Схема драйвера энергосберегающей лампы: Схема энергосберегающей лампы – СамЭлектрик.ру

Ноя 8, 1980 Разное

Схема драйвера энергосберегающей лампы: Схема энергосберегающей лампы – СамЭлектрик.ру

Содержание

Драйвер для светодиодов из энергосберегающей лампы

Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.

Прогресс не стоит на месте и на смену энергосберегающим люминесцентным лампам приходят светодиодные источники света. Имея большую экономичность, они превосходят энергосберегающие лампы по экологичности, поскольку люминесцентные лампы содержат ядовитую ртуть, а светодиоды абсолютно безопасны (подробнее о вреде светодиодных ламп).

Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.

Использование платы питания энергосберегающей лампы в качестве драйвера для светодиодов

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Практическая реализация идеи

Простейший источник питания светодиодов от сети 220В имеет следующий вид:

Примитивный источник питания для светодиодов от сети 220В

На приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.

Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.

Ниже приведена схема, где вместо резистора используется гасящий конденсатор

Схема с гасящим конденсатором

Использование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.

Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.

Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.

Расчет схемы произведен для светодиодов HL-654h345WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.

Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.

Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.

Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.

Переделка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Советы и предостережения

Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.

Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Материалы по теме:

СХЕМА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

СХЕМА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

     Энергосберегающие лампы с цоколем, аналогичным обычной лампе накаливания, успели стать довольно популярными. Но несмотря на рекламные характеристики долговечности, выходы из строя этих ламп происходят часто. Разборка корпуса КЛЛ проводится с помощью плоской отвертки, которой проводят постепенно отжимая защелки по периметру. В цоколе лампы установлена плата электронного блока, которая соединена проводами с баллоном лампы с одной стороны и двумя проводами с цоколем с дрогой стороны. 


     Прежде всего при ремонте необходимо проверить целостность нитей лампы, сопротивление нитей должно быть 10-15 Ом. Ещё одной типичиной неисправностью является выход из строя транзисторов генератора ИП. Если наблюдается мерцание лампы, скорее всего имеется пробой высоковольтного конденсатора, включенного между нитями накала лампы.

     Здесь приводится сборник схем энергосберегающих ламп различных моделей и производителей. В принципе все эти схемы не сильно отличаются друг от друга и подходят к абсолютному большинству энергосберегающих ламп. 

     В архиве представлен сборник схем энергосберегающих ламп таких моделей:

  • — Схема энергосберегающей лампы LUXAR;
  • — Схема энергосберегающей лампы Bigluz;
  • — Схема энергосберегающей лампы Luxtek;
  • — Схема энергосберегающей лампы BrownieX;
  • — Схема энергосберегающей лампы Isotronic;
  • — Схема энергосберегающей лампы Polaris;
  • — Схема энергосберегающей лампы Maway;
  • — Схема энергосберегающей лампы Philips.

     Если причиной выхода из строя лампы является перегорание нитей подогрева стеклянной колбы, такую люминецентную лампу можно питать постоянным током, а рабочий преобразователь стоит использовать для питания обычных длинных ламп дневного света. Если причиной отказа энергосберегающей лампы является именно плата – с помощью данных схем починить её будет не проблема. Ну а когда от лампы остался только корпус с патроном — остаётся лишь переделать её в светодиодную.

     ФОРУМ по энергосберегающим люминесцентным лампам.

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 %. Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц. В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом

Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003. Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор

DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор

R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности.

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью.

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

Переделка драйвера энергосберегающей лампы. Драйвер для светодиодов из энергосберегающей лампы

Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.

Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока , по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Практическая реализация идеи

Простейший источник питания светодиодов от сети 220В имеет следующий вид:


На приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.

Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.

Ниже приведена схема, где вместо резистора используется гасящий конденсатор


Использование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.

Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.

Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.

Расчет схемы произведен для светодиодов HL-654h345WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.

Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.

Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.

Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.


Переделка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.

Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.

Автор статьи наглядно показал, как разобрать и что можно добыть для повторного использования из старой энергосберегающей лампы. Таким образом можно «вернуть» часть денег заплаченных за эту лампу в свое время. Если же удастся сохранить корпус с цоколем, то его можно использовать для изготовления других ламп. Сейчас модно делать своими руками светодиодные лампы из подручных средств.

Перегоревшая энергосберегающая лампа

Привет всем,

сегодня я хочу показать вам, как вы можете сделать большую часть из этих денег вы вложили в энергосберегающие лампы путем извлечения его полезных деталей после он сгорел.

Цель:

Цель этой Instructable, чтобы показать вам источник свободной части можно использовать для следующих проектов и снижения потерь электроэнергии.

Вы можете получить эти детали из энергосберегающих ламп:

  • Конденсаторы
  • Диоды
  • Транзисторы
  • Катушки

Необходимые инструменты:

  • плоскую отвертку или пилу/режущий инструмент
  • оловоотсос
  • паяльник

Пожалуйста, прочитайте следующий текст для вашей же безопасности. Я не хочу, чтобы люди пострадали так что читайте и, пожалуйста, будьте осторожны.

Файл readme:

  • Перед началом убедитесь, что стеклянные тела энергосберегающая Лампа разбита! Если он сломан, нужно запечатать его в сумку или какой-то контейнер, чтобы избежать попадания воздействию ртути внутри лампы.
  • Будьте очень осторожны, чтобы не повредить стекло и корпус светильника! Не пытайтесь открыть лампу, повернув стекло кузова или пытается порвать или как-то так.
  • Не пытайтесь открыть лампу сразу после этого сгорел. Он содержит высоковольтный конденсатор, который должен выполнять первым! Не прикасайтесь к печатной плате, если Вы не знаете, если конденсатор остается заряженным или вы можете получить удар током!
  • Я думаю, что лучший совет, чтобы распоряжаться сгорел или разбитые энергосберегающие лампы, чтобы положить их в емкость (например, ведро с крышкой или как-то так) и хранить контейнер в безопасном месте, пока вы не найдете место, чтобы переработать их.
  • Пожалуйста, не выбрасывайте энергосберегающие лампы в мусорное ведро! Энергосберегающие лампы являются экологически опасными и могут нанести вред людям!

Шаг 2: Откройте корпус лампы


Разборка старой энергосберегающей лампы

Ок. Начнем. Сначала посмотрим на дела. Большинстве случаев либо приклеены или закрепить вместе. (Мой был обрезан вместе, как и большинство других ламп у меня до сих пор открыт.)

Вы должны быть в состоянии открыть дело, открыв его с помощью отвертки или разрезая его открыть с помощью пилы.

В обоих случаях вы должны быть осторожны, чтобы не повредить стеклянное тело! Будьте очень осторожны.

После того как вы открыли дело, нужно просто обрезать провода, ведущие в стеклянном корпусе, так что вы можете положить его в безопасное место, чтобы избавиться от этой опасности.

Шаг 3: удалите печатную плату из корпуса


Иногда корпус сохранить не удается.
Плата драйвера энергосберегающей лампы готовая к распайке.

Теперь вам необходимо извлечь плату из корпуса.

Будьте очень осторожны и не прикасайтесь к печатной плате голыми руками! Там есть высоковольтный конденсатор (большой электролитический конденсатор можно увидеть на фото) на плате, которая еще могла быть! Попробуйте удалить его из схемы путем перерезания ножки и положить его в безопасное место. (Убедитесь, что не касаетесь ногами!)

Как только высоковольтный конденсатор снимается с доски ничего не останется страха. Теперь можно приступить к отпаяйте все полезные элементы.

Шаг 4: Отпаяйте все полезные части


Детали, которые удалось отпаять



Теперь возьмите паяльник и оловоотсос свой и запчастей.

Как вы можете видеть на картинке есть много полезных деталей на печатной плате, так что вы должны быть в состоянии собрать большое количество полезных элементов для вашего проекта:)

Ну, вот и все. Надеюсь, я смог предоставить вам несколько полезных советов, и я надеюсь, вам понравился мой Instructable:)

  • Что можно сделать из старых шприцов. (0)
    Встречайте. Подставка под микрофон, пистолет и продуктивная овощерезка. Все из старых шприцов. Вроде ничего особенного, но может приукрасить […]
  • Еще одна полезная вещь из алюминиевой банки. Попкорн заказывали? (0)
    Что еще можно сделать из алюминиевой банки. Или еще один способ как сделать попкорн своими руками. Имея две банки и нижеприведенную инструкцию […]

Пока учёные укрощают скорость света, я вот решил укротить ненужные люминесцентные лампы, переделывая их в светодиодные. Компактные люминесцентные лампы (КЛЛ) по немного уходят в прошлое, по понятным всем причинам: меньшая эффективность относительно светодиодных, экологическая небезопасность (ртуть), ультрафиолетовое излучение опасное для глаз человека, да и недолговечность.

Как и у многих радиолюбителей, накопилась целая коробка этого «добра». Менее мощные можно использовать как запчасти, ну а те что по мощнее, начиная с 20W можно переделать и источники питания. Ведь электронный балласт, это дешевый преобразователь напряжения, то есть простой и доступный импульсный блок питания которым можно питать приборы мощностью до 30-40W (зависит от КЛЛ), и даже больше если менять выходной дроссель и транзисторы. Тем радиолюбителям которые проживают в отдалённых местах, или в определённых ситуациях, эти «энергосберегалки» окажутся полезными. Так что, не спешите их выбрасывать после выхода из строя — а работают они не долго!

В моём случае, примерно год назад (весной 2014г.), начав экспериментировать с электронным балластом, в поисках корпуса под переделку в светодиодную лампу, возвращаясь вечером домой с работы, меня осенило — увидев на тротуаре банку из под колы. Ведь алюминиевый корпус из под 0,25L напитка, как раз подходит в качестве радиатора для рассеивания тепла светодиодной ленты. А также, идеально садится под корпус КЛЛ «Vitoone» с цоколем Е27, на 25 W. Да и в эстетике неплох!

Изготовив несколько переделанных LED-ламп, я начал их испытывать в разных условиях эксплуатации. Одна из них работает в подсобном помещении в жаре и морозе (с вентиляционными отверстиями), другая в жилом помещении (без отверстии в пластмассовом цоколе). Ещё одна подключена к трёхметровой светодиодной ленте. Прошел почти год, и они до сих пор безотказно служат! Ну, и учитывая то, что на тему светодиодов, статьей появляется все больше и больше, пришлось наконец-то написать и о моей испытанной временем идеи.

Обсудить статью ЛАМПА СВЕТОДИОДНАЯ УНИВЕРСАЛЬНАЯ

Люминесцентная лампа является довольно сложным механизмом. В конструкции энергосберегающих ламп находится множество разных мелких составляющих, которые в совокупности и обеспечивают то освещение, которое выдаёт такое устройство. Основой всей конструкции энергосберегающих устройств является стеклянная трубка, которая наполнена парами ртути и инертным газом.

Импульсный блок и его назначение

С обоих концов этой трубки установлены электроды, катод и анод. После подачи на них тока, они начинают нагреваться. Достигнув необходимой температуры они выпускают электроны, которые ударяются об молекулы ртути и та начинает излучать ультрафиолетовый свет.

Ультрафиолет конвертируется в видимый для человеческого глаза спектр благодаря люминофору, который находится в трубке. Таким образом, лампа зажигается спустя некоторое время. Обычно скорость загорания лампы зависит от срока её выработки. Чем дольше лампа работала, тем больше будет промежуток между включением и полным зажиганием.

Чтобы понять предназначение каждой из составляющих ибп, следует разобрать по отдельности какие функции они выполняют:

  • R0 – работает ограничителем и предохранителем блока питания. Он стабилизирует и останавливает излишний поток питания тока в момент включения, который протекает через диоды выпрямляющего устройства.
  • VD1, VD2, VD3, VD4 – используются как мостовые выпрямители.
  • L0, C0 – фильтруют подачу тока и делают её без перепадов.
  • R1, C1, VD8 и VD2 – запускная цепь преобразователей. Процесс запуска происходит следующим образом. Источник зарядки конденсатора С1 является первый резистор. После того как конденсатор набирает такой мощности, что способен пробить динистор VD2, он самостоятельно открывается и попутно открывает транзистор, что вызывает автоколебание в схеме. Затем прямоугольный импульс направляется на катод диода VD8 и возникающий минусовый показатель закрывает второй динистор.
  • R2, C11, C8 – делают стартовый процесс преобразователей более лёгким.
  • R7, R8 – Делают закрытие транзисторов более эффективным.
  • R6, R5 – создают границы для тока на базах каждого транзистора.
  • R4, R3 – работают как предохранители в случае резкого повышения напряжения в транзисторах.
  • VD7 VD6 – предохраняют каждый транзистор бп от возвратного тока.
  • TV1 – обратный трансформатор для связи.
  • L5 – дроссель балластный.
  • C4, C6 – конденсаторы разделения, где всё напряжение и питание разделяется пополам.
  • TV2 – трансформатор для создания импульсов.
  • VD14, VD15 – диоды, работающие от импульсов.
  • C9, C10 – фильтрующие конденсаторы.

Благодаря правильной расстановке и тщательному подбору характеристик всех перечисленных составляющих, мы и получаем блок питания необходимой нам мощности для дальнейшего использования.

Отличия конструкции лампы от импульсного блока

Очень похожа по строению импульсного блока питания, из-за чего сделать импульсный бп можно очень легко и быстро. Для переделки, необходимо установить перемычку и дополнительно установить трансформатор вырабатывающий импульсы и который оснащён выпрямителем.

Для облегчения ибп, удалена стеклянная люминесцентная лампа и некоторые составляющие конструкции, которые были заменены специальным соединителем. Вы могли заметить, что для изменения необходимо выполнить всего несколько простых операций, и этого будет вполне достаточно.

Плата с энергосберегающей лампы

Выдаваемый показатель мощности, ограничен размером используемого трансформатора, максимальным возможным пропускным показателем основных транзисторов и габаритами охлаждающей системы. Чтобы увеличить немного мощность, достаточно намотать ещё обмотки на дроссель.

Импульсный трансформатор

Основной ключевой характеристикой импульсного блока питания есть возможность адаптироваться к показателям трансформатора, который используется в конструкции. А то, что обратный ток не нуждается в проходке через трансформатор, который мы сами сделали, значительно облегчает нам расчёты номинальной мощности трансформатора.

Таким образом, большинство ошибок при расчёте становятся незначительными благодаря использованию такой схемы.

Рассчитываем ёмкость необходимого напряжения

Для экономии используют конденсаторы с маленьким показателем ёмкости. Именно от них будет зависеть показатель пульсации входящего напряжения. Для снижения пульсации, необходимо увеличивать объём конденсаторов тоже делается для увеличения показателя пульсации только в обратном порядке.

Для снижения размеров и улучшения компактности, возможно, применять конденсаторы на электролитах. К примеру, можно использовать такие конденсаторы, которые вмонтированы в фототехнику. Они обладают ёмкостью 100µF х 350V.

Чтобы обеспечить бп показателем двадцать ватт, достаточно использовать стандартную схему от энергосберегающих светильников и вовсе не наматывая дополнительной намотки на трансформаторы. В случае, когда дроссель обладает свободным пространством и может дополнительно уместить витки, можно их добавить.

Таким образом, следует добавить два-три десятка витков обмотки, чтобы была возможность подзаряжать мелкие устройства или использовать ибп как усилитель для техники.

Схема блока питания на 20 ватт

Если вам требуется более эффективное увеличение показателя мощности, можно использовать самый простой провод из меди, покрытый лаком. Он специально предназначен для обмотки. Убедитесь что изоляция на стандартной обмотке дросселя достаточно качественная, так как эта часть будет находиться под значением входящего тока. Также следует оградить её от вторичных витков с помощью бумажной изоляцией.

Действующая модель БП мощность – 20 Ватт.

Для изоляции используем специальный картон толщиной 0.05 миллиметра или 0.1 миллиметра. В первом случае необходимо два слова, во втором достаточно одного. Сечение обмоточного провода используем из максимального больших, количество витков будет подбирать методом проб. Обычно витков необходимо достаточно мало.

Проделав все необходимые действия, вы получаете мощность бп 20 ватт и рабочую температура трансформатора шестьдесят градусов, транзистора сорок два. Большую мощность сделать не получиться, так как размеры дросселя ограничены и сделать большее количество обмотки не получится.

Уменьшение поперечного диаметра используемого провода конечно увеличит численность витков, но на мощность это повлияет только в минус.

Чтобы иметь возможность поднять мощность бп до сотни ватт, необходимо дополнительно докрутить импульсный трансформатор и расширить ёмкость фильтровочного конденсатора до 100 фарад.

Схема 100 ватт БП

Чтобы облегчить нагрузку и уменьшить температуру транзисторов, к ним следует добавить радиаторы для охлаждения. При такой конструкции, КПД получится в районе девяноста процентов.

Следует подключить транзистор 13003

К электронному балласту бп следует подключить транзистор 13003, который способен закрепляться с помощью фасонной пружины. Они выгодны тем, что с ними нет необходимости устанавливать прокладку из-за отсутствия металлических площадок. Конечно, их теплоотдача значительно хуже.

Лучше всего проводить закрепления с помощью винтов М2.5, с заранее установленной изоляцией. Также возможно использовать термопасту, которая не передаёт напряжение сети.

Убедитесь что транзисторы надёжно заизолированы, так как через них проходит ток и при плохой изоляции возможно короткое замыкание.

Подключение к сети 220 вольт

Подключение происходит с помощью лампы накаливания. Она будет служить защитным механизмом и подключается перед блоком питания.

РЕМОНТ И ПЕРЕДЕЛКА ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

ЭНЕРГОСБЕРЕГАЮЩАЯ ЛАМПА ОТ 12В

Мотал на глаз и на память интерпритируя размер сердечников, по схеме непрерывной обмотки. Первой намотал коллекторную обмотку 10 витков проводом 0.4мм, второй базовою 6 витков проводом 0.2мм, проложил слой изоляции намотал внахлест нагрузочную обмотку проводом 0.1 получилось около 330-340 витков. В нагрузку подключил лампу от сканера 7w, устройство сразу заработало, чему свидетельствовал исходящий от лампы свет. Рядом лежала 13-ваттная энергосберегающая лампа со сгоревшей спиралью, решил попробовать осилит это детище подобную нагрузку, был приятно удивлен, при токе в пол ампера при напряжении 12 вольт лампа светит достаточно ярко.

Так же работает от двух литий-ионных аккумуляторов, правда потребляя на 150 ма больше. Во едино спаял навесным монтажом (4 деталюги) и все это чудесным образом разместилось в оригинальном корпусе из под балласта на 220.

Транзистор не особо греется, через пять минут работы на нем можно держать палец. Теперь эта конструкция поедет прямиком на дачу, где как обычно постоянно перебои с электричеством, можно будет чай попить или постель разложить при дневном свете.

Что можно сделать, если у Вас сгорела компактная люминесцентная лампа

Хотя на эконом лампы, в зависимости от производителя, существует гарантия и даже до 3-х лет. Но потребители могут столкнуться с тем что лампочка перегорела, а у вас не сохранилась упаковка, чек покупки, магазин переехал в другое место т.е по каким-то независящим от вас причинам вы не можете обменять поломанную вещь. Мы решили предложить Вам воспользоваться оригинальным решением по использованию, перегоревших эконом ламп которое мы нашли на просторах огромного Интернет-ресурса и предлагаем его Вам.

Помните, вы подвергаете жизнь опасности, попав под напряжение 220В!

Проще всего её выбросить в мусор, ну а можно из неё сделать … другую, а если ламп сгоревших накопилось несколько, то можно заняться и …. ремонтом.
Если вы хотя бы раз держали паяльник в руках, то эта статья для Вас.
Вы сделать самостоятельно электронный баласт для ламп дневного света и включить лампу до 30 Ватт, без стартёра и дросселя, с помощью маленькой платки снятой с нашей эконом лампы. При этом она будет зажигаться мгновенно, при понижении напряжения не будет ‘Моргать’.

Данная лампа перегорает двумя способами:
1) горит электронная схема

2) перегорает спираль накала

Для начала выясняем, что же произошло. Разбираем лампу (очень часто собраны на защелках, более дешовые варианты склены).

Отключаем колбу, откусываем провода питания:

Прозваниваем накалы колбы (для принятия решения выбросить колбу или нет)

Мне не повезло, перегорели обе спирали накала (первый раз в моей немалой практике, обычно одна, а когда сгорает схема то и ни одной). В общем если хотя бы одна сгорела колбу выбрасываем, если нет, то она рабочая, а сгорела схема.
Рабочую колбу отлаживаем на хранение (до следующей сгоревшей экономки) и потом к рабочей схеме цепляем колбу. Так из нескольких делаем 1, а может и больше (как повезёт).
А вот вариант изготовления лампы дневного света. Можно подключить, как и 6 Ваттную лампу с «китайского» фонаря (например, я обмотал её пластиком с зелёной бутылки, а схему спрятал в сгоревшее зарядное устройство, от мобильного телефона и получилась классная подсветка для аквариума) так и 30 Ваттную лампу дневного света:

Можно ли отремонтировать электронный балласт?

Люминесцентные лампы с электронным балластом сегодня можно встретить повсеместно. Очень популярны настольные лампы с прямоугольными плафонами и двухколенным держателем. Во всех магазинах электротоваров уже продаются лампы, вворачиваемые в обычные патроны с круглой резьбой вместо классических ламп накаливания. В частности, петербургский метрополитен в последнее время напрочь избавился от ламп накаливания, заменив их люминесцентными. Преимущество таких ламп очевидно — продолжительный срок службы, низкое потребление электроэнергии при высокой светоотдаче (достаточно сказать, что 11-Ваттная люминесцентная лампа заменяет 75-Вт лампу накаливания), мягкий свет со спектром, близким к естественному солнечному свету.
Ведущими производителями люминесцентных ламп являются фирмы Philips, Osram и некоторые другие. К сожалению, на отечественном рынке имеется достаточно китайских ламп низкого качества, которые выходят из стоя гораздо чаще, чем их фирменные собратья. Подробный рассказ об электронных балластах, о принципах работы, преимуществах, схемотехнических решениях есть в книге «Силовая электроника для профессионалов и любителей». Раздел книги называется «Балласт, с которым не утонешь. Новые методы управления люминесцентными осветительными лампами». Поэтому читатели, которым необходимо получить первоначальные
сведения об электронных балластах, могут обратиться к книге, ну а здесь рассматривается достаточно частный вопрос ремонта вышедших из стоя ламп.
История появления этой статьи связана с приобретением автором лампы неизвестной фирмы (фото 1). Данная лампа безотказно работала в люстре несколько месяцев, однако по истечении этого времени она просто перестала зажигаться. Ничего не оставалось сделать, как разобрать лампу, аккуратно (с боков) поддев тонкой отверткой корпус (он состоит из двух половинок, скрепляющихся между собой тремя выступами-защелками).

Разобранная лампа показана на фото 2. Она состоит из круглого цоколя, схемы управления (собственно электронного балласта) и пластмассового кружка, в который вклеена трубка, которая дает свет. При разборке лампы следует соблюдать осторожность, чтобы, во-первых, не разбить баллон и не повредить себе руки, глаза и прочие части тела, а во-вторых, чтобы не повредить электронную схему (не оторвать «дорожки») и корпус (пластмассовый).

Исследования, проведенные с помощью мультиметра, показали, что в баллоне лампы перегорела одна спираль. На фото 3, которое получено уже после вскрытия баллона, видно, что спираль перегорела, затемнив люминофор в окрестностях. Было сделано предположение, что с электронным балластом ничего не случилось (это позже подтвердилось). С большой долей уверенности можно утверждать, что нить лампы — самое слабое место, и в подавляющем большинстве вышедших из стоя ламп будет наблюдаться скорее перегорание нити, нежели выгорание электронной части схемы.
Кстати, об электронной схеме электронного баласта. Она показана на фото 4. Схема перерисована с печатной платы. Кроме того, на ней не показаны некоторые элементы, не затрагивающие основ работы балласта, а также не приведены номиналы. Балласт лампы представляет собой двухтактный автогенератор полумостового типа с насыщающимся трансформатором. Такой автогенератор хорошо описан в книгах и дополнительных пояснений не требует. На входе установлен диодный мост VD1-VD4 с фильтром С1, С2, L1. Конденсатор C1 препятствует проникновению высокочастотных помех в питающую сеть, конденсатор C2 служит фильтром сетевых пульсаций, дроссель L1 ограничивает пусковой ток и фильтрует ВЧ помехи. Дроссель L2 и конденсатор C3 являются элементами резонансного контура, напряжение в котором «зажигает» лампу. Конденсатор C4 — пусковой. Понятно, что при обрыве одной из нитей лампа уже не загорится.

Очень важный элемент схемы — предохранитель F1. Если в схеме электронного балласта что-то случится (например, «выгорят» транзисторы полумоста, создав «сквозной» ток, или пробьется конденсатор C1, С2, или пробьется диодный мост), предохранитель защитит сеть от короткого замыкания и возможного пожара. На фото 5 этот предохранитель показан.

Он представляет собой колбочку без классического держателя с длинными выводами, один из которых припаян к цоколю, а другой, к печатной плате балласта. Так что если предохранитель перегорел, скорее всего, что-то случилось в схеме балласта, и нужно проверять его элементы. А если нет, балласт наверняка цел.
Самое интересное, что такую энергосберегающую лампу можно отремонтировать, и обойдется это дешевле, чем приобрести новую лампу. Она будет выглядеть, конечно, не так красиво, как промышленная, но вполне прилично (если все делать аккуратно). Итак, нужно приобрести сменный элемент для настольной лампы, например, такой, как показан на фото 6. Производителем этой лампы является итальянская фирма Osram, мощность лампы — 11 Вт, что соответствует 75 Вт лампы накаливания.

На коробочке лампы есть интересная информация о потребляемой мощности других ламп, а также по надежности. Данная лампа мощностью 9 Вт заменит 60-Ваттную лампу накаливания, 9 Вт — 40- Ваттную, а 5 Вт — 25-Ваттную. Гарантированное время наработки на отказ — 10000 часов, что соответствует 10 лампам накаливания. Это — примерно 13 месяцев непрерывной работы. Цоколь дампы должен содержать четыре вывода, то есть две спирали (фото 7). У данной лампы правые два вывода относятся к одной спирали, левые два — к другой спирали. Если расположение спиралей неочевидно, всегда можно разыскать нужные выводы с помощью мультиметра — спирали имеют низкое сопротивление порядка нескольким Ом.

Выводы лампы необходимо осторожно, не допуская перегрева, облудить припоем.

Теперь займемся подготовкой основания, к которому будем крепить лампу. Кружок, похожий на имеющийся, залитый белой массой (фото 8), нужно изготовить новый и напильником подготовить площадку, к которой будет приклеена лампа (фото 9). Колбу лампы разбивать категорически не рекомендуется.

Дальше лучше проверить, как зажигается лампа. Подпаиваем выводы лампы к балласту (фото 11) и включаем балласт в сеть. Для приработки стоит его потренировать, включая-отключая несколько раз и выдержав во включенном состоянии несколько часов. Лампа светится достаточно ярким светом, и при этом греется, поэтому ее лучше положить на дощечку и накрыть несгораемым листом. Когда тренировка проведена, разбираем эту конструкцию и начинаем монтаж лампы.

Берем тюбик суперклея «Момент» и наносим на сопрягаемые поверхности несколько капель. Потом вставляем выводы в отверстия и плотно прижимаем детали друг другу, выдерживая полчаса в таком виде. Клей надежно «схватит» детали (фото 10). Лучше использовать этот клей, или дихлорэтан, поскольку для надежного крепления пластмасса в сопрягаемом месте должна немного расплавиться.

Осталось собрать лампу. Впаиваем балласт в цоколь, не забыв о предохранителе. Заранее (до впайки) нужно припаять четыре провода, которыми лампа будет связана с балластом. Подойдет любой провод, ну лучше, чтобы это был провод типа МГТФ во фторопластовой термостойкой изоляции (фото 12). Собирается лампа тоже просто — достаточно уложить провода внутри цоколя, или скрутить их жгутиком, и затем защелкнуть фиксаторы. Отверстия от прошлого баллона в целях электробезопасности лучше заклеить кружочками, ввырезанными из упаковки от молочных продуктов.

Отремонтированная лампа готова (фото 13). Ее можно ввернуть в патрон.
В заключение отмечу, что можно достаточно просторно фантазировать на тему электронных балластов. К примеру, вставить лампу в красивый светильник и подвесить его к потолку, используя части от сгоревшей лампы.

Драйвер для светодиодов из энергосберегающей лампы.

Приобрел себе на пробу светодиоды 10 Вт 900лм теплого белого света на AliExpress. Цена в ноябре 2015года составляла 23 рубля за штуку. Заказ пришел в стандартном пакетике, проверил все исправные.

Для питания светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы, представляющие собой преобразователи стабилизирующие ток, а не напряжение на своём выходе. Но так как драйверы для них(заказывал тоже на AliExpreess) были еще в пути решил запитать от балласта от энергосберегающих ламп. У меня было несколько таких неисправных ламп. у которых сгорела нить накала в колбе. Как правило, у таких ламп преобразователь напряжения исправен, и его можно использовать в качестве импульсного блока питания или драйвера светодиода.
Разбираем люминисцентную лампу.

Для переделки я взял 20 Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 20 Вт. Для 10 Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.
Установил перемычки в цепи розжига лампы.

На дроссель намотал 18 витков эмальпровода, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 9,7В. Подключил светодиод через амперметр, который показал проходящий через светодиод ток в 0,83А. У моего светодиода рабочий ток равен 900мА, но я уменьшил ток чтобы увеличить ресурс. Собрал диодный мост на плате навесным способом.

Схема переделки.

Светодиод установил на термопасту на металлический абажур старой настольной лампы.

Плату питания и диодный мост установил в корпус настольной лампы.

При работе около часа температура светодиода 40 градусов.

На глаз освещенность как от 100 ваттной лампы накаливания.

Эта светодиодная настольная лампа работает уже около месяца. Пока все нормально а дальше время покажет. В результате я получил бесплатный драйвер для светодиодов. Когда придут заводские драйвера сравню их работу с самоделкой.
Кому интересно можно посмотреть на видео.
www.youtube.com/watch?v=Glfcvr0iUYw

Простой драйвер светодиода от сети 220В

Для питания светодиоду требуется источник постоянного напряжения и устройство стабилизации тока – драйвер. А если требуется (или очень хочется) подключить светодиод к сети 220В? И светодиод, при этом, мощный? Простым резистором и диодом здесь не обойтись. Самый правильный, вернее, единственно правильный способ – использовать специализированный драйвер. Его можно даже самому собрать (читайте в статье «Схема драйвера для светодиодов от сети 220В»).

Впрочем, есть и менее правильные, но, в целом, рабочие варианты. Один из них – собрать стабилизатор тока для светодиода из обычной энергосберегающей лампы.

Прежде чем начнем, помните: все, что вы делаете, вы делаете на свой страх и риск! Мы не даем никакой гарантии, что получившийся прибор заработает у вас правильно. И не несем никакой ответственности за возможный ущерб или повреждения, которые, теоретически, могут случиться, если что-то пойдет не так, как задумано.

Предстоит работать с опасным для жизни напряжением в 220В и, скорее всего, без точной технической документации на конкретную переделываемую лампу. Если вы не знаете правил предосторожностей при работе с высоким напряжением, не сильно уверенно держите в руках паяльник, то лучше откажитесь от этой затеи – в конце концов, готовый драйвер от сети 220В стоит не так уж дорого.

Но, если интересно, то вперед!

Обычная энергосберегайка, она же компактная люминесцентная лампа или КЛЛ, содержит в себе электронное устройство, обеспечивающее поджег и горение газоразрядных ламп. КЛЛ имеют очень приличный срок службы – до 10 000 часов, но с течением времени яркость их свечения снижается, они начинаю сильнее греться, начинают мерцать или вообще перестают светить. При этом, чаще всего, из строя выходит именно «стеклянная часть» лампы, а ее электроника остается в полном порядке. Поэтому, для экспериментов вполне подойдет старая лампа, которая перестала работать, а вы ее почему-то не выбросили. Если есть выбор, то лучше взять лампу помощнее. У меня для опытов оказался пациент, изображенный на картинке в начале статьи.

Запыленная и пожелтевшая лампа Maxus 26W верой и правдой отслужила несколько лет и была заменена, поскольку светить стала чуть ли не вдвое тусклее, чем нужно.

Аккуратно, по пояску открываем лампу.

Аккуратно открытая энергосберегающая лампа

Видим балласт, от которого два провода уходят к цоколю и четыре к стеклянным колбам. Откусываем их все и извлекаем электронную часть. Только внимательно – один из цокольных проводов к плате может идти через висящий резистор. Он тоже нужен, откусывайте за ним.

Получилась вот такая штучка.

Извлеченный балласт люминесцентной лампы — до переделки

Теперь от разрушения ламп переключимся к изучению их принципиальных схем. Импульсный преобразователь (электронный балласт) компактных люминесцентных ламп может различаться деталями для конкретных ламп, но принципиально его схема выглядит так:

Принципиальная схема балласта компактной люминесцентной лампы

Желтым цветом выделено то, что может значительно отличаться от лампы к лампе в зависимости от производителя и ее мощности. В любом случае, оставляем эту часть безо всяких изменений. То, что отмечено синим, останется бесхозным после удаления ламп (стеклянных колб) и может быть безболезненно удалено с платы, дабы не мешало.

Получится примерно так:

Импульсный преобразователь после удаления «лишних» деталей

После удаления «синей» части схемы, останется два проводника, повисших в воздухе. Их нужно соединить друг с другом – закоротить. Найдем что с чем соединять на конкретной плате.

Обратная сторона платы импульсного преобразователя

Как видно, нужно закоротить выход дросселя (он же вход в колбы) с выходом из колб по кратчайшему пути. Электроника вашей лампы, скорее всего, внешне будет отличаться от того, что вы видите на картинке. Важно понять сам принцип.

Следующий шаг – сделать из дросселя трансформатор, выпрямить получившийся ток и запитать им светодиоды.

Дело в том, что люминесцентные лампы питаются напряжением высокой частоты (до 50КГц). Соответственно, намотав на дроссель вторичную обмотку, можно получить на ней нужное напряжение.

Аккуратно выпаиваем дроссель. Дальше очень творческая задача – его разобрать. Дроссель состоит из катушки с проводом, в которую сверху и снизу вставляются две половинки Е-образного феррита. Разобрать дроссель – это значит разъединить спаявшиеся за года половинки тонкого и хрупкого феррита (которые еще иногда заливают лаком), снять их и получить свободный доступ к катушке с проводом. Удалите ленту, которая расположена по периметру феррита, после чего нежно и не прикладывая больших усилий, попробуйте его разъединить. Помогает нагревание – например, аккуратно паяльником по всему периметру феррита. У меня получилось, правда, далеко не сразу.

Побежденный и разобранный дроссель

На открывшуюся катушку поверх наматываем вторичную обмотку. По моим наблюдениям один оборот вторичной обмотки дает в ней около 0.8В напряжения. В моих планах было запитать две линейки одноваттных светодиодов по 10шт. Для этого мне нужно около 30В напряжения. Итоговый ток требуется небольшой – до 200-250мА, поскольку светодиоды ну очень китайские.

В моем случае получилось 40 витков эмальпровода диаметром 0.25мм. Наматывайте аккуратно, поскольку дроссель потом нужно будет собрать обратно, т.е. вернуть ферриты на место. Не забудьте в конце узкой полоской изоленты или скотча скрепить между собой половинки феррита. Впаиваем дроссель обратно. Получится как-то так.

Результат работы — готовый «драйвер» из балласта энергосберегайки

Подключаем входное сетевое напряжение. Взрывов, фейерверков нет? Чудесно! Теперь аккуратно меряем переменное напряжение на выходах вторичной обмотки. Получилось то, что нужно? Здорово! Если нет, отключаемся от сети и отматываем (чтобы уменьшить) или добавляем (чтобы увеличить) несколько витков в обмотке. Разбирать дроссель для этого не нужно – просто аккуратно продевайте провод между катушкой и ферритом.

У меня две линейки светодиодов. Подключить их можно двумя способами – параллельно – для этого нужно предварительно выпрямить ток. Или встречно – для этого выпрямлять ток не нужно. На схеме это выглядит так.

Параллельное подключение двух линеек светодиодов

Параллельное подключение. Зеленая область – вторичная обмотка, диодный мост и светодиоды. Синяя линия – перемычка. Диодный мост собирается из быстрых диодов. Я взял 4 диода HER307.

Встречное подключение выглядит так:

Встречное подключение двух линеек светодиодов

Оба варианта имеют право на жизнь, я выбрал параллельное подключение с выпрямлением.

После сбора схемы подключите светодиоды через амперметр. Подключите питание. Если сила тока такая, как необходимо – отлично, если нет, то убирая/добавляя витки вторичной обмотки дросселя уменьшите или увеличьте ток.

Результат работы — светодиоды подключены и ярко светят.

У меня получилось около 200мА на две линейки по 10 светодиодов. Маловато, но для настольного светильника хватит.

Очень непривычно видеть подключение светодиодов напрямую от источника тока. Но здесь стабилизация тока достигается за счет точной стабилизации напряжения. И, в данном случае, если что-то произойдет с одной из параллельных линеек светодиодов, ток в оставшихся линейках не изменится, в отличие от обычного подключения через драйвер.

Правильно собранная схема должна иметь серьезный запас по мощности – у меня рабочая мощность 6 из 26 Вт. Ничего (кроме светодиодов) не должно существенно нагреваться в процессе работы (только проверяйте после отключения от сети).

В итоге получился компактный и практически бесплатный «драйвер», который позволил мне подключить светодиоды к сети 220В. Осталось соорудить корпус и смонтировать настольный светодиодный светильник. Но это уже другая история и о ней читайте в статье «Светодиодный светильник своими руками».

Также, имеются готовые модели драйверов для светодиодов, без которых никак не обойтись, если будет нужно получить мощный и яркий свет.

Ремонт энергосберегающих ламп своими руками

Автор newwebpower На чтение 8 мин. Просмотров 737 Опубликовано Обновлено

Электронная начинка энергосберегающей лампы

Энергосберегающие лампы 220 вольт, вкручиваемые в стандартный цоколь обычной лампочки накаливания, с точки зрения маркетинга считаются неразборными, и не подлежащими ремонту.

Но, многие мастера могут сделать ремонт энергосберегающих ламп своими руками, вскрывая корпус, разбираясь в электрической схеме, определяя и заменяя испорченные компоненты, тем самым продолжая срок службы светильника.

Поскольку внутри корпуса энергосберегающих ламп имеются сложные радиотехнические схемы, обеспечивающие работу источников света, то для их ремонта необходимы навыки работы с мультиметром, знание свойств используемых радиодеталей и общие познания в радиотехнике. Также потребуются соответствующие инструменты и оборудование.

Оценка выгоды от ремонта энергосберегающей лампы

Прежде всего, следует оценить целесообразность предстоящего ремонта энергосберегающей лампы 220 В. Если речь идет о единичном экземпляре, то будет выгодней заменить испорченный светильник новым, а старый сохранить в качестве предполагаемых запчастей для аналогичных ламп, которые выйдут из строя в будущем.

Ремонтировать одну лампу, без наличия запчастей — не выгодно

Но, если на руках имеются несколько неисправных энергосберегающих ламп, желательно от одного производителя, то часть их удастся починить, используя запчасти, вынутые из заведомо неподдающихся ремонту светильников. Иногда из двух неисправных светильников можно собрать одну работающую, но, в среднем, восстановить удается одину из четырех-пяти энергосберегающих ламп.

Поэтому, не стоит выбрасывать в мусор перегоревшую компактную люминисцентную лампу – в ней всегда найдутся исправные компоненты, которые можно использовать в качестве запчастей для других неисправных светильников. На видео ниже показан пример простого ремонта энергосберегающей лампы, осуществленного путем совмещения рабочих компонентов, изъятых у двух нерабочих светильников (излучающей трубки и электронного балласта).

Видео ремонта

Ремонт энергосберегающей лампы

Компактный люминесцентный светильник (КЛС) является лампой дневного света с изогнутой ради уменьшения габаритов газовой колбой с электронным балластом и цоколем, собранными в одном корпусе. Принцип действия люминесценции и ремонт светильников, использующих трубчатые лампы дневного света, описан предыдущих статьях данного раздела.

Устройство энергосберегающей лампы, называемой в народе «экономкой»

В КЛС принцип сохраняется тот же, только вместо громоздкого электромагнитного пускорегулирующего аппарата применяется электронный балласт, что позволяет уменьшить габариты и расширяет возможности управления работой энергосберегающей лампы. Некоторые КЛС поддаются диммированию, в том числе с помощью пульта управления, благодаря модернизированной схеме электронного балласта.

Поэтапный процесс ремонта компактной люминисцентной лампы

Для начала ремонта нужно разобрать корпус энергосберегающей лампы, который состоит из цокольной части и основания колбы. Винтовые соединения в корпусе, как правило, отсутствуют — соединены обе части энергосберегающей лампы при помощи защелок, наподобие пульта управления от телевизора или панелей сотового телефона. Поддевая подходящей отверткой защелки, разъединяют обе части светильника.

Вставить в зазор отвертку, чтобы отщелкнуть защелку

От спиралей колбы к электронному балласту энергосберегающей лампы отходят четыре провода – их следует отсоединить от контактов на плате. Примерное сопротивление спиралей, которое зависит от мощности лампы дневного света, составляет около десяти Ом. Если окажется, что одна из спиралей перегорела (бесконечное сопротивление), то не стоит сразу же выбрасывать данную колбу.

Прозвонка показывает, что одна из спиралей перегорела

В некоторых случаях, при перегоревшей одной спирали, отремонтировать светильник можно шунтированием выводов аналогичным сопротивлением, как у исправной нити накала. Таким образом, электрическая цепь будет восстановлена, а эмиссии одной спирали может оказаться достаточно для возникновения разряда и свечения газа.

Впаянный на плату в качестве шунта мощный резистор заменяет сопротивление перегоревшей спирали и возобновляет цепь

Впаянный резистор не должен касаться контактных площадок на плате, поэтому его следует изолировать при помощи термостойкой диэлектрической прокладки. Соблюдая осторожность, чтобы не оборвать выводы спиралей и провода от платы следует навинтить патрон на цоколь и проверить работоспособность энергосберегающей лампы. Процесс подобного ремонта продемонстрирован на видео:

Видео ремонта энергосберегающей лампы

Ремонт электронного балласта люминесцентных ламп

При перегорании спирали (обрыве нагрузки) электронный балласт также может выйти из строя, поэтому следует проверить его компоненты, следуя по пути прохождения тока. Будет целесообразно скачать схему данного светильника, но, его можно отремонтировать, разбираясь в обозначениях на самих деталях и плате.

Различные схемы электронных балластов энергосберегающих ламп

В некоторых схемах люминесцентных светильников от цоколя к плате идет токоограничивающий резистор, заключенный в термоизоляционную оболочку. Данный резистор ограничивает протекающие в схеме токи, тем самым предохраняя компоненты. В некоторых моделях энергосберегающих люминесцентных ламп резистор отсутствует или заменен на дроссель.

Местоположение входного токоограничивающего резистора

Чтобы вынуть плату из корпуса энергосберегающей лампы для более удобной проверки и ремонта, следует отпаять провода от резьбовой части и центрального контакта цоколя. В зависимости от производителя, схемы электронного балласта люминесцентных энергосберегающих ламп могут отличаться, но, в общем, они состоят из таких структурных блоков:

  • Выпрямитель на диодах или диодной сборке;
  • Сглаживающий конденсатор фильтра питания;
  • Силовые транзисторные ключи;
  • Импульсный трансформатор с обмотками обратной связи.
Внешний вид и расположение на плате основных элементов КЛС

Конденсаторы, резисторы, диоды, дроссели применяются для обеспечения взаимосвязей между компонентами электронного балласта энергосберегающей лампы. Для достижения компактности применяются миниатюрные резисторы SMD, не имеющие проволочных выводов.

Линиями указаны SMD резисторы на плате электронного балласта КЛС

Обмотки высокочастотных импульсных трансформаторов и дросселей электронного балласта люминесцентного светильника имеют небольшое сопротивление. Поэтому их прозвонка сводится к проверке целостности обмоток и наличия пробоя. Определить межвитковое замыкание можно только косвенным путем, исключив поломки других компонентов энергосберегающей лампы.

Проверка полупроводниковых компонентов светильника

В первую очередь следует проверить полупроводниковые приборы – диоды, транзисторы, стабилитроны. Поскольку на плате светильника выводы могут быть зашунтированы другими компонентами, проверяемые детали следует выпаять для тестирования.

В транзисторах должны прозваниваться при прямом подключении щупов мультиметра переходы база-коллектор и база-эмиттер. Во всех других возможных комбинациях сопротивление должно стремиться к бесконечности

Видео проверки транзистора


Но в электронных балластах энергосберегающих ламп встречаются составные транзисторы, в которых параллельно переходу коллектор-эмиттер подключен диод и полевые транзисторы (MOSFET). Прозвонка такого транзистора, без имеющейся информации об его свойствах, может ошибочно показать неисправность полупроводникового прибора – ведь в одном направлении будет прозваниваться встроенный диод. Следует изучить свойства проверяемых имеющихся в светильнике транзисторов, чтобы максимально достоверно их проверить.

Пример составного полевого транзистора

Подобные трудности с прозвонкой полупроводниковых компонентов электронного балласта светильника могут возникнуть при проверке двуханодных диодов – динисторов (DIAK). При прозвонке обычным тестером в обе стороны должно быть бесконечное сопротивление. Дополнительное изучение устройства и схемы ремонтируемого светильника поможет избежать ошибочных умозаключений.

Составные полевые транзисторы VT1, VT2 на схеме электронного балласта

На SMD резисторах указано их сопротивление, что в большинстве случаев позволит определить их исправность, не выпаивая из платы электронного балласта светильника. Без должной практики могут возникнуть трудности с демонтажем и установкой SMD резистора – для пайки подобных радиодеталей применяют паяльники, имеющие специфическую форму жала, для одновременного нагрева обеих контактных площадок.

Работа с SMD резистором

Чтобы выпаять из платы энергосберегающей лампы SMD резистор при помощи обычного паяльника, следует стараться одновременно прогреть площадки, быстро переставляя жало. Можно прогревать корпус неисправного резистора, и перевернув плату, дождаться, когда припой расплавится и деталь отпадет. Но в этом случае существует опасность перегреть дорожки и соседние радиодетали.

Сравнительные размеры и маркировка SMD резисторов

Не у всех мастеров имеется возможность приобрести на месте требуемые SMD резисторы, или выпаять из неисправного светильника. Поэтому, их можно заменить резисторами других типов, с идентичной мощностью и сопротивлением, разместив их в свободном пространстве энергосберегающей лампы, обеспечив надежную изоляцию выводов при помощи термоусадочной трубки.

Для пайки SMD элементов лучше применить паяльную станцию с тонким жалом, но можно воспользоваться обычным паяльником. Также нужно использовать флюс, предназначенный для SMD пайки. Поскольку SMD детали очень мелкие — обязательно понадобится пинцет, а увеличительное стекло уменьшит нагрузку на зрение. Процесс подобной пайки различных SMD деталей, в том числе и резисторов подробно описан на видео:

Видео. Как паять SMD


Таким образом, осуществляя компоновку работоспособных компонентов светильника или поочередно проверяя мультиметром радиодетали, можно найти неисправный компонент на плате светильника, и осуществить его замену, не имея профессионального измерительного оборудования, и не разбираясь в тонкостях работы самой схемы электронного балласта. Радиолюбителям и начинающим мастерам будет полезно видео с описанием нескольких различных ремонтов энергосберегающих ламп:

Видео ремонта энергосберегающих ламп

Energy Saving Automatic LED Light Controller Circuit

В сообщении обсуждается интересная конструкция энергосберегающей схемы освещения, которая включается только тогда, когда это логически необходимо, что помогает экономить электроэнергию, а также увеличивает срок службы всей системы.

Технические характеристики

Hello Swagatam,

Спасибо за ответ, подробности, которые вы задали, таковы:
1. Схема солнечного зарядного устройства для зарядки свинцово-кислотных аккумуляторов.
2.мой проект требует, чтобы в комнате, если кто-то присутствует, всегда горели светодиоды.
3. Если естественное освещение хорошее, оно должно приглушить его.
4. Если в комнате никого нет, то через 1-2 минуты он должен выключиться.
5. Положение о закрытии в праздничные дни.
Все, что мне нужно, — это освещать комнату моего факультета во время учебы в колледже или после, если необходимо, с использованием солнечной энергии напрямую или от батареек.

Я действительно рассчитываю на вас, У меня НЕТ НИКОГО, КТО МОЖЕТ ЭТОМУ МЕНЯ НАУЧИТЬ, И Я МНОГО ЭТО ПРОИЗВОДИЛ, НО НЕ РАБОТАЕТ.

Дизайн

AS По запросу следующая энергосберегающая интеллектуальная световая схема состоит из трех отдельных ступеней, а именно: ступень датчика PIR, ступень светодиодного модуля и ступень контроллера ШИМ света, состоящая из пары IC555.

Давайте разберемся в различных ступенях с помощью следующих пунктов:

Верхняя ступень, состоящая из модуля датчика PIR и связанной схемы, образует стандартный этап пассивного инфракрасного датчика.

В присутствии людей в указанном диапазоне датчик обнаруживает его, и его внутренняя схема преобразует его в разность потенциалов, так что он подается на базу первого транзистора NPN.

Вышеупомянутый триггер активирует оба транзистора, которые, в свою очередь, включают светодиоды, подключенные к коллектору TIP127.

Вышеупомянутый этап гарантирует, что свет будет включен только во время присутствия людей в непосредственной близости и выключен, когда вокруг никого нет. C5 гарантирует, что свет не выключается немедленно в отсутствие людей, а не через несколько секунд задержки.

Использование ШИМ

Далее мы видим два каскада IC 555, которые сконфигурированы как стандартные каскады нестабильного и ШИМ-генератора.C1 определяет частоту ШИМ, в то время как резистор R1 может использоваться для оптимизации правильного отклика схемы.

Выход ШИМ подается на базу транзистора TIP127. Это означает, что когда импульсы ШИМ состоят из более широких импульсов, транзистор остается выключенным в течение более длительных периодов времени, и наоборот.

Это означает, что с более широкими ШИМ светодиоды будут слабее с их интенсивностью, и наоборот.

Все мы знаем, что выход ШИМ от микросхемы 555 (как настроено в правой части) зависит от уровня напряжения, подаваемого на ее управляющий вывод №5.

При более высоких напряжениях, приближающихся к уровню питания, выход ШИМ становится шире, в то время как напряжение, приближающееся к нулевой отметке, делает ШИМ с минимальной шириной.

Каскад делителя потенциала, выполненный с помощью R16, R17 и VR2, выполняет указанную выше функцию, так что ИС реагирует на внешние условия внешней освещенности и генерирует необходимые оптимизированные ШИМ для реализации функций затемнения светодиодов.

R16 — это фактически LDR, который должен получать ТОЛЬКО свет от внешнего источника, входящего в комнату.
Когда внешний свет яркий, LDR предлагает более низкое сопротивление, тем самым увеличивая потенциал на выводе № 5 IC. Это побуждает IC генерировать более широкие PWM, заставляя светодиоды тускнеть.

При низком уровне внешней освещенности LDR предлагает более высокое сопротивление, вызывая противоположные результаты, то есть теперь светодиоды начинают пропорционально становиться ярче.

Поток 220K может быть отрегулирован для получения наилучшего возможного отклика от каскада IC 555 в соответствии с индивидуальными предпочтениями.

По запросу указанная выше схема должна питаться от аккумулятора, заряжаемого от схемы контроллера солнечного зарядного устройства. Я объяснил многие схемы контроллера солнечного зарядного устройства в этом блоге, ПОСЛЕДНЯЯ ЦЕПЬ, указанная в статье, может быть использована для настоящего приложения.

Энергосберегающие лампы и электронные балласты




  1. Введение
  2. Газоразрядные лампы и газоразрядные лампы высокой интенсивности
  3. Введение в балласты
  4. Некоторые определения и оценка рабочих характеристик
  5. Обычные балласты
  6. Высокочастотный резонансный балласт
  7. Новое поколение балластов
  8. Балласты для коррекции коэффициента мощности и диммирования
  9. Сравнение компактных люминесцентных ламп с использованием магнитных и электронных Балласты
  10. Дальнейшие разработки электронных балластов
  11. Список литературы

1 Введение

С момента первого энергетического кризиса, с которым мир столкнулся в 1970-х гг. к внезапному и неожиданному удорожанию нефтяного топлива), электричество промышленность пытается удовлетворить растущие потребности мира в энергии за счет строительство большего количества электростанций, не зависящих от нефти, или поиск других нетрадиционные источники энергии, такие как солнечная энергия.В 90-е годы однако появилась новая концепция под названием «негаватт» — идея о том, что инвестиции в энергосбережение часто приносят более высокую прибыль, чем инвестиции в новые электростанции — набирают популярность.

Согласно этой точке зрения, спрос на электроэнергию может быть ограничен путем сопоставления подходящая и эффективная технология для каждой задачи по использованию энергии.

Электрические лампы — яркий тому пример. Спустя столетие после его изобретения электрическая лампа накаливания до сих пор остается одним из самых популярных в мире способов обеспечение искусственного освещения как в промышленности, так и в домашнем хозяйстве, несмотря на то, что лампа накаливания дает сравнительно наименьший светоотдача при заданном количестве потребляемой электроэнергии.Эта фигура известная как световая отдача или светоотдача, вряд ли была улучшена любой новой технологией, что касается лампы накаливания.

Другой наиболее популярный источник электрического освещения — люминесцентные лампы. лампа, в которой используется принцип дугового разряда в газе. при низком давлении для получения видимого света. Освещение по принципу газового разряда существует более пятидесяти лет и почти все новые исследования и разработки в области повышения эффективности освещения была сосредоточена в основном на технологии люминесцентных ламп.Например, в Соединенных Штатах было подсчитано, что люминесцентные лампы производят заводом, строительство которого стоит восемь миллионов долларов, сэкономит электроэнергию стоимостью один миллиард долларов, что эквивалентно стоимости электростанции мощностью 700 МВт.

Таким образом, словосочетание «энергосберегающие лампы» в основном является синонимом. с новой технологией, разрабатываемой для улучшения флуоресцентных ламповая техника.

В частности, совместная разработка маломощных люминесцентных ламп. с высокоэффективными электронными балластами (требуется вспомогательная цепь для управления работой газоразрядной лампы) является основным направлением светотехническая промышленность сегодня.

В этом разделе представлен обзор этих новых методов энергосбережения. применительно к люминесцентным лампам. Использование модема для конкретного приложения Интегральные схемы (ASIC) в практических электронных балластах, а также обсуждаются некоторые технологии магнитного балласта. В этом разделе также представлены набор определений, единиц и мер для оценки и сравнение производительности разных типов ламп.

2. Газоразрядные лампы и газоразрядные лампы высокой интенсивности

2.1 Люминесцентная лампа

Люминесцентная лампа, впервые разработанная в 1930-х годах, состоит из трубка, покрытая изнутри флуоресцентным порошком или люминофором. Трубка содержит пары ртути под низким давлением с небольшим количеством инертный газ, способствующий воспламенению разряда. Ставятся два электрода на обоих концах трубы и сконструированы таким образом, чтобы работать как лампы с горячим или холодным катодом.

Лампы с горячим катодом содержат электроды из вольфрамовых нитей с покрытием и обычно нагреваются до температуры испускания электронов до возникновения дуги. удары.Нагретые катоды способствуют снижению падения напряжения около 10 до 12 вольт на электродах, что позволяет сэкономить примерно 3 Вт на лампу.

В лампах с холодным катодом используются электроды с покрытием из железа или никеля. Напряжение падение на электродах этих ламп относительно высокое (50 В и выше) но они демонстрируют более длительный срок службы из-за низких рабочих температур.

Работа люминесцентной лампы состоит, прежде всего, в установлении постоянного электрическая дуга между двумя катодами.Воздействие этих электронов на атомы паров ртути излучают в основном невидимый ультрафиолетовый свет который затем преобразуется в видимый свет за счет явления флуоресценции. люминофорного покрытия на трубке. Химический состав люминофора поэтому покрытие в основном отвечает за цвет излучаемого света. а также частично из-за эффективности лампы.

Стандартная люминесцентная лампа с обычным галофофорным покрытием. производит более белый цвет, чем лампа накаливания.Добавляем тонкое пальто более дорогого трифосфора можно улучшить цветопередачу и увеличить эффективность.

В целом люминесцентная лампа является широко используемым источником света с хорошая эффективность около 90 люкс / ватт без учета потерь мощности в балласте. Когда эти потери включены, эффективность падает примерно до 75 люкс / ватт, что по-прежнему намного лучше, чем у лампы накаливания. лампа (см. рис. 1).


РИС. 1 Сравнение ламп, люмен на ватт

2,2 Компактные люминесцентные лампы (КЛЛ)

Компактная люминесцентная лампа не отличается принципом действия. от стандартной люминесцентной лампы, однако КЛЛ были разработаны с учетом некоторые из фундаментальных возражений против широкого применения линейные люминесцентные лампы во многих жилых, коммерческих и промышленных Приложения. Громоздкий магнитный балласт, мерцание света и иногда слышимый шум, создаваемый магнитным балластом, был одной из причин из-за непопулярности люминесцентной лампы как светильника общего назначения источник.

КЛЛ преодолевает мерцание, работая лампой на частоте кГц. диапазон и избавляет от необходимости внешнего балласта за счет включения полностью электронный балласт в основании люминесцентной лампы. Таким образом, КЛЛ предназначены и способны напрямую заменять лампы накаливания. без каких-либо внешних вспомогательных устройств.


РИС. 2 показывает базовую блок-схему компактного люминесцентного напольная лампа.

Обратите внимание, что фильтр электромагнитных помех (EMI) и коэффициент мощности блоки управления обусловлены наличием электроники для AC / DC Преобразование постоянного / переменного тока высокочастотных цепей преобразования внутри корпуса.

2,3 Газоразрядные лампы высокой интенсивности (HID)

Это общий термин для группы ламп, включая ртутные лампы, металлогалогенные лампы и натриевые лампы высокого давления.

Ртутно-паровая лампа — это электроразрядная лампа высокого давления, в которой большая часть излучения возникает при возбуждении атомов ртути. Для начала разряда недостаточно включить нормальное сетевое напряжение. между основными электродами.Однако он может начаться с очень короткого расстояние между основным и вспомогательным электродами, вспомогательным электродом подключается к выводу лампы через высокий резистор для ограничения электрический ток.


РИС.
2 Блок-схема CFL

Начальный разряд происходит при небольшом количестве аргона. Разряд теперь быстро распространяется, пока не окажется между основными электродами. В Разряд аргона нагревает трубку и испаряет ртуть.Разряд затем происходит в парах ртути, а влияние аргона незначительно. Эффективность лампы составляет около 60 люкс / ватт.

Металлогалогенная лампа — это электрическая газоразрядная лампа, в которой свет создается излучением возбужденной смеси металлических паров (ртуть и продукты диссоциации галогенидов). Их конструкция аналогичен ртутным лампам высокого давления, добавлен ряд йодидов для заполнения пробелов в световом спектре, улучшая цветовые характеристики света.Их эффективность также выше (до 80 люкс / ватт). Натрий Лампа содержит неон в дополнение к металлическому натрию при низком давлении. Тепло производится начальным неоновым разрядом. Это заставляет натрий выделения, дающие натриево-желтый цвет. Цвет вызван возбуждением паров натрия. Для достижения полного освещения требуется около десяти минут. Развитием этого является натриевая лампа высокого давления, которая при высоком давлении имеет расширенный спектр, чтобы обеспечить адекватное покрытие всех цветов, натрия паровые лампы имеют очень высокую эффективность до 150 люкс / ватт.

Люминесцентные лампы

популярны, потому что они обеспечивают более длительный срок службы, чем накаливания и потребляют меньше энергии. Кроме того, их низкая интенсивность даже освещение предпочтительнее почти во всех комнатных условиях. Высокая интенсивность Газоразрядные лампы используются в основном на открытом воздухе для освещения больших такие области, как улицы, автостоянки и т. д.

3 Введение в балласты

Балласты люминесцентных ламп — устройства, устанавливаемые в светильники люминесцентных ламп. чтобы регулировать напряжение и ток, подаваемые на лампы.В ПРА в цепи люминесцентной лампы выполняет двоякие функции. Первый, он должен обеспечивать подходящее напряжение зажигания на колбе. при запуске так, чтобы между электродами могла сохраняться электрическая дуга. после. Во-вторых, балласт отвечает за ограничение тока. течь через лампу во время ее нормальной работы. Эти два требования балласта можно объяснить с помощью типичных временных характеристик импеданса. кривая газоразрядной лампы, показанная на рис.3.

Поскольку начальное сопротивление велико, напряжение зажигания, необходимое для зажигания дуга также будет выше, чем нормальное рабочее напряжение люминесцентного напольная лампа.

Сразу после зажигания лампы полное сопротивление падает до минимума. значение, представляющее отрицательную характеристику сопротивления, которая требует некоторых форма ограничения тока для предотвращения разрушения лампы из-за чрезмерного тока.

В то время как первые магнитные балласты (индукторного типа) выполняли два необходимых требования к балласту, современные электронные балласты могут выполнять многие другие функции, такие как резонансный режим, защита от отключения лампы, отказ или снятие, а также диммирование и т. д.Эти и другие подобные техники будут подробно обсуждены в следующих разделах.

Следует также отметить, что люминесцентная лампа сама по себе резистивная нагрузка, включение балласта (магнитного или электронного type) может вызвать потенциально нежелательные условия, такие как как низкий коэффициент мощности, гармоники высокого порядка и электромагнитные помехи. Как мы увидим позже в этом разделе, многие производители ИС придумали с передовыми продуктами, которые вполне удовлетворительно решают эти проблемы.


РИС. 3 Импедансно-временные характеристики разряда лампа

4 Некоторые определения и оценка эффективности

Первичным показателем эффективности электрической лампы является ее общая выходной световой поток на ватт входной мощности. Для сравнения производительности между различными источниками света, твердые определения задействованные условия необходимы.

4,1 Световой поток

Общее количество визуально оцениваемого излучения (т.е., свет) испускается в секунду от источника света называется световым потоком и измеряется в люмен. Термин «визуально оцениваемое излучение» относится к тот факт, что люди способны видеть только часть спектра электромагнитных радиация.

Более того, чувствительность человеческого глаза сильно различается в зависимости от длины волн в этой полосе частот. Световой поток, измеренный в люменах учитывает оба этих фактора и, таким образом, нет прямое соответствие между энергией излучения, испускаемой за секунду источник света и его световой поток.

4,2 Световая отдача

Выходной световой поток электрической лампы на ватт входной мощности определяется как световая отдача лампы. Обычно это выражается в люмен / ватт:

Световая отдача = световой поток / потребляемая мощность

Световая отдача иногда также обозначается как люмен на ватт или lpw рейтинг лампы. Согласно действующим стандартам, световая отдача люминесцентной лампы необходимо измерять с учетом потребляемой мощности балласта.

4,3 Пик-фактор тока

Current Crest Factor — это отношение пикового тока лампы к действующий ток.

Пик-фактор тока = пиковый ток / среднеквадратичный ток

Учитывается форма волны тока лампы. Максимальный гребень коэффициент, рекомендованный производителями ламп, чтобы не снижать срок их службы составляет около 1,7.

4,4 Балластный фактор

Балластный коэффициент — это отношение светоотдачи лампы к световому потоку. от балласта до светоотдачи лампы в соответствии с ANSI (Американский национальный Standards Institution) эталонный балласт.

Балластный коэффициент = Световой поток лампы с тестовым балластом / Световой поток лампы с эталонным балластом

4,5 Фактор балластной эффективности (BEF)

BEF — это отношение балластного фактора к входной мощности балласта лампы. система. BEF зависит от приложения и не может использоваться для сравнения различных Приложения.

Коэффициент эффективности балласта = коэффициент балласта / Входная мощность

4,6 Суммарные гармонические искажения (THD )

THD измеряет качество формы волны тока, создаваемой балластом.

Ток, потребляемый балластом, в большинстве случаев имеет несинусоидальную форму волны. и, таким образом, может рассматриваться как серия гармоник высокого порядка (т.е. с частотами, кратными частоте входной линии) наложены на основной форме волны тока. Степень наличия таких гармоники измеряются THD, как определено ниже.

i_ THD- (ч / + ч, ‘+ ч,’ + ……) 2 ч,

, где каждый член h i относится к среднеквадратичному значению i-й гармоники в тока, а hi относится к среднеквадратичному значению основной составляющей.

5 Обычные балласты

В схеме обычного балласта, показанной на рис. 4, высокое напряжение удар, необходимый для зажигания лампы, получается от индуктора и биметаллического переключатель, который также подает ток накала, когда контакты замкнуты. Нагретые нити испускают объемные заряды, которые снижают напряжение ионизации. паров ртути внутри лампы для облегчения запуска (Mortimer 1994). По мере увеличения длины дуговой трубки напряжения ионизации также увеличиваются, Требование балласта для обеспечения повышенных рабочих напряжений, а также более высокие напряжения зажигания.Как следствие, обычные двух- и четырехфутовые В балластах люминесцентных ламп используются громоздкие повышающие трансформаторы с высоким реактивным сопротивлением. с выходными обмотками для управления двумя и более лампами.

Этот магнитный балласт основан на катушке с проволокой, окружающей железное ядро. Известны также такие магнитные балласты традиционной конструкции. как «балласты сердечника и катушки». В то время как стандартный магнитный балласт рассеивает около 20 процентов общей мощности, более эффективный магнитный балласт ограничит эту потерю до 12 процентов или меньше.Магнитный балласт отвечает за генерацию гармоник из-за нелинейной намагниченности характеристика железа.


РИС. 4 Базовая схема обычного балласта

Индуктивность магнитного балласта представляет собой низкий коэффициент мощности, обычно около 0,5, что необходимо компенсировать. Компенсация коэффициента мощности можно сделать с помощью конденсатора. Даже после компенсации низкое качество магнитные балласты будут иметь коэффициент мощности около 0.9 из-за относительно высокий THD 20-30 процентов. Обычные магнитные балласты линейной частоты связаны со следующими недостатками.

(i) Мерцание от сети 50/60 Гц, (ii) Значительный размер и вес, (iii) низкий коэффициент мощности, несинусоидальные формы волны тока и (iv) сложность для затемнения.

6 Высокочастотный резонансный балласт

Все чаще используются электронные высокочастотные резонансные балласты. управлять люминесцентными лампами из-за их повышенной энергоэффективности, дольше срок службы лампы, возможности диммирования, меньший вес и возможность устранения мерцание.

Один из самых ранних примеров электронного управления люминесцентными лампами. лампы были найдены в конструкции 1954 года, произведенной Delco для использования в автобусах. Этот ранний электронный балласт был разработан для работы в общей сложности с шестью лампами. выходная мощность около 140 Вт. Он работал на частоте около 3000 Гц и был довольно большим (порядка 1500 кубических дюймов). Улучшения в полупроводниках устройства позволили произвести первый практический высокочастотный балласт Триада-Утрад в 1967 году.Эти балласты были простыми, питаемыми током, автоколебательными. инверторы, а также были разработаны для приложений ввода постоянного тока.

Цепи электронного балласта недавно претерпели революцию в плане совершенства. от ранних биполярных конструкций десять лет назад. Частично это было вызвано появлением силовых переключателей MOSFET с присущими им преимущества в эффективности. В большинстве электронных балластов используются два переключателя питания. в топологии тотемного полюса (полумоста), а трубчатые цепи состоят из Резонансные цепи серии L-C с лампой (ами) на одном из реакторов.На рис. 5 показана основная топология.

Переключатели в схеме на рис. 5 представляют собой силовые полевые МОП-транзисторы, приводимые в действие для проведения альтернативно двумя вторичными обмотками на трансформаторе тока. Главная этого трансформатора управляется током в цепи лампы, работающей на резонансной частоте L и C. Схема не самозапускается и должен запускаться импульсным диаком, подключенным к воротам нижнего МОП-транзистор.

После включения нижнего переключателя колебания поддерживаются, а высокий прямоугольная волна частоты (30-80 кГц) возбуждает резонансный ток L-C.В синусоидальное напряжение на C увеличивается на добротность (Q) при резонансе и развивает достаточную амплитуду, чтобы поразить лампу, которая затем обеспечивает немерцающая подсветка.

Эта схема уже много лет является стандартным электронным балластом, несмотря на следующие недостатки:

(i) Не запускается автоматически, (ii) Низкое время переключения, приводящее к увеличению мощности убытки.


РИС. 5 Электронный балласт с трансформаторным приводом

(iii) Трудоемкость производства (из-за тороидального трансформатора тока, и т.п.) (iv) не поддаются затемнению, и (v) дорого в производстве.

7 Новое поколение балластов

Ограничения базовой конструкции схемы электронного балласта и потребность в более эффективных системах освещения вкупе с доступностью переключателей мощных MOSFET, создали толчок для небольших, эффективных, низких ИС драйвера веса. Например, автоколебательный IR2155 International Rectifier. силовой МОП-транзистор / драйвер затвора биполярного транзистора с изолированным затвором (IGBT), является одним первых в семействе силовых ИС, предназначенных для электронных балластов для люминесцентного освещения, отчасти из-за небольшого размера и невысокой стоимости (около 2 долларов за 80 единиц и 1 доллар за 50 000 единиц).Эти силовые ИС могут управлять полевые МОП-транзисторы низкого и высокого уровня или IGBT от входов, связанных с землей логического уровня. Они обеспечивают возможность смещения напряжения до 600 В постоянного тока и, в отличие от драйверные трансформаторы, могут обеспечить сверхчистые формы волны любого рабочего цикла (0-99%). Функциональная блок-схема IR 2155 представлена ​​на рис. 6. Эти драйверы имеют два альтернативных выхода, так что полумост или Тотемно-полюсная конфигурация полевых МОП-транзисторов может давать прямоугольный сигнал на выходе. А очень полезной особенностью автоколебательных приводов является их способность синхронизировать генератор до естественного резонанса цепи люминесцентной лампы L-C.На рис. 7 показана концепция электронного балласта с использованием драйвера IR2155.

IR2155 предоставляет разработчику автоколебательные или синхронизированные осциллирующая функция, просто с добавлением компонентов R T и C T. Драйвер затвора МОП IR2155 также имеет внутреннюю схему, которая обеспечивает номинальная пауза в 1 микросекунду между выходами и попеременной стороной высокого напряжения и низковольтные выходы для управления силовыми переключателями полумоста. При использовании в автоколебательном режиме частота колебаний определяется выражением:

1 Fosc — ~ 1.4RTC Т


РИС. 6 Функциональная блок-схема IR 2155 (международный Выпрямитель, США)

Обратите внимание на синхронизирующие возможности драйвера IR2155. Два назад Чтобы задние диоды, включенные последовательно со схемой лампы, эффективно проходили через нулевой уровень. детектор тока лампы. Прежде чем загорится лампа, резонансный контур состоит из последовательно соединенных L, C 1 и C2. C2 имеет меньшее значение, чем C 1 поэтому он работает при более высоком напряжении переменного тока, чем C2, и фактически это напряжение что бьет в лампу.

После зажигания лампы C2 эффективно закорачивает из-за напряжения лампы. падение, а частота резонансного контура регулируется L и C 1. Это вызывает сдвиг на более низкую резонансную частоту во время нормальной работы, снова синхронизируется путем определения перехода переменного тока через ноль и использования резонансное напряжение для управления генератором IR2155. Практичный балласт схема с использованием интегральной схемы IR2155, которая способна управлять две 4-футовые трубки, обозначенные на рис.8.


РИС. 7 Электронный балласт с использованием драйвера IR2155 (Международный Выпрямитель, США)


РИС. 8 «Двойной 40» балласт с использованием IR 2155 генератор / драйвер (International Rectifier, США)

Одним из недостатков данной схемы является низкий коэффициент мощности и высокий гармонический ток. Схема на рис.7 принимает напряжение 115 или 230 вольт. Вход переменного тока 50/60 Гц для создания номинального напряжения шины постоянного тока 320 вольт постоянного тока.Поскольку на входе выпрямители проводят только около пиков переменного тока. входное напряжение, входной коэффициент мощности составляет примерно 0,6, отставая от Несинусоидальная форма волны тока.

8 Балласты для коррекции коэффициента мощности и диммирования

Для ЭПРА можно обеспечить коэффициенты мощности, превышающие 0.95, используя топологию Boost, работающую при фиксированном 50-процентном рабочем цикле. Используя драйвер IR2155, также можно обеспечить диммирование просто изменение рабочего цикла и, следовательно, скорости наддува (Wood (апрель) 1994), как показано на рисунках 9 и 8-10 соответственно.Коррекция коэффициента мощности более подробно обсуждается в следующем разделе.


РИС. 9 Балласт с активной коррекцией коэффициента мощности


РИС. 10 Диммер балласта

9 Сравнение компактных люминесцентных ламп с использованием магнитных и электронных Балласты

Электронный балласт имеет много преимуществ перед магнитным балластом. Эти включают устранение мерцания, низкий уровень шума, более длительный срок службы балласта и, конечно же, экономия энергии.Энергосберегающий потенциал электронных балластов подробнее чем компенсирует первоначальные дополнительные затраты. Эта энергия экономию можно увидеть за счет более низкого энергопотребления и косвенно в температура самого балласта.

Электронные балласты не лишены проблем. Полная гармоника искажения тока — реальная проблема для инженеров. Электронные балласты могут иметь THD, намного превышающие THD балластов магнитного типа. Высокий уровни гармоник были связаны с проблемами, включая отказы конденсаторных батарей, перегрев обмоток трансформатора, чрезмерные токи нейтрали, снижение номинальных характеристик трансформаторов, и неправильное срабатывание защитных реле сети.Они также известно, что они нарушают работу чувствительного электронного оборудования, которое требует чистая синусоидальная форма волны (Datta 1994). Результаты сравнительного проведен анализ ряда образцов компактных люминесцентных ламп (CFL) как с магнитными и электронными балластами, так и со встроенными и отдельные балласты показаны на рис. 11.

Исследование (Lucas and Wijekoon 1995) показало, что наиболее доступная низкая стоимость КЛЛ могут иметь очень низкий коэффициент мощности.В частности, было показано что КЛЛ с магнитными балластами могут иметь коэффициент мощности всего 0,4. из-за высокоиндуктивного балласта, но они не способствуют высокая степень гармоник. С другой стороны, КЛЛ с электронным управлением шестерни имеют почти такой же низкий эффективный коэффициент мощности, в основном из-за гармоник, вызванных их силовой электроникой.


РИС. 11 Сравнительный анализ КЛЛ (а) Напряжение и осциллограммы тока со встроенным электронным балластом (б) Частотный спектр для КЛЛ на рис.11 (а) (в)

Осциллограммы напряжения и тока со встроенным магнитным балластом (d) Частота спектр на рис. 11 (в).

10. Дальнейшие разработки электронных балластов

Электромагнитные балласты продемонстрировали хорошую надежность благодаря своей относительная простота. Электронные балласты, с гораздо большей сложностью и относительно хрупкие активные полупроводники, демонстрируют частоту отказов значительно больше, чем электромагнитные балласты.Как электронное освещение системы становятся более обычным явлением, надежность электронных балластов становится все больше и больше проблем (Nemer 1994).

Эволюция электронного балласта от простого инвертора до «умного». балласт »завтрашнего дня означал значительное увеличение цепи сложность и производительность. В то же время конечный пользователь ожидает, что система который обеспечивает свет по требованию каждый раз, когда он или она нажимает выключатель. В сравнении ко многим электронным устройствам балласт работает во враждебной среде в зависимости от температуры окружающей среды.Избыточный нагрев сокращает срок службы компонентов.

Качество важно, но не обязательно означает надежность. Там важны зависимые отношения между качеством и надежностью, которые включают механические, электрические и экономические соображения. Надежность можно улучшить на трех уровнях. Во-первых, использование качественных комплектующих; во-вторых, использование высокопроизводительных конструкций и, в-третьих, использование высокоэффективных надежная технология изготовления.

В условиях текущей мировой энергетической ситуации все больше и больше электромагнитных ПРА заменят на электронное освещение.Таким образом, потребность в надежных электронные балласты будут продолжать расти.

Точно так же, как электронные балласты резко увеличили эффективность светопроизводства, диммирующие балласты нового поколения обеспечит значительную экономию энергии за счет более эффективного управления освещением. Электронные балласты с затемнением позволяют использовать такие стратегии, как дневной свет и компенсация для амортизации лампы.

Диммирующие балласты доступны сегодня, но в большинстве из них используется низковольтное управление. проводка, в которой стоимость установки управляющей проводки непомерно высока.Интегрированные возможности беспроводного управления и диммирования станут основой следующего поколения «интеллектуальных балластов». Также современный Технологии изготовления ИС позволили включить полную схему для коррекции коэффициента мощности и управления диммированием на одной ИС. Например, ML4830 Micro Linear — это ИС с низким уровнем искажений, высокой эффективностью непрерывного действия. коррекция повышенного коэффициента мощности вместе с выбираемой переменной частотой затемнение и запуск.

Для получения дополнительной информации об электронных балластах см. Wood (1994) на Hagar. (1993) рекомендуются.

светодиодных схемных драйверов | Энергосберегающие схемы для светодиодного освещения

Снижение выбросов углекислого газа — одна из наиболее полезных вещей, которые вы можете сделать для современной экономики и атмосферы. Благодаря светодиодной подсветке вы также можете уменьшить влияние счета за электроэнергию на ваш кошелек. Эти продукты с использованием современных технологий значительно увеличивают световой поток ваших источников света, в то же время резко снижая энергию, необходимую для их питания.

ЭНЕРГЕТИЧЕСКИЕ ПРЕИМУЩЕСТВА ЦЕПИ ДРАЙВЕРА LED

Как это достигается? Детали включают схему драйвера светодиода, которая является основным компонентом, преобразующим гораздо больше энергии, которую вы получаете от розетки или источника питания, в энергию — в отличие от лампы накаливания, которая преобразует более 90% входящей энергии в отходящее тепло. Проблема с последним в том, что вы платите за эту энергию, даже если она не преобразуется в свет. В случае светодиода вы можете использовать гораздо меньше энергии, поскольку схема драйвера передает большую часть энергии в виде света.

Это происходит потому, что в лампе накаливания все, что происходит, — это электрическая энергия, проходящая через вольфрамовую нить в инертной атмосфере газообразного аргона (кислород может вызвать пожар или взрыв). Именно нагревая этот прочный металл, радиационные эффекты обеспечивают свет, который вы видите от лампочки. Однако, поскольку вольфрам имеет такую ​​высокую температуру плавления — фактически самый высокий из химических элементов — большая часть энергии используется для его нагрева до радиационной флуоресценции.

В схеме драйвера светодиода полупроводник регулирует влияние электрического входа при изменении внутренней среды схемы светодиода. Поскольку вы имеете дело с электронами, а не с атомами такого элемента, как вольфрам, тепло не играет почти такой же роли во время подачи электрической энергии, чтобы обеспечить электроны энергией. Эта энергия возбуждает их, и электроны излучают свет определенного цвета, когда они «успокаиваются». Это, по сути, то, что вызывает световой дисплей.

ВЫБОР ПРАВИЛЬНОГО СВЕТОДИОДНОГО ДРАЙВЕРА

Energy Recovery Products (ERP) позволяет выбирать схемы драйверов по ряду желаемых атрибутов; вы хотите узнать их, например, по напряжению питания, выходному напряжению и максимальной частоте коммутации. Эти значения играют важную роль в обеспечении надлежащей совместимости с соответствующими приложениями, такими как регулируемые источники света, интегральные схемы и драйверы светодиодов высокой мощности.

LED Light VS Энергосберегающий свет, какой из них лучше? | by LED sinjia

Светодиодный свет

Светодиод (светоизлучающий диод), твердотельное полупроводниковое устройство, способное преобразовывать электрическую энергию в видимый свет, может напрямую преобразовывать электричество в свет.Сердце светодиода — полупроводниковая пластина. Один конец пластины прикреплен к держателю, один конец — отрицательный полюс, а другой конец подключен к положительному полюсу источника питания, так что вся пластина залита эпоксидной смолой.
Светодиодная лампа представляет собой микросхему из электролюминесцентного полупроводникового материала, которая закрепляется серебряным или белым клеем на кронштейне, а затем соединяется с микросхемой и печатной платой с помощью серебряной или золотой проволоки и герметизируется эпоксидной смолой для защиты внутреннего сердечника. провод.Функция, наконец, установить внешний кожух.

Энергосберегающая лампа

Энергосберегающие лампы, также известные как энергосберегающие лампы, электронные лампы, компактные люминесцентные лампы и встроенные люминесцентные лампы, представляют собой осветительные устройства, в которых люминесцентные лампы сочетаются с балластами (балластами).

Сравнение светодиодных ламп и энергосберегающих ламп

1. Техническое сравнение
Принцип работы энергосберегающей лампы заключается в основном в нагреве нити лампы через балласт, так что нить начинает излучать электронов, и переход производит ионизацию, тем самым испуская 253.Ультрафиолетовый свет 7 нм, и ультрафиолетовый свет возбуждает люминофор, чтобы излучать свет, потому что температура нити накала составляет 1160K, когда люминесцентная лампа работает. Слева и справа температура лампы накаливания намного ниже, чем 2200K-2700K, поэтому ее срок службы также значительно увеличился, достигнув более 5000 часов.
Светодиодная лампа образуется путем последовательного или параллельного соединения светодиодных лампочек. Эти светодиодные лампы состоят из светодиодов. Под действием интегральной микросхемы источник питания переменного тока 220 В преобразуется в мощность постоянного тока с напряжением и током, согласованными с набором светодиодов.Соответствует требованиям к сборке шарика светодиодной лампы, чтобы он мог нормально излучать свет.

2.Сравнение яркости (светового потока)
Сравнивая яркость светодиодных фонарей и энергосберегающих ламп, мы увидим следующие данные:
1Вт светодиодный свет = 3Вт энергосберегающая лампа (КЛЛ) = 15Вт лампа накаливания
3Вт Светодиодная лампа = 8Вт энергосберегающая лампа (CFL) = 25Вт лампа накаливания
4Вт светодиодная лампа = 11Вт энергосберегающая лампа (CFL) = 40Вт лампа накаливания
8Вт светодиодная лампа = 15Вт энергосберегающая лампа (CFL) = 75Вт лампа накаливания
12Вт светодиодная лампа = 20Вт энергосберегающая лампа (КЛЛ) = 100Вт лампа накаливания
Мы видим, что светодиодные лампы намного выше по яркости (световому потоку), чем энергосберегающие лампы и обычные лампы накаливания.

3.Сравнение срока службы
Срок службы типичной светодиодной лампы может составлять более 50 000 часов, а у некоторых специальных светодиодных ламп может достигать 100 000 часов. Конечно, срок службы светодиодной лампы определяется микросхемой и движущим фактором. Однако, поскольку у светодиодной лампы нет проблемы с перегорания нити, срок службы светодиодной лампы намного выше, чем у других ламп.
Срок службы обычной энергосберегающей лампы составляет около 5 000 часов и достиг более 8 000 часов.То есть энергосберегающую лампу необходимо заменить через год.
Напротив, мы видим, что светодиодные фонари можно заменить более чем через пять лет, что значительно экономит затраты на замену лампочек.

4. Сравнение энергосбережения
Кто более энергоэффективен при использовании светодиодных и энергосберегающих ламп? Мы знаем, что энергосбережение и долгий срок службы всегда были двумя характеристиками светодиодной продукции. Насколько экономичны светодиодные лампы по сравнению с энергосберегающими лампами?
При одинаковом световом потоке одна светодиодная лампа потребляет только 1/10 энергии лампы накаливания и 1/4 энергии энергосберегающей лампы.В домашнем освещении светодиодные лампы мощностью 10 Вт используют 100 часов, потребляют только 1 градус, что намного лучше, чем энергосберегающие лампы.

5.Сравнение безопасности
Что касается безопасности, нет сомнений в том, что светодиодные лампы по-прежнему превосходят энергосберегающие лампы. Поскольку энергосберегающая лампа содержит тяжелые металлы, она вызывает загрязнение тяжелыми металлами при поломке лампы, поэтому существует скрытая опасность с точки зрения безопасности. Поскольку светодиодная лампа состоит из светодиода, такой опасности нет. По техническим причинам светодиодные лампы менее подвержены повреждениям, чем энергосберегающие лампы, и потребителям не нужно беспокоиться о повреждениях, вызванных разрывом лампы или лампы.

Анализ преимуществ и недостатков светодиодных и энергосберегающих ламп

Преимущества светодиодных ламп:
1. Энергосбережение: энергопотребление белых светодиодов составляет только 1/10 от энергопотребления ламп накаливания и 1/4 от энергосберегающие лампы.
2. Долговечность: продолжительность жизни до 100 000 часов для обычного домашнего освещения можно охарактеризовать как «раз и навсегда».
3. Могут работать в скоростном состоянии энергосберегающие лампы, если при частом запуске или выключении нить накаливания будет черной и быстро сломаться.

Светодиод Недостатки:
Высокая начальная стоимость, плохая цветопередача, низкая эффективность светодиодов высокой мощности, постоянный ток (требуется специальная схема управления).

Энергосберегающая лампа Преимущества:
1. Компактная конструкция и небольшие размеры.
2. Световая отдача составляет 60 лм / Вт, а экономия энергии составляет более 80%, что позволяет экономить энергию.
3. Можно напрямую заменить лампы накаливания.
4. Длительный срок службы, в 6-10 раз больше лампы накаливания.
5. Внутренняя стенка трубки покрыта защитной пленкой, а тройная спиральная нить может значительно продлить срок службы.

Энергосберегающие лампы Недостатки:
1. Загрязнение ртутью в процессе производства и после использования. В настоящее время во всем мире большое внимание уделяется загрязнению ртутью.
2. Поскольку это стеклянный продукт, его легко разбить, его неудобно транспортировать и его нелегко установить.
3. Потребляемая мощность большая.
4. Легкость выхода из строя, короткий срок службы, экономия энергии не экономит деньги.

Исходя из вышеизложенного, нетрудно обнаружить, что с развитием времени и концепции энергосбережения люди постепенно набирают популярность.Все больше и больше энергосберегающих ламп будут заменены светодиодными.

И вас также могут заинтересовать другие отрывки:
《Почему светодиодные лампы более эффективны?》
《Как выбрать высококачественные светодиодные лампы типа Корн?》
《Что вам нужно Когда устанавливать светодиодные фонари?》

Печатная плата для электронного балласта энергосберегающей лампы малой мощности-A-TECH PCB

автор: : A-TECH 2020-05-03

▲ Принципиальная электрическая схема ПРА для энергосберегающих ламп.Как видно из приведенного выше рисунка, такая плата электронного балласта обычно имеет 6 выпрямительных диодов 1N4007, катушку индуктивности с числом мГн и электролитический конденсатор с выдерживаемым напряжением 400 В, два высоковольтных обратных напряжения серии MJE1300X. лампы переключателя и несколько сотен кОм и несколько резисторов Ом, так что, если такая печатная плата хороша, до тех пор, пока добавлено небольшое количество компонентов, можно сделать много практичных электронных небольших устройств. Ниже приводится введение в светодиодную осветительную лампу, изготовленную из этого электронного балласта.▲ Светодиодная осветительная лампа переделана из электронного балласта. Используя схему мостового выпрямителя над электронным балластом (состоит из 4 диодов 1N4007) и 6. алюминиевый электролитический конденсатор 8 мкФ / 400 В (подробности см. На картинке, предоставленной спрашивающим), добавьте еще 0. Конденсатор на 33 мкФ / 400 В cbb может образовывать простую светодиодную осветительную лампу RC Buck. Конкретная схема светодиодной осветительной лампы показана на рисунке выше. Из рисунка видно, что все компоненты, используемые во всей схеме, являются компонентами на плате электронного балласта, за исключением конденсатора C1.При изготовлении два триода и катушки индуктивности на печатной плате ( Трансформатор E-типа на рисунке на самом деле является катушкой индуктивности) После удаления ненужных компонентов будет достаточно места для установки следующего конденсатора 0,33 мкФ / 400 В cbb. В светодиоде используются белые светодиодные лампы с низким энергопотреблением. Эта схема может без проблем управлять 20 или 30 белыми светодиодами. Если вы хотите подключить больше ламповых бусин, c1 можно заменить на 1 мкФ / 400 В для управления многожильными светодиодными лампами. ▲ 0. Форма конденсатора CBB 33 мкФ / 400 В.Если сложно сварить слишком много гирлянд светодиодных ламп, можно также использовать ремни для отработанных светодиодных ламп, чтобы их можно было подключить к цепи без сварки. Как насчет этого? Электронный балласт может сформировать практичный драйвер светодиода, добавив только один конденсатор! Кстати, если этот вид электронного балласта немного изменить, при условии, что добавлено небольшое количество компонентов, практичные электронные небольшие устройства, такие как простой импульсный источник питания, усилитель, переключатель управления освещением и т. Д.также могут быть изготовлены. Ограничено пространством, повторяться не буду.

Балласт для энергосберегающих ламп | Электронные схемы, принципиальная схема, бесплатные проекты электроники

встроен в его гнездо, что делает его готовым для ввинчивания в существующий патрон лампы. КЛЛ со штыревыми контактами предназначены для использования с

. Как и

,

должна быть совместима. КЛЛ со штыревыми цоколями доступны в версиях с низким энергопотреблением для замены ламп накаливания и в версиях средней и высокой мощности для замены ламп

(HID).



Изготовление лампы CFL со штырьками Схема, показанная на рисунке Inductor , использует специализированную интегральную схему типа FAN7710 от наших друзей из Fairchild. Как показано на рисунке 4, это устройство сочетает в себе одну схему драйвера затвора на 625 В на стороне высокого напряжения, два полевых МОП-транзистора на 550 В, схему управления частотой и шунтирующий стабилизатор — плюс активное управление ZVS и функцию обнаружения обрыва лампы, все вместе в одном устройстве. сверхкомпактный 8-позиционный DIP-корпус. Его высокая функциональность и встроенные функции защиты экономят место на плате, уменьшают рассеиваемую мощность и гарантируют повышенную надежность конечных систем.Хороший!

Входное напряжение сети переменного тока (здесь 230 В переменного тока, 50 Гц) выпрямляется, чтобы обеспечить напряжение на шине приблизительно 320 вольт постоянного тока. Пусковой резистор R1 подает начальное (микро) питание на микросхему FAN7710. Микросхема начинает колебаться, и схема накачки заряда, состоящая из C2, D2 и D7, подает ток на вывод VDD, который регулируется внутренним шунтирующим стабилизатором на 15 В.

В схеме генератора FAN7710 используются три дискретные частоты: одна для предварительного нагрева газа CFL; один для зажигания и один для включенного состояния — см. вставку для связанных (простых) математических расчетов.В дополнение к этому, он защищает схему балласта от низкого переменного тока, а также от условий снятия лампы.

Изготовление индуктора
Печатная плата без покрытия , FAN7710N IC и индуктор на 2,5 миллигенри, используемые в схеме, поставляются в комплекте с Elektor Shop. Однако мы никого не отговариваем от покупки деталей индуктора и изготовления их самостоятельно.

Давайте сначала внимательно запишем характеристики:

Индуктивность: 2.5 мГн
Материал сердечника: Epcos N19 или аналог
Размер сердечника: 20/10/6
Катушка: E19
Зазор: 1,5 мм
Сечение провода: 0,2 мм (SWG # 32)
Число витков: 280

Теперь посмотрите в деталях конструкции.
Сначала намотайте 280 витков эмалированного медного провода (ECW) на бобину E19 . Оголите концы проволоки примерно на 5 мм, поцарапав их скальпелем , затем залудите. Проверьте целостность катушки. Поместите половинки Ecore на шпульку, как показано, затем вставьте и отрегулируйте распорки, чтобы получить требуемый воздушный зазор , равный 1.5 мм , что необходимо для достижения требуемой индуктивности. Последний шаг — обернуть изоляционную ленту вокруг сердечника.

Балласт для энергосберегающих ламп Печатная плата) PCB)

Лаборатории Elektor разработали электрическую плату для этого проекта; план монтажа компонентов показан на PCB . Схема расположения медных дорожек доступна в виде бесплатного файла .pdf на нашем веб-сайте Elektor для тех, кто хочет протравить свою собственную печатную плату.Отраженные и неотраженные изображения включены в файл .pdf для вашего удобства. Компонентная начинка очень проста, поскольку на просторной плате используются только свинцовые компоненты нормального размера. Электропроводка к сети и лампе, а также все соединения и разъемы между ними должны соответствовать правилам электробезопасности. (Автор: Т.А. Бабу, Elektor Magazine, 2008)

Осторожно!

Цепь подключена непосредственно к электросети и имеет опасное для жизни напряжение. Необходимо соблюдать соответствующие меры по электробезопасности, чтобы предотвратить прикосновение к каким-либо компонентам во время работы электрической цепи.
источник:

Как создать схему энергосберегающего автоматического контроллера светодиодного освещения

В публикации рассказывается об привлекательной схеме энергоэффективного освещения, которая включается только тогда, когда это логически необходимо, что действительно помогает экономить электроэнергию, а также повышает функционирующая жизнь всей стратегии.

Конструкция

В соответствии с требованиями следующая схема интеллектуального освещения с меньшим энергопотреблением включает три различных фазы, а именно: этап датчика PIR, этап светодиодного модуля и этап контроллера света с ШИМ, состоящий из нескольких IC555.

Давайте распознаем различные уровни со следующими деталями:

Верхняя фаза, содержащая модуль датчика PIR, и подключенная схема образуют обычную ступеньку пассивного инфракрасного датчика. При существовании людей в определенном диапазоне, датчик улавливает его, и его внутренняя схема преобразует его в потенциальное улучшение, чтобы гарантировать, что он подается на базу первого транзистора NPN.

Вышеупомянутый триггер включает оба транзистора, которые часто включают светодиоды, прикрепленные к коллектору TIP127.

Вышеупомянутая фаза гарантирует, что свет будет включен только при появлении людей в непосредственной близости и выключен, когда вокруг никого нет. C5 гарантирует, что свет не выключается мгновенно, если у вас нет людей, а после нескольких секунд задержки.

Далее мы замечаем две фазы IC 555, которые можно настроить как обычные нестабильные фазы и фазы генератора ШИМ. C1 означает частоту ШИМ, в то время как резистор R1 может использоваться для оптимизации правильной реакции схемы.

Выход ШИМ отдан на базу транзистора TIP127. Это просто означает, что когда импульсы ШИМ включают в себя более широкие импульсы, транзистор остается выключенным для большей продолжительности, и наоборот.

Это означает, что с более широкими ШИМ светодиоды могут быть слабее с их силой, и наоборот.

Всем известно, что выход ШИМ микросхемы 555 (как показано в правой части) определяется уровнем напряжения, используемым на ее контрольном выводе №5.

При более высоких напряжениях, приближающихся к уровню питания, выход ШИМ может быть шире, в то время как напряжение, приближающееся к нулевой отметке, имеет тенденцию делать ШИМ с минимальной шириной.

Фаза потенциального делителя, созданная с помощью R16, R17 и VR2, обеспечивает указанную выше функцию, так что ИС реагирует на внешние условия окружающего освещения и производит необходимые полностью оптимизированные ШИМ для применения функций затемнения светодиодов.

R16 — это действительно LDR, который должен получать только свет от внешнего источника, попадающего в комнату.

Когда внешний свет яркий, LDR обеспечивает более низкое сопротивление, таким образом, повышая потенциал на выводе № 5 ИС. Это побуждает ИС производить более крупные ШИМ, в результате чего светодиоды развивают более диммер.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *