Схема подключения электросчетчика 3х фазного с трансформаторами тока: Схема подключения трехфазного счетчика через трансформатор тока — Moy-Instrument.Ru

Ноя 16, 2020 Разное

Схема подключения электросчетчика 3х фазного с трансформаторами тока: Схема подключения трехфазного счетчика через трансформатор тока — Moy-Instrument.Ru

Содержание

Схемы подключения трехфазного счётчика через трансформаторы тока

Электроэнергия, как и любой другой вид энергии, для потребителей является товаром. Чтобы знать о количестве произведённой и потребляемой энергии, нужны соответствующие средства учёта. Для населения такими средствами учёта потребляемой энергии служат электросчётчики. Существует много видов счётчиков, различающихся как по схеме внешнего электроснабжения, так и по мощности, которую расходует потребитель электроэнергии.

Так, для однофазных сетей напряжением 220 вольт применяют бытовые электросчётчики различных моделей с максимальным током до 40 ампер. Для электрических сетей напряжением 380 вольт применяют трехфазные счётчики. В зависимости от нагрузки счётчики делятся на счётчики прямого включения, полукосвенного и косвенного включения. В счётчиках косвенного включения применяется схема, при которой потребляемая нагрузка подключается через трансформаторы тока.

Такая схема подключения позволяет измерять высокую потребляемую мощность приборами, рассчитанными на низкие показатели мощности. При помощи измерительных трансформаторов происходит перерасчёт потребляемой электроэнергии с соответствующим трансформатору тока коэффициентом.

Принцип работы трансформатора тока

Трансформаторы тока — это электрические устройства, преобразующие ток нагрузки до величины, при котором прибор учёта электроэнергии будет работать в нормальном режиме. Такие приборы применяют для того, чтобы измерять большую мощность потребления электроэнергии, когда при другом способе включения есть вероятность выхода перегорания токовой катушки электросчётчика из-за большой величины измеряемого тока и, следовательно, выходу прибора учёта из строя.

Рассмотрим, как работают эти устройства.

  • Через первичную силовую обмотку, имеющую какое-либо сопротивление, протекает ток, формируя вокруг этой катушки магнитный поток. Этот поток
    улавливается магнитопроводом
    .
  • Магнитопровод — это конструкция, собранная из тонких пластин специальной электротехнической стали, которые изолируются друг от друга с помощью специальной плёнки и предназначается для замыкания магнитного потока.

А также на него устанавливают и крепят обмотки и отводы трансформатора. Этот магнитный поток пересекает расположенные перпендикулярно ему витки вторичной обмотки и наводит в ней ЭДС, под действием которой во вторичной обмотке образуется ток. Соотношение токов в первичной и вторичной обмотках трансформатора называется коэффициентом трансформации.

Трансформаторы тока по коэффициенту трансформации имеют обширную линейку значений и обозначаются как 10/5, 20/5, 100/5 и другие. В этом обозначении первая цифра указывает на максимальный ток нагрузки (ток в первичной цепи), вторая цифра указывает на ток измерительного прибора (ток вторичной цепи). Частное между этими значениями и есть коэффициент трансформации. Следовательно, измерительные трансформаторы преобразуют высокую мощность нагрузки потребителя в небольшую, удобную для проведения измерений.

Благодаря такому конструктивному решению в счётчиках электроэнергии не нужно делать мощные токовые катушки, что обеспечивает надёжную защиту приборов учёта от перегрузок и короткого замыкания, ремонт системы учёта обходится гораздо дешевле, так как замена сгоревшего трансформатора тока гораздо экономичнее замены вышедшего из строя электросчётчика.

Варианты схем подключения трехфазных счётчиков

Варианты подключений электросчётчиков могут быть различными, и определяются они в первую очередь мощностью нагрузки. Рассмотрим варианты подключений приборов учёта:

  • Прямое подключение. В этом случае счётчик напрямую включается в линию электроснабжения и, следовательно, весь ток, потребляемый нагрузкой, проходит через него. Плюсом этой схемы является простота подключения, так как для подключения достаточно подключить кабели только на входе в прибор и выходе из него. Максимальная мощность, которая может быть в этом случае равна 60 кВт. Такие приборы запрещается использовать с трансформаторами тока.
  • Полукосвенное включение. Такой вариант применяется в том случае, если мощность нагрузки превышает 60 кВт. Для реализации этой схемы нужны трансформаторы тока. Особенностью такого типа подключения является то, что вместо первичной обмотки трансформатора используется электрический провод. Существует три схемы, с помощью которых можно организовать измерение расхода потребляемой электроэнергии. Во-первых, это десятипроводная схема. При такой схеме подключения три провода подключается на вход токовых обмоток, ещё три провода на вход обмоток напряжения и три провода на выход токовых обмоток. И также ещё должна быть подключена нейтраль. Реализация этой схемы обеспечивает большую электробезопасность, но требует большего количества проводов, чем при других схемах подключения. При снятии показаний с таких приборов учёта нужно показания электросчётчика умножать на коэффициент трансформации трансформаторов тока. Во-вторых, существует семипроводная схема подключения. Ещё такая схема называется подключение типа «звезда».
    При такой схеме подключения одна сторона вторичных обмоток измерительных трансформаторов соединяется между собой перемычками и объединяется с нейтралью. Остальные провода подключаются аналогично десятипроводной схеме.
  • Косвенное включение. Такие схемы подключения применяются лишь на промышленных предприятиях. Их принципиальное отличие в том, что для реализации схемы подключения используются ещё и трансформаторы напряжения.

Установка трехфазного электросчётчика

Хотя в установке электросчётчика особых сложностей нет лучше, чтобы эту работу выполняли квалифицированные специалисты. Рассмотрим установку трехфазного электросчётчика с измерительными трансформаторами на примере счётчика Меркурий. Эта модель счётчиков является одной из самых распространённых в нашей стране.

Прежде чем приступить к монтажу электросчётчика рекомендуется выполнить монтаж входного автоматического выключателя. Наличие такого автоматического выключателя поможет более безопасному и быстрому выполнению различных ремонтных или профилактических работ.

Далее, устанавливается непосредственно счётчик Меркурий и трансформаторы тока. Затем осуществляется монтаж проводов на клеммную колодку счётчика в соответствии со схемой подключения. Включив автоматический выключатель, проверяется работоспособность прибора учёта по счётчику показаний электроэнергии.

Счётчики учёта электроэнергии старого поколения типа Меркурий с трансформаторами тока в наше время вытесняются более передовыми и эффективными средствами учёта электроэнергии. Трехфазные счётчики нового поколения Меркурий можно программировать на различные режимы работы, менять тарифный план и даже дистанционно передавать показания электроэнергии.

Подключение счетчика электроэнергии в низковольтную сеть большой мощности

Для подключения счетчика в сеть большой мощности (с большими токами) необходимо применять специальные устройства — измерительные трансформаторы тока.

Речь идет о низковольтных сетях до 0,66 кВ, где уровень номинального тока 100 А и выше. Счетчики прямого включения не предназначены для использования в таких мощных сетях, поэтому и требуется снизить уровень рабочего тока до величины, удобной для измерения приборами учета — 5 А.

Способ подключения в сеть счетчика, при котором токовые обмотки счетчика подключаются к измерительным выводам трансформатора тока называют полукосвенным. При этом способе подключения счетчика используется рабочее напряжение сети (обмотки напряжения подключаются к электросчетчику напрямую).

Существует также и косвенный способ подключения счетчика, однако он применяется для учета электроэнергии в установках с напряжением более 1 кВ. При косвенном подключении счетчика кроме трансформаторов тока применяются трансформаторы напряжения, снижающие высокое значение напряжение до 100 В.

Класс точности и его значение для учета электроэнергии

Правила Устройства Электроустановок (сокращенно ПУЭ) устанавливают классы точности для трансформаторов тока различных категорий применений. Так, для коммерческого учета должны устанавливаться трансформаторы тока с классом точности не более 0,5, а для технического учета необходим класс точности не выше 1,0.

Также встречаются трансформаторы тока с практически одинаковыми классами точности 0,5 и 0,5S. В чем заключается между ними разница? Погрешность обмотки ТТ с классом точности 0,5 не нормируется ниже 5%. Это значит, что при нагрузке в главной цепи ниже 5% электрическая энергия не будет учитываться. Класс точности 0,5S говорит о том, что трансформатор тока будет передавать сигнал на счетчик при уровне нагрузки не ниже 1%.

Схемы подключения счетчика через трансформаторы тока

Подключить трехфазный счетчик электроэнергии в мощную низковольтную сеть с глухозаземленной нейтралью можно по приведенным ниже схемам.

Цепи тока и напряжения в этой схеме, которую еще называют «десятипроводной» (по количеству используемых проводов), разделены. Подобное разделение цепей напряжения и тока позволяет повысить электробезопасность и легко проверять правильность подключения.

Следующая схема, в которой все выводы И2 измерительных трансформаторов тока соединяются в общую точку и присоединяются к нулевому проводнику, называется «звезда» (т. к. трансформаторы тока соединены по одноименной схеме). Она экономична с точки зрения использования проводов, однако усложняет проверку схемы включения счетчика представителями энергоснабжающих организаций.

«Семипроводная» схема на сегодняшний день является устаревшей, но так или иначе до сих пор встречается. Эта схема, будучи самой экономичной, опасна для обслуживающего персонала и потому должна быть модернизирована до десятипроводной.

Подключения счетчика электроэнергии через переходную испытательную коробку (КИП)

Как указано в ПУЭ (п 1.5.23.), подключать трехфазные счетчики электроэнергии следует через испытательные коробки, упомянутые выше. Они (коробки испытательные переходные) позволяют производить замену счетчика, не отключая нагрузку, так как все необходимые переключения можно произвести в КИП.

Также встречаются низковольтные сети с изолированной нейтралью (система IT). Если быть более точным, то в сети с такой системой заземления нейтральный проводник может быть как полностью изолирован, так и заземлен при помощи специальных приборов, обладающих большим электрическим сопротивлением.

Такая система (IT) применяется на объектах, к которым предъявляются высокие требования по надежности и безопасности электроснабжения. Например, изолированная система IT применяется для электрических установок угольных шахт, для мобильных дизельных и бензиновых электростанций, а также для аварийного освещения и электроснабжения больниц. Подключить счетчик электроэнергии к трансформаторам тока в сеть с изолированной нейтралью можно по следующей схеме.

Измерительные трансформаторы тока — это устройства, преобразующие большие значения тока главных цепей до величины 5 А, удобной для измерения счетчиками электроэнергии. Именно это и определяет их основное назначение: питание цепей учета электроэнергии (коммерческий и технический) в мощных установках, там где счетчики прямого включения просто не могут применяться.

По материалам КЭАЗ

электросчетчики

На рис.4 показана электрическая схема подключения нагрузки к счетчику, где КН — катушка напряжения, КТ — катушка тока. Нумерация всех контактов соответствует рис.1. Изучив схему рис.4, можно заметить, что катушка напряжения КН всегда находится под питающим напряженим и работает как бы «сама по себе» — она отдельно подключена к 220В и режим ее работы не зависит от мощности нагрузки. А вот катушка тока КТ включена последовательно с нагрузкой и
ток через нее потечет такой же, как и через саму нагрузку
. Кто забыл вопросы последовательного и параллельного подключения, могут вернуться в раздел «сопротивление». А поскольку катушка тока КТ представляет из себя всего лишь какое-то количество витков медного провода определенного сечения, то нетрудно догадаться, что выдержит этот провод какое-то некоторое максимальное количество Ампер проходящего через него тока. При превышении этого значения катушка тока КТ попросту сгорит. Приемлемые значения этого тока указаны на корпусе счетчика. Обычно этот предел составляет 10 — 40 Ампер.
Так вот, в 3-х фазном счетчике таких катушек КТ и КН по три пары — одна пара на фазу. И нетрудно догадаться, что суммарный ток на каждой фазе всяческого производственного оборудования может достигать значений и 100Ампер, и 200А, и 300А, и еще больше. А поскольку через катушку тока, как уже оговаривалось, проходит ток той же величины, что и через нагрузку, то, разумеется, было бы сложно изготовить такую катушку тока, которая могла бы выдержать такие токи. Впрочем, сделать-то можно, но какие это будут размеры!!! Поэтому, чтобы в обычный 3-х фазный счетчик поместить обычную небольшую катушку тока — точнее, их три (как правило, с максимальным проходящим через нее током в 5Ампер) применяют трансформаторы тока. Одной из самых важных и нужных характеристик такого трансформатора является коэффициет трансформации тока. Он всегда указан на его корпусе. Этот коэффициент пишется в виде дроби, например, «100/5», «150/5», «250/5». Пятерочка — это номинальный ток нормальной работы катушки тока.
Возникает вопрос — как всем этим пользоваться. А тут все просто. Если ваша расчетная мощность всей нагрузки предполагает прохождение тока в каждой фазе величиною в 150А либо 100А, либо 250А, то и трансформаторы тока надо выбирать соответственно «150/5», «100/5», «250/5». Допустим, при работе оборудования ток на одной из фаз составляет 250А, на другой 200А, на третьей — 150А. А применяемые трансформаторы установлены с коэффициентом «250/5″(т.е. ток через токовую катушку будет уменьшен в 50 раз!). Тогда ток через первую катушку составит 5А, вторую — 4А, третью — 3А.
А какое же показание о количестве потребленной энергии выдаст нам трехфазный счетчик? А счетчик будет считать по формуле P=U*I*t/50, где t — время в течение которого наши потребители работали (т.е. были включены), I — ток потребителей. Т.е., поскольку реально ток через токовую катушку отличался в 50 раз от реального тока потребителя в рабочих фазах, то и информация о потребленной энергии на его табло будет отличаться в 50 раз от реально потребленной. Ведь счетчик не «знает» реальных токов в цепи. Он «принимает к сведению» тот ток, который ему «отдает» трансформатор тока. Поэтому при оплате за потребленную энергию требуется показание счетчика с трансформаторами тока умножать на коэффициент трансформации. В рассматриваемом случае на 50. Вот, собственно, и все. Можно перейти к другим разделам.

Схема подключения трехфазного счетчика (видео)

(Last Updated On: 12.09.2017)

Трехфазный счетчик

Как известно каждому опытному электротехнику, подключать 3-фазный счетчик можно по-разному. В зависимости от того, какой тип устройства используется, выбирается конкретная схема подключения трехфазного счетчика: через трансформатор или напрямую. В продаже сегодня представлены устройства измерения потребления тока, разработанные для подключения следующим образом:

  • по прямому включению;
  • полукосвенным включением;
  • косвенным методом;
  • с подсчетом реактивного потенциала.

Вовремя выполненная установка устройства и правильно выбранная монтажная схема – это залоги получения точных данных по потреблению энергии.

Современные монтажные схемы

Теоретически для того, чтобы учесть расход электроэнергии в системах с тремя фазами, Вы можете использовать и однофазный счетчик. Здесь не нужны ни трансформаторы, ни другие элементы. Но этот метод сложен в выполнении и очень неточен. Современные частные дома уже содержат необходимую электрику, но некоторые проекты одноэтажных домов не предполагают установку трехфазного счетчика, поэтому рекомендуем обращаться только в проверенные фирмы, например http://www.dom2000.ru/projects/odnoetazhnye

Чтобы упростить установку счетчика и гарантировать необходимые операционные параметры, промышленность предлагает счетчики трехфазного типа.

Выбор схемы включения счетчика в сеть определяется нагрузкой на сеть и на счетчик. Выражаясь иначе, количеством электрического потока, который проходит через счетчик.

Перед выполнением установки счетчика Вы должны внимательно изучить правила монтажа.

Прямое включение счетчика в сеть

Схема прямого включения представляет собой обыкновенную врезку счетчика в сеть. Он принимает тот же поток энергии, что и питающаяся от сети нагрузка.

Сама по себе установка элементарна – требуется подключить 2 окончания силового провода с 2 сторон счетчика, с входа и выхода.

При этом нужно правильно выполнить коммутацию кабелей:

  • вход фазы «A» – на контакт 1;
  • выход фазы «A» — на контакт 2;
  • вход фазы «B» — на контакт 3;
  • выход фазы «B» — на контакт 4;
  • вход фазы «C» — на контакт 5;
  • выход фазы «C» – на контакт 6;
  • вход нулевого провода — на контакт 7;
  • выход нулевого провода- на контакт 8.

Нужно не забывать и о существующих ограничениях. Подключать счетчик напрямую можно только к тем сетям, в которых сила проходящего тока не более 100 А. Также вычисления указывают, что мощность устройств-энергопотребителей при таком подключении не должна быть больше 60 кВт.

Прямая схема подключения трехфазного счетчика будет вполне оправдана для обычной квартиры с ее стандартным набором бытовых приборов – электрической плиты холодильника, чайника, телевизора, стиральной машины и сплит-системы. Если же в доме присутствует, например, электрокотел, то нужно выбирать другую схему монтажа.

Схема полукосвенного монтажа

Такая схема подключения 3-фазного счетчика рентабельна в тех помещениях, где электроприборы потребляют более 60 кВт энергии. В таких сетях устанавливаются специальные трансформаторы электротока.

Главная особенность здесь в том, что в используемых трансформаторах отсутствует первичная обмотка – здесь ее заменяет электропровод. А когда по вторичной обмотке проходит ток, в силу действия законов индукции образуется напряжение, которое как раз и фиксируется 3-фазным счетчиком.

Большой плюс подключения счетчиков по полукосвенной схеме в том, что оно может выполняться различным образом. Однако при любом варианте полукосвенного подключения оно должно выполняться через трансформаторы тока. Кроме того, при такой схеме монтажа присутствует гальваническая развязка измерительных цепей и силовых цепей. Она-то как раз и обеспечивается включенными в цепь трансформаторами. За счет гальванической развязки обеспечивается должная безопасность использования и обслуживания 3-фазных счетчиков. Неудобство же данной схемы в большом количестве используемых для соединения проводов.

Подключение счетчика к трансформаторам следующая:

  • вход фазы «A» — на контакт 1;
  • вход измерительной обмотки для фазы «А» — на контакт 2;
  • выход фазы «A» — на контакт 3;
  • вход фазы «B» — на контакт 4;
  • вход измерительной обмотки фазы «B» – на контакт 5;
  • выход фазы «B» – на контакт 6;
  • вход фазы «C» — на контакт 7;
  • вход измерительной обмотки фазы «C» – на контакт 8;
  • выход фазы «C» — на контакт 9;
  • вход нулевого кабеля – на контакт 10;
  • нулевой кабель, идущий от нагрузки – на контакт 11.

Когда Вы устанавливаете 3-фазный счетчик, следует включать трансформаторы в разомкнутую электроцепь с помощью специальных контактов, имеющих маркировку Л1 и Л2.

Другая полукосвенная монтажная схема дял 3-фазного счетчика, представляет собой соединение трансформаторов звездоподобную конструкцию. Здесь инсталляция счетчика упрощена, потому что требуется меньше проводов. Это обеспечено усложнением внутренней схемы устройства. ПРи этом качество и точность работы счетчика от этих усложнений страдают.

Еще одна схема подключения трехфазного счетчика через трансформатор осуществляется с использованием 7 проводов. Однако останавливаться на ней не будем, потому что она морально устарела и сегодня используется в единичных случаях. Основные претензии к ней – отсутствие в ее конструкции гальванической развязки, из-за чего работать с такой схемой подключения опасно.

Видео:

В любом случае, как бы ни выполнялось подключение 3-фазного счетчика через трансформатор, нужно соблюсти одно требование – между счетчиком и проводом должна быть установлена специальная колодка или контактная поверхность, через которые выполняются все требуемые подключения. Также колодка позволит легко установить в электроцепь эталонный счетчик.

Подключение косвенным способом

Это целая группа схем подключения счетчиков, которая, однако, не находит применения в быту. Их основное назначение – это учета электрической энергии, накапливаемой на шинах генерирующих компаний. Это, например, ТЭЦ, ГЭС, АЭС. В такой схеме подключения трансформаторы монтируются непосредственно на сами шины, идущие от генераторов.

Информация, поступающая с клемм данных трансформаторов, подается на электросчетчик, который в свою очередь замеряет объем произведенной электроэнергии.

Затем энергия подается по линиям передачи и через распределительные модули всем потребителям, подключенным к электросети.

Как подключить 3 фазный счетчик в доме или гараже

В предыдущей статье Я рассказывал как подключить однофазный счетчик электрической энергии. Сегодня Я расскажу о подключении своими руками 3 фазного электросчетчика.

Во всех квартирах и большинстве индивидуальных домов и гаражей осуществляется однофазное питание на 220 Вольт. И на каждый счетчик приходит и отходит одна фаза с нулем. Но если у Вас большой дом или гараж с мощными электропотребителями более 10 Киловатт- электросварка, станки и т.п., тогда необходимо использовать 3 фазный ввод на 380 Вольт.

Преимущества 3 фазного электропитания.

  1. Большая нагрузка на однофазный ввод является причиной перепадов напряжения не только у Вас в доме, но и соседних. А это сокращает срок службы электронной и бытовой техники.
  2. Существуют специальные мощные сварочные аппараты, компрессоры, кондиционеры, станки и т. д, которые рассчитаны на работу только от сети 380 Вольт.
  3. При том же потребляемом количестве электроэнергии однофазный электродвигатель меньшую развивает механическую мощность, чем 3 фазный.
  4. Нет необходимости монтировать провода или кабели большего сечения. Потому что по закону Ома при одинаковой токовой нагрузке- при 380 Вольтах передается более чем на половину большая электрическая мощность.

Трехфазные счетчики электроэнергии  бывают прямого или косвенного включения. Последние подключаются через трансформаторы тока и применяются для учета электроэнергии при высоких нагрузках. В частных домах и гаражах применяются только приборы учета прямого включения, потому что в них нагрузка не превышает 100 Ампер или с максимальной мощностью до 60 киловатт.

Счетчики устанавливаются  в специальных электрощитах с платформой, рассчитанной под крепление на три винта. Монтаж очень простой и быстрый.

Вы должны помнить, что нельзя перегружать прибор учета токами выше допустимого для него предела. Перейдем к процессу подключения.

Схема подключения 3 фазного счетчика электроэнергии.

После установки можно переходить к подключению счетчика. Все работы выполняются только исключительно после отключения напряжения!

В электрощит приходит кабель электропитания с тремя фазами, нулем +заземляющим пятым проводником. Фаза «А» подключается на 1 контакт, «В»- 3 контакт, и «С»- 5 контакт.

Внимание, для электронных счетчиков важна очередность фаз, а иначе при несовпадении он не будет работать и появится индикация ошибки на экране. Очередность фаз определяется специальным прибором профессионалами, но в домашних условиях используется метод тыка. Подключили, затем смотрим какие фазы выдают ошибку и меняем их местами.

Выход фаз со счетчика на автоматы к электропотребителям будет с контактов 2, 4, 6 соответственно.

Ноль приходит на 7 и уходит с 8 контакта.

Заземляющий проводник крепиться сразу на шину заземления электрощита.

Помните, что ноль в электрощите дома или гаража обязательно должен быть связан с контуром заземления, который монтируется рядом в земле. Если этого не сделать, то при пропадании ноля в электрощите- большинство однофазных (на 220 Вольт) потребителей перегорит из-за возникающих при этом перенапряжениях.

В старых индукционных 3 фазных счетчиках при подключении использовалась немного другая схема подключения. На первый контакт приходит первая фаза, далее между первым и вторым ставится перемычка, а с третьего уже отходит к нагрузке фаза. Соответственно при подключении двух других фаз делаются перемычки между контактами 4 и 5, 7 и 8. Фазы приходят на 4 и 7, а отходят с 6 и 9 контактов. Далее подключаются нули.

В новых электронных счетчиках появилась возможность подключения к сети передачи данных учета в диспетчерскую. Поэтому у них есть дополнительные контакты для подключения слаботочных кабелей.

Схему подключения Вы всегда сможете найти под крышкой контактов  с обратной стороны или в техническом паспорте.

Правильность подключения электрического счетчика должна быть проверена представителем Энергонадзора. После чего он пломбируется для защиты от воровства электроэнергии.

Б/у приборы учета должны быть проверенными и со штампом и документами это подтверждающими.

Схема регулятора скорости трехфазного асинхронного двигателя

В этом посте мы обсудим создание простой схемы регулятора скорости трехфазного асинхронного двигателя, которая также может применяться для однофазного асинхронного двигателя или буквально для любого типа двигателя переменного тока.

Когда дело доходит до управления скоростью асинхронных двигателей, обычно используются матричные преобразователи, включающие множество сложных каскадов, таких как LC-фильтры, двунаправленные массивы переключателей (с использованием IGBT) и т. Д.

Все они используются для достижения в конечном итоге прерванный сигнал переменного тока, рабочий цикл которого можно регулировать с помощью сложной схемы микроконтроллера, что в конечном итоге обеспечивает необходимое управление скоростью двигателя.

Тем не менее, мы можем поэкспериментировать и попытаться реализовать управление скоростью трехфазного асинхронного двигателя с помощью гораздо более простой концепции, используя усовершенствованные ИС оптопары детектора перехода через нуль, силовой симистор и схему ШИМ.

Использование детектора перехода через ноль Оптопара

Благодаря серии оптопар MOC, которые сделали схемы управления симисторами чрезвычайно безопасными и простыми в настройке, а также обеспечивают беспроблемную интеграцию PWM для предполагаемых элементов управления.

В одном из своих предыдущих постов я обсуждал простую схему контроллера двигателя с плавным пуском с ШИМ, в которой реализована микросхема MOC3063 для обеспечения эффективного плавного пуска подключенного двигателя.

Здесь мы также используем идентичный метод для обеспечения соблюдения предлагаемой схемы регулятора скорости трехфазного асинхронного двигателя, на следующем изображении показано, как это можно сделать:

На рисунке мы видим три идентичных каскада оптопары MOC, сконфигурированных в их стандартном симисторе. режим регулятора, а входная сторона интегрирована с простой схемой ШИМ IC 555.

Три контура MOC сконфигурированы для обработки входного трехфазного переменного тока и подачи его на подключенный асинхронный двигатель.

Вход ШИМ на стороне управления изолированными светодиодами оптического блока определяет коэффициент прерывания трехфазного входа переменного тока, который обрабатывается MOC ICS.

Использование ШИМ-контроллера IC 555 (переключение при нулевом напряжении)

Это означает, что, регулируя потенциометр ШИМ, связанный с ИС 555, можно эффективно управлять скоростью асинхронного двигателя.

Выход на его выводе №3 имеет переменный рабочий цикл, который, в свою очередь, соответственно переключает выходные симисторы, что приводит либо к увеличению среднеквадратичного значения переменного тока, либо к его уменьшению.

Увеличение среднеквадратичного значения с помощью более широких ШИМ позволяет достичь более высокой скорости двигателя, в то время как снижение среднеквадратичного значения переменного тока с помощью более узких ШИМ вызывает противоположный эффект, то есть вызывает пропорциональное замедление двигателя.

Вышеупомянутые функции реализованы с большой точностью и безопасностью, так как ИС имеют множество внутренних сложных функций, специально предназначенных для управления симисторами и тяжелыми индуктивными нагрузками, такими как асинхронные двигатели, соленоиды, клапаны, контакторы, твердотельные реле и т. Д.

IC также обеспечивает идеально изолированную работу для каскада постоянного тока, что позволяет пользователю выполнять настройки, не опасаясь поражения электрическим током.

Этот принцип можно также эффективно использовать для управления скоростью однофазного двигателя, используя одну MOC IC вместо 3.

Конструкция фактически основана на теории пропорционального по времени симистора. Верхняя схема ШИМ IC555 может быть отрегулирована для обеспечения рабочего цикла 50% при гораздо более высокой частоте, в то время как нижняя схема ШИМ может использоваться для реализации операции управления скоростью асинхронного двигателя посредством регулировки соответствующего потенциометра.

Рекомендуется, чтобы эта микросхема 555 имела относительно более низкую частоту, чем схема верхней микросхемы IC 555. Это можно сделать, увеличив емкость конденсатора на выводе 6/2 примерно до 100 нФ.

ПРИМЕЧАНИЕ: ДОБАВЛЕНИЕ ПОДХОДЯЩИХ ИНДУКТОРОВ ПОСЛЕДОВАТЕЛЬНО С ФАЗОВЫМИ ПРОВОДАМИ МОЖЕТ Существенно улучшить ХАРАКТЕРИСТИКИ УПРАВЛЕНИЯ СКОРОСТЬЮ СИСТЕМЫ.

Datasheet для MOC3061

Предполагаемая форма волны и управление фазой с использованием вышеуказанной концепции:

Вышеописанный метод управления трехфазным асинхронным двигателем на самом деле довольно груб, поскольку он не имеет контроля В / Гц .

Он просто использует включение / выключение сети с разной скоростью для выработки средней мощности двигателя и управления скоростью, изменяя этот средний переменный ток двигателя.

Представьте, что вы включаете / выключаете двигатель вручную 40 или 50 раз в минуту. Это приведет к тому, что ваш двигатель замедлится до некоторого относительного среднего значения, но будет двигаться непрерывно. Вышеупомянутый принцип работает точно так же.

Более технический подход заключается в разработке схемы, которая обеспечивает надлежащий контроль соотношения В / Гц и автоматически регулирует его в зависимости от скорости скольжения или любых колебаний напряжения.

Для этого мы в основном используем следующие этапы:

  1. Н-мостовой или полный мост IGBT-драйвер Схема
  2. Трехфазный генераторный каскад для питания полной мостовой схемы
  3. В / Гц ШИМ-процессор

Использование полного моста Схема управления IGBT

Если процедуры настройки вышеупомянутой конструкции на основе симистора кажутся вам пугающими, можно попробовать следующее управление скоростью асинхронного двигателя на основе полномостового ШИМ:

В схеме, показанной на приведенном выше рисунке, используется один полный кристалл. -мостовой драйвер IC IRS2330 (последняя версия — 6EDL04I06NT), который имеет все встроенные функции для обеспечения безопасной и идеальной работы трехфазного двигателя.

ИС требуется только синхронизированный трехфазный логический вход через его выводы HIN / LIN для генерации необходимого трехфазного колебательного выхода, который, наконец, используется для работы полной мостовой IGBT-сети и подключенного трехфазного двигателя.

ШИМ-инжектор с регулировкой скорости реализуется через 3 отдельных полумостовых каскада драйверов NPN / PNP, управляемых с помощью SPWM-питания от генератора ШИМ IC 555, как показано в наших предыдущих проектах. Этот уровень ШИМ может в конечном итоге использоваться для управления скоростью асинхронного двигателя.

Прежде чем мы изучим фактический метод управления скоростью для асинхронного двигателя, давайте сначала разберемся, как автоматическое регулирование В / Гц может быть достигнуто с помощью нескольких схем IC 555, как описано ниже.

Схема автоматического ШИМ-процессора (Замкнутый контур)

В вышеуказанных разделах мы изучили конструкции, которые помогут асинхронному двигателю двигаться со скоростью, указанной производителем, но он не будет регулироваться в соответствии с постоянным соотношением В / Гц, если не будет следующая ШИМ процессор интегрирован с входным каналом H-Bridge PWM.

Вышеупомянутая схема представляет собой простой генератор ШИМ, использующий пару IC 555. IC1 генерирует частоту ШИМ, которая преобразуется в треугольные волны на выводе № 6 IC2 с помощью R4 / C3.

Эти треугольные волны сравниваются с синусоидальной пульсацией на выводе № 5 IC2. Эти пульсации образца получаются путем выпрямления трехфазной сети переменного тока в пульсации переменного тока 12 В и подаются на контакт № 5 IC2 для необходимой обработки.

Путем сравнения двух сигналов, SPWM соответствующего размера генерируется на выводе № 3 IC2, который становится управляющим ШИМ для сети H-моста.

Как работает схема В / Гц

При включении питания конденсатор на выводе №5 начинает с передачи нулевого напряжения на выводе №5, которое вызывает наименьшее значение SPWM в Н-мостовой схеме, которая, в свою очередь, включает асинхронный двигатель для запуска с медленным плавным пуском.

По мере зарядки этого конденсатора потенциал на выводе № 5 повышается, что пропорционально увеличивает SPWM и позволяет двигателю постепенно набирать скорость.

Мы также можем видеть цепь обратной связи тахометра, которая также интегрирована с контактом № 5 микросхемы IC2.

Этот тахометр контролирует скорость ротора или скорость скольжения и генерирует дополнительное напряжение на контакте № 5 IC2.

Теперь, когда скорость двигателя увеличивается, скорость скольжения пытается синхронизироваться с частотой статора, и в процессе она начинает набирать скорость.

Это увеличение индукционного скольжения пропорционально увеличивает напряжение тахометра, что, в свою очередь, заставляет IC2 увеличивать выход SPWM, что, в свою очередь, дополнительно увеличивает скорость двигателя.

Вышеупомянутая регулировка пытается поддерживать отношение В / Гц на довольно постоянном уровне до тех пор, пока, наконец, SPWM от IC2 не сможет увеличиваться дальше.

В этот момент скорость скольжения и скорость статора достигают установившегося состояния, и это поддерживается до тех пор, пока входное напряжение или скорость скольжения (из-за нагрузки) не изменятся. В случае их изменения схема процессора В / Гц снова вступает в действие и начинает регулировать соотношение для поддержания оптимального отклика скорости асинхронного двигателя.

Тахометр

Цепь тахометра также может быть дешево построена с использованием следующей простой схемы и интегрирована с описанными выше этапами схемы:

Как реализовать контроль скорости

В предыдущих абзацах мы поняли процесс автоматического регулирования, который может eb достигается за счет интеграции обратной связи тахометра в цепь автоматического регулируемого контроллера SPWM.

Теперь давайте узнаем, как можно управлять скоростью асинхронного двигателя, изменяя частоту, что в конечном итоге заставит SPWM упасть и поддерживать правильное соотношение В / Гц.

Следующая диаграмма поясняет каскад управления скоростью:

Здесь мы можем увидеть схему трехфазного генератора с использованием микросхемы IC 4035, частота сдвига фаз которой может быть изменена путем изменения тактового сигнала на его выводе №6.

3-фазные сигналы подаются на логические элементы 4049 IC для создания требуемых HIN, LIN-каналов для полной мостовой сети драйверов.

Это означает, что, соответствующим образом изменяя тактовую частоту IC 4035, мы можем эффективно изменить рабочую трехфазную частоту асинхронного двигателя.

Это реализуется через простую нестабильную схему IC 555, которая подает регулируемую частоту на вывод № 6 IC 4035 и позволяет регулировать частоту через подключенный потенциометр 100K. Конденсатор C должен быть рассчитан таким образом, чтобы регулируемый диапазон частот соответствовал характеристикам подключенного асинхронного двигателя.

Когда потенциометр частоты изменяется, эффективная частота асинхронного двигателя также изменяется, что, соответственно, изменяет скорость двигателя.

Например, когда частота снижается, вызывает снижение скорости двигателя, что, в свою очередь, вызывает пропорциональное снижение напряжения на выходе тахометра.

Это пропорциональное уменьшение выходного сигнала тахометра заставляет SPWM сужаться и, таким образом, пропорционально снижает выходное напряжение на двигатель.

Это действие, в свою очередь, обеспечивает поддержание соотношения В / Гц при управлении скоростью асинхронного двигателя посредством управления частотой.

Предупреждение. Вышеупомянутая концепция основана только на теоретических предположениях, действуйте с осторожностью.

Если у вас есть какие-либо сомнения относительно конструкции контроллера скорости трехфазного асинхронного двигателя, вы можете опубликовать то же самое в своих комментариях.

О компании Swagatam

Я инженер-электроник (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Электрические схемы и схемы — контрольно-измерительные приборы

Для чтения и интерпретации электрических схем и схем необходимо понимать основные символы и условные обозначения, используемые на чертеже. В этой статье основное внимание уделяется тому, как электрические компоненты представлены на схемах и схемах.

Символика

Чтобы читать и интерпретировать электрические схемы и схемы, читатель должен сначала хорошо разбираться в том, что представляют собой многие символы. В этой главе обсуждаются общие символы, используемые для обозначения многих компонентов электрических систем. После усвоения эти знания должны позволить читателю успешно понять большинство электрических схем и схем.

Следующая информация предоставляет подробные сведения об основных символах, используемых для обозначения компонентов в схемах и схемах электрической передачи, коммутации, управления и защиты.

Рисунок 1 Основные символы трансформатора

Трансформаторы

Основные символы для различных типов трансформаторов показаны на Рисунке 1 (A). На рис. 1 (B) показано, как изменяется основной символ трансформатора для обозначения конкретных типов и применений трансформатора.

Помимо самого символа трансформатора, иногда используются метки полярности для обозначения протекания тока в цепи. Эта информация может использоваться для определения фазового соотношения (полярности) между входными и выходными клеммами трансформатора.Метки обычно отображаются в виде точек на символе трансформатора, как показано на Рисунке 2.

Рисунок 2 Полярность трансформатора

На первичной стороне трансформатора точка указывает ток на входе; на вторичной стороне точка указывает текущий выход.

Если в данный момент ток течет в трансформатор на точечном конце первичной катушки, он будет вытекать из трансформатора на отмеченном пунктиром конце вторичной катушки. Ток через трансформатор, использующий точечные символы, показан на рисунке 2.

Переключатели

На рис. 3 показаны наиболее распространенные типы переключателей и их символы. Термин «полюс», используемый для описания переключателей на рисунке 3, относится к количеству точек, в которых ток может поступать на переключатель.

Показаны однополюсные и двухполюсные переключатели, но переключатель может иметь столько полюсов, сколько требуется для выполнения своей функции. Термин «бросок», используемый на рисунке 3, относится к количеству цепей, которые каждый полюс переключателя может замкнуть или контролировать.

Рисунок 3 Переключатели и символы переключателей

На рисунке 4 представлены общие символы, которые используются для обозначения автоматических переключателей, и поясняется, как символ указывает состояние переключателя или срабатывание.

Рисунок 4 Коммутатор и символы состояния коммутатора

Предохранители и выключатели

На рис. 5 показаны основные символы предохранителей и автоматических выключателей для однофазных систем.

Помимо графического символа, на большинстве чертежей рядом с символом также указан номинал предохранителя. Рейтинг обычно выражается в амперах.

Рисунок 5 Обозначения предохранителей и автоматических выключателей

Когда в трехфазных системах используются предохранители, прерыватели или переключатели, трехфазный символ объединяет однофазный символ в трех экземплярах, как показано на рисунке 6.

Также показан символ съемного выключателя, который представляет собой стандартный символ выключателя, помещенный между набором шевронов. Шевроны представляют собой точку, в которой выключатель отключается от цепи при удалении.

Рисунок 6 Обозначения трехфазного и съемного выключателя

Реле, контакты, соединители, линии, резисторы и прочие электрические компоненты

На рисунке 7 показаны общие символы для реле, контактов, разъемов, линий, резисторов и других различных электрических компонентов.

Рисунок 7 Общие символы электрических компонентов

Крупные компоненты

Символы на рисунке 8 используются для обозначения более крупных компонентов, которые можно найти на электрической схеме или схеме. Детали, используемые для этих символов, будут отличаться при использовании в системных диаграммах.

Обычно количество деталей отражает относительную важность компонента для конкретной диаграммы.

Рисунок 8 Крупные общие электрические компоненты

Типы электрических схем или схем

Есть три способа показать электрические цепи.Это электрические схемы, схемы и графические схемы. Два наиболее часто используемых — это электрическая схема и принципиальная схема.

Использование этих двух типов диаграмм сравнивается в таблице 1.

Графическая диаграмма обычно не используется в инженерных приложениях по причинам, указанным в следующем примере. На рисунке 9 показан простой пример сравнения схематической диаграммы с графическим эквивалентом.

Как можно видеть, графическая версия не так полезна, как схематическая, особенно если вы пытались получить достаточно информации для ремонта схемы или определения ее работы.

Рисунок 9 Сравнение электрической схемы и графической схемы

На рис. 10 показан пример взаимосвязи между принципиальной схемой (рис. 10А) и схемой электрических соединений (рис. 10В) для воздухоосушителя. Более сложный пример, электрическая схема автомобиля, показан в формате электрической схемы на рисунке 11 и в схематическом формате на рисунке 12.

Обратите внимание, что на схеме подключения (Рисунок 11) используются как графические изображения, так и схематические символы.На схеме (рис. 12) отсутствуют все графические изображения и электрическая система изображена только в виде символов.

Рисунок 10 Сравнение электрической схемы и схемы подключения

Рисунок 11 Схема электрических соединений автомобиля

Рисунок 12 Схема электрической цепи автомобиля

При работе с большой системой распределения электроэнергии используется особый тип схематической диаграммы, называемый отдельной электрической линией, чтобы показать всю или часть системы.На диаграмме этого типа показаны основные источники питания, выключатели, нагрузки и защитные устройства, что дает полезный общий обзор потока мощности в большой системе распределения электроэнергии.

На одиночных линиях распределения электроэнергии, даже если это трехфазная система, каждая нагрузка обычно представлена ​​только простым кружком с описанием нагрузки и ее номинальной мощностью (потребляемой мощностью). Если не указано иное, обычно используются киловатты (кВт). На Рисунке 13 показана часть системы распределения электроэнергии на атомной электростанции.

Рисунок 13 Пример однолинейного электрического подключения

Трансформатор тока

| Электротехнические примечания и статьи

Принцип действия ТТ

  • Трансформатор тока определяется как «измерительный трансформатор, в котором вторичный ток по существу пропорционален первичному току (при нормальных условиях эксплуатации) и отличается по фазе от него на угол, который приблизительно равен нулю для соответствующего направления соединения.”
  • Трансформаторы тока обычно бывают «измерительными» или «защитными».

Некоторые определения , используемые для CT :

1) Номинальный первичный ток:

  • Значение первичного тока, которое указано в обозначении трансформатора и на котором основаны рабочие характеристики трансформатора тока.

2) Номинальный вторичный ток:

  • Значение вторичного тока, которое указано в обозначении трансформатора и на котором основаны рабочие характеристики трансформатора тока.
  • Типичные значения вторичного тока — 1 A или 5 A. В случае дифференциальной защиты трансформатора также указываются вторичные токи 1 / корень 3 A и 5 / основной 3 A.

3) Номинальная нагрузка:

  • Полная мощность вторичной цепи в вольт-амперах, выраженная при номинальном вторичном токе и при определенном коэффициенте мощности (0,8 для почти всех стандартов)

4) Номинальная мощность:

  • Значение полной мощности (в вольт-амперах при указанной мощности (коэффициенте)), которую трансформатор тока предназначен для подачи во вторичную цепь при номинальном вторичном токе и с подключенной к ней номинальной нагрузкой.

5) Класс точности:

  • В случае измерения трансформаторов тока класс точности обычно составляет 0,2, 0,5, 1 или 3.
  • Это означает, что ошибки должны находиться в пределах, указанных в стандартах для этого конкретного класса точности.
  • Измерительный трансформатор тока должен иметь точность от 5% до 120% номинального первичного тока, при 25% и 100% номинальной нагрузки при указанном коэффициенте мощности.
  • В случае защитных трансформаторов тока трансформатор тока должен пропускать как ошибку отношения, так и фазу с заданным классом точности, обычно 5P или 10P , а также общую ошибку при предельном коэффициенте точности трансформатора тока.

6) Ошибка соотношения тока:

  • Ошибка трансформатора вносит свой вклад в измерение тока и возникает из-за того, что фактический коэффициент трансформации не равен номинальному коэффициенту трансформации. Текущая ошибка, выраженная в процентах, определяется по формуле:
  • Погрешность тока в% = (Ka (Is-Ip)) x 100 / Ip
  • Где Ka = номинальный коэффициент трансформации, Ip = фактический первичный ток, Is = фактический вторичный ток, когда Ip течет в условиях измерения

7) Фактор предела точности:

  • Значение первичного тока, до которого ТТ соответствует требованиям по суммарной погрешности.Обычно это 5, 10 или 15 , что означает, что суммарная погрешность ТТ должна находиться в указанных пределах при 5, 10 или 15-кратном превышении номинального первичного тока.

8) Кратковременный рейтинг:

  • Значение первичного тока (в кА), которое ТТ должен выдерживать как термически, так и динамически без повреждения обмоток при коротком замыкании вторичной цепи. Указанное время обычно составляет 1 или 3 секунды.

9) Фактор безопасности прибора (фактор безопасности):

  • Обычно принимает значение меньше 5 или меньше 10, хотя оно может быть намного выше, если отношение очень низкое. Если коэффициент надежности ТТ равен 5, это означает, что суммарная погрешность измерительного ТТ при 5-кратном номинальном первичном токе равна или превышает 10%. Это означает, что сильные токи в первичной обмотке не передаются во вторичную цепь, и поэтому приборы защищены.В случае трансформаторов тока с двойным передаточным числом, FS применяется только для самого низкого передаточного числа.

10) Класс PS X CT:

  • В балансных системах защиты требуется ТТ с высокой степенью подобия по своим характеристикам. Этим требованиям соответствуют ТТ класса PS (X). Их характеристики определяются с точки зрения напряжения точки перегиба (KPV), тока намагничивания (Imag) при напряжении точки перегиба или 1/2 или 1/4 напряжения точки перегиба, а также скорректированного сопротивления вторичной обмотки ТТ. до 75 ° C.Точность определяется отношением поворота.

11) Напряжение в точке перегиба:

  • Точка на кривой намагничивания, где увеличение плотности магнитного потока (напряжения) на 10% вызывает увеличение силы (тока) намагничивания на 50%.
  • «Напряжение в точке колена» (Vkp) определяется как вторичное напряжение, при котором увеличение на 10% приводит к увеличению тока намагничивания на 50%. Это вторичное напряжение, выше которого трансформатор тока близок к магнитному насыщению.

12) КТ баланса керна (КЛКТ):

  • CBCT, также известный как CT нулевой последовательности, используется для защиты от утечки на землю и замыкания на землю. Концепция аналогична RVT. В CBCT трехжильный кабель или три одиночных жилы трехфазной системы проходят через внутренний диаметр CT. Когда система исправна, ток не течет во вторичной обмотке CBCT. При замыкании на землю остаточный ток (ток нулевой последовательности фаз) системы протекает через вторичную обмотку CBCT, и это приводит в действие реле.Для разработки CBCT необходимо указать внутренний диаметр CT, тип реле, настройку реле и первичный рабочий ток.

13) Смещение фаз:

  • Разность фаз между векторами первичного и вторичного тока, направление векторов выбрано так, чтобы угол был равен нулю для идеального трансформатора. Сдвиг фазы считается положительным, когда вектор вторичного тока опережает вектор первичного тока.Обычно выражается в минутах

14) Максимальное напряжение системы:

  • Наибольшее среднеквадратичное значение линейного напряжения, которое может поддерживаться в нормальных рабочих условиях в любое время и в любой точке системы. Это исключает временные колебания напряжения из-за неисправности и внезапного отключения больших нагрузок.

15) Номинальный уровень изоляции:

  • Комбинация значений напряжения (частота сети и импульс молнии или, где применимо, импульс молнии и коммутации), которая характеризует изоляцию трансформатора с точки зрения ее способности выдерживать диэлектрические напряжения.Для трансформатора низкого напряжения прикладывают испытательное напряжение 4 кВ промышленной частоты в течение 1 минуты.

16) Номинальный кратковременный тепловой ток (Ith):

  • Действующее значение первичного тока, которое трансформатор тока выдержит в течение номинального времени при коротком замыкании вторичной обмотки без вредного воздействия.

17) Номинальный динамический ток (Idyn):

  • Пиковое значение первичного тока, которое трансформатор тока может выдержать без электрического или механического повреждения возникающими электромагнитными силами, при этом вторичная обмотка закорочена.

18) Номинальный длительный тепловой ток (Un)

  • Значение тока, которое может быть разрешено непрерывно течь в первичной обмотке, вторичные обмотки подключены к номинальной нагрузке, без повышения температуры, превышающего указанные значения.

19) Фактор безопасности прибора (ISF или Fs):

  • Отношение номинального первичного тока прибора к номинальному первичному току.Время, в течение которого первичный ток должен быть выше номинального значения, чтобы суммарная погрешность измерительного трансформатора тока была равна или больше 10%, вторичная нагрузка была равна номинальной нагрузке. Чем ниже это число, тем более защищен подключенный прибор.

20) Чувствительность

  • Чувствительность определяется как наименьшее значение первичного тока короткого замыкания в пределах защищенной зоны, которое приведет к срабатыванию реле.Чтобы обеспечить быструю работу при повреждении в зоне, трансформатор тока должен иметь «напряжение в точке колена», по крайней мере, в два раза превышающее уставку напряжения реле.

21) Регулировка коэффициента трансформации трансформатора тока на месте:

  • Коэффициент трансформации трансформаторов тока можно отрегулировать на месте в соответствии с требованиями приложения. Пас

больше вторичных витков или больше первичных витков через окно увеличит или уменьшит коэффициент витков.

Фактическое число оборотов = (Нормы на паспортной табличке — добавлены вторичные обороты) / Первичные обороты.

Типы трансформаторов тока (ТТ)

Согласно конструкции СТ:

1) Тип стержня:

  • Доступны типы стержней с более высоким уровнем изоляции и обычно привинчиваются к текущему устройству ухода.

  • Трансформаторы тока стержневого типа изолированы для рабочего напряжения системы.
  • ТТ с шиной работают по тому же принципу, что и оконные ТТ, но имеют постоянную шину, установленную в качестве первичного проводника.

2) КТ ран:

  • Емкость: Предназначены для измерения токов от 1 до 100 ампер.
  • наиболее распространенный из них — трансформатор тока с обмоткой. Обмотка обеспечивает отличные характеристики в широком рабочем диапазоне. Обычно намотанный тип изолирован только на 600 вольт.

  • Поскольку ток нагрузки проходит через первичные обмотки в трансформаторе тока, для нагрузки и вторичных проводов предусмотрены винтовые клеммы.Трансформаторы первичной обмотки раны доступны в соотношении от 2,5: 5 до 100: 5.
  • У трансформаторов тока с обмоткой
  • первичная и вторичная обмотки, как у обычного трансформатора. Эти трансформаторы тока встречаются редко и обычно используются при очень низких коэффициентах передачи и токах, как правило, во вторичных цепях трансформатора тока для компенсации малых токов, согласования различных коэффициентов передачи трансформаторов тока в суммирующих приложениях или для изоляции различных цепей трансформатора тока. ТТ с обмоткой имеют очень высокую нагрузку, и при использовании ТТ с обмоткой следует уделять особое внимание нагрузке на ТТ источника.

3) Окно:

  • Оконные трансформаторы тока являются наиболее распространенными. Они построены без первичной обмотки и устанавливаются вокруг первичного проводника. Электрическое поле, создаваемое током, протекающим через проводник, взаимодействует с сердечником трансформатора тока, чтобы преобразовать ток в соответствующий вторичный выход. Оконные трансформаторы тока могут иметь конструкцию со сплошным или разъемным сердечником. При установке трансформаторов тока со сплошным окном необходимо отключить первичный провод. Однако трансформаторы тока с разъемным сердечником могут быть установлены вокруг первичного проводника без отсоединения первичного проводника

  • ТТ с кольцевым сердечником:
  • Емкость: Есть доступны для измерения токов от 50 до 5000 ампер

  • Размер: с окнами (размер проема силовых проводов) диаметром от 1 ″ до 8 ″.
  • ТТ с разделенным сердечником:
  • Емкость: доступны для измерения токов от 100 до 5000 ампер.
  • Размер: с окнами разных размеров от 1 ″ на 2 ″ до 13 ″ на 30 ″.
  • ТТ с разъемным сердечником имеют один конец съемного, так что провод нагрузки или сборную шину не нужно отсоединять для установки ТТ.

4) Втулка

  • ТТ проходного изолятора — это оконный трансформатор тока, специально сконструированный для установки вокруг проходного изолятора.Обычно к ним нет доступа, а их паспортные таблички находятся на шкафах управления трансформатором или выключателем.
  • Тип проходного изолятора обычно используется вокруг проходного изолятора на автоматических выключателях и трансформаторах и может не иметь твердой защитной внешней крышки.
  • Трансформаторы тока типа «пончик» обычно изолированы на 600 вольт. Для обеспечения точности провод должен располагаться в центре отверстия трансформатора тока.

Согласно заявке CT:

1) Измерительный трансформатор тока:

  • Основные требования к измерительному ТТ заключаются в том, что для первичных токов до 120% или 125% от номинального тока его вторичный ток пропорционален первичному току с точностью, определенной его «Классом» и, в случае более точных типов не превышается указанный максимальный сдвиг фазового угла.
  • Желательной характеристикой измерительного ТТ является то, что он должен «насыщать» , когда первичный ток превышает процент номинального тока, установленного как верхний предел, к которому применяются положения о точности. Это означает, что на этих более высоких уровнях первичного тока вторичный ток менее чем пропорционален. Эффектом этого является уменьшение степени, в которой любое измерительное устройство, подключенное к вторичной обмотке ТТ, подвергается перегрузке по току.
  • С другой стороны, для ТТ защитного типа требуется обратное, основная цель которого — обеспечить вторичный ток, пропорциональный первичному току, когда он в несколько или много раз превышает номинальный первичный ток.Мера этой характеристики известна как «коэффициент предела точности» (A.L.F.).
  • Тип защиты CT с A.L.F. 10 будет производить пропорциональный ток во вторичной обмотке (с учетом допустимой погрешности по току) с первичными токами, максимально в 10 раз превышающими номинальный ток.
  • При использовании ТТ следует помнить, что там, где есть два или более устройств, которые должны работать от вторичной обмотки, они должны быть подключены последовательно через обмотку.Это в точности противоположно методу, используемому для подключения двух или более нагрузок, питаемых от трансформатора напряжения или мощности, при котором устройства включаются параллельно вторичной обмотке.
  • В случае трансформатора тока увеличение нагрузки приведет к увеличению вторичного выходного напряжения трансформатора тока. Это происходит автоматически и необходимо для поддержания тока на правильном уровне. И наоборот, снижение нагрузки приведет к снижению вторичного выходного напряжения ТТ.
  • Это повышение выходного вторичного напряжения с увеличением нагрузки означает, что теоретически при бесконечной нагрузке, как в случае с разомкнутой цепью вторичной нагрузки, на клеммах вторичной обмотки появляется бесконечно высокое напряжение.По практическим соображениям это напряжение не бесконечно высокое, но может быть достаточно высоким, чтобы вызвать пробой изоляции между первичной и вторичной обмотками или между одной или обеими обмотками и сердечником. По этой причине нельзя допускать протекания первичного тока без нагрузки или с нагрузкой с высоким сопротивлением, подключенной ко вторичной обмотке.
  • При рассмотрении применения ТТ следует помнить, что общая нагрузка, налагаемая на вторичную обмотку, является не только суммой нагрузки (ей) отдельного устройства (ей), подключенного к обмотке, но и что она также включает нагрузку обусловлено соединительным кабелем и сопротивлением соединений.
  • Если, например, сопротивление соединительного кабеля и соединений составляет 0,1 Ом, а вторичный номинал ТТ составляет 5A, нагрузка кабеля и соединений (RI2) составляет 0,1 x 5 x 5 = 2,5 ВА. Это должно быть добавлено к нагрузке на подключенное устройство (а) при определении того, имеет ли ТТ достаточно большую нагрузочную способность для питания требуемых устройств, а также нагрузку, создаваемую соединениями.
  • Если нагрузка, накладываемая на вторичную обмотку ТТ подключенным устройством (ами) и соединениями, превышает номинальную нагрузку ТТ, ТТ может частично или полностью перейти в насыщение и, следовательно, не иметь вторичный ток, адекватно линейный с первичным током.
  • Нагрузка, создаваемая данным сопротивлением в Ом [например, сопротивлением соединительного кабеля], пропорциональна квадрату номинального вторичного тока. Следовательно, при использовании длинных кабелей между ТТ и подключенным устройством (ами), использование вторичного ТТ на 1 А и устройства на 1 А вместо 5 А приведет к 25-кратному сокращению нагрузки на соединительные кабели и соединения. . Все номинальные нагрузки и расчеты приведены для номинального вторичного тока.
  • В связи с вышеизложенным, когда требуется относительно длинный (более нескольких метров) кабельный участок для подключения ТТ к его нагрузке [например, удаленному амперметру], необходимо выполнить расчет для определения нагрузки кабеля.Это пропорционально сопротивлению «туда и обратно», то есть удвоенному сопротивлению длины используемого сдвоенного кабеля. Таблицы кабелей содержат информацию о значениях сопротивления проводов различных размеров при 20 ° C на единицу длины.

2) Защитный CT:

  • Рассчитанное сопротивление затем умножается на квадрат номинального тока вторичной обмотки ТТ [25 для 5A, 1 для 1A]. Если нагрузка ВА, рассчитанная этим методом и добавленная к номинальной нагрузке (-ям) устройства (-ов), приводимых в действие ТТ, превышает номинальную нагрузку ТТ, размер кабеля необходимо увеличить [для уменьшения сопротивления и, следовательно, нагрузка] или ТТ с более высокой номинальной нагрузкой ВА, либо следует использовать более низкий номинальный вторичный ток ТТ [с соответствующим изменением номинального тока приводимых устройств]

Номенклатура СТ:

  1. Соотношение: соотношение входного / выходного тока
  2. Нагрузка (ВА): общая нагрузка, включая пилотные провода.(2,5, 5, 10, 15 и 30 ВА.)
  3. Класс: Точность, необходимая для работы (измерение: 0,2, 0,5, 1 или 3, защита: 5, 10, 15, 20, 30) .
  4. Фактор предела точности:
  5. Размеры: максимальные и минимальные пределы
  6. Номенклатура ТТ: коэффициент, нагрузка ВА, класс точности, предельный коэффициент точности.
  7. Пример: 1600/5, 15 ВА 5P10 (Передаточное отношение: 1600/5, нагрузка: 15 ВА, класс точности: 5P, ALF: 10)
  8. Согласно IEEE Metering CT: 0.Измерительный ТТ с номиналом 3B0.1 имеет точность 0,3 процента, если подключенная вторичная нагрузка не превышает 0,1 Ом.
  9. Согласно IEEE Relaying (Protection) CT: 2.5C100 Relay CT имеет точность в пределах 2,5%, если вторичная нагрузка меньше 1,0 Ом (100 вольт / 100A).

1) Коэффициент тока ТТ:

  • Первичный и вторичный токи выражаются соотношением, например 100/5. Для трансформатора тока с соотношением 100/5 ток 100 А в первичной обмотке приведет к току 5 А во вторичной обмотке при условии, что ко вторичной обмотке подключена правильная номинальная нагрузка.Точно так же для меньших первичных токов вторичные токи пропорционально ниже.
  • Следует отметить, что ТТ 100/5 не будет выполнять функцию ТТ 20/1 или 10 / 0,5, поскольку это отношение выражает номинальный ток ТТ, а не просто отношение первичного тока к вторичному.
  • Номинальный вторичный ток обычно составляет 5 А или 1 А, хотя более низкие токи, такие как 0,5 А, не редкость. Он протекает в номинальной вторичной нагрузке, обычно называемой нагрузкой, когда номинальный первичный ток течет в первичной обмотке.
  • Увеличение или уменьшение коэффициента трансформации CT:
  • Увеличение числа витков: Увеличение числа витков первичной обмотки может только уменьшить передаточное число витков. Трансформатор тока с передаточным числом от 50 до 5 может быть изменен на коэффициент от 25 до 5, если дважды пропустить первичную обмотку через окно.
  • Увеличение или уменьшение числа оборотов:
  • Передаточное число может быть увеличено или уменьшено путем наматывания провода от вторичной обмотки через окно трансформатора тока.
  • При увеличении передаточного числа витков вторичного провода существенно увеличиваются витки вторичного провода. Трансформатор тока 50: 5 будет иметь соотношение 55: 5 при добавлении одного вторичного витка.
  • При уменьшении коэффициента передачи вторичного провода количество витков вторичной обмотки существенно уменьшается. Трансформатор тока 50: 5 будет иметь соотношение 45: 5 при добавлении одного вторичного витка.
  • Уменьшение передаточного числа с учетом первичной обмотки, точности и нагрузки в ВА такие же, как и в исходной конфигурации.
  • Увеличение передаточного отношения вторичной обмотки повысит точность и номинальную нагрузку.
  • Уменьшение передаточного числа витков со вторичной обмоткой ухудшит точность и номинальную нагрузку.
  • При использовании вторичной обмотки трансформатора тока для изменения отношения витков вступает в действие правило правой руки магнитных полей. Обмотка белого провода или провода X1 со стороны h2 трансформатора через окно на сторону h3 уменьшит передаточное отношение.Намотка этого провода со стороны h3 на сторону h2 увеличит передаточное отношение.
  • Использование черного провода или провода X2 в качестве метода настройки приведет к обратному результату действия провода X1 (белого). Заворачивание от стороны h2 к стороне h3 увеличит отношение витков, а наложение от стороны h3 к стороне h2 уменьшит отношение витков.

2) Нагрузка CT:

  • Стандартные номинальные нагрузки трансформаторов тока: 2,5, 5, 10, 15 и 30 ВА.
  • Внешняя нагрузка, приложенная к вторичной обмотке трансформатора тока, называется «нагрузкой».
  • Нагрузка ТТ — это максимальная нагрузка (в ВА), которая может быть приложена к вторичной обмотке ТТ.
  • Бремя можно выразить двумя способами.
  • Нагрузка может быть выражена как полное сопротивление цепи в омах или полное вольт-амперное напряжение (ВА) и коэффициент мощности при заданном значении тока или напряжения и частоты.
  • Ранее практика заключалась в выражении нагрузки в вольт-амперах (ВА) и коэффициенте мощности, вольт-амперах, которые потреблялись бы в импедансе нагрузки при номинальном вторичном токе (другими словами, номинальном вторичном токе квадрат, умноженный на импеданс нагрузки).Таким образом, нагрузка с импедансом 0,5 Ом может быть выражена также как «12,5 ВА при 5 амперах», если мы примем обычный номинал вторичной обмотки 5 ампер. Терминология VA больше не является стандартной, но требует уточнения, поскольку ее можно найти в литературе и в старых данных.

Нагрузка для измерения ТТ:

  • Общая нагрузка на измерение ТТ = Сумма нагрузки на счетчики в ВА (амперметр, ваттметр, преобразователь и т. Д.), Подключенных последовательно к вторичной цепи ТТ + нагрузка на кабель вторичной цепи в ВА.
  • Нагрузка кабеля = I 2 x R x2 L, где I = вторичный ток ТТ, R = сопротивление кабеля на длину, 2L — расстояние между ТТ и измерительными цепями длиной L кабеля. Если используется провод подходящего размера и короткая длина, нагрузкой на кабель можно пренебречь.
  • Нагрузка вторичной цепи ТТ не должна превышать номинальную мощность ТТ ВА. Если нагрузка меньше нагрузки ТТ, все счетчики, подключенные к измерительному ТТ, должны обеспечивать правильные показания.
  • В случае измерительного трансформатора тока нагрузка зависит от подключенных счетчиков и количества счетчиков на вторичной обмотке i.е. Необходимо учитывать количество амперметров, счетчиков киловатт-часов, квар-счетчиков, счетчиков киловатт-часов, преобразователей, а также нагрузку на соединительный кабель (I 2 x R x2 L) для измерения.
  • Примечание Измерители нагрузки можно найти в каталоге производителя.
  • Выбранная нагрузка ТТ должна быть больше расчетной

Нагрузка для защиты CT:

  • В случае защитных ТТ нагрузка рассчитывается таким же образом, как указано выше, за исключением того, что нагрузка на отдельные реле защиты должна учитываться вместо счетчиков.Нагрузка на соединительный кабель рассчитывается так же, как и при измерении CT
  • .
  • Общая нагрузка защиты CT = нагрузка соединительного кабеля в ВА + сумма нагрузки на реле защиты в ВА.
  • Все производители могут поставить нагрузку на свои отдельные устройства. Хотя в наши дни индукционные дисковые устройства защиты от сверхтоков используются не очень часто, они всегда требовали минимальной настройки отвода. Чтобы определить импеданс используемой фактической настройки отвода, сначала возведите в квадрат отношение минимального деления к фактической используемой настройке отвода, а затем умножьте это значение на минимальное полное сопротивление.
  • Предположим, импеданс 1,47 + 5,34 Дж на отводе 1 А. Чтобы применить реле к отводу 4А, инженер умножит импеданс на отводе 1А на (1/4) 2. Импеданс на отводе 4А будет 0,0919 + 0,3338j или 0,3462 Z при коэффициенте мощности 96,4.
  • Полное сопротивление нагрузки трансформатора тока уменьшается с увеличением вторичного тока, из-за насыщения в магнитных цепях реле и других устройств. Следовательно, данная нагрузка может применяться только для определенного значения вторичного тока.Старая терминология вольт-ампер при 5 амперах наиболее сбивает с толку в этом отношении, поскольку это не обязательно фактические вольт-амперы при текущих 5 амперах, а то, что вольт-амперы будут при 5 амперах
  • Если бы не было насыщения. В публикациях производителя приведены данные импеданса для нескольких значений сверхтока для некоторых реле, для которых такие данные иногда требуются. В противном случае данные предоставляются только для одного значения вторичного тока ТТ.
  • Если в публикации четко не указано, для какого значения тока применяется бремя, эту информацию следует запросить.Не имея таких данных о насыщении, можно легко получить их тестированием. При высоком насыщении импеданс приближается к сопротивлению постоянному току. Пренебрежение снижением импеданса с насыщением создает впечатление, что ТТ будет иметь большую неточность, чем на самом деле. Конечно, если можно допустить такую ​​явно большую неточность, дальнейшие уточнения в расчетах не нужны. Однако в некоторых приложениях пренебрежение эффектом насыщения дает излишне оптимистичные результаты; следовательно, лучше всегда учитывать этот эффект.
  • Обычно достаточно точным является арифметическое сложение последовательных нагрузочных сопротивлений. Результаты будут немного пессимистичными, что указывает на погрешность, немного превышающую фактическую погрешность коэффициента КТ. Но если конкретное приложение настолько пограничное, что необходимо векторное сложение импедансов, чтобы доказать, что трансформаторы тока подходят, такого применения следует избегать.
  • Если полное сопротивление при срабатывании обмотки реле максимального тока с ответвлениями известно для данного отвода, его можно оценить для тока срабатывания для любого другого ответвления.Реактивное сопротивление катушки с ответвлениями изменяется пропорционально квадрату витков катушки, а сопротивление изменяется примерно пропорционально количеству витков. При срабатывании датчика насыщение незначительное, а сопротивление мало по сравнению с реактивным сопротивлением. Поэтому обычно достаточно точно предположить, что полное сопротивление изменяется пропорционально квадрату витков. Число витков катушки обратно пропорционально току срабатывания, и, следовательно, импеданс изменяется обратно пропорционально квадрату тока срабатывания.
  • Независимо от того, подключен ли ТТ звездой или треугольником, нагрузочные сопротивления всегда подключаются звездой. В ТТ, соединенном звездой, нейтрали ТТ и нагрузок соединяются вместе либо напрямую, либо через катушку реле, за исключением случаев, когда используется так называемый шунт тока нулевой последовательности.
  • Редко бывает правильно просто сложить импедансы последовательных нагрузок, чтобы получить общую сумму, когда два или более ТТ подключены таким образом, что их токи могут складываться или вычитаться в некоторой общей части вторичной цепи.Вместо этого необходимо рассчитать сумму падений и повышений напряжения во внешней цепи от одной вторичной клеммы ТТ до другой для предполагаемых значений вторичных токов, протекающих в различных ветвях внешней цепи. Эффективное полное сопротивление нагрузки ТТ для каждой комбинации предполагаемых токов — это рассчитанное напряжение на клеммах ТТ, деленное на предполагаемый вторичный ток ТТ. Этот эффективный импеданс является тем, который следует использовать, и он может быть больше или меньше, чем фактический импеданс, который применялся бы, если бы никакие другие трансформаторы тока не подавали ток в цепь.
  • Если первичная обмотка вспомогательного ТТ должна быть подключена к вторичной обмотке ТТ, точность которого исследуется, необходимо знать полное сопротивление вспомогательного ТТ, если смотреть со стороны его первичной обмотки с короткозамкнутой вторичной обмоткой. К этому значению импеданса необходимо добавить импеданс нагрузки вспомогательного ТТ, если смотреть с первичной стороны вспомогательного ТТ; Чтобы получить это полное сопротивление, умножьте фактическое полное сопротивление нагрузки на квадрат отношения первичных и вторичных витков вспомогательного трансформатора тока.Становится очевидным, что использование вспомогательного трансформатора тока, который увеличивает величину тока от первичной до вторичной, может привести к очень высоким импедансам нагрузки, если смотреть со стороны первичной обмотки.
  • Нагрузка зависит от длины пилотного кабеля
  • Для ТТ измерительного класса нагрузка выражается в омах. Для трансформаторов тока класса защиты нагрузка выражается в вольт-амперах (ВА).
VA Приложения
1-2 ВА Амперметр с подвижным железом
1 К 2.5ВА Амперметр выпрямителя с подвижной катушкой
2,5 до 5 ВА Прибор электродинамики
3 до 5 ВА Амперметр максимального потребления
1 до 2,5 ВА Регистрирующий амперметр или преобразователь
  • Нагрузка (ВА) медных проводов между прибором и трансформатором тока для вторичной обмотки 1A и 5A
Поперечное сечение (мм2)

Вторичная нагрузка ТТ, 1 А, ВА (двухпроводной)

Расстояние

10 метров 20 метров 40 метров 60 метров 80 метров 100 метров

1.0

0,35

0,71

1,43

2,14

2,85

3,57

1,5

0,23

0,46

0,92

1,39

1.85

2,31

2.5

0,14

0,29

0,57

0,86

1,14

1,43

4,0

0,09

0,18

0,36

0,54

0,71

0,89

6.0

0,06

0,12

0,24

0,36

0,48

0,6

Поперечное сечение (мм2)

Вторичная нагрузка ТТ, 5 А, ВА (двухпроводной)

Расстояние

1 метр 2 метра 4 метра 6 метров 8 метров 10 метров

1.5

0,58

1,15

2,31

3,46

4,62

5,77

2,5

0,36

0,71

1,43

2,14

2,86

3,57

4.0

0,22

0,45

0,89

1,34

1,79

2,24

6.0

0,15

0,30

0.60

0,89

1,19

1,49

10.0

0,09

0,18

0,36

0,54

0,71

0,89

Расчет нагрузки CT:

  • Фактическая нагрузка формируется сопротивлением управляющих проводов и реле защиты. Сопротивление проводника (с постоянной площадью поперечного сечения) можно рассчитать по уравнению:
  • R = ƿxL / A
  • где ƿ = удельное сопротивление материала проводника (обычно при + 20 ° C), L = длина проводника, A = площадь поперечного сечения
  • Если удельное сопротивление указано в мкОм, длина в метрах и площадь в мм2, уравнение 1 даст сопротивление непосредственно в омах.
  • Удельное сопротивление: медь 0,0178 мкОм при 20 ° C и 0,0216 мкОм при 75 ° C

Нагрузка ТТ для 4- или 6-проводного подключения:

  • Если используется 6-проводное соединение, общая длина провода, естественно, будет в два раза больше расстояния между ТТ и реле. Однако во многих случаях используется общий обратный провод, как показано на рисунке, тогда вместо умножения расстояния на два обычно используется коэффициент 1,2.Это правило применяется только к трехфазному подключению. Коэффициент 1,2 учитывает ситуацию, когда до 20% длины электрического проводника, включая оконечные сопротивления, использует 6-проводное соединение и не менее 80% 4-проводное соединение.

  • Пример: расстояние между ТТ и реле составляет 5 метров, общая длина составляет 2 x 5 м = 10 метров для 6-проводного подключения, но только 1,2 x 5 м = 6,0 метра при 4-проводном подключении.

Нагрузка реле:

  • Пример: Расстояние между трансформаторами тока и реле защиты составляет 15 метров, используются медные провода 4 мм2 при 4-проводном подключении.Нагрузка на релейный вход менее 20 мОм (входы 5 А). Рассчитайте фактическую нагрузку ТТ при 75 ° C, входное сопротивление меньше 0,020 Ом для входа 5 А (т. Е. Нагрузка меньше 0,5 ВА) и меньше 0,100 Ом для входа 1 А (т. Е. Меньше 0,1 ВА) :
  • Решение :
  • ƿ = 0,0216 мкОм (75 ° C) для медного проводника.
  • R = ƿxL / A, R = 0,0216 мкОм x (1,2 x 15 м) / 4 мм2 = 0,097 Ом
  • Нагрузка CT = 0.097 Ом + 0,020 Ом = 0,117 Ом.
  • Использование трансформаторов тока с нагрузкой выше, чем требуется, является ненаучным, поскольку приводит к неточным показаниям (счетчик) или неточному определению неисправности / условий сообщения.
  • По сути, такое высокое значение проектной нагрузки расширяет характеристики насыщения сердечника ТТ, что приводит к вероятному повреждению измерителя, подключенного через него, в условиях перегрузки. например Когда мы ожидаем, что коэффициент безопасности (ISF) будет равен 5, вторичный ток должен быть ограничен менее чем в 5 раз в случае, если первичный ток превышает его номинальное значение более чем в 5 раз.
  • В таком состоянии перегрузки желательно, чтобы сердечник ТТ перешел в насыщение, ограничивая вторичный ток, таким образом, измеритель не будет поврежден. Однако, когда мы просим более высокую ВА, сердечник не переходит в насыщение из-за меньшей нагрузки (ISF намного выше желаемого), что может повредить измеритель.
  • Чтобы понять влияние на аспект точности, давайте возьмем пример ТТ с указанной нагрузкой 15 ВА, а фактическая нагрузка составляет 2,5 ВА: 15 ВА ТТ с менее 5 ISF будет иметь напряжение насыщения 15 В (15/5 × 5), а фактическая нагрузка — 2.5 ВА, необходимое напряжение насыщения должно составлять (2,5 / 5 x 5) 2,5 В против 15 В, в результате ISF = 30 против требуемого 5.
  • Пример: Определить Достаточно ли 5A, 20VA CT для следующей цепи

  • Общая нагрузка на приборы = 2 + 2 + 3 + 2 + 4 = 13 В A.
  • Общее сопротивление нагрузки пилота = 2 x 0,1 = 0,2 Ом.
  • При вторичном токе 5 А падение напряжения на выводах составляет 5 x 0,2 = 1 В.
  • Нагрузка на оба провода = 5 А x 1 В = 5 В А.
  • Общая нагрузка на ТТ = 13 + 5 = 18 В A.
  • Поскольку ТТ рассчитан на 20 В A, он имеет достаточный запас.

3) Класс точности CT:

  • Точность трансформатора тока определяется его сертифицированным классом точности, который указан на паспортной табличке. Например, класс точности ТТ 0,3 означает, что ТТ сертифицирован производителем на точность в пределах 0,3% от значения номинального коэффициента для первичного тока 100% от номинального коэффициента.
  • CT с номинальным коэффициентом 200/5 с классом точности 0,3 будет работать в пределах 0,45% от значения номинального коэффициента при первичном токе 100 ампер. Чтобы быть более точным, для первичного тока 100A сертифицировано производить вторичный ток от 2,489 до 2,511 ампер.
  • Точность указана в процентах от диапазона и дана для максимальной нагрузки, выраженной в ВА. Общая нагрузка включает входное сопротивление измерителя и сопротивление контура провода и соединения между трансформатором тока и измерителем.
  • Пример: нагрузка = 2,0 ВА. Максимальное падение напряжения = 2,0 ВА / 5 А = 0,400 Вольт.
  • Максимальное сопротивление = Напряжение / Ток = 04,00 В / 5 А = 0,080 Ом.
  • Если входное сопротивление измерителя составляет 0,010 Ом, то допускается 0,070 Ом для сопротивления контура провода и соединений между трансформатором тока и измерителем. Необходимо учитывать длину и калибр провода, чтобы избежать превышения максимальной нагрузки.
  • Если сопротивление в контуре 5 А вызывает превышение нагрузки, ток упадет.Это приведет к низкому показанию счетчика при более высоких уровнях тока.
  • Как и во всех трансформаторах, ошибки возникают из-за того, что часть первичного входного тока используется для намагничивания сердечника и не передается на вторичную обмотку. Пропорция первичного тока, используемая для этой цели, определяет величину ошибки.
  • Суть хорошей конструкции измерительных трансформаторов тока состоит в том, чтобы обеспечить достаточно низкий ток намагничивания, чтобы гарантировать, что погрешность, указанная для класса точности, не будет превышена.
  • Это достигается выбором подходящих материалов сердечника и соответствующей площади поперечного сечения сердечника. Часто при измерении токов от 50 А и выше удобно и технически целесообразно, чтобы первичная обмотка трансформатора тока имела только один виток.
  • В этих наиболее распространенных случаях ТТ поставляется только с вторичной обмоткой, первичная обмотка — это кабель или шина главного проводника, который проходит через апертуру ТТ в случае кольцевых ТТ (то есть с одним первичным витком) Следует отметить, что чем ниже номинальный первичный ток, тем труднее (и тем дороже) достичь заданной точности.
  • Принимая во внимание сердечник определенных фиксированных размеров и магнитные материалы со вторичной обмоткой, скажем, на 200 витков (соотношение тока 200/1, соотношение витков 1/200) и скажем, что для намагничивания сердечника требуется 2 ампера первичного тока 200 А, ошибка составляет поэтому только 1% примерно. Однако, учитывая ТТ 50/1 с 50 вторичными витками на том же сердечнике, для намагничивания сердечника все же требуется 2 ампера. Тогда погрешность составляет примерно 4%. Для получения точности 1% на кольцевом трансформаторе тока 50/1 требуется сердечник гораздо большего размера и / или более дорогой материал сердечника.
  • Класс точности измерения CT:

Класс измерения CT

Класс Приложения
0.1 к 0,2 Прецизионные измерения
0,5 Высококачественные счетчики киловатт-часов для коммерческих счетчиков киловатт-часов
3 Общие промышленные измерения
3 ИЛИ 5 Примерные размеры

Защитная система CT вторичный VA Класс
На каждый ток для фазы и замыкания на землю 1A 2.5 10П20 или 5П20
5A 7,5 10П20 или 5П20
Неограниченное замыкание на землю 1A 2,5 10П20 или 5П20
5A 7,5 10П20 или 5П20
Чувствительное замыкание на землю 1A или 5A Класс PX использует формулу производителя реле
Дистанционная защита 1A или 5A Класс PX использует формулу производителя реле
Дифференциальная защита 1A или 5A Класс PX использует формулу производителя реле
Дифференциальный импеданс с высоким сопротивлением 1A или 5A Класс PX использует формулу производителя реле
Защита высокоскоростного питателя 1A или 5A Класс PX использует формулу производителя реле
Защита двигателя 1A или 5A 5 5П10
  • Класс точности Letter CT:
Точность ТТ

Класс измерения CT

Класс точности Приложения

В

Цель измерения

Класс защиты CT

С

CT имеет низкий поток утечки.

Т

CT может иметь значительный поток утечки.

H

применима во всем диапазоне вторичных токов от 5 до 20 номинальных значений ТТ. (Обычно трансформаторы тока с намоткой.)

л

Точность ТТ применяется при максимальной номинальной вторичной нагрузке только при 20 номинальных значениях. Точность коэффициента может быть в четыре раза больше указанного значения, в зависимости от подключенной нагрузки и тока короткого замыкания.(Обычно оконные, шинные или стержневые трансформаторы тока.)
  • Класс точности защиты CT:
Класс Приложения
10P5 Реле максимального тока и катушки отключения: 2,5 ВА
10P10 Термореле с обратным временем: 7,5 ВА
10P10 Реле низкого потребления: 2,5 ВА
10P10 / 5 Обратный определенный мин.реле времени (IDMT) сверхтока
10P10 IDMT Реле замыкания на землю с приблизительной временной шкалой: 15 ВА
5P10 IDMT Реле замыкания на землю со стабильностью фазового замыкания или точной временной шкалой: 15 ВА
  • Класс точности: Точность измерения согласно IEEE C37.20.2b-1994

Передаточное отношение B0.1 B0.2 B0,5 B0.9 B1.8 Точность реле
50: 5 1,2 2,4 C или T10
75: 5 1,2 2,4 C или T10
100: 5 1.2 2,4 C или T10
150: 5 0,6 1,2 2,4 C или T20
200: 5 0,6 1,2 2,4 C или T20
300: 5 0,6 1,2 2,4 2,4 C или T20
400: 5 0.3 0,6 1,2 1,2 2,4 C или T50
600: 5 0,3 0,3 0,3 1,2 2,4 C или T50
800: 5 0,3 0,3 0,3 0,3 1,2 C или T50
1200: 5 0,3 0,3 0,3 0,3 0.3 C100
1500: 5 0,3 0,3 0,3 0,3 0,3 C100
2000: 5 0,3 0,3 0,3 0,3 0,3 C100
3000: 5 0,3 0,3 0,3 0,3 0,3 C100
4000: 5 0.3 0,3 0,3 0,3 0,3 C100

Важное значение для точности и угла сдвига фаз

  • Текущая ошибка — это ошибка, которая возникает, когда текущее значение фактического коэффициента трансформации не равно номинальному коэффициенту трансформации.
  • Текущая погрешность (%) = {(Kn x Is — Ip) x 100} / Ip
  • Kn = номинальный коэффициент трансформации, Ip = фактический первичный ток, Is = фактический вторичный ток
  • Пример: для трансформатора тока 5ВА класса 1 2000 / 5A
  • Kn = 2000/5 = 400 витков, Ip = 2000A, Is = 4.9A
  • Текущая ошибка = ((400 x 4.9 — 2000) x100) / 2000 = -2%
  • Для трансформатора тока с классом защиты класс точности определяется наивысшей допустимой процентной суммарной погрешностью при предельном первичном токе точности, предписанном для данного класса точности.
  • Класс точности включает: 5P, 10P

По фазовому углу

  • Ошибка по фазе — это разность фаз между векторами первичного и вторичного тока, направление векторов должно быть нулевым для идеального трансформатора.
  • У вас будет положительный сдвиг фаз, когда вектор вторичного тока опережает вектор первичного тока.
  • Единица шкалы, выраженная в минутах / центах радиан.
  • Круговая мера = (единица измерения в радианах) — это отношение расстояния, измеренного по дуге, к радиусу.
  • Угловая мера = (единица измерения в градусах) получается путем деления угла в центре окружности на равные 360 градусов, известные как «градусы».
  • Пределы погрешности тока и сдвига фаз для измерительного трансформатора тока (классы 0.1 к 1)

Точность

Класс

+/- Процентная погрешность по току (коэффициенту) при% номинального тока

+/- Смещение фаз при% номинального тока

Минут

сенти радиан

5

20

100

120

5

20

100

120

5

20

100

120

0.1

0,4

0,2

0,1

0,1

15

8

5

5

0,45

0,24

0,15

0,15

0,2

0,75

0.35

0,2

0,2

30

15

10

10

0,9

0,45

0,3

0,3

0,5

1,5

0,75

0,5

0.5

90

45

30

30

2,7

1,35

0,9

0,9

1,0

3

1,5

1

1

180

90

60

60

5.4

2,7

1,8

1,8

  • пределы погрешности по току и сдвига фаз для измерительного трансформатора тока Для специального применения

Точность

Класс

+/- Процентная погрешность по току (коэффициенту) при% номинального тока

+/- Смещение фаз при% номинального тока

Минут

сенти радиан

1

5

20

100

120

1

5

20

100

120

1

5

20

100

120

0.2С

0,75

0,35

0,2

0,2

0,2

30

15

10

10

10

0,9

0,4

0,3

0,3

0.3

0,5S

1,50

0,75

0,5

0,5

0,5

90

45

30

30

30

2,7

1,3

0,9

0.9

0,9

  • Пределы погрешности измерения тока трансформаторов тока (классы 3 и 5)

Класс точности

+/- Процентная погрешность по току (коэффициенту) при% номинального тока

50

120

3

3

3

5

5

5

Трансформатор тока класса X:

  • Трансформатор тока класса X используется в сочетании с реле дифференциальной защиты по циркуляционному току с высоким сопротивлением, например, реле ограничения замыкания на землю.Как показано в IEC60044-1, необходим трансформатор тока класса X.
  • Ниже показан метод определения размера трансформатора тока класса X.
  • Шаг 1: расчет напряжения в точке перегиба ВКП
  • Vkp = {2 x Ift (Rct + Rw)} / k
  • Vkp = требуемое напряжение точки перегиба ТТ, Ift = макс. Ток трансформатора из-за неисправности, в амперах
  • Rct = сопротивление вторичной обмотки ТТ в Ом, Rw = сопротивление контура управляющего провода между ТТ и
  • K = коэффициент трансформации CT
  • Шаг 2: расчет неисправности трансформатора Ift
  • Ift = (кВА x 1000) / (1.732 x В x полное сопротивление)
  • KVA = мощность трансформатора в кВА, V = вторичное напряжение трансформатора, Impedance = полное сопротивление трансформатора
  • Шаг 3: Как получить Rct
  • Для измерения при производстве ТТ
  • Это сопротивление контрольного провода, используемого для подключения ТТ 5-го класса X в точке звезды трансформатора к реле
  • В распределительном щите НН. Пожалуйста, получите эти данные у подрядчика или консультанта по электрике.Мы предлагаем таблицу, которая будет служить общим руководством по сопротивлению кабеля.
  • Мощность трансформатора: 2500 кВА
    Полное сопротивление трансформатора: 6%
    Система напряжения: 22 кВ / 415 В, 3 фазы, 4 провода
    Коэффициент трансформации тока: 4000 / 5A
    Тип трансформатора тока: Класс X PR10
    Трансформатор тока Vkp: 185 В
    Трансформатор тока Rct: 1,02½ (измерено)
    Сопротивление контрольного провода Rw: 25 метров при использовании кабеля с квадратным сечением 6,0 мм
    = 2 x 25 x 0,0032 = 0,16½
    Ift = (кВА x 1000) / (1.732 x V x импеданс) = (2500 x 1000) / (1,732 x 415 x 0,06) = 57 968 ​​(скажем, 58 000 A)
    Vkp = {2 x Ift (Rct + Rw)} / k = {2 x 58000 (1.02+ 0,16)} / 800 = 171,1½.

4) Коэффициент предела точности:

  • Коэффициенты предела стандартной точности: 5, 10, 15, 20 и 30.
  • Точность ТТ — еще один параметр, который также определяется классом ТТ. Например, если класс измерения ТТ составляет 0,5M (или 0,5B10), точность для ТТ составляет 99,5%, а максимально допустимая погрешность ТТ составляет всего 0.5%.
  • Предел точности Коэффициент определяется как кратное номинальному первичному току, до которого трансформатор будет соответствовать требованиям «Composite Error». Composite Error — это отклонение от идеального CT (как в Current Error), но учитывает гармоники во вторичном токе, вызванные нелинейными магнитными условиями в течение цикла при более высоких плотностях потока.
  • Таким образом, электрические требования к трансформатору тока защиты можно определить как:
  • Выбор класса точности и предельного коэффициента.
  • Защитные трансформаторы тока класса 5P и 10P обычно используются для защиты от сверхтоков и неограниченной защиты от утечки на землю. За исключением простых реле отключения, защитное устройство обычно имеет преднамеренную временную задержку, тем самым гарантируя, что серьезное воздействие переходных процессов пройдет до того, как реле будет вызвано в работу. Защита Трансформаторы тока, используемые для таких приложений, обычно работают в установившемся режиме. Показаны три примера такой защиты.В некоторых системах может быть достаточно просто обнаружить неисправность и изолировать эту цепь. Однако в более разборчивых схемах необходимо гарантировать, что при замыкании между фазами не срабатывает реле замыкания на землю.
  • Расчет предельного коэффициента точности
  • Fa = Fn X ((Sin + Sn) / (Sin + Sa))
  • Fn = предельный коэффициент номинальной точности, Sin = внутренняя нагрузка вторичной обмотки ТТ
  • Sn = номинальная нагрузка ТТ (в ВА), Sa = фактическая нагрузка ТТ (в ВА)
  • Пример: Внутреннее сопротивление вторичной обмотки трансформатора тока (5P20) равно 0.07 Ом, вторичная нагрузка (включая провода и реле) составляет 0,117 Ом, а ТТ рассчитан на 300/5, 5P20, 10 ВА. Рассчитайте фактический предельный коэффициент точности.
  • Fn = 20 (данные ТТ 5P20), Sin = (5A) 2 × 0,07 Ом = 1,75 ВА, Sn = 10 ВА (по данным ТТ),
  • Sa = (5A) 2 × 0,117 Ом = 2,925 ВА
  • Фактор предела точности ALF (Fa) = 20 X ((1,75 + 10) / (1,75 + 2,925)) = 50,3

Выбор ТТ:

1) В помещении или на улице:

  • Определите, где необходимо использовать ТТ.Внутренние трансформаторы обычно дешевле, чем наружные трансформаторы. Очевидно, что если трансформатор тока будет заключен в наружный кожух, его не нужно рассчитывать на использование вне помещений. Это распространенная дорогостоящая ошибка при выборе трансформаторов тока.

2) Что нам понадобится:

  • Первое, что нам нужно знать, какая степень точности требуется. Например, если вы просто хотите узнать, перегружен ли двигатель или нет, вам, скорее всего, подойдет панельный измеритель с точностью от 2 до 3%.В этом случае трансформатор тока должен иметь точность от 0,6 до 1,2%. С другой стороны, если мы собираемся управлять прибором распределительного типа с точностью до 1%, нам понадобится трансформатор тока с точностью от 0,3 до 0,6. Мы должны помнить, что рейтинги точности основаны на номинальном протекающем первичном токе и в соответствии со стандартами ANSI могут быть удвоены (0,3 становится 0,6%), когда протекает 10% первичного тока. Как упоминалось ранее, номинальная точность соответствует заявленной нагрузке. Мы должны учитывать не только нагрузку (инструмент), но и общую нагрузку.Общая нагрузка включает нагрузку вторичной обмотки трансформаторов тока, нагрузку проводов, соединяющих вторичную обмотку с нагрузкой, и нагрузку самой нагрузки. Трансформатор тока должен выдерживать общую нагрузку и обеспечивать точность, требуемую при этой нагрузке. Если мы собираемся управлять реле, вы должны знать, какой точности реле потребуется.

3) Класс напряжения:

  • Вы должны знать, какое напряжение в цепи, которую необходимо контролировать.Это определит, каким должен быть класс напряжения трансформатора тока, как объяснялось ранее.

4) Первичный проводник:

  • Если вы выбрали трансформатор тока с окном, вы должны знать количество, тип и размер первичного проводника (ов), чтобы выбрать размер окна, в котором будут размещены первичные проводники.

5) Заявка:

  • Разнообразие применения трансформаторов тока, кажется, ограничивается только фантазией.По мере того, как новое электронное оборудование развивается и играет все более важную роль в производстве, контроле и применении электроэнергии, производители и конструкторы трансформаторов будут предъявлять новые требования к разработке новых продуктов для удовлетворения этих потребностей.

6) Безопасность:

  • Для обеспечения безопасности персонала и оборудования, а также точности измерений, измерения тока на проводниках под высоким напряжением должны производиться только с токопроводящим экраном, размещенным внутри апертуры ТТ.Должно быть соединение с низким электрическим сопротивлением только с одного конца до надежного местного заземления. Между цилиндром экрана и проводником высокого напряжения должен находиться внутренний изолирующий цилиндр с соответствующей изоляцией напряжения. Любая утечка, индуцированный ток или ток пробоя между высоковольтным проводом и экраном заземления по существу будет проходить на местную землю, а не через сигнальный кабель на сигнальную землю. Не создавайте «токовую петлю», подключая цилиндр экрана к земле с обоих концов.Ток, протекающий в этом контуре, также будет измеряться трансформатором тока.

7) Прерывание выходного сигнала ТТ:

  • Выходной коаксиальный кабель ТТ должен иметь оконечную нагрузку 50 Ом. Характеристики трансформатора тока гарантированы только при оконечной нагрузке трансформатора тока на 50 Ом. Терминатор должен обеспечивать достаточную рассеиваемую мощность. Когда на выходе ТТ имеется нагрузка 50 Ом, его чувствительность вдвое меньше, чем при подключении к высокоомной нагрузке.

Установка ТТ:

  • Измерения должны иметь одинаковую полярность, чтобы коэффициент мощности и направление измерений потока мощности были точными и согласованными.
  • Большинство ТТ имеют маркировку, которая показывает, какая сторона ТТ должна быть обращена либо к источнику, либо к нагрузке.

  • Первичная сторона: Первичная сторона трансформатора тока помечена h2 и h3 (или только маркировочной точкой с одной стороны)
  • Метка «h2» или точка определяет направление протекания тока в ТТ (точка h2 или точка должны быть обращены в сторону источника питания).h3 сторона к нагрузке в направлении
  • Вторичная сторона: Вторичная сторона (выходные провода) трансформатора тока помечена X1 и X2.
  • X1 соответствует h2 или стороне входа. Вторичная клемма X1 является клеммой полярности. Метки полярности трансформатора тока указывают на то, что, когда первичный ток входит на отметку полярности (h2) первичной обмотки, ток, синфазный с первичным током и пропорциональный ему по величине, покинет клемму полярности вторичной обмотки (X1). .
  • Обычно CT не следует устанавливать в оперативных службах. Электропитание должно быть отключено при установке ТТ . Во многих случаях это невозможно из-за критических нагрузок, таких как компьютеры, лаборатории и т. Д., Которые невозможно выключить. С разъемным сердечником CT не следует устанавливать на неизолированные шины под напряжением ни при каких условиях.

Изменение отношения первичной и вторичной витков:

  • Паспортный коэффициент тока трансформатора тока основан на условии, что первичный проводник будет один раз пропущен через отверстие трансформатора.При необходимости этот номинал можно уменьшить в несколько раз, пропустив этот провод два или более раз через отверстие.
  • Трансформатор с номиналом 300 ампер будет заменен на 75 ампер, если с первичным кабелем сделать четыре петли или витка.
  • Передаточное число трансформатора тока также можно изменить, изменив количество витков вторичной обмотки путем прямого или обратного намотки вторичного провода через окно трансформатора тока.
  • При добавлении витков вторичной обмотки та же сила тока первичной обмотки приведет к уменьшению вторичной мощности.
  • За вычетом витков вторичной обмотки та же сила тока в первичной обмотке приведет к увеличению вторичной выходной мощности. Снова используя пример 300: 5, добавление двух вторичных витков потребует 310 ампер на первичной обмотке для поддержания вторичного выхода 5 ампер или 62 / 1p = 310p / 5s.
  • Вычитание двух вторичных витков потребует только 290 ампер на первичной обмотке для поддержания вторичного выхода 5 ампер или 58s / 5p = 290p / 5s. Изменения соотношения достигаются следующим образом:
  • Чтобы добавить вторичные витки, белый провод должен быть намотан через трансформатор тока со стороны, противоположной отметке полярности.
  • Для вычитания витков белый провод должен быть намотан через трансформатор тока с той же стороны, что и отметка полярности.

1) Изменения в первичном передаточном числе ТТ:

  • Коэффициент трансформации трансформатора тока можно изменить, добавив больше витков первичной обмотки трансформатора. Добавление витков первичной обмотки снижает ток, необходимый для поддержания пяти ампер на вторичной обмотке.
  • Ka = Kn X (Nn / Na)
  • Ka = Фактическая норма оборота.
  • Kn = Соотношение T / C с заводской таблички.
  • Nn = Паспортная табличка, количество витков первичной обмотки.
  • Na = Фактическое количество витков первичной обмотки.
  • Пример: 100: 5 Трансформаторы тока.

2) Изменения вторичного коэффициента трансформации трансформатора тока:

  • Формула: Ip / Is = Ns / Np
  • Ip = первичный ток, Is = вторичный ток, Np = количество первичных витков, Ns = количество вторичных витков
  • Пример: Трансформатор тока 300: 5.
  • Передаточное число трансформатора тока может быть изменено путем изменения количества витков вторичной обмотки путем прямой или обратной обмотки вторичного провода через окно трансформатора тока.
  • При добавлении вторичных витков такой же первичный ток приведет к уменьшению вторичного выхода. Если вычесть витки вторичной обмотки, тот же первичный ток приведет к увеличению вторичной мощности.
  • Снова, используя пример 300: 5, добавление пяти вторичных витков потребует 325 ампер на первичной обмотке для поддержания вторичного выхода 5 ампер или: 325 п / 5 с = 65 с / 1 п
  • Для вычитания 5 витков вторичной обмотки потребуется только 275 ампер на первичной обмотке для поддержания вторичного выхода 5 ампер или: 275p / 5s = 55s / 1p
  • Указанные выше изменения соотношения достигаются следующим образом:

  • Изменение коэффициента трансформации трансформатора тока:

Коэффициент ТТ

Количество витков первичной обмотки

Модифицированное передаточное число

100: 5A

2

50: 5A

200: 5A

2

100: 5A

300: 5A

2

150: 5A

100: 5A

3

33.3: 5A

200: 5A

3

66.6: 5A

300: 5A

3

100: 5A

100: 5A

4

25: 5A

200: 5A

4

50: 5A

300: 5A

4

75: 5A

  • Первичный виток — это количество раз, когда первичный проводник проходит через окно трансформатора тока.Основным преимуществом этой модификации отношения является то, что вы сохраняете точность и возможности нагрузки более высокого отношения. Чем выше первичный рейтинг, тем выше рейтинг точности и нагрузки.
  • Вы можете внести меньшие корректировки изменения передаточного числа, используя добавочные или вычитающие вторичные витки.
  • Например, если у вас ТТ с соотношением 100: 5А. При добавлении одного вторичного витка изменение отношения составляет 105: 5A, при добавлении вычитающего вторичного витка изменение отношения составляет 95: 5A.
  • Вычитающие вторичные витки достигаются путем размещения провода «X1» через окно со стороны h2 и наружу со стороны h3. Дополнительные вторичные витки достигаются путем размещения вывода «X1» через окно со стороны h3 и со стороны h2.
  • Итак, когда есть только один виток первичной обмотки, каждый виток вторичной обмотки изменяет номинальный ток первичной обмотки на 5 ампер. Если имеется более одного витка первичной обмотки, значение каждого витка вторичной обмотки изменяется (т. Е. 5 А, разделенные на 2 витка первичной обмотки = 2,5 А).
  • В следующей таблице показано влияние различных комбинаций витков первичной и вторичной обмоток:

ОТНОШЕНИЕ ТТ 100: 5A

ПЕРВИЧНЫЙ ОБОРОТ

ВТОРИЧНЫЕ ХОДЫ

РЕГУЛИРОВКА СООТНОШЕНИЯ

1

-0-

100: 5A

1

1+

105: 5A

1

1–

95: 5A

2

-0-

50: 5A

2

1+

52.5: 5A

2

2–

45.0: 5A

3

-0-

33,3: 5A

3

1+

34.97: 5A

3

1–

31,63: 5A

Преимущества использования трансформатора тока с вторичным током 1А:

  • Стандартные номинальные значения вторичного тока ТТ — 1А и 5А. Выбор основан на нагрузке на провода, используемой для подключения ТТ к счетчикам / реле.ТТ 5А можно использовать там, где трансформатор тока и защитное устройство расположены на одной панели распределительного устройства.
  • 1 А ТТ предпочтительнее, если выводы ТТ выходят из распределительного устройства.
  • Например, если трансформатор тока расположен на распределительной площадке, и провода трансформатора тока должны быть подведены к панелям реле, расположенным в диспетчерской, которая может быть удалена. Для снижения нагрузки рекомендуется использовать трансформатор тока 1 А. Для ТТ с очень большой длиной провода можно использовать ТТ с номинальным вторичным током 0,5 А.
  • В больших схемах генераторов, где номинальный ток первичной обмотки составляет всего лишь несколько килоампер, используются трансформаторы тока 5 А, трансформаторы тока 1 А не являются предпочтительными, поскольку число витков становится очень высоким, а трансформатор тока становится громоздким.

Опасность с трансформатором тока:

  • Когда вторичная цепь ТТ замкнута, через нее протекает ток, который является точной пропорцией первичного тока, независимо от сопротивления нагрузки. В ТТ соотношение составляет 1ООО / 5А, а для того, чтобы в первичной обмотке 100А протекала, требуется ровно 5А.

  • Если вторичные клеммы S1 и S2 закорочены, напряжение между ними отсутствует.
  • Если теперь короткое замыкание заменить сопротивлением, скажем, 0.Через 5 Ом проходит тот же 5A, что вызывает падение напряжения на 2,5 В и нагрузку 5 x 2,5 = 12,5 В А. Если сопротивление будет увеличено до 5 Ом, напряжение на клеммах при протекании 5 А повысится до 25 В, а нагрузка до 125 В A.
  • Чем больше сопротивление, тем больше будет напряжение и нагрузка, пока, по мере приближения к бесконечности (состояние разомкнутой цепи), теоретически напряжение (и нагрузка) не станет бесконечным. На практике это, конечно, не может произойти, потому что ТТ перейдет в режим насыщения или клеммы будут мигать из-за очень высокого вторичного напряжения между ними.Но это показывает опасность обрыва вторичной обмотки работающего ТТ. смертельное напряжение может возникнуть в момент открытия. Вот почему вторичные обмотки ТТ никогда не соединяются.
  • ТТ с разомкнутой цепью представляет двойную опасность. Он может создавать смертельное напряжение и поэтому представляет реальную опасность для персонала. Высокое напряжение на вторичной обмотке также может вызвать нарушение изоляции в этой обмотке, что в лучшем случае приведет к неточности, а в худшем — к возгоранию или возгоранию.
  • Прежде чем когда-либо прибор или реле будет удалено из вторичного контура работающего ТТ (если это необходимо сделать), провода, питающие этот прибор, должны быть сначала надежно замкнуты накоротко в подходящей клеммной коробке или, что лучше, на сам КТ.Точно так же, если работающий трансформатор тока когда-либо будет отключен от цепи, его сначала необходимо надежно замкнуть. ТТ с вторичной обмоткой 1 А более опасны, чем трансформаторы с током 5 А, поскольку наведенные напряжения выше.
  • Амперметр Сопротивление очень низкое, трансформатор тока нормально работает в коротком замыкании.
  • Если по какой-либо причине амперметр вынут из вторичной обмотки, вторичная обмотка должна быть замкнута накоротко с помощью переключателя короткого замыкания.
  • Если этого не сделать, то из-за высокой m.м.ф. создаст высокий магнитный поток в сердечнике и приведет к чрезмерным потерям в сердечнике, что приведет к выделению тепла и высокого напряжения на вторичных выводах
  • Следовательно, вторичная обмотка трансформатора тока никогда не остается открытой

Расчет СТ для строительства:

  • Новая конструкция : установите трансформатор тока таким образом, чтобы он выдерживал около 80% мощности автоматического выключателя. Если в здании есть выключатель на 2000 А, используйте ТТ 1600 А (2000 x 0,8).
  • Старые здания: пиковый спрос обычно может быть определен от энергетической компании или по прошлым счетам.В этом случае добавьте от 20 до 30% к пиковому потреблению и рассчитайте трансформаторы тока для этой нагрузки. Если бы пиковая нагрузка составляла 500 кВт, пиковый ток в системе 480/3/60 был бы 500 000 / (480 x 1,73 x 0,9 пФ) = 669 ампер. Это предполагает коэффициент мощности 0,9. (Пиковый ток будет выше при меньшем коэффициенте мощности.) Используйте трансформатор тока примерно на 20% больше. 800: 5 CT было бы хорошим выбором.
  • Для старых зданий без истории спроса размер CT и такой же, как для нового строительства. По возможности используйте многоотводные выключатели CT , чтобы коэффициент можно было уменьшить, если максимальная нагрузка намного меньше 80% от размера выключателя.
  • ТТ , которые используются для контроля нагрузки двигателя, могут быть рассчитаны по номинальной мощности двигателя при полной нагрузке на паспортной табличке.

Нравится:

Нравится Загрузка …

Связанные

Технология энергоэффективности — CIRCUTOR

IEC 60755 устанавливает типы защиты от утечки на землю, определяя их в соответствии с типом утечки, которую они измеряют и от которой защищают.

Утечка в основном зависит от типа заряда. Следовательно, если взять самый простой пример, чисто резистивный заряд (например, классическая лампа накаливания Эдисона), при условии, что он питается от источника, использующего переменный ток, будет течь на землю с идеально синусоидальным дифференциальным током.

Но типы нагрузок со времен Эдисона развивались экспоненциально. Особенно в отношении использования нагрузок для силовой электроники, получившего широкое распространение в последние годы.Защита от утечки на землю типа B — единственная защита, которая защищает людей и нагрузки от утечки переменного тока (AC), постоянного (DC) или смешанного тока (AC / DC).

Типы защиты от утечки на землю

Стандарты IEC 60755, IEC61008-1, IEC 62423 и IEC-60947-2-M устанавливают следующие типы защиты от утечки на землю:

Защищает от переменных синусоидальных токов, действующих как внезапно, так и плавно и постепенно.

Хотя это запрещено в некоторых странах Европейского Союза, в Испании его использование в основном распространяется на внутренний уровень, где преобладают основные нагрузки.

Этот относится к тем же случаям, что и тип AC, а также включает:

  • Защита от постоянного пульсирующего тока
  • Защита от постоянных пульсирующих токов, накладываемых на постоянный ток утечки на землю до 6 мА

Применяются с регулировкой угла или без него, независимо от полярности, которая может появляться как внезапно, так и плавно и постепенно.

Это самый распространенный тип защиты в промышленных условиях, а в некоторых частях Европы он также является обязательным для домашнего использования.

Это охватывает сценарии, включенные в тип A (помня, что тип AC уже упоминался), а также предоставляет:

  • Защита композитных переменных токов утечки на землю (включая состав волн с частотой 1 кГц), возникающих как внезапно, так и плавно и постепенно, предназначенная для цепей с питанием между фазой и нейтралью или фазой и заземленным средним проводником.
  • Защита от переменных токов утечки на землю, наложенных на сглаженный постоянный ток (смешанный ток).

Эти типы утечек на землю используются реже; они в основном используются в специальных однофазных приложениях.

Он имеет дело со сценариями для типа F (то есть типа AC + типа A), а также предоставляет:

  • Защита от синусоидальных дифференциальных токов до 1000 Гц
  • Защита от переменных токов утечки на землю, наложенных на сглаженные постоянные токи до 0.В 4 раза выше номинальной чувствительности устройства защиты или до 10 мА (в зависимости от того, что больше)
  • Защита для сглаженных длительных токов утечки на землю.
  • Защита от чистых непрерывных токов утечки на землю, которые могут возникнуть в результате корректировки электрических цепей (например, 3- или 6-импульсные мостовые соединения), которые применяются с регулированием угла или без него, независимо от полярности, которые появляются как внезапно, так и плавно и постепенно.

Это наиболее полный вид защиты.Он гарантирует измерение и защиту от нагрузок переменного, пульсирующего или чистого постоянного тока.

Типовые нагрузки и приложения, в которых требуется использовать дифференциальную защиту типа B

Способ развития зарядов в 21 веке представляет собой реакцию, описанную в случаях, упомянутых в описании типов утечки, защищенных защитой от утечки на землю типа B. Наиболее типичные приложения и нагрузки следующие:

Промышленность: Приводы с регулируемой скоростью, используемые в бесчисленных различных процессах, таких как конвейерные ленты, кондиционирование воздуха, насосы, краны, лифты любого типа и т. Д.Короче говоря, любой процесс, который требует движения с переменной скоростью для выполнения своей функции. Какой мотор сейчас не имеет привода?

Офисы: ИБП для центров защиты данных

Зарядка электромобиля: точки зарядки электромобиля. Фотогальваника

Оборудование с силовой электроникой, инверторами, фильтрацией гармоник (активный фильтр) и др.

Когда мне следует защищать свои грузы с помощью защиты типа B? Правовая основа и требования к защите от утечки на землю ТИП B

В Испании электротехнический регламент по низковольтному оборудованию (REBT 2002) устанавливает в ITC-BT-24 (испанский) обязательство защищать установку от прямых и косвенных контактов для установок с схемами заземления типа TT (вся масса электрическое оборудование и нейтраль трансформатора на одной земле).

Однако, за исключением ITC-BT-52 (Официальный государственный бюллетень № 316) , который предназначен специально для точек подзарядки электромобилей и где установлено, что защита будет типа B или типа A с дополнительной защитой от постоянных токов. Если значения превышают 6 мА, правила не устанавливают никаких рекомендаций или критериев для выбора типа утечки на землю на нашем предприятии.

Итак, как мне выбрать для других случаев?

Мы уже показали, что тип утечки на землю определяет тип нагрузки, от которой она защищает, в зависимости от ее реакции.Следовательно, имеет смысл иметь в виду, что каждая нагрузка будет использовать тип защиты от утечки на землю, основанный на типе утечки на землю, которую она может представить.

Стандарт IEC 60755 устанавливает общие требования к устройствам защитного отключения. Он устанавливает разные типы утечек по отношению к разным типам зарядов.

Никто лучше самого производителя не понимает, как реагируют нагрузки.

Следовательно, когда мы выбираем тип защиты от утечки на землю, мы должны обращаться к руководствам по нагрузкам, содержащим инструкции по обеспечению правильной защиты.В противном случае, в случае неисправности оборудования или, что еще хуже, в случае электрического происшествия из-за ошибки человека, несоблюдение инструкций производителя, ответственность за неправильное использование, очевидно, будет лежать на конечном пользователе.

Наиболее уважаемые производители приводов, ИБП, зарядных устройств для электромобилей, активных фильтров и т. Д. Указывают в разделе рекомендаций или предупреждений по установке правильную защиту нагрузки, а для предотвращения несвоевременных отключений устанавливаемая защита от утечки на землю должна быть ТИПА B .


Пример руководства производителя 6-пульсного привода:

Совместимость с ВДТ.
Если вы устанавливаете устройство защиты от утечки на землю (УЗО), преобразователь частоты будет работать без нежелательного отключения и обеспечит надлежащую защиту при использовании устройства защиты от утечки на землю типа B

Вертикальная селективность

Мы видели, что для того, чтобы выбрать необходимый нам тип защиты от утечки на землю, мы должны смотреть на реакцию на нагрузку.Однако, когда мы последовательно устанавливаем устройства утечки на землю перед зарядом, какие критерии выбора мы должны использовать?

Это так называемая вертикальная избирательность. Правильный выбор характеристик устройств защиты от утечки на землю, включенных последовательно, от начала заряда, через набор зарядов (подрамников) и до защиты сетевых панелей, должен учитывать не только тип заряда. , но также мы должны учитывать другие аспекты, которые укажут на правильное согласование системы защиты.

Эти 3 условия всегда должны выполняться при вертикальной селективности:

  • Амперметр : Чувствительность утечки на землю должна как минимум в 3 раза превышать чувствительность устройства утечки на землю, установленного ниже по потоку.
  • Хронометрия : Время отклика устройства утечки на землю должно быть как минимум в два раза больше максимального времени устройства утечки на землю, установленного ниже по потоку.
  • Тип : утечка на землю должна быть того же типа или выше, чем у устройства утечки на землю, установленного после

Таким образом, для вертикального согласования типов устройств утечки на землю может оказаться полезной следующая таблица:

Следовательно, всякий раз, когда мы защищаем нагрузку с помощью защиты типа B, вся защита, которая идет последовательно выше по потоку (подрамники, общая защита от утечки на землю), также должна быть типа B.

CIRCUTOR Решения для защиты от утечки на землю типа B

Учитывая растущую потребность пользователей в защите этого типа заряда, CIRCUTOR предлагает широкий спектр решений по защите от утечки на землю типа B.

IDB-4 : 4-полюсный УЗО типа B для трехфазных и однофазных установок до 63 A. Чувствительность 30 или 300 мА (устройство прямого замыкания на землю), мгновенное время отключения.

WGB-35-TB : Реле утечки на землю с трансформатором (MRCD) для нагрузок до 125 А. Чувствительность 30 или 300 мА, мгновенное или выборочное время срабатывания.

RGU-10B : Реле утечки на землю, связанное с трансформаторами серии WGC-TB (MRCD), с внутренним диаметром до 180 мм, обеспечивающее защиту от зарядов до 800 А.Чувствительность от 100 мА, программируемое время срабатывания.

RGU-100B : реле утечки на землю, связанное с трансформаторами серии WGB (MRCD), с внутренним диаметром до 110 мм, обеспечивающее защиту нагрузок до 400 A. Чувствительность от 30 мА, мгновенное и программируемое время срабатывания .

CBS-400B : Реле утечки на землю, связанное с трансформаторами серии WGB (MRCD), с внутренним диаметром до 110 мм, обеспечивающее защиту нагрузок до 400 А.Чувствительность от 30 мА. С 4 каналами для защиты 4 полностью независимых цепей. Мгновенное и программируемое время поездки.


В дополнение к системам защиты, упомянутым выше, CIRCUTOR также предлагает новую и инновационную систему защиты от утечки на землю типа B с автоматическим повторным подключением:

RECB : 4-полюсный УЗО типа B с автоматическим повторным включением для трехфазных и однофазных установок до 63 A. Чувствительность 30 или 300 мА (прямое дифференциальное устройство).Мгновенное время поездки.

Выводы

Мы видели, как определяются различные типы устройств утечки на землю (AC, A, F и B) в соответствии с международными рамочными правилами и в соответствии с типом утечки, от которой они защищают. Другими словами: тип устройства защиты от утечки на землю неразрывно связан с работой и технологией защищаемой нагрузки.

Следовательно, для правильного выбора типа устройства защиты от утечки на землю важно знать, какой у него отклик и как работает защищаемая нагрузка.Производители грузов в своих руководствах и советах укажут, какой подход следует использовать и как сделать выбор.

Не менее важно соблюдать все условия вертикальной селективности для правильной координации нашей защиты перед зарядом и в головной части установки, а также с учетом типа устройства защиты от утечки на землю.

Следуя этим основным руководящим принципам, мы не только обеспечим максимальную непрерывность обслуживания для сохранения защиты сборов и активов нашего предприятия, но также будем гарантировать безопасность людей.

Джоан Ауледа
Менеджер по продукту Circutor

Изучение электрических схем на четырех примерах

Примеры простых электрических схем весьма полезны для изучения сложных электрических схем. Лучше понять электрические схемы из четырех нижеприведенных примеров электрических схем.

Электрическая цепь — это замкнутое соединение батарей, резисторов, проводов, переключателей и т. Д. Электрическая цепь состоит из петель напряжения и узлов тока.Многих людей путают со сложными электрическими цепями, однако, если они разовьют твердое представление о приведенных ниже четырех примерах электрических цепей, им будет легче читать сложные электрические цепи.

Вы можете попробовать программу для электрических чертежей, в которой встроенные стандартные электрические символы для быстрого и правильного рисования электрических цепей.

Примеры электрических схем — счетчик энергии или счетчик двигателя

Моторный счетчик еще называют счетчиком энергии.Энергия — это общая мощность, потребляемая за определенный период времени, и ее можно измерить счетчиком двигателя или счетчиком энергии. Более того, счетчики энергии используются на всех линиях электроснабжения каждого дома для измерения мощности, потребляемой как в цепях постоянного, так и переменного тока. Счетчик энергии — это прибор, измеряющий количество электроэнергии, потребляемой потребителем. Счетчик калибруется в киловатт-часах. Один киловатт-час — это количество электроэнергии, необходимое для выработки 1000 ватт мощности в течение одного часа.

Есть алюминиевый диск, который непрерывно вращается при потреблении энергии. Счетчики энергии имеют катушку давления и катушку тока. Когда напряжение подается на катушку давления, ток течет через катушку и создает магнитный поток, который создает крутящий момент на диске. Результирующий крутящий момент действует на диск и приводит к вращению алюминиевый диск, который пропорционален потребляемой энергии и регистрируется в счетчике энергии.

Примеры электрических схем

— Схема мультиметра

Мультиметр — это черный ящик электронных схем, который позволяет устранять неполадки практически любого типа электропроводки или устройства.Мультиметр (также известный как вольт-омметр или VOM) со всеми его цифрами, циферблатами и переключателями может быть довольно устрашающим.

VOM может быстро окупить себя, просто проанализировав, все ли в порядке десятки батареек, съеденных игрушками и электронными устройствами. ВОМ состоит из гальванометра, подключенного последовательно с сопротивлением. Ток, протекающий в цепи, то есть напряжение в цепи, можно измерить, подключив клеммы мультиметра к цепи.Мультиметр — это удобный инструмент, который вы используете для измерения электричества, точно так же, как вы использовали бы линейку для измерения расстояния, секундомер для измерения времени или весы для измерения веса.

Примеры электрических схем — Схема трансформатора тока

Трансформатор тока — это тип «измерительного трансформатора», предназначенный для выработки переменного тока во вторичной обмотке, который пропорционален току, измеряемому в его первичной обмотке. Трансформаторы тока могут снижать или «понижать» уровни тока с тысяч ампер до стандартного выходного сигнала с известным коэффициентом до 5 или 1 ампер для нормальной работы.

Вторичная обмотка трансформатора подключена к амперметру. Трансформатор снизит ток до значения, которое может быть измерено подключенным амперметром. Трансформаторы тока могут выполнять управление цепями, измерять ток для измерения и управления мощностью, а также выполнять функции защиты и ограничения тока. Они также могут вызывать события в цепи, когда контролируемый ток достигает заданного уровня.

Примеры электрических цепей — Цепь однофазного двигателя

Однофазное распределение используется, когда нагрузки в основном освещают и обогревают с небольшим количеством крупных электродвигателей.Однофазные двигатели предназначены для работы от однофазного источника питания и могут выполнять широкий спектр полезных функций, однако для их запуска требуются дополнительные цепи, а такие двигатели редко встречаются с номинальной мощностью более 10 или 20 кВт. Однофазный двигатель имеет две клеммы в клеммной коробке внешнего корпуса. Одна из этих клемм соединена с токоведущим проводом силовой цепи, а другая — с нулевым проводом.

Когда на двигатель подается электропитание, он будет работать до тех пор, пока не будет отключено электропитание.На этом однофазном двигателе работает даже вентилятор. Иногда вентилятор не запускается, когда мы его включаем. Причина в том, что конденсатор, используемый для самозапуска однофазного двигателя, не работает. Лучший способ решить эту проблему — заменить конденсатор.

Три основные электрические схемы

Возможные инженерные решения

Примеры инженерных схем

Простые электрические схемы Введение

12-импульсный активный выпрямитель для других электрических самолетов

1.Введение

В современной авиастроительной промышленности стремительно развивается технология More Electric Aircraft. На рисунке 1 показана общая блок-схема распределения мощности MEA. Модель системы распределения электроэнергии состоит из блока выработки энергии, блока трансформаторного выпрямителя, блока преобразователя постоянного тока в постоянный и блока инвертора постоянного тока в переменный ток.

Рис. 1.

Система распределения электроэнергии MEA общего назначения.

Удовлетворительная работа MEA в очень большой степени зависит от постоянной надежности электрических систем и подсистем.Эта технология имеет множество преимуществ и преимуществ, таких как:

  1. Снижение затрат на техническое обслуживание и эксплуатацию.

  2. Повышение надежности диспетчеризации.

  3. Снижение выбросов газов.

В MEA сегмент силовой электроники играет очень важную роль в управлении энергией и улучшении преобразования энергии как генераторами, так и исполнительными механизмами. Кроме того, в системе с фиксированной частотой (400 Гц) между двигателем и генератором самолета устанавливается механический привод с постоянной скоростью, однако это создает дополнительный вес и требует частого обслуживания.

Использование силовой электроники помогает снизить вес, проще в обслуживании и обеспечивает большую управляемость и интеллект, включая обнаружение неисправностей и диагностику [1, 2, 3, 4, 5, 6].

Обычный 12-импульсный выпрямитель, использующий диодный мост, является одним из самых простых преобразователей, поскольку не требует никакого контура управления, однако этот тип преобразователя имеет фиксированный выход постоянного тока с высоким полным гармоническим искажением (THD) на входном токе по сравнению с предложен 12-пульсный активный выпрямитель.

Система может стабилизировать выходное напряжение переменного тока постоянного тока от трехфазной системы с частотой 360–800 Гц, 115 В RMS. Используя разделительный метод управления с прямой связью методом кадра DQ, можно управлять величиной и фазой входного тока, и, следовательно, можно также управлять передачей мощности, которая происходит между сторонами переменного и постоянного тока. Преобразователь может быть пригоден для использования с электрическим приводом (или другими) нагрузками самолета. Система может использоваться в качестве источника постоянного тока для нагрузок постоянного тока или для подачи постоянного тока на инвертор переменного тока для фиксированного источника питания 400 Гц.Конструкция этой системы создает значительные проблемы из-за характера диапазона нагрузки и изменения частоты питания и требует многих функций, таких как:

  1. Синусоидальное содержание и низкое содержание гармоник в токе питания.

  2. Для минимизации требований к реактивной мощности необходимо обеспечить высокий коэффициент входной мощности.

  3. Плотность мощности должна быть максимальной для минимальных размеров и веса [7, 8].

Как правило, использование электроэнергии на борту постоянно увеличивается в области систем связи, наблюдения и общих систем, таких как радары, системы охлаждения, шасси или приводы.Напряжение постоянного тока до 540 В [9] может потребоваться для распределения электроэнергии для питания определенных нагрузок.

2. Гармоники и коэффициенты мощности для различных выпрямителей

Нелинейные нагрузки, такие как выпрямители, могут вызвать гармоники в системах электроснабжения самолета, это приведет к увеличению потерь и может вызвать резонанс в некоторых цепях, что приведет к повышению напряжения. Для резистивной нагрузки ток гармоник пропорционален гармоникам напряжения. При емкостной нагрузке ток гармоник увеличивает нагрев конденсатора и может вызвать преждевременный выход из строя.

Для индуктивной нагрузки гармоники увеличивают потери в компонентах сердечника, а также потери ротора в асинхронном двигателе. Кроме того, ток гармоник может привести к перегреву трансформаторов, поэтому трансформаторы должны быть снижены при наличии гармоник.

Обычно выпрямители производят гармоники в следующем порядке [10, 11, 12, 13, 14]:

h = fhf1 = K.P ± 1E1

, где h = порядок гармоник; fh = частота гармонического тока; f1 = основная частота; P = количество импульсов выпрямителя; К = 1, 2, 3,….

Амплитуда гармонических токов, вызванных выпрямителем, может быть рассчитана как:

Ih = I1hE2

, где Ih = амплитуда гармонического порядка тока; I 1 = амплитуда основной гармоники тока выпрямителя.

В энергосистемах переменного тока с чисто синусоидальными напряжением и током косинус разности фаз ( ϕ ) между напряжением и током представляет собой коэффициент мощности (PF = cos ϕ ). Если формы сигнала напряжения или тока содержат гармоники, фазовый угол между ними больше не представляет собой коэффициент мощности.В общем, коэффициент мощности можно рассчитать как [11].

PF = средняя мощность VrmsIrmsE3

Выпрямители потребляют несинусоидальный ток и имеют высокие гармонические составляющие, однако, если входное напряжение выпрямителя считается чисто синусоидальным, средняя мощность будет:

Pmean = VrmsI1rmscosϕ1E4

Следовательно:

PF = I1rmsIrmscosϕ1E5

Где I1rmsIrmsis определяется как коэффициент входных искажений; I1rms — действующее значение тока основной гармоники; cos ϕ 1 — это фазовый угол между напряжением и основным током (входной коэффициент смещения).

Увеличивается количество электронных устройств в технологии MEA, которые обычно питаются от импульсных источников питания (SMPS). SMPS будет правильно питаться от диодного выпрямителя, который налагает гармонические токи и, возможно, напряжения на сеть электропитания систем самолета. Это может вызвать повреждение кабелей и оборудования в электрической сети самолета. Форма волны тока питания может быть выражена рядом Фурье [11, 12, 13, 14]:

ist = IDC + ∑n = 1∞ancosnωt + bnsinnωtE6

Для трехфазного 6-импульсного диодного моста выходное напряжение постоянного тока и Входной ток RMS равен:

В = 33πVmE7

Вм — максимальное фазное напряжение.

IRMS = 63IDCE8

Предположим, что потери выпрямителя равны нулю, поэтому мощность равна

Pout = Pin = VDCIDC = 33πVmIDCE9

Полная входная мощность выпрямителя:

Sin = 3VRMSIRMS = 3VmIDCE10 9:

PF = PinSin = 3π = 0,955E11

Хотя коэффициент мощности хороший, значение THD относительно высокое и может плохо сказаться на силовых системах самолета. Среднеквадратичное значение входного тока основной гармоники для трехфазного 6-импульсного диодного выпрямителя с индуктивной нагрузкой хорошо известно и равно:

I1RMS = 63IDCE12

THD = IRMS2 − I1RMS2I1RMS = π2-93 = 31.08% E13

THD можно уменьшить, используя 12-пульсный выпрямитель, как показано на рисунке 2.

Рисунок 2.

12-импульсный диодный выпрямитель.

12-пульсный диодный выпрямитель питается от трехфазного трансформатора, соединенного звездой на первичной стороне, трансформаторов звезды и треугольника на вторичной стороне. Каждый трансформатор на вторичной стороне питает трехфазный 6-пульсный выпрямитель, и они складываются, чтобы сформировать 12-пульсный выпрямитель, эта конфигурация дает сдвиг фазы 30 °, что дает подавление гармоник.Коэффициент трансформации дельта-трансформатора необходимо умножить на 3, чтобы получить такой же уровень напряжения, как показано на Рисунке 3 [14].

Рисунок 3.

Конфигурация звезда-треугольник.

В трехфазном 6-импульсном выпрямителе преобладающими гармониками являются 5-я и 7-я, и поэтому THD довольно высоки. При 12-импульсном расположении 5-я и 7-я гармоники подавляются, как показано ниже [11, 12, 13, 14]:

Для соединения звездой ток фазы (a) равен:

ia_start = 23πIdcosωt − 15cos5ωt + 17cos7ωt − 111cos11ωt + … E14

Для фазы соединения треугольником (a) ток равен:

ia_deltat = 23πIdcosωt + 15cos5ωt − 17cos7ωt + 111cos11ωt +… E15

Первичный ток равен сумме двух вторичных токов:

−ia_din + 113cos13ωt − 123cos23ωt +… E16

Серия имеет гармоники порядка 12k ± 1, а гармоники порядка 6k ± 1 циркулируют между двумя преобразовательными трансформаторами и не проникают в сеть энергосистемы самолета.Поскольку величина каждой гармоники пропорциональна обратной величине номера гармоники, 12-пульсный выпрямитель имеет более низкий THD, равный:

I1RMS = 263IDCE17

THD = IRMS12h3 − I1RMS12h3I1RMS12h = 2π2−93 = 15.5% E18 9.5% E18

THD для 12-пульсного выпрямителя снижен на 50% по сравнению с 6-пульсным выпрямителем.

На рис. 4 показаны кривые тока для входного тока источника питания фазы (a) и токов на вторичной стороне каждого трансформатора.

Рисунок 4.

Осциллограммы тока для фазы (a) при входной частоте 400 Гц.

На рисунке 5 показано содержание гармоник для токов фазы (a) и токов на вторичной стороне каждого трансформатора.

Рисунок 5.

Содержание гармоник для токов фазы (а) при входной частоте 400 Гц.

Для большего уменьшения THD можно использовать 12-пульсный активный выпрямитель, это показано на рисунке 6. Этот тип преобразователя дает множество преимуществ:

  • Коэффициент мощности можно контролировать с помощью управления векторами DQ.

  • THD очень низкий.

  • Выпрямитель может работать с переменной входной частотой (обычно 360–800 Гц) без прерывания его выхода.

  • Двунаправленный поток мощности.

Рисунок 6.

12-импульсный повышающий преобразователь постоянного / переменного тока.

3. Схема управления DQ

На рисунке 7 показана конфигурация активного выпрямителя для каждой вторичной стороны.

Рисунок 7.

6-пульсная конфигурация активного выпрямителя.

Преобразование DQ обычно называется преобразованием Парка, которое представляет собой пространственное векторное преобразование мгновенных трехфазных напряжений и токов из стационарной фазовой системы координат (ABC) во вращающуюся систему координат (DQ) [7, 8].

Общие формулы для преобразований DQ приведены ниже. Предположим, что трехфазные источники напряжения va , vb и vc сбалансированы и синусоидальны с угловой частотой ω .

Компоненты вектора входного напряжения по осям неподвижной ортогональной системы отсчета ( α , β ) определяются по формуле:

Vα = 23Va − 13Vb − 13VcE19

Vβ = 13Vc − 13VbE20

входное напряжение затем может быть преобразовано во вращающуюся систему отсчета DQ, выбранную с осью D, совмещенной с вектором напряжения.Составляющие напряжения определяются по формуле:

vd = Vαcosωt − VβsinωtE21

vq = Vαsinωt + VβcosωtE22

Те же преобразования применяются к фазным токам:

id = Iαcosωt − Iβω2α

β1 На рисунке 7 пусть v a 1 , v b 1 и v c 1 будут основными напряжениями на фазу на входе преобразователя.

va = Ria + L.dia / dt + va1E25

vb = Rib + L.dib / dt + vb1E26

vc = Ric + L.dic / dt + vc1E27

, где L — значение ввода линейная индуктивность, а R, — ее сопротивление катушки индуктивности.

Принимая преобразование DQ для катушки индуктивности, входное напряжение преобразователя в системе отсчета DQ определяется как [15, 16, 17, 18, 19]:

vd = Rid + L.did / dt − ωLiq + vd1E28

vq = Riq + L.diq / dt + ωLid + vq1E29

Обратите внимание, что v d 1 и v q 1 являются компонентами DQ на клеммах преобразователя.

На рисунке 8 показаны векторные диаграммы для координат DQ.

Рис. 8. Векторные диаграммы

DQ.

Мгновенная активная и реактивная мощности выражаются следующим образом:

Pdt = 3 / 2vd.id + vqiqE30

Qdt = 3 / 2vd.iq + vqidE31

В установившемся режиме и при условии, что потери преобразователя незначительны, Следовательно, мощность постоянного и переменного тока равна:

Pd = PDC = VDC.IDCE32

Следовательно,

IDC = PdVDC = 3vd.id + vqiq2VDCE33

Для баланса мощности мощность передачи должна быть равна мощности поглощения, поэтому:

PAC + PDC + PC = 0E34

Где PC — мощность в конденсаторном фильтре.

Если синхронный кадр выровнен по напряжению, квадратурная составляющая, vq = 0. Следовательно, уравнения мощности сводятся к:

Pd = 3 / 2vd.idE35

Qd = 3 / 2vd.iqE36

Eq . (32) становится:

IDC = PdVDC = 3vd.id2VDCE37

Это дает:

PAC + PDC + PC = 3 / 2vd.id + VDC.IDC + VDC.iC = 0E38

Следовательно, ток конденсатора становится:

iC = −3vd.id2VDC + IDCE39

Но:

iC = CdVDCdtE40

Из уравнений.(38) — (40):

dVDCdt = iCC = −1C − 3Vd.id2VDC + IDCE41

Из уравнения. (41) путем управления активным током id можно управлять выходным напряжением постоянного тока выпрямителя.

Обратные преобразования DQ затем необходимо применить для получения трех фаз модулирующих волн ( v aref , v bref и v cref ) для генератора ШИМ. Векторное управление DQ имеет несколько преимуществ, например, реактивную и активную мощность можно легко контролировать, а динамический отклик токовой петли будет очень быстрым.

Генератор ШИМ использует несущую 20 кГц и основан на обычной стратегии асимметричной ШИМ. Линейный дроссель имеет значение 100 мкГн на фазу, что ограничивает полное гармоническое искажение (THD) до требуемого значения.

Рисунок 9.

Управление DQ для входного преобразователя.

На рисунке 9 показана схема управления DQ, реализованная во входном преобразователе.

Предлагаемая схема управления состоит из двух частей [13, 14, 15]:

  1. Внешний регулятор напряжения.

  2. Внутренний регулятор тока.

Внешний регулятор напряжения регулирует напряжение промежуточного контура. Сигнал ошибки используется в качестве входа для ПИ-регулятора напряжения, который обеспечивает опорный ток D внутреннего регулятора тока. На рисунке 10 показана модель звена постоянного тока, а на рисунке 11 — управление внешним напряжением с обратной связью.

Рисунок 10.

Модель промежуточного контура.

Рисунок 11.

Управление с обратной связью внешнего управления напряжением постоянного тока.PI TF: Kp + Ki 1 S = KP (S + a i S); преобразователь TF: 3 2 2 M; завод TF: 1 CS.

Взаимосвязь между напряжением постоянного тока и входным напряжением оси D определяется следующим образом:

В постоянного тока = 22VdMorM = 22VdVDCE42

IDC = 322MIdE43

Где: M — индекс модуляции.

Для ПИ-регулятора:

PITF = Kp + Ki1S = KPS + aiSE44

Где ai = KiKp

Для преобразователя система имеет следующий TF:

ConverterTF = IDCId = 322ME45

Для завода TF Линия постоянного тока может быть смоделирована конденсатором:

PlantTF = 1CSE46

Следовательно, характеристическое уравнение для регулирования напряжения промежуточного контура определяется следующим образом:

S2 + 3MKp22CS + 3MKpai22C = 0E47

Дается общее уравнение для характеристического уравнения второго порядка. по:

S2 + 2ξωnS + ωn2 = 0E48

Таким образом, параметры регулятора задаются следующим образом:

Kp = 42Cξωn3ME49

ai = 22Cωn23MKpE50

, где ωn и 95453 коэффициент естественной амортизации и 95453 ξ , поэтому параметры регулятора можно легко рассчитать, выбрав значение индекса модуляции, ωn и ξ .

ПИ-регулятор внутреннего тока DQ связывает измерения фазного тока с вращающейся рамкой координат DQ, привязанной к напряжению питания. На рисунке 12 показана модель входного каскада DQ, а на рисунке 13 — управление с обратной связью внутреннего управления током. Если фазные токи совпадают по фазе с напряжениями питания, ток, относящийся к прямой оси D, становится током промежуточного контура, а ток, относящийся к квадратурной оси Q, равен нулю. Преобразование координат выполняется с использованием информации о фазовом угле, полученной при измерении напряжения питания.Однако, если система необходима для работы с ведущим или отстающим коэффициентом мощности, добротность опорного значение оси может быть изменено, чтобы определить угол смещения выпрямителя. Токи оси D и оси Q сравниваются с их соответствующими значениями требований, и ошибка применяется к отдельным ПИ-регуляторам, давая требования напряжения, относящиеся к оси D и оси Q. Во вращающейся системе координат токи оси D и оси Q взаимосвязаны из-за их вращения. Вращение вводит ортогональную составляющую в производную по времени каждого тока, которая при приложении к индуктивной нагрузке дает составляющие напряжения вдоль оси, ортогональной оси тока.В исследуемой схеме DQ используются два члена прямой связи:

Рисунок 12.

Эквивалентная схема для входного питания DQ.

Рисунок 13.

Управление внутренним током с обратной связью. PI TF: Kp + Ki 1 S = KP (S + a i S); преобразователь TF: 1 1 + TS; завод ТФ: 1 р + лс.

ωLiq подается на запрос Vd .

ωLid подается в запрос Vq .

Эти члены с прямой связью разделяют два тока.Кроме того, напряжение питания отнесено к оси D, и это добавлено к требованию Vd , чтобы интегратору не приходилось его компенсировать. Напряжения конечного потребления переводятся обратно в стационарные координаты, а полученные синусоиды используются для генерации ШИМ.

На рисунке 13 показано управление с обратной связью внутреннего управления током. К блоку управления применяются следующие передаточные функции.

Объект представляет собой линию от генератора до входа преобразователя, которая имеет сеть RL со следующим TF:

PlantTF = 1R + LSE51

Преобразователь может быть смоделирован как запаздывание первого порядка.= 11 + TS, где T = 12Fs

Fs — частота переключения. Эту же процедуру можно использовать для расчета параметров контроллера. Simulink или другие инструменты можно легко использовать для настройки ПИ-регулятора с помощью метода Зейглера-Николая.

4. Результаты моделирования для 12-импульсного активного выпрямителя

Для оптимизации качества электроэнергии и переходных характеристик системы распределения электроэнергии будет создана хорошо разработанная имитационная модель 12-импульсного активного выпрямителя на основе детальных моделей компонентов быть необходимым.

При высоком напряжении два выпрямителя подключаются последовательно, а при повышенном потреблении тока выпрямители могут подключаться параллельно. Преобразователь был смоделирован для различных условий эксплуатации со следующими параметрами.

  • Входная индуктивность для L = 100 мкГн, входное сопротивление 0,2 Ом. Для каждого преобразователя

  • Фильтр постоянного тока C = 200 мкФ. Для каждого преобразователя

  • Частота коммутации 20 кГц.Для каждого преобразователя

  • Входная частота 360–800 Гц.

  • Входное напряжение переменного тока = 115 В RMS.

  • Активная нагрузка = 15 Ом.

  • опорное напряжение постоянного тока для каждого преобразователя устанавливается на 320 В.

Результаты моделирования показывают, что по сравнению с обычным 12-импульсного диодного выпрямителя, гармоники низкого порядка полностью устранены, и только очень низкие гармоники вокруг переключения частота на частотах f = mfs , где m = 1, 2,…, ∞

На рисунках 14-19 показаны различные результаты моделирования.

Рисунок 14.

Результаты кривых для входной частоты 360 Гц.

Рис. 15.

THD для фазы а тока — входная частота 360 Гц.

Рисунок 16.

Сдвиг на 30 ° для дельта-тока и входного тока для фазы а — входная частота 360 Гц.

Рисунок 17.

Уровень постоянного напряжения для каждого преобразователя и общее постоянное напряжение.

Рисунок 18.

Результаты кривых для входной частоты 600 Гц.

Рисунок 19.

Результаты осциллограмм для входной частоты 800 Гц.

5. Выводы

С будущим использованием усовершенствованной силовой электроники 12-пульсный активный выпрямитель представляет собой выгодный подход в системе распределения питания самолета. Любые низкочастотные гармоники тока могут быть устранены, и есть возможность эксплуатировать выпрямитель с переменным коэффициентом мощности, чтобы обеспечить преимущества системного уровня. Кроме того, было показано, что; есть возможность работать с системой с переменными входными частотами, сохраняя при этом низкие гармоники входного тока.

По

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *