутренние и внешние тепловые нагрузки.
  7. Если вам неизвестна мощность, потребляемая в шкафу, но вы можете измерять температуру, затем измерьте разницу между внешней при текущей температуре и текущей внутренней температурой шкафа.
  8. Обратите внимание на размер и количество внешних вентиляторов. Предоставьте эту информацию компании Nex FlowT, чтобы помочь в выборе подходящей системы охлаждения.
Разница температур в градусах F БТЕ / час / кв.фут. Разница температур в градусах Цельсия Ватт / кв.м
5 1,5 3 5,2
10 3,3 6 11,3
15 5,1 9 17,6
20 7,1 12 24,4
25 9,1 15 31.4
30 11,3 18 39,5
35 13,8 21 47,7
40 16,2 24 55,6

Пример:

Панель управления имеет два частотных преобразователя общей мощностью 10 лошадиных сил и один модуль мощностью 100 Вт. Ожидаемая максимальная наружная температура ºC. Площадь открытых сторон панели управления, кроме верхней, составляет 42 квадратных фута или 3 квадратных метра.9 квадратных метров. Мы хотим, чтобы внутренняя температура была ºC.

Общая внутренняя мощность составляет 10 л.с. x 746 Вт / л.с. — 7460 плюс 100 Вт = 7560 Вт.
Предположим, что 10% тепла образует внутреннюю тепловую нагрузку 756 Вт.

или

Общая внутренняя мощность составляет 10 л.с. x 2544 БТЕ / л.с. = 25440 БТЕ / час плюс 100 Вт x 3,415 БТЕ / час / ватт = 25782 БТЕ / час.

Предположим, 10% тепла образует = внутренняя тепловая нагрузка 2578 БТЕ / час.

Внешняя тепловая нагрузка: Разница между заданной температурой и внешней температурой ºC.Используя преобразование (и, при необходимости, интерполяцию), мы умножаем площадь на коэффициент преобразования:

42 кв. Фута x 3,3 — 139 БТЕ / ч или 3,9 кв. М x 10,3 = 40 Вт

Общая тепловая нагрузка: 756 + 40 — 796 Вт или 2578 + 139 — 2717 БТЕ / час.

Нагрузка на отопление / охлаждение | Экзаменационные инструменты PE для систем отопления, вентиляции и кондиционирования воздуха

Расчет охлаждающей нагрузки — основные сведения

Расчеты охлаждающей нагрузки обычно являются одними из первых расчетов, выполняемых инженером по ОВК и холодильной технике.Эти расчеты служат основой для определения размеров оборудования для кондиционирования воздуха. Чтобы определить размеры механического оборудования, инженер должен сначала определить, какое тепло передается в здание и какое тепло передается из здания. Сумма тепла, полученного и потерянного зданием, определит размер оборудования для кондиционирования воздуха.

Различные поступления и потери тепла в здании можно охарактеризовать как внешние или внутренние нагрузки.К внешним нагрузкам относятся теплопроводные и радиационные тепловые нагрузки, передаваемые через крыши, стены, световые люки и окна. Кроме того, наружный воздух может попадать в здание из-за требований вентиляции или инфильтрации, что создает нагрузку на систему. Внутренние нагрузки включают тепловые нагрузки от людей, как скрытые, так и ощутимые, нагрузки от освещения и разного оборудования, такого как компьютеры, телевизоры, двигатели и т. Д.

Различные поступления тепла также можно разделить на явные и скрытые поступления тепла.Ощутимое тепловыделение — это тепловыделение, характеризующееся только изменением температуры и отсутствием изменений состояния. Скрытый приток тепла — это приток влаги. Важно отметить, что в таблице ниже показано, что вентиляция, инфильтрация, люди и другое оборудование имеют явный и скрытый приток тепла. Эти индивидуальные тепловыделения подробно обсуждаются в следующих разделах.

КОЭФФИЦИЕНТ ТЕПЛОВОЙ МАССЫ И ЗАДЕРЖКИ

При выполнении расчетов нагрузки важно понимать фактор запаздывания по времени.Когда солнце освещает стену рано утром, хотя стена действительно испытывает тепловую нагрузку, количество тепловой нагрузки, испытываемой ВНУТРИ здания в это время, минимально. Это связано с тепловой массой стены. Термическая масса также известна как теплоемкость и определяется как способность материала поглощать тепло.

Использование тепловой массы показано в зданиях со стенами с высокой тепловой массой, которые поглощают тепло в течение дня, накапливают тепло в периоды занятости и отводят тепло ночью, когда становится прохладно.

НЕОПРЕДЕЛЕННОСТЬ

Расчет притока тепла и определение охлаждающей нагрузки имеет очень высокую погрешность. Это связано с тем, что необходимо сделать множество предположений, таких как нагрузка на людей, количество людей, графики, погодные условия на открытом воздухе, графики работы оборудования, приток тепла и т. Д. Инженер должен понимать, что следующие расчеты не являются наиболее точными способами расчета охлаждающей нагрузки и показаны только для выделения концепций, которые можно проверить на профессиональном инженерном экзамене.Существует несколько методов, используемых для расчета охлаждающей нагрузки, таких как временной ряд излучения, полная эквивалентная разница во времени и методы CLTD / SCL / CLF. В этом разделе показан метод CLTD / SCL / CLF, поскольку это наиболее практичный метод, который можно протестировать без компьютера за относительно короткий период времени (4 часа 6 минут на каждую задачу).

Расчет охлаждающей нагрузки — крыша / стена

Нагрузки от крыш и стен являются токопроводящими.Тепло снаружи проходит через кровельные или стеновые материалы, попадая в помещение. Если проблема не предполагает радиационных нагрузок или не учитывает время, то единственной нагрузкой является проводящая нагрузка от разницы температур между наружным и внутренним помещениями, как показано ниже.

Однако с тепловым эффектом от крыш и стен не все так просто.Необходимо учитывать излучение солнца на здание и время, необходимое для передачи тепла через материалы. Чтобы рассчитать общий эффект разницы между температурой внутри и снаружи, влияние солнечного излучения на стены и крыши и фактор времени из-за накопления тепла в материале крыши / стены, инженер должен использовать систему охлаждения. Разница температур нагрузки или CLTD. Эти значения можно найти в книге «Основы ASHRAE» 1997 года выпуска и старше.Эти таблицы упорядочены по широте, типу крыши или стены, месяцу и направлению ориентации стены. Кроме того, CLTD организован по часам дня. Автор не считает, что вам нужно будет искать эти значения в ASHRAE 1997 и что эти значения будут предоставлены вам как часть проблемы. Важно только понять, что такое CLTD и как его использовать в случае возникновения проблемы.

Также важно отметить, что CLTD — это упрощенный подход к определению тепловой нагрузки от крыш и стен.На самом деле тепловая нагрузка, создаваемая крышами / стенами, также будет зависеть от многих других условий, таких как условия в помещении и тепло, излучаемое от внутренней стены / крыши во внутреннее пространство.

Расчет охлаждающей нагрузки — окно в крыше / окно

Тепловые нагрузки от световых люков и окон можно разделить на (2) типа нагрузок: проводящие и радиационные нагрузки.Для проводящих нагрузок для световых люков и окон используется та же формула, что и для крыш и окон, которая снова показана ниже.

Проводящие нагрузки

Радиационная нагрузка или пропускание солнечного света рассчитывается путем умножения площади окна или светового люка на коэффициент затемнения и коэффициент нагрузки солнечного охлаждения.

Коэффициент затемнения — это отношение пропускания солнечного света конкретным окном или световым люком по сравнению с прозрачным стеклом 1/8 дюйма.Коэффициент затемнения обычно специфичен для производителя стекла и может быть найден в данных производителя о продукте. Во время экзамена необходимо указать это значение вместе с коэффициентом нагрузки солнечного охлаждения. Коэффициент нагрузки солнечного охлаждения приведен в книге «Основы ASHRAE 1997» и, как и в случае с CLTD, служит упрощенным подходом к расчету притока тепла. Кроме того, SCL организован аналогично по световому окну / окну, ориентации, месяцу, широте и часу.

Вместо SC, термин «коэффициент солнечного тепла» (SHGC) используется производителями окон / световых люков.Этот член просто находится путем деления SC на 1,15. Более низкий SHGC или SC означает, что стекло пропускает меньше солнечного излучения, а более высокое SHGC или SC означает, что стекло пропускает больше солнечного излучения.

Национальный совет по оценке окон (NFRC) оценивает стекло и сертифицирует SHGC и U-фактор. Дополнительные значения, такие как видимая прозрачность, утечка воздуха и сопротивление конденсации, также проверены и сертифицированы.

Расчет охлаждающей нагрузки — Люди

Тепловые нагрузки от человека зависят от уровня его активности.ASHRAE составляет таблицы тепловых нагрузок, как явного, так и скрытого тепловыделения от людей, в зависимости от уровня их активности, см. Основы ASHRAE. Нагрузки от людей могут быть рассчитаны с использованием этих значений тепловыделения, количества людей и коэффициента охлаждающей нагрузки, как показано в приведенных ниже уравнениях. Коэффициент охлаждающей нагрузки учитывает коэффициент задержки по времени, и, если он не указан, следует принять его равным 1,0.

Явные нагрузки

Скрытые нагрузки

R-Value означает термическое сопротивление и отражает способность материала сопротивляться нагреванию.Это противоположно коэффициенту U и теплопроводности, которые являются показателями способности материалов проводить тепло. Соотношение между значением R, коэффициентом теплопроводности и теплопроводностью показано в следующей формуле.

Расчет охлаждающей нагрузки — Освещение

Тепловая нагрузка от освещения в здании определяется путем суммирования количества ламп каждого типа и мощности, затем преобразования ватт в британские тепловые единицы / час, умножения этого числа на коэффициент использования и коэффициент специального допуска, как показано ниже. уравнение.

Мощность света основана на заявленном производителем значении для ламп в осветительной арматуре без учета балласта. Коэффициент использования освещения — это соотношение времени, в течение которого огни будут использоваться. Этот коэффициент обычно равен 1,0 для большинства приложений, таких как офисы, учебные классы, магазины, больницы и т. Д. Коэффициент использования может варьироваться для кинотеатра или неактивного хранилища.В специальном коэффициенте допуска учитывается тепло от балластов. Этот коэффициент обычно составляет 1,2 для люминесцентных ламп и 1,0 для ламп накаливания из-за отсутствия балластов в лампах накаливания.

Наконец, космическая доля — это часть общего тепла от света, которое передается в пространство. Светильники, расположенные на потолке, могут передавать часть тепла в камеру статического давления, а не в пространство.Это означает, что система кондиционирования воздуха, если обратная линия имеет воздуховод, не будет видеть процент тепла, передаваемого в камеру статического давления. Если приточная камера используется как обратная, тогда кондиционер будет видеть все тепло от освещения. Например, доля пространства для подвешенного люминесцентного светильника (не потолочного) будет 1,0, потому что свет полностью проникает в пространство. С другой стороны, встраиваемый в потолок свет может иметь пространственную долю 0,5, что означает, что 50% его тепла передается в камеру статического давления, а остальные 50% передаются в пространство.

Расчет охлаждающей нагрузки — разное оборудование

Тепловыделение от различного оборудования можно найти с помощью следующих уравнений.

Первое уравнение используется для двигателей, где P равно номинальной мощности двигателя. Разделение мощности двигателя на эффективность двигателя позволяет учесть приток тепла за счет двигателя и приток тепла из-за неэффективности двигателя.Если двигатель используется постоянно, коэффициент использования будет 1,0. В противном случае коэффициент использования будет составлять долю времени, в течение которого он используется, деленный на общее время, в течение которого занято пространство. Коэффициент нагрузки двигателя учитывает тот факт, что двигатели редко работают с номинальной мощностью. Например, если двигатель мощностью 1 л.с. фактически работает при 0,75 л.с., то коэффициент нагрузки будет на 0,75.

Второе уравнение описывает приток тепла от бытовых приборов, таких как микроволновые печи, тостеры, плиты, духовки и компьютеры.Потребляемая энергия определяется путем исследования данных о продукте производителя или путем обращения к типичным значениям, указанным в Основных положениях ASHRAE. ASHRAE Fundamentals также содержит типичные коэффициенты использования и доли излучаемого тепла для типичного оборудования. В основных принципах ASHRAE также показаны явные тепловыделения для типичных единиц оборудования, которые не учитываются по формуле, приведенной ниже.

Расчет охлаждающей нагрузки — проникновение

Инфильтрация описывается как проникновение наружного воздуха в конструкцию здания.Эти утечки могут происходить через конструкцию здания или через входные двери. Прирост инфильтрационного тепла определяется по следующим уравнениям. Эти уравнения подробнее обсуждаются в разделе «Психрометрия».

Первое уравнение — это суммарный приток тепла с использованием энтальпии. В этом уравнении должен быть известен объемный расход инфильтрационного или вентиляционного воздуха. Это значение преобразуется и умножается на разницу в энтальпии между условиями наружного воздуха и условиями воздуха в помещении.

Следующие два уравнения разделяют общий приток тепла на явную и скрытую тепловые нагрузки.

Прирост явного тепла рассчитывается путем умножения CFM проникающего воздуха на разницу температур внутреннего и наружного воздуха.

Прирост скрытого тепла рассчитывается путем умножения CFM инфильтрованного воздуха на разницу в соотношении влажности внутреннего и наружного воздуха.

Важно отметить, что эти нагрузки не воспринимаются непосредственно охлаждающим змеевиком. Это косвенные нагрузки, возникающие в каждом кондиционируемом помещении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *