Схема с тремя проходными выключателями: Ничего не найдено для Feeds

Апр 17, 1977 Разное

Схема с тремя проходными выключателями: Ничего не найдено для Feeds

Содержание

Ничего не найдено для Feeds

Без рубрики

Кольцевые лампы представлены на современном рынке в огромном ассортименте. Это позволяет покупателям учесть любые

Без рубрики

Постоянный ток (DC) представляет собой беспрерывное движение заряженных частиц в электрическом поле. Постоянный электрический

Без рубрики

Цифровое оборудование сегодня активно используется для решения разнообразных задач. По этой причине не удивительно,

Выключатели

Правильно выполнить подключение розетки и выключателя сможет любой. Для этого хватит базовых знаний об

Без рубрики

Подобрать надежный источник питания, который позволит сделать дачу или загородный дом более автономными, сегодня

Без рубрики

Современные производители предлагают воспользоваться разнообразными видами реле времени, у каждого из которых есть свои

Схема подключения проходного выключателя с 3х мест

Целесообразность применения проходных выключателей обусловлена индивидуальной планировкой помещения со светильниками, требующими регулировки из различных точек. Таким образом, обеспечиваются дополнительные удобства и комфорт. В подобных случаях довольно часто применяется схема подключения проходного выключателя с трех мест. В случае необходимости возможно задействовать и большее количество точек.

Использование схем с тремя выключателями

Использование системы управления светом с тремя выключателями дает возможность включать и выключать освещение из любого удобного места. Проходные выключатели хорошо зарекомендовали себя на лестничных маршах, в больших комнатах, подъездах, а также во дворе или на приусадебном участке.

В длинных коридорах устанавливается несколько переключателей, в начале, в середине или в конце. Та же самая схема используется при наличии нескольких входов в различные помещения. То есть, в начале коридора свет можно включить, а в середине или в конце – выключить. Для того, чтобы осветительный прибор включался и выключался с трех разных точек помещения, необходимо использовать схему подключения с тремя проходными выключателями.

Элементы и составные части схемы подключения

В состав данной схемы входит соединительная коробка, осветительные приборы, переключатели и провода. В качестве источников освещения используются не только обычные лампы накаливания, но и различные виды светодиодных и энергосберегающих светильников. Выключатели, используемые в схеме, разделяются на проходные и перекрестные. В свою очередь, проходные переключатели могут быть перекидными, дублирующими или лестничными. Их монтаж занимает гораздо больше времени, по сравнению с обычными выключателями.

Классическая схема подключения проходного выключателя с трех мест требует использования двух проходных переключателей и одного перекрестного. Внешний вид дублирующих устройств почти такой же, как и у одноклавишного прибора. В любом положении клавиш такого переключателя соединение электрической цепи не прерывается, происходит лишь переключение контактов. Переключающий механизм в проходных выключателях расположен по центру контактов.

Приборы могут быть одно- или двухклавишными. Во втором случае два устройства объединяются в одно при наличии шести контактов. В схемах нередко используются одноклавишные переключатели света, не различающиеся между собой. Каждый из них оборудован тремя контактами. У первого прибора к одному контакту подключается фазный провод, а к двум другим – промежуточные провода. У третьего выключателя, наоборот, к одному контакту присоединяется промежуточный провод, а к двум остальным – выходные фазные линии.

Переключатель устанавливаемый посередине, выполняет функцию перекрестного выключателя. У него имеется четыре контакта, от которых идет по два провода к каждому перекидному выключателю № 1 и № 3. В случае замыкания промежуточного электропровода на любом из перекидных устройств, произойдет включение света. При изменении состояния клавиши цепь разрывается и свет гаснет. Если возникла необходимость увеличить количество точек управления светом, достаточно добавить перекрестные выключатели в необходимом количестве в имеющуюся цепь.

Для правильного выполнения монтажа системы управления, необходимо соблюдать определенные рекомендации. Если в помещении уже имеется электрическая сеть, то к дублирующим переключателям нужно подвести отдельные сети открытого или закрытого типа. Во втором случае в стенах нужно делать штробы. Может понадобиться специальный инструмент и строительный гипс для крепления гофрированной трубы. Прокладка новых линий выполняется трех- или четырехжильным кабелем.

Как подключить проходной выключатель из 3 х мест

Как установить проходной выключатель на 2 и 3 точки (схема)

В быту нередко возникает необходимость в управлении одной нагрузкой из двух или из трех мест. В этой статье мы узнаем, что собой представляет проходной выключатель и как с его помощью решить вопрос с управлением нагрузкой.

Как работает проходной выключатель

По сути, проходной выключатель является обычным переключателем со средним контактом на два фиксированных положения.

Электрическая схема проходного выключателя

Из приведенной схемы видно, что в одном положении переключателя контакт 1 (он и есть средний) замыкается с контактом 2, в другом – с контактом 3, а со вторым размыкается. Конструктивно же такой прибор выглядит, как обычный настенный выключатель, и имеет аналогичные габариты. Это позволяет использовать проходные выключатели в быту вместо стандартных, которыми ты каждый день включаешь в комнате свет. Единственное внешнее отличие такого выключателя от обычного одноклавишного – две вертикальные стрелки, нанесенные на клавишу, и дополнительный третий контакт для подключения в схему. В некоторых случаях на тыльную сторону прибора наносится его электрическая схема.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если у тебя в руках прибор с одной клавишей, а выводов у него 3, то не факт, что это проходной выключатель. Точно сказать, что это за устройство, можно только после его прозвонки тестером.

Внешний вид проходного выключателя

Где используется и что дает

Нельзя сказать, что проходные выключатели используются повсеместно, но тем не менее в некоторых случаях они могут быть весьма полезны. Предположим, ты живешь в частном доме и часто возвращаешься домой в темное время суток. Чтобы не пробираться от калитки до крыльца во тьме, можно, конечно, оставить во дворе дежурное освещение. Это не совсем экономично, но что делать.

Но можно поступить и по-другому. Если установить один проходной выключатель у калитки, второй – на крыльце, и соединить их специальным образом (о схеме соединения ниже), то можно включить свет у калитки и выключить на крыльце. А если ты выходишь из дома? Схема работает и в другую сторону: включай на крыльце, выключай у калитки. Именно в этом главная особенность проходных выключателей.

Кроме описанного случая, проходные приборы можно использовать:

  1. На лестнице.
  2. В подъезде.
  3. В длинном коридоре.
  4. На приусадебном участке между хозпостройками.
к содержанию ↑

Схема включения света из двух мест

А теперь разберем схему включения света из двух мест и попробуем самостоятельно установить проходные выключатели у себя в доме. Взгляни на рисунок ниже.

Электрическая схема управления лампой из двух мест

В положении переключателей, указанных на схеме, напряжение проходит на лампу и она горит. Если переключить левый прибор, то цепь питания разорвется и лампа погаснет. Для того чтобы восстановить питание, необходимо переключить и правый. То же самое произойдет, если сначала переключить правый, а потом левый переключатели. Таким образом, если переключатели находятся в одинаковом положении, свет горит. Если в противоположных – гаснет.

Теперь попробуем оснастить твой дом такой конструкцией, управляющей светом из двух мест. Для реализации этой идеи тебе понадобятся:

  1. Два проходных выключателя.
  2. Трехжильный и двухжильный провод.
  3. Светильник.

Прежде всего, определись с местами, где будут устанавливаться проходные выключатели (на схеме выше изображены как раз они). При помощи зубила и коронки, насаженной на перфоратор или дрель, подготовь для переключателей посадочные места.

Подготовка посадочных мест при помощи коронки по бетону и зубила

Теперь каждое из посадочных мест нужно соединить с ближайшей распределительной коробкой штрабой – канавкой, в которую будет укладываться провод. Сделать штрабу можно при помощи перфоратора, угловой шлифмашинки, так называемой “болгарки” (не забудь установить на нее диск по бетону), или просто зубилом. Можно даже процарапать напильником – все будет зависеть от материала стены. Ширину и глубину канавки делай такой, чтобы в нее легко уместился трехжильный провод.

Прорезание штрабы перфоратором, болгаркой и зубилом

Такую же штрабу сделай между распределительной коробкой и предполагаемым местом установки светильника. Проложи в подготовленные канавки провода: от переключателей до коробки трехжильный, от коробки до светильника – двухжильный. Если провода новые и заведомо исправны, я думаю, ты ничем не рискуешь, если сразу их заштукатуришь, чтобы не падали на голову и не мешали работать.

Прокладка проводов в штрабу

Если ты не поленишься и положишь в штрабу провод, предварительно вдетый в гофрированный рукав (шланг), то упростишь ремонт проводки, если она выйдет из строя. Достаточно будет выдернуть из шланга сгоревший провод и продеть в него новый.

Укладка провода в гофрированном рукаве

В каждое из посадочных мест установи пластмассовый подрозетник, предварительно запустив в него провод. Обычно подрозетники крепятся при помощи дюбелей или просто сажаются на раствор.

Установка подрозетников

Осталось соединить все элементы схемы между собой и установить их на место. Для этого модифицируем вышеприведенную электрическую схему под свои нужды:

Практическая схема управления лампой из двух мест

Подключая проходной выключатель, не запутайся в его выводах. На схеме выше я пронумеровал их условно. На самом выключателе, как видно из фото ниже, нумерация и местоположение среднего контакта могут быть какими угодно. Если не можешь разобраться в выключателе, возьми тестер и прозвони его.

Нумерация выводов проходного выключателя и их местоположение могут отличаться от приведенных мной

Ниже я привожу еще два фото, поясняющие соединение схемы:

Соединение проводов в распредкоробке, где:
  • синий (ввод) – ноль;
  • коричневый (ввод) – фаза;
  • белые – контакты 1 проходных выключателей;
  • красные – контакты 2 проходных выключателей;
  • зеленые – контакты 3 проходных выключателей.

Обрати внимание на то, что фаза подается на выключатель, а ноль – на лампу. Сделано это неслучайно. В такой схеме при выключении света светильник оказывается полностью обесточенным, и ты можешь безопасно менять в нем лампочки и даже сунуть палец в патрон, чтобы подогнуть ослабнувшие контакты.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Несмотря на то что в выключенном светильнике нет напряжения, я бы не рекомендовал лазить в патрон пальцами после простого щелчка проходного выключателя. А если все же хочется залезть, то предварительно обязательно обесточь квартиру. Если лампочка сгорела, то простым взглядом на проходной выключатель невозможно определить, включен свет или нет.

Стоит заметить, что существуют и двухклавишные проходные выключатели, при помощи которых из нескольких мест можно управлять двумя независимыми нагрузками. Конструктивно они представляют собой два обычных проходных, собранных в одном корпусе, и имеют, соответственно, шесть контактов.

Двухклавишный проходной выключатель и его электрическая схемак содержанию ↑

Включение света из трех мест

А что делать, если необходимо управлять тем же освещением из трех мест? Для начала попробуем собрать электрическую схему такого устройства.

Электрическая схема управления лампой из трех мест

Здесь, кроме обычных переключателей, с работой которых ты уже познакомился, используется еще один, который меняет линии местами. Я не буду подробно разбирать алгоритм работы этой схемы. Просто пощелкай в уме переключателями, и ты поймешь, что любым из них можно как зажечь лампочку, так и потушить.

Что это за переключатель такой, который стоит между проходными, и где его взять? Оказывается, в промышленности выпускаются и такие, а называются они перекрестными. Внешне такой прибор выглядит, как обычный выключатель, только стрелки на нем расположены не вертикально, как у проходного, а горизонтально, да и то не всегда. Выводов у такого прибора не три, а четыре.

Этот перекрестный выключатель внешне вообще не отличается от обычного, и понять, что у тебя в руках, можно только по схеме, нанесенной на тыльную сторону

Напоследок я приведу практическую схему подключения на тот случай, если ты надумаешь установить такую конструкцию самостоятельно.

Практическая схема для тройного выключателя

Обрати внимание на то, что для ее реализации тебе дополнительно понадобится четырехжильный кабель. Его роль отлично сыграет двухжильный, сложенный вдвое. Только штрабу делай пошире и не забудь перед закладкой в нее провода прозвонить и отмаркировать его концы.

Вот ты и узнал, как можно управлять освещением из двух и даже из трех мест. Теперь при желании ты сможешь самостоятельно организовать такое управление освещением или любой другой нагрузкой у себя в подъезде, доме или на приусадебном участке.

к содержанию ↑

Видео

Предыдущая

Вопросы экспертуКак правильно подключить двухклавишный выключатель своими руками

Следующая

Светильники, браКакие бывают уличные светильники для дачи и как сделать своими руками

Спасибо, помогло!Не помогло

Схема подключения проходного выключателя с 3х мест

Традиционная схема подключения проходного выключателя с 3х мест не сложна в выполнении, но предполагает обязательное соблюдение правил самостоятельного подсоединения.

Такой вариант подключения является оптимальным при наличии определенной конфигурации помещений.

Подключение проходного выключателя из 3 х мест

Проходного типа выключатели представляют собой удобные и функциональные переключатели, которые в процессе воздействия на клавишу, способны выполнить переброс главного контакта между двумя другими.

Принципиальным отличием подключения переключателя проходного типа от установки классических двухполюсных устройств являются следующие параметры:
  • последовательное подключение коммутаторов друг к другу;
  • замена процесса размыкания переключением фазы;
  • входных контактов в два раза меньше, чем выходных;
  • парные полюса на коммутаторах в обязательном порядке должны «смотреть» друг на друга.

Электромонтажные работы, связанные с самостоятельной установкой выключателя проходного типа с трёх мест, характерно соблюдением схемы, представленной соединительной коробкой, лампочками, а также выключателями и проводами.

В качестве источника освещения могут использоваться светильники с традиционными лампочками накаливания, энергосберегающие или светодиодные приборы.

Проходные переключатели, также известные, как перекидные, дублирующие и лестничные выключатели, по внешнему виду не имеют существенных отличий от обычных изделий, но позволяют управлять освещением с разных мест.

Где применяется система трех выключателей?

Обустройство прибора, позволяющего выполнять управление различного типа светильниками в трех разных точках, позволяет обеспечить практичность и экономичность эксплуатации системы внутридомового и уличного освещения. Это оптимальный вариант в многоэтажных частных домовладениях.

Рациональным является использование такой системы электрической проводки для освещения придомовой территории или приусадебного участка в условиях загородного домовладения.

Схема соединения выключателей между собой: посередине — крестовой с 4 контактами для соединения остальных переключателей

Также подобный вариант часто применяется в помещениях с несколькими спальными местами, что позволяет управлять освещением, не вставая с кровати.

Допускается использование такой системы в качестве лестничной подсветки и для освещения подъездов.

Применение схемы подключения выключателя проходного типа с трёх мест является наиболее удобным, практичным и экономным при обустройстве системы освещения.

Принцип перекрестного отсоединителя

Перекрестного типа выключатели очень похожи внешним видом на традиционное и популярное одноклавишное устройство, а основная разница состоит в наличии внутри корпуса четырех клемм. Название «перекрестный» обусловлено двумя электрическими линиями, которые переключаются.

Перекрестные отсоединители способствуют одновременному разъединению первого и второго выключателя, после чего осуществляется их синхронное соединение. Именно перемещением контактов объясняется зажигание и выключение источников света.

Подключение проходного выключателя схема с трех мест

Количество точек варьирует, но при большом их количестве значительно осложняется коммутация всех элементов внутри распределительной коробки.

Особого внимания требует грамотное подсоединение концов электрических кабелей, что гарантирует бесперебойную работоспособность и безопасность эксплуатации всей системы.

Элементы и составные части схемы подключения

Прежде чем приступить к самостоятельному подключению прибора управления освещением с трёх мест, необходимо приобрести основные расходные материалы, представленные:

  • соединительной коробкой;
  • светильниками с обычными лампами накаливания, светодиодными или энергосберегающими осветительными приборами;
  • парой переключателей проходного типа;
  • переключателем перекрестного типа;
  • электрическими проводами.

Инструкция по подключению тройного выключателя

Выключатели, которые могут быть задействованы в обустройстве системы — перекидные, дублирующие или лестничные, удобнее и практичнее традиционных устройств, но несколько сложнее в монтаже своими руками. Допускается установка одно- или двухклавишных устройств.

Первый вариант имеет три контакта. Кроме всего прочего, в процессе монтажа потребуется использовать набор отверток и гаечных ключей, монтажный нож и пассатижи, а также бокорезы.

При необходимости выполнить внутреннюю проводку требуется подготовить перфоратор и дрель с алмазным кругом, а для внешней установки используются традиционные кабель-каналы или гофрированная труба.

Тройной проходной выключатель – схема подключения

Стандартная схема включения, согласно которой монтируются устройства в трех точках, незначительно отличается от двухточечной установки.

Перекрестный переключатель имеет в схеме следующую функциональную нагрузку:

  • транзисторный аппарат, не взаимодействующий с парой других включателей осветительных приборов;
  • самостоятельный аппарат, размыкающий схему и обеспечивающий работоспособность части осветительных приборов.

Если выключатель проходного типа, устанавливаемый для пары точек, предполагает применение трёхжильного электрического кабеля, то для обустройства третьей точки используется пять контактов.

В этом случае пара контактов подсоединяется к одному из маршевых выключателей, а еще пара — для подведения ко второму устройству. Свободный прибор используется в качестве транзитного устройства.

Важно помнить, что присутствующий в схеме подключения транзитный контакт является обязательным, так как используется для включения в электрическую цепь и обеспечения работоспособности третьей точки подключения.

Монтаж

Процесс самостоятельного подключения выполняется в соответствии со следующими рекомендациями:

  • определение на проходном устройстве места расположения общей клеммы;
  • подведение к первому выключателю, установленному рядом с распределительной коробкой, «фазы» и последующая фиксация на общей клемме при помощи оранжевого или красного провода;
  • подсоединение к выходным клеммам внутри проходного выключателя пары оставшихся свободных проводов;
  • подведение ко второму выключателю кабеля и последующая фиксация его в соответствии с цветовой маркировкой;
  • подсоединение внутри распределительной коробки оранжевого или красного провода от второго переключателя к «фазе» осветительного прибора;
  • подсоединение внутри распределительной коробки двух свободных проводов к кабельной жиле от первого переключателя в соответствии с цветовой маркировкой.

Монтаж трехклавишного выключателя

На заключительном этапе необходимо выполнить подсоединение кабельной жилы «ноль» и «земля» внутри распределительной коробки к однотипному по назначению проводу, который затем заводится в осветительный прибор.

После того, как будет полностью выполнено соединение, необходимо тщательно подтянуть все скрутки, при необходимости выполнить лужение, а также заизолировать оголенные участки кабеля.

В быту используются не только понижающие, но и повышающие трансформаторы. Как из 12 вольт сделать 220 и в каких случаях это может быть необходимо, читайте внимательно.

О том, как проверить работоспособность конденсатора при помощи мультиметра, читайте на этой странице и следуйте инструкции.

Необходимость установки выключателей проходного типа обуславливается особенностями помещения, в котором установлены светильники, требующие регулирования работы из разных точек.

Грамотная установка обеспечивает удобство и комфорт эксплуатации, а при необходимости есть возможность усовершенствовать систему и задействовать даже большее количество точек.

Видео на тему

Проходной выключатель схема подключения на 3 точки: управления

Здравствуйте уважаемые читатели блога. В этой статье давайте рассмотрим тему: проходной выключатель схема подключения на 3 точки.

Раньше можно было управлять освещением с двух точек, но технологии не стоят на месте и на данный момент производятся переключатели позволяющие включать освещение с трех и более точек (мест).

Такой вариант подключения отлично подойдет в частном доме, в несколько этажей, где много лестничных пролетов, коридоров и т д., в помещениях с несколькими входами, в длинных коридорах, где комнаты расходятся в разные стороны и даже в простой спальне можно установить такую систему подключения. Один из выключателей устанавливается возле входной двери в спальную комнату, а два других, с каждой стороны широкой кровати.

Если в управлении включением освещения с двух точек участвуют два проходных выключателя (переключателя), то с трех точек участвует третий переключатель, только он будет не проходным, а перекидным.

Если Вы задумаете у себя в доме или квартире делать управление проходных выключателей с трех точек управления, то прежде чем купить понравившиеся выключатели, поинтересуйтесь у продавца, есть ли у выключателей данной фирмы возможность производить такое переключение.

Теперь давайте подробнее рассмотрим, как работает электрическая схема данного подключения и как собрать такую схему на практике во время электромонтажных работ. Для работоспособности такой схемы понадобятся два проходных переключателя (выключателя) и перекидной переключатель.

 

В проходном переключателе три контакта, подвижный (центральный) контакт, с которого происходит соединение с одним из двух неподвижных, а в перекидном переключателе четыре контакта и две независимые линии, при нажатии клавиши, происходит переключение в крест, отсюда переключатель получил название перекидной.

Чтобы Вы имели представление, как работает такая конструкция, ниже представлена работающая электрическая схема, в которой видно переключение контактных групп, позволяющих производить включение светильников с трех точек.

 

Теперь давайте рассмотрим практическую часть подключения. Вам необходимо установить три коробочки диаметром 60 мм, отступив от пола 90 сантиметров (это евростандарт, к которому можно не привязываться, но практика показала удобство данной высоты нахождения выключателей) и на высоте 2-2,3 метра от пола установить распределительную коробку 80 мм.

Если Вы планируете устанавливать подвесной потолок, то старайтесь, чтобы распред/коробка не попала за потолок, может со временем появиться необходимость в нее забраться, для ремонта, подключения чего-то нового или для того чтобы взять с коробки электропитание, ну вообще не положено им там быть.

Не знаю как кому, а мне удобнее сначала порезать штрабы, отверстия под коробки, вмазать их, а потом прокладывать кабеля. Многие режут штрабы, укладывают провода, а потом занимаются коробками, ну да ладно. После установки коробок занимаемся проводами, по электрическим законам следует укладывать кабеля марки ВВГ нг или NYM, скажу честно, многие используют ШВВП или ПВС, хотя это запрещено.

Прокладка проводов и их соединение

Продолжим, в распределительную коробку следует привести от щитка питания или ближайшей распред/коробки трехжильный кабель, по которому будет подаваться 220 вольт. От распределительной коробки проводим трехжильный кабель к светильнику.

Далее из распред/коробки прокладываем трехжильный кабель к первой коробочке, в которой будет установлен проходной переключатель, так же трехжильный провод тянем к другой коробочке, в которой будет установлен второй проходной переключатель.

А вот теперь внимание, к третьей коробочке, в которой будет установлен перекидной переключатель, прокладываем четырехжильный провод или трехжильный плюс дополнительную жилу, как уже оговаривали, у перекидного переключателя четыре контакта.

После того, как прокинем все провода, их естественно нужно будет разделать, снять общую изоляцию, зачистить каждый провод, правильно скрутить, запаять, обжать, или поставить колодочку, так как просто скрутка опять-таки запрещена.

Провода у нас будут коричневого, зеленого и голубого цветов. Приступим к соединению, первым делом соединим голубой провод с питающего кабеля и голубой провод с кабеля, уходящего на светильник, это будет рабочий ноль. Далее скручиваем коричневый провод питающего кабеля, это будет фаза, с коричневым проводом, идущим к первому проходному выключателю.

Затем скручиваем голубой провод, идущий от первого проходного с голубым проводом, идущим к перекрестному выключателю, а зеленый провод, идущий так же от первого проходного с зеленым проводом, идущему к перекрестному. Далее берем коричневый провод, идущий от светильника, и скручиваем с коричневым проводом, идущим ко второму проходному переключателю.

Далее берем голубой провод, идущий ко второму проходному, и скручиваем с голубым проводом, идущему к перекрестному выключателю и зеленый провод который приходит со второго проходного, скручиваем с зеленым проводом, уходящим к перекрестному выключателю. Для удобства, мы пробросили к перекрестному переключателю из распред/коробки два голубых провода и два зеленых.

Я на схеме не показал заземляющие провода, с ними проще, берем заземляющий провод с кабеля питания и скручиваем с проводом, идущему к светильнику, в нашем случае это будут зеленые провода. Все скрутки паяем, изолируем и, уложив в коробку, закрываем крышкой.

На этом этапе электромонтаж закончен, концы проводов, которые находятся в трех коробочках под выключатели, следует заизолировать и временно уложить в эти коробки, для удобства о. После отделочных работ нужно будет достать провода из коробок, разделать, зачистить и подключить к переключателям.

Внимание, установка розеток, светильников, выключателей происходит в тот момент, когда установлен электрический щиток, поэтому перед установкой проходных переключателей убедитесь в отсутствии напряжения.

Давайте подключим переключатели. Сначала подключим первый проходной выключатель, для этого выбираем одну из коробочек с тремя проводами. Коричневый провод подключаем к среднему, подвижному контакту 1, зеленый к неподвижному контакту 2 и голубой к неподвижному контакту 3, устанавливаем выключатель в коробку. Далее выбираем вторую коробочку так же с тремя проводами, разделываем кабель, зачищаем провода и производим подключение.

Коричневый провод подключаем к среднему, подвижному контакту 10, зеленый к неподвижному контакту 8 и голубой провод к неподвижному контакту 9, устанавливаем выключатель. Остается последняя коробка, в которой будет четыре провода. Зеленый провод, идущий от контакта 2 первого проходного выключателя, подключаем к подвижному контакту 4 перекрестного переключателя.

Второй зеленый провод, идущий от контакта 8 второго проходного, подключаем к контакту 6 перекрестного переключателя. Синий провод идущие от контакта 3 проходного переключателя подсоединяем к другому подвижному контакту 5 перекрестного переключателя и оставшийся голубой провод, идущий от контакта 9 второго проходного, подключаем к неподвижному контакту 7 перекидного переключателя и тоже устанавливаем.

Затем устанавливаете светильники, которые будут включаться с помощью данной схемы, подаете питание и проверяете. Вот в принципе и все подключение выключателей, которые управляют светом с трех точек, думаю, справятся все, кого эта схема заинтересует. Удачного вам управления.

С уважением, Игорь Вилков!

Схема подключения проходного выключателя с 2х или 3х мест

Представим ситуацию: ночь, перед вами длинная лестница на второй этаж где темно, как в лесу. Вы нажали на выключатель света и стало светло, но когда поднялись по лестнице поняли, что свет может быть погашен только с помощью переключателя вверху…

Чтобы иметь возможность включать и выключать свет из двух разных мест, просто купите дополнительный проходной переключатель для лестницы. Это не единственное решение, но, безусловно, самое популярное. Есть ещё импульсные переключатели, о которых сказано в другой записи. Но в рамках этой статьи будем разбирать следующие вопросы:

  • Работа лестничных выключателей
  • Способ подключения проходных переключателей
  • Практический пример и реализация схемы включения
  • Возможность создать схему управления лампой из 3х и более мест.

Итак, благодаря лестничным переключателям можно зажечь одну и ту же лампу из двух разных мест. Не обязательно на лестнице. Это может быть любая большая комната, где разумно управлять лампой из двух мест. Вообще такие переключатели могут использоваться для включения / выключения любого устройства из двух мест, не обязательно лишь лампы.

Как работают лестничные переключатели

Упрощенная схема выглядит так (присмотритесь к анимации).

  1. Обеспечиваем электрический потенциал через фазовый провод ( L ).
  2. Выключатели соединены двумя коричневыми и серыми проводами (на схеме).
  3. Лампочка загорается когда электрический ток от L- провода достигает лампы.
  4. Схема может быть разорвана независимо, как с помощью лестничного переключателя S1, так и с помощью S2.
  5. С помощью лестничного выключателя не полностью разрывают цепь, а выбирают какой электрический потенциал передается второму выключателю.

Таким образом, проходной переключатель имеет еще один контакт по сравнению с одиночным переключателем. В обычном 2, а тут 3 терминала для присоединения проводов.

Следующая схема имеет больше общего с реальностью. Итак, посмотрим что здесь происходит:

  1. Шнур питания подключается к переключателю S1.
  2. Соединяем нейтральные ( N ) и защитные ( PE ) провода вне автоматических выключателей с помощью электрических разъемов. Защитный соединитель проводника соединен с корпусом лампы (или PE терминалом), нейтральный провод к клемме N.
  3. Силовой фазовый проводник ( L ) подключен к клемме № 1 переключателя S1. После этой операции и подачи напряжения электропотенциал будет подаваться либо на клемму № 2, либо на клемму № 3 переключателя S1.
  4. Следовательно, электрический ток 220 В на клеммах 2 или 3 достигнет переключателя S2.
  5. Если переключатели S1 и S2 находятся в одинаковых положениях, электрический потенциал появится на клемме № 1 переключателя S2 и свет загорится.

Чтобы загорелась лампочка, крайне важно чтоб цепь не прерывалась начиная с фазного провода подачи 220 В (L) и заканчивая лампой.

Принципиальная схема проходного выключателя

Далее вы сможете увидеть метод подключения переключателей лестниц. Посмотрим на следующую принципиальную схему:

На ней изменились три вещи:

  1. К коммутационной коробке S1 к переключателю S2 подключены два кабеля, которые используются для питания других переключателей освещения.
  2. Соединены все нейтральные и все защитные провода с двумя отдельными разъемами. Поскольку в терминале № 1 переключателя лестничной клетки S1 имеется только два контакта, необходимо использовать дополнительный электрический разъем, к которому они будут подключены: Фазовый провод питания L, фазовые провода приводящие к другим выключателям и источник питания S1.
  3. Между коробкой переключения S2 и лампой находится четвертый кабель (черный). Это может быть полезно в будущем, но в данной конфигурации он не используется и не связан ни с чем.

Пошаговая установка

Проходной выключатель S1

Ещё раз напомним — всегда начинаем любую установку с отключением напряжения в сети 220V. Перед началом работы с помощью тестера напряжения убедитесь, что на силовых кабелях нет электрического потенциала, предпочтительно на всех выводах выходящих из короба.


Вид проводов, что выходят из коробки. Нам нужен шнур питания и кабель, который направляется для переключения S2.

Сразу подключим все провода, чтобы не пришлось снова откручивать переключатель позже.

Подключим все нейтральные провода к одному разъему, а все защитные провода к другому разъему. Во время этой операции используйте плоскогубцы.

Когда все нейтральные и защитные провода подключены, засовываем их в электрическую коробку. Осталось 5 фазных проводов:

  • Источник питания — 1 шт.
  • Для питания других выключателей — 2 шт.
  • Для лестничного выключателя S2 — 2 шт.

Кабель питания и два шнура для других автоматических выключателей соединены вместе в электрическом разъеме. Также подключаем к этому разъему короткий кабель длиной в несколько сантиметров, который будет подключен к клемме 1 переключателя S1.

Шнур короткого замыкания соединен с одной стороны, а провода, ведущие к переключателю S2 на второй (верхней) стороне переключателя. После подачи напряжения электрический потенциал в линии будет передаваться либо коричневому, либо черному проводу в зависимости от положения переключателя.

Последний этап — сборка и выравнивание автоматического выключателя. Поставим назад рамку и клавишу. Вот ещё один рисунок того, как всё должно соединяться в коробе:

Про установку более подробно говорили в статье об одиночных переключателях.

Проходной выключатель S2

Переходим ко второму месту (выключателю). У нас есть два кабеля, каждый из которых имеет 4 провода:

  • кабельный вывод от переключателя S1 (внизу)
  • кабель, который ведет к лампе (вверху)

Из-за отсутствия синего проводника, серый провод обернут синей изолентой, чтобы показать что это нейтральный проводник.

Подобно переключателю S1 соединяем защитные проводники с одним разъемом и нейтральными проводниками с помощью второго разъема.

Осталось 4 фазных провода из которых черный, ведущий к лампе, в соответствии со схемой не будет использоваться.

Фиксируем провода. С верхней стороны подключите провода от переключателя S1, а нижний фазовый провод направляется на лампу.

В зависимости от положения переключателя S1, электрический потенциал будет либо на коричневом проводе (сверху), либо на черном проводе. То есть в зависимости от положения переключателя S2 направляющий провод к лампе (нижний коричневый) будет подключен к одному из верхних проводов.

Теперь обратная сборка, снова надеть рамку и клавишу.

Проходной выключатель на 3 места

Возможно ли подключить большее количество переключателей для управления освещением одной лампы? При использовании только обычных ступенчатых переключателей невозможно реализовать управление лампой больше, чем из двух мест. Для ещё большего количества мест необходимо купить перекрестные переключатели, которые размещаются между лестничными, как показано на схеме.

Подведём итог проделанных работ

Таким образом лестничный переключатель представляет собой недорогой и простой способ управления освещением из двух разных мест. Однако для этого требуется предварительное планирование и прокладку дополнительных кабелей между ними ещё на стадии ремонта / строительства проводки. На более позднем этапе эта операция может быть затруднительной — придётся вести провод по стене или долбить канал в ней.


Схема подключения проходного выключателя с 2-х мест, а также с 3-х и 4-х

Часто ли вы, ложась спать, сожалели о том, что выключатель света находится возле двери, а не у изголовья кровати?

Доводилось ли вам идти по узкому коридору своей прихожей в кромешной темноте, чтобы включить свет на другом его конце? Вы живете в собственном двухэтажном доме, и вам лень бегать с одного этажа на другой, чтобы включить/выключить свет на лестнице?

Если все или что-то из вышеизложенного – про вас, советуем вам присмотреться к так называемым проходным выключателям.

Проходные выключатели

Проходными выключателями называют устройства, предназначенные для обеспечения управления одним источником света из двух или более различных мест. Иными словами, при такой схеме вы будете иметь два выключателя на одну лампочку.

Основное принципиальное отличие проходных выключателей от обычных одноклавишных заключается в количестве контактов. В то время, как у одноклавишных выключателей их два – на вход и выход, их проходные собратья имеют 3 контакта. Поэтому проходной выключатель, по своей сути, является не выключателем, а переключателем, перекидывающим электрическую цепь с одного рабочего контакта на другой.

На первый взгляд может показаться, что проходные выключатели работают по тому же принципу, что и двухклавишные, которые также имеют 3 контакта. Однако это не совсем так: при замыкании одного из контактов проходного переключателя, замыкается и другой, а положение, в котором обе цепи разомкнуты у нее просто отсутствует. Оба этих факта не имею никакого отношения к двухклавишным выключателям.

Проходные выключатели могут быть не только механическими, но и электронными, в частности сенсорными. Такие модели имеют более стильный вид и широкое многообразия дизайнерских решений. Современные сенсоры обладают высокой чувствительностью и срабатывают еще до прикосновения – достаточно всего лишь поднести руку на расстояние нескольких сантиметров от выключателя.

Проходные выключатели

Проходные выключатели могут также предусматривать возможность включения и выключения осветительных приборов посредством пульта дистанционного управления.

Как подключить проходной выключатель: схема подключения

Подключение проходного выключателя на 2 точки

Схема подключения проходного выключателя на 2 точки представлена на рисунке, по которому не сложно понять принцип ее работы и организации. При положении переключателей, изображенном на схеме, цепь разомкнута, т.е. светильник выключен. При нажатии на клавишу одного из переключателей, то есть при изменении его положения, цепь замкнется, запитав светильник, и лампочка в нем загорится.

Руководствуясь схемой подключения проходного выключателя с двух мест, можно произвести монтаж такой системы у себя дома.

На заметку. Учитывая сферу применения подобных схем, их еще называют коридорными схемами освещения.

Основные правила сборки такой схемы:

  • фазный провод с автомата должен идти на общий проводник первого переключателя и выходить с общего проводника второго переключателя на прибор освещения;
  • два других(вспомогательных) проводника, должны соединяться между собой в распределительной коробке;
  • нулевая фаза изаземление подаются напрямую на прибор освещения, минуя выходные переключатели.

Но для начала необходимо установить сам выключатель. Если снять с него клавишу и накладные рамки,вашему вниманию представятся три контактных клеммы. Нужно выяснить, какая из них является общей. Наиболее добросовестные производители проходных выключателей изображают на обратной стороне своих изделий схемы, по которым легко определить, где находится общая клемма.

Если же переключатель не снабдили этим приятным и облегчающим установку бонусом,можно воспользоваться тестером для так называемой прозвонки электрической цепи или специальной индикаторной отверткой с батарейкой.

Важно! Щупами тестера нужно поочередно прикасаться к каждому из контактов, изменяя положение клавиши переключателя. Клемма, на которой тестер при любом положении клавиши будет подавать сигнал (или показывать «ноль» — в зависимости от модели тестера), и будет являться общей.

На общую клемму подсоединяется фаза питающего кабеля. На две другие клеммы подключаются, соответственно, два оставшихся провода. Далее выключатель собирается и монтируется в подрозетнике.

Алгоритм подключения второго выключателя точно такой же. Резюмируя вышеизложенное, можно привести данный алгоритм к такому виду:

  1. поиск общего контакта,
  2. подключение к нему фазного проводника,
  3. соединение двух других контактов с двумя другими проводами.

Далее необходимо осуществить подключение проводов к распределительной коробке. В нее должны заходить:

  • питающий кабель из автомата освещения распределительного щитка,
  • кабель на первый выключатель,
  • кабель на второй выключатель,
  • кабель осветительный прибор.

Начинать подключение целесообразно с нулевых проводников. Нулевую жилу с кабеля автомата, стоящего на вводе, необходимо соединить с «нулем», отходящим на светильник. При наличии в схеме заземления – соединяем все жилы заземляющего проводника. По аналогии с манипуляциями, производимыми над нулевыми проводами, «землю» с вводного кабеля объединяем с «землей» кабеля, идущего к осветительному прибору, подключая его к корпусу светильника.

Далее производим подключение фазных проводников. Фазу кабеля на вводусоединяем с фазой кабеля, идущего на общую клемму первого проходного выключателя. Общий же провод со второго проходного выключателя соединяем с фазной жилой кабеля, идущего к светильнику.

Если вы успешно справились с вышеописанными манипуляциями, то теперь остается только соединить между собой второстепенные жилы первого и второго выключателей.

Когда схема подключения проходного выключателя с двух мест полностью собрана, можно подать напряжение в сеть и проверить работоспособность системы освещения.

Подключение проходного выключателя на 3 точки

Схема подключения проходного выключателя на 3 точки, как понятно из ее названия, позволяет управлять освещением в комнате из трех мест. Например, вы сможете включить свет в начале и в конце коридора, а также на выходе из комнаты, дверь в которую расположена в середине коридора.

На три точки

Существуют также схемы подключения проходных выключателей с 4-х и более мест, но собираются они по тому же принципу, что и трехточечная. Подобные схемы нашли применения также на лестничных площадках многоэтажных зданий.

Итак, для обеспечения функционирования схемы проходных выключателей с трех мест понадобятся не только два проходных выключателя, но и один перекрестный.

На заметку. Перекрестные выключатели имеют не три контакта, как проходные, а четыре. Такая конструкция позволяет единовременно включать и выключать по два контакта. Следовательно, посредством такого выключателя одновременно замыкаются или размыкаются две питающие линии.

Принципиальным отличием перекрестных выключателей от их проходных коллег является тот факт, что перекрестные модели не могут использоваться в схеме подключения самостоятельно, применяясь только в комплекте с проходными. На участке сети, представляющей собой цепочку из выключателей, первым и последним всегда устанавливаются проходные выключатели, остальные же будут перекрестными.

Таким образом, в трехточечной схеме от четырех контактов (двух входов и двух выходов)перекрестного выключателя, идет по два провода к каждому из проходных выключателей.

Монтаж схемы с тремя включения осветительных приборов осуществляется по следующему алгоритму:

  • «ноль» подключается непосредственно к лампе,
  • заземление (естественно, при его наличии) также заводится прямо на лампу,
  • фаза подключается на общий контакт одного из проходных выключателей,
  • общий контакт другого проходного выключателя соединяется со свободным проводом лампы,
  • свободные клеммы проходных выключателей попарно соединяются с контактами перекрестного выключателя.

В случае необходимости организации схемы, обеспечивающей включение и выключение света из четырех и более точек, к вышеописанным манипуляциям добавится процесс последовательного соединения перекрестных переключателей посредством коммутации двух соответствующих клемм каждого из них.

Проходной выключатель своими руками

Если брать во внимание стоимость проходных выключателей, то нет ничего удивительно в том, что у некоторых людей возникает вопрос, можно ли сделать проходной выключатель света своими руками и как это осуществить.

Самый простой вариант создания проходного выключателя – модернизация выключателя обычного двухклавишного. Перевернув замыкающее коромысло на 180 градусов и поменяв местами зажимы контактов, вы добьетесь своей цели. Две клавиши при этой нужно объединить в одну большую, так как контакты должны переключаться синхронно.

К сожалению, не все модели двухклавишных выключателей поддаются подобной реконструкции, и никто не гарантирует, что такой самопальный проходной выключатель станет корректно работать и прослужит долгое время.

Практичное решение для вашего дома

Как видите, электрические схемы, обеспечивающие возможность включать и выключать свет в помещении из разных мест, довольно просты в устройстве и могут собраны своими руками даже при наличии небольшого опыта в работе с электрикой.

При этом такие схемы способны привнести в вашу жизнь приятную долю комфорта, поэтому все чаще при организации систем освещения в современных домах и квартирах используются проходные и перекидные выключатели.

Трехточечный проходной переключатель. Автоматический выключатель. Назначение, способы использования и схема подключения

Очень часто мы сталкиваемся с непониманием Покупателями разницы между выключателями и выключателями. Также не совсем понятно, что это за сквозные, промежуточные и перекрестные переключатели и «двусторонние» переключатели.

Посмотрим, в чем разница между этими устройствами.

Мы постараемся писать на доступном для всех языке, поэтому заранее просим вас не придираться к стилю письма, терминам и т. Д.

Переключатель

Выключатель — это устройство, обычно имеющее два контакта, которое во включенном состоянии соединяет контакты (включает лампу), а в выключенном состоянии соответственно разъединяет контакты (выключает лампу). Здесь все очень очевидно и понятно. Как выглядит белый выключатель артикула серии Валена (Valen) с тыльной стороны показано на фото справа.

Обычно производители стрелками указывают, где находятся контакты. Стрелки указывают, что «фазный» провод должен быть подключен к «входу» (это стрелка, указывающая на центр переключателя) переключателя, а провод, идущий к нагрузке (т.е. лампочка), к « выход »(стрелка указывает направление от центра переключателя).«Почему коммутатор должен подключаться именно так?» Будет работать, если подключить наоборот! «- ты спрашиваешь. Правильно, будет работать в обе стороны, но есть два нюанса:

  • При правильно установленном переключателе при включении ключ находится в верхнем положении, а в выключенном — в нижнем. При подключении по схеме, если фазный провод подключен к «выходу» переключателя, а «нагрузка» — к входу, то ключ переключателя всегда будет «перевернут».То есть во включенном состоянии клавиша будет занимать положение «вниз» и должна быть в положении «вверх», и наоборот.
  • При подключении по схеме «фаза» -> нагрузка (лампа) -> переключатель -> «ноль» , фаза сначала пройдет через лампу и обрывается на переключателе (т.е. лампа всегда будет под напряжением, когда переключатель выключен). А это неправильно! При правильной схеме подключения «фаза» в выключенном состоянии прерывается на переключателе и на лампе не будет напряжения (т.е.е. при замене перегоревшей лампы ток не попадет).


Рисунок 1. Схема подключения переключателя.

Также есть двухполюсные выключатели, которые размыкают не только фазный провод, но и нейтральный (нейтральный) провод, но они обычно используются только в особых случаях.

Переключатель

Переключатель — это устройство с тремя (или более) контактами. В состоянии «Вкл.» Замыкает первый и второй контакты, а в состоянии «Выкл.» Замыкает первый и третий контакты.Фактически, переключатель всегда включен, либо в одном, либо в другом.

Отсюда и название «Switch» — переключение с одного контакта на другой. Если в переключателе используются только два контакта, он будет работать как переключатель.

В своих каталогах Legrand использует концепцию «двустороннего переключателя» — так оно и есть, потому что переключатель переключается между двумя контактами. Как правило, переключатель может переключаться между тремя или более контактами, но в механизмах электроустановки, если такое происходит, это происходит крайне редко, поэтому никто не указывает, на сколько направлений переключаются переключатели.Чаще коммутаторы называют «сквозными коммутаторами», но это понятие, на наш взгляд, неверно и не должно использоваться.

Одно из самых популярных приложений для коммутаторов. Для управления освещением понадобится всего два переключателя, а для управления освещением с трех и более мест не обойтись без использования сквозных (перекрестных) переключателей.

Промежуточный (также известный как перекрестный) переключатель — это устройство, которое переключает две отдельные линии крест-накрест (то есть, если до перекрестного переключения фаза шла вправо, а ноль — влево, то они переключаются места при переключении).Внешний вид промежуточных переключателей ничем не отличается от обычных переключателей. Для наглядности смотрите схемы на рисунках.

Промежуточный переключатель обычно используется для.

Этот переключатель называется «кроссовером», потому что при переключении кажется, что он пересекает линии, а «промежуточный» называется, потому что он находится в цепи включения при управлении из трех или более мест в интервале между «двухсторонним переключением». переключатели ».


Рисунок 3. Переключатель контура карты состояний.

Элеко — Интернет-магазин электрики в Иркутске www.site

Михаил, 01 сентября 2013 г.

В статье рассмотрен принцип работы проходного и тумблера, приведены схемы подключения выключателей, предназначенных для управления освещением с двух, трех и более мест. Есть советы по правильному монтажу, связанные с подключением проходных выключателей.

Идея создания проходного переключателя не нова, первые схемы появились в домах радиолюбителей еще в 60-х годах, а особую популярность он приобрел в 90-е, когда первые импортные переключатели «заточились» под управлением лампа из разных мест

Устройство и принцип работы переключателя проходного

Самым простым представителем семейства проходных коммутаторов является одноклавишная версия.


Внешне он ничем не отличается от обычного переключателя, за исключением внутренней схемы, которая обычно указывается на тыльной стороне корпуса.


Принцип работы переключателя контура простой: при перемещении ключа переключателя внутренний подвижный контакт размыкает одну цепь и автоматически замыкает вторую (так называемый переключающий контакт). На рисунке клемма «2» является общим контактом, клеммы «3» и «6» — коммутационным выходом.

Принципиальная схема проходного коммутатора выглядит так:


Используя этот эффект, вы можете создать максимально простую схему проходного переключателя, при которой одна лампа будет управляться сразу с двух разных мест:


1,2 — переключатели проходные; 3 — к корпусу лампы

Подключение выключателя

Монтаж выполняется трехжильным кабелем. Чтобы упростить монтажные работы, его жилы должны быть заводскими по цвету.Сечение выбранного провода должно выдерживать подключаемую через него нагрузку. Поскольку мощность контактов переключателя ограничена 10-16 А, чаще всего для прокладки используется медный гибкий кабель с сечением жил от 1 до 1,5 мм 2.

  1. На выключателе нужно найти общую клемму (на схеме она обозначена цифрой «1»).
  2. На первый выключатель, ближайший к распределительной коробке, подводим «фазу» и подключаем к общей клемме «1».Для монтажа используем самый светлый провод (обычно красный или оранжевый, на пояснительном чертеже используется белый цвет).
  3. Зажимаем два оставшихся провода на выходные клеммы выключателя постоянного выключатель.
  4. На втором переключателе делаем подключение кабеля аналогично первому (строго соблюдаем цветовую маркировку проводов и соответствующих выводов переключателя).
  5. В распределительной коробке подключаем самый светлый провод (на пояснительном чертеже он белый), идущий от второго переключателя с фазой светильника.
  6. Два других провода имеют цветовую кодировку, мы подключаем к проводу того же выключателя, который вышел от первого выключателя (например, зеленый с зеленым, синий с синим и т. Д.), Зеленый и красный провода соединены на пояснительной схеме.
  7. Нулевой и заземляющий провод в распределительной коробке немедленно подключают с помощью того же кабеля, что и к лампе.
  8. Закручиваем скрутку, при необходимости растираем, качественно изолируем оголенные участки проводов.

Вы также можете использовать следующее соединение:


1 — распределительная коробка; 2 — к корпусу лампы; 3, 4 — подрозетники

Сборка переключателя шлейфа выполняется в следующей последовательности:

1. Разбираем выключатель.

2. Подключаемся к выключателю подачи проволоки по схеме.


3.Вставьте выключатель в монтажную коробку и закрепите в ней.


4. Закройте выключатель защитными декоративными накладками.


Важно! С помощью контроля проверить, какой провод находится в «фазной» распределительной коробке. Перед выполнением монтажных работ отключите питание. Не соединяйте медный и алюминиевый провода в одну скрутку.

Проверка работы цепи

Вы должны убедиться, что каждый переключатель может как включать, так и выключать лампу, независимо от положения другого переключателя.


Каждое включение выключателя должно вызывать выключение или включение электрических ламп; если этого не происходит, необходимо найти и исправить ошибку в завершенной установке.

Двухкнопочные переключатели

Эти сквозные переключатели физически состоят из двух одинарных сквозных переключателей, собранных в одном корпусе.


1 — выключатель с двойной втулкой; 2 — переключатели проходные

Двухпроходный переключатель позволяет управлять несколькими лампами одновременно.Для этого соберите следующую схему:


1, 2 — переключатель переходов двойной; 3 — к корпусу лампы

Для коммутации можно использовать как трехжильные провода, проложенные параллельно, так и шестжильные, главное не ошибиться при подключении.

Собранная схема позволяет независимо включать и выключать две лампы или две лампы с двух разных мест.

Например, включить лампу №1, изменив положение первого кулисного переключателя.

Аналогично можно включить вторую лампу.


Отключение может быть выполнено как с помощью первого, так и второго переключателя.

Управление освещением из трех и более мест

В некоторых случаях недостаточно иметь возможность управлять освещением с двух мест. Чтобы эффективно управлять освещением трехэтажной лестницы, вам понадобится не менее трех контрольных точек. В этом случае используется дополнительный тип переключателя совместно с классическими сквозными переключателями.


Перекрестный переключатель устанавливается для разрыва соединения между двумя проходными переключателями, это позволяет создать еще одну точку управления освещением.


1, 3 — переключатели проходные; 2 — крестовой переключатель; 4 — к корпусу лампы

За счет дополнительной последовательной установки перекрестных выключателей можно увеличить количество мест, из которых осуществляется управление освещением.

Как видно из схемы, переключение любого из переключателей включает или выключает освещение.


Сборку цепи управления лампой из трех разных мест можно выполнить следующим образом:


1 — переключатель проходной; 2 — крестовой переключатель; 3, 5 — подрозетники для проходных выключателей; 4 — гнездо для переключателя кроссовера; 6 — распределительная коробка; 7 — к корпусу лампы

Установка осуществляется аналогично рассмотренному выше варианту с однопроходным переключателем; для установки понадобится двух- и трехжильный кабель.

Как видно из рассмотренного материала, управлять одной лампой можно из двух разных мест с помощью переключателей прохода. Использование перекрестного переключателя позволяет увеличить количество контрольных точек до трех и более.

Влад Тараненко, rmnt.ru


Очень часто в новых квартирах нас встречают длинные коридоры или лестницы, и тут сразу возникает вопрос с их освещением. Многие ставят один выключатель, и когда темно и нужно выключить свет, чтобы вернуться в темноту.Но есть решение, которое поможет. Решение старое и достаточно простое — кроссовер или непрерывный переключатель.

Что такое проходной выключатель

В обычном выключателе у нас 2 контакта, т.е. выключая или включая свет ключом, мы просто разрываем цепь. Таких контактов в перекрестном выключателе три, т.е. при выключении или включении переключателя переключатель переключается не на воздух, а на другой контакт. Соответственно, если такие выключатели разместить в разных концах коридора, свет можно будет выключать и включать на обоих концах! Конечно, для этого потребуется не только наличие 2-х специальных переключателей, но и немного другая разводка, поэтому наличие таких переключателей необходимо предусмотреть при ремонте помещения.Также есть 2 клавишных кросс-переключателя, они позволяют решать более сложные и нетрадиционные световые задачи.

Схема подключения

На анимации ниже показано подключение проходных переключателей, эта схема подходит для лестниц, длинных коридоров, дорожек и т. Д. По краям устанавливаются сквозные переключатели, т.е. куда бы мы ни пошли, мы можем включать и выключать свет с обеих сторон коридора.

Что такое перекрестный переключатель

Устройство перекрестного переключателя сложнее, чем проходное.У него не 3, а 4 контакта, причем сам выключатель может замкнуть любую из двух линий. Такой выключатель используется, например, для включения сложной группы светильников.

Схема подключения

На анимации ниже показана схема подключения 2 проходных и 1 перекрестного переключателя. Внимательно смотрите анимацию и принцип работы вам сразу станет понятен.

Видео подключения

Переключатель проходной, он же — переключатель. Некоторые называют это переключателем.Алгоритм его работы однозначно определяется именем. Переключатель обеспечивает соединение одного общего контакта с тем или другим из двух вариантов. Редко, но есть еще и трехклавишные переключатели.

Следует отметить, что цены на проходные выключатели в последнее время зачастую даже ниже, чем на обычные выключатели того же производителя (например, это относится к Legrand).

Поэтому многие продавцы перестают покупать переключатели, предлагая вместо них переключатели.На самом деле, в этом нет ничего плохого. Просто используйте два из трех контактов переключателя — общий и один из альтернативных. И внешне такие устройства похожи.

Управление освещением с двух мест

Использование выключателей позволяет организовать включение и выключение нагрузки (обычно — освещения) с нескольких точек. На первом рисунке показан принцип работы такой схемы. Смысл ее работы в том, что в схеме, состоящей из двух противоположно соединенных переключателей (подключены альтернативные контакты), изменение положения любого из переключателей сразу вызывает включение или отключение общих контактов.


Рисунок 1

Для обычного переключателя состояние «включено» и «выключено» определяется положением ключа. Для цепочки из двух переключателей при любом фиксированном положении ключа одного переключателя можно включить или выключить подключенную нагрузку, изменив положение ключа другого переключателя.

Основная проблема при установке проходных выключателей — это очень точное определение назначения всех контактов установленных устройств. Принципиальная же схема Устройство может быть реализовано конструктивно по-разному.

Все три контакта могут находиться на одной стороне механизма, могут быть распределены в любой точке в любом сочетании. Выключатели выпускают самые разные производители (Legrand, ABB, Schneider Eltctric …).


Пример расположения проходных переключателей на рисунке (рисунок 2)

Если принципиальная схема использования переключателей для управления светом с двух мест выглядит очень простой, то реальное соединение с помощью соединительных коробок требует особой осторожности.

Как показано на рисунке, к цепи подключены как минимум два двухжильных и два трехжильных провода.

Схема подключения двух выключателей с разных мест (рисунок 3)

При использовании двухкнопочных переключателей количество подходящих к ним проводов увеличивается вдвое.

Трехточечное управление освещением

Если вы внимательно посмотрите на следующую картинку, вы увидите, что вы можете управлять освещением из трех мест и, в общем, из любого количества мест. Для этого нужно только вставить дополнительное устройство в промежуток между нашими простыми переключателями.

Это устройство называется перекрестным (или промежуточным) переключателем.Если вы внимательно посмотрите на рисунок 4, становится ясно, что это устройство состоит из двух сквозных переключателей, между которыми устанавливается механическое соединение.


Рис. 4. Подключение из трех и других точек

С одной стороны, двухпроводная линия от первого переключателя в цепи подключена к общим контактам обоих переключателей, которые являются частью промежуточного переключателя. Выходные альтернативные контакты этих переключателей объединены, как показано на рисунке.


Рисунок 5. Пример расположения 3 переключателей

В результате имеем два рабочих состояния промежуточного переключателя. Либо входная двухпроводная линия продолжается после этого переключателя «как есть», либо после переключателя линии меняются местами («крест», отсюда и название). Таким образом, у нас есть устройство, выполняющее функцию, аналогичную тому, которое выполняет первый или последний переключатель в схеме.


Рисунок 6

В состоянии, показанном на рисунке, цепь замкнута.Его можно открыть, изменив состояние любого из переключающих устройств.

Монтаж такой схемы (схемы подключения см. На рисунках) сложен только по количеству подключаемых проводов. При использовании в нем одной распределительной коробки необходимо соединить в двух точках (скрутка, клеммные разъемы) два двухжильных, два трехжильных и один четырехжильный провод. Для такого количества проводов и соединений необходима распределительная коробка достаточного размера.

Ситуацию можно несколько облегчить, если использовать дополнительную распределительную коробку (как показано на следующем рисунке).


Рисунок 7. Подключение автоматических выключателей в 2 распределительных коробках

Переключатели двухкнопочные

Все рассмотренные устройства доступны в двухклавишном исполнении. Схема подключения двухкнопочного проходного переключателя Legrand представлена ​​на рисунке 8. Следует отметить, что двухкнопочные переключатели выполнены в виде комбинации двух переключателей, установленных в механизме напротив друг друга.


Рисунок 8

При монтаже таких устройств необходимо очень внимательно разбираться в назначении всех контактов.

Вообще говоря, использование двухкнопочных переключателей встречается довольно редко. В этом случае количество коммутируемых проводов увеличивается вдвое по сравнению с их количеством, что необходимо при использовании одноклавишных устройств. И мы уже отметили, что количество проводов и соединений в таких схемах далеко не маленькое.

Несколько слов об использовании проходных и промежуточных коммутаторов. Прежде всего, они удобны в помещениях и на площадках, размер которых большой, а вход и выход находятся далеко друг от друга.Такой прием удобно использовать для освещения дорожек в саду, прихожей или крыльце дома, очень часто их применяют для управления светом на лестнице многоэтажного дома.

Для управления освещением из большого количества точек использование проходных и промежуточных переключателей является надежным методом, но очень дорогостоящим с точки зрения расхода проводов и трудоемких коммутационных работ.


Рисунок 9

В этом случае более приемлемо использование бистабильных (то есть имеющих два стабильных состояния) реле.Для управления такими реле используются импульсные сигналы от кнопок (переключатели без фиксации положения). Сигналы от всех таких кнопок подключены к бистабильному реле параллельно.


Рисунок 10. Бистабильное реле

Получается очень гибкая и простая в исполнении схема управления с неограниченным количеством точек управления. Само по себе бистабильное реле обычно изготавливается в виде стандартного модуля, установленного на DIN-рейку в коробке. Основным недостатком данной схемы является то, что бистабильное реле можно купить, как правило, только в специализированной компании.

Что такое сквозной переключатель

В отличие от простого переключателя, где происходит обычное прерывание цепи, сквозной переключатель имеет три контакта и механизм переключения между ними. Двухкнопочный сквозной переключатель имеет шесть контактов и, по сути, представляет собой два одноклавишных сквозных переключателя, независимых друг от друга. Основное преимущество проходных выключателей — это возможность включать и выключать светильник (группу светильников) с двух и более точек. Часто эти переключатели еще называют дублирующими или перекидными.

Область применения

1. Лестницы — выключатели установлены на первом и втором этаже. На одном этаже включили свет, поднялись по лестнице и выключили. Если ваш дом трех- или четырехэтажный, то можно воспользоваться схемой, изображенной на рисунках 2 и 3.
2. Спальня — один выключатель установлен у входа в комнату, а второй и третий по обе стороны от кровати. Зашел в комнату — включил свет, лег спать — выключил. Для включения освещения с 3-х мест используется схема кросс-переключателя (см. Рис.2).
3. Коридоры — в начале коридора включили свет, прошли по коридору и выключили на другом конце.
4. На дачных участках — для освещения трасс.
Конечно, этот список далеко не исчерпывающий, и можно придумать множество других вариантов.

Pic1

Три контрольных точки:

Для управления с трех точек вам понадобятся два переключателя в двух направлениях и один перекрестный переключатель. Перекрестные переключатели — это тип непрерывных переключателей, которые были специально разработаны для включения / выключения одной и той же лампы (группы ламп) из трех или более точек.Он имеет четыре контакта и его подключение к цепи довольно простое.

Перекрестный переключатель можно купить в магазине или сделать из двухкнопочного переключателя. Для этого нужно поставить пару перемычек, затем аккуратно приклеить клавиши клеем или заменить их одной большой клавишей от одноклавишного переключателя.

Схема подключения проходных и кроссоверных переключателей для 3-х контрольных точек выглядит так:

Pic2

Четыре контрольных точки и более:

Принцип работы данной схемы не отличается от предыдущей. ; в схему добавляется еще один промежуточный перекрестный переключатель.Таким образом, количество сквозных переключателей может увеличиваться даже до бесконечности.

Рис.3

Тумблерные переключатели — однополюсный переключатель VS. 3-позиционный переключатель

Включить и выключить свет в доме так же просто, как «щелкнуть выключателем». Но знаете ли вы, что не все переключатели одинаковы? Они могут иметь разное количество выводов и разное напряжение. Наиболее распространенными тумблерами, используемыми для освещения, являются однополюсный переключатель и трехпозиционный переключатель.

Однополюсный выключатель

Однополюсный выключатель имеет маркировку включения и выключения на переключателе. Он имеет две винтовые клеммы цвета латуни для проводов под напряжением, где одна клемма предназначена для источника питания, а одна клемма — для нагрузки (приспособления). Эти переключатели просты в том, что клеммы цвета латуни взаимозаменяемы. Таким образом, к любой клемме можно подключить провода нагрузки и питания. Однако подключение обоих к одному и тому же выводу не сделает переключатель работоспособным. Кроме того, большинство однополюсных переключателей имеют зеленую клемму заземления.

Трехпозиционный переключатель

Разница между однополюсным и трехпозиционным переключателем заключается в количестве клемм и маркировке включения / выключения. Трехпозиционные переключатели не имеют маркировки включения и выключения на переключателе, потому что два разных положения переключателя переключают источник питания между двумя нагрузками. На переключателе четыре клеммы — зеленый, черный и две латунные. Зеленая клемма, как и однополюсный переключатель, предназначена для заземления переключателя. Источник питания подключается к черному выводу, известному как общий, помеченному как «COM».«И, наконец, две винтовые клеммы цвета латуни для подключения к тумблерам или нагрузкам.

Существует много других видов тумблеров, в зависимости от количества полюсов и ходов, используемых для различных приложений. Полюса — это количество силовых цепей, и выбросы — это количество состояний, в которые ток может пройти через переключатель. Упомянутый выше однополюсный переключатель является однополюсным однополюсным переключателем (SPST), поскольку имеется один источник питания и одна цепь. А трехпозиционный переключатель представляет собой однополюсный двухходовой (SPDT), один источник питания с двумя направлениями.Соглашение об именах продолжается с числа полюсов с числом бросков (# P # T).

Когда дело доходит до освещения, наиболее распространенными тумблерами являются однополюсные и трехпозиционные переключатели. Знание основ клемм переключателя помогает людям понять основные схемы подключения для различных приложений, таких как освещение и управление устройствами.

Три правила работы схемы | ОРЕЛ

Приветствую новых инженеров. Это прекрасное место для начала, с простой схемы, которая является строительным блоком для каждого элемента электроники в нашем мире.Когда вы полностью поймете, вы будете готовы начать собственное путешествие по их проектированию и устранению неисправностей.

Строительные блоки схемы

Перед тем, как погрузиться в полную схему, разумно сначала поразмыслить над отдельными частями, составляющими единое целое: потоком, нагрузкой и проводимостью. Мы разбили эти принципы на три основных правила:

  • Правило 1 — Электричество всегда должно течь от более высокого напряжения к более низкому.
  • Правило 2 — Электричество всегда требует работы.
  • Правило 3 — Электричество всегда требует пути.

Правило 1. Все дело в потоке

Каждой электронной схеме нужен источник питания, будь то батарея AA, которую можно вставить в контроллер Xbox One, или что-то с большей силой, например настенная розетка, которая может питать большое количество устройств. Электричество, исходящее от этих источников, измеряется напряжением, вольтами или просто В.

Да, мы говорим о таком напряжении! Когда он достаточно высок, он может нанести серьезный ущерб.

Независимо от того, откуда течет эта энергия, ее цель всегда одна — переходить из одной области в другую и в процессе выполнять некоторую работу, например, заряжать компьютер или включать свет.

Фундаментальным компонентом этого потока энергии является то, что электричество будет всегда течь от более высокого напряжения к более низкому напряжению.Всегда. Это называется потенциалом . Можно сказать, что это потенциальное электричество должно перемещаться из одного района в другой.

Поток высокого (положительного) напряжения в низкое (отрицательное) напряжение.

Как это соотносится с нашим реальным миром? Возьмем для примера простую батарею:

  • Батарея имеет две стороны, отрицательная сторона — это низкое напряжение, измеряемое при 0 В, положительная сторона — это высокое напряжение, измеряемое при 1,5 В.
  • Энергия всегда будет вытекать из положительной стороны батареи, чтобы перейти к отрицательной стороне, чтобы найти баланс.
  • Для этого он должен течь по чему-то, обычно по медному проводу, и в процессе выполнять некоторую работу, например включать свет или вращать двигатель.

В конце концов, все электричество хочет найти равновесие на земле (0 В). Единственный способ сделать это в батарее — сместить положительный полюс на отрицательный. Мы извлекаем выгоду из этого естественного стремления к энергии, размещая некоторые объекты так, чтобы они проходили через них, что позволяет нам включать свет, двигатели, а также включать и выключать транзисторы в компьютере.

Все это составляет Правило 1 — Электричество всегда будет хотеть течь от более высокого напряжения к более низкому напряжению. Запомните это; это никогда не изменится.

Правило 2 — Приступая к работе

Итак, у вас может быть электричество, которое хочет перетекать с более высокого напряжения на более низкое, но какой в ​​этом смысл? Единственная причина заставить электричество течь — это немного поработать. Этот процесс, когда электричество выполняет работу в цепи, называется нагрузка .Без нагрузки или работы с электричеством нет смысла иметь электрическую цепь. Нагрузка может быть чем угодно, например:

  • Spinning двигатель, который вращает пропеллеры дрона.
  • Включение светодиода на кабеле для зарядки, чтобы указать, что ваш ноутбук подключен.
  • Подключение гарнитуры к ноутбуку по беспроводной сети для прослушивания музыки.

В это время года электрическая нагрузка бывает разных форм, одна из которых питает эти светодиоды.(Источник изображения)

Обратите внимание, что все эти нагрузки являются действиями. Электричество всегда заставляет происходить что-то физическое, даже если мы не можем увидеть это собственными глазами. Но почему это называется нагрузкой? Вы можете думать об этом как об обузе для всего, что питает вашу схему. Для вращения двигателя требуется электричество, а это забирает у вашего источника питания энергию, которая у него когда-то была.

Помните Правило 2 — У электричества всегда есть работы, которые необходимо выполнить . Без работы схема бесполезна.

Правило 3 — По пути

Третье и последнее правило — это то, что делает возможными первые два правила — электричеству нужен путь для передвижения. Этот путь действует как своего рода посредник. Допустим, вы подключаете зарядное устройство ноутбука к розетке, а затем к ноутбуку. Разумеется, он заряжается, но без этого шнура между компьютером и розеткой ничего бы не произошло.

Это связано с тем, что электричеству нужен путь, по которому можно добраться из одного пункта назначения в другой.И путь всегда один и тот же:

  • Электроэнергия — Электричество всегда исходит от источника, например батареи или розетки.
  • Путешествие — Затем он путешествует по тропе, выполняя свою работу по пути.
  • Назначение — Затем он прибывает в конечный пункт назначения, находя покой в ​​точке с самым низким напряжением.

Этот путь, по которому проходит электричество, состоит из так называемого проводящего материала, который состоит из обычных металлов, таких как медь, серебро, золото или алюминий.Электроэнергетика любит путешествовать по этой штуке. Электричество также очень избирательно, и оно не мешает путешествовать по дорожкам, сделанным из индуктивных материалов. Сюда входят такие вещи, как резина, стекло и даже воздух.

Видите все эти медные провода? Электричество любит путешествовать по этому проводящему материалу.

Помните Правило 3 — Электричеству всегда нужен путь, по которому можно пройти по . Без пути он никуда не денется.

Собираем все вместе — полная схема

Давайте теперь объединим все эти правила в полное определение схемы.

Цепь — это просто путь, по которому может течь электричество.

И с помощью этой простой концепции мужчины и женщины построили безумно сложные цепи, которые отправили человечество в космос и в глубины наших глубочайших океанов. А пока постараемся упростить задачу и составим нашу первую схему. Вот что вам понадобится, если вы хотите продолжить:

  • (1) аккумулятор 9 В
  • (1) резистор 470 Ом
  • (1) Стандартный светодиод
  • (3) Измерительные провода с зажимами типа «крокодил»

Шаг 1 — Добавление источника питания

Возвращаясь к нашему правилу трех, первое гласит, что электричество всегда будет течь от более высокого напряжения к более низкому.Итак, это означает, что нам нужен какой-то источник питания в этой цепи, мы добавим нашу батарею на 9 В.

Начало нашей схемы начинается с 9-вольтовой батареи.

Правило 1 теперь выполнено. У нас есть какой-то источник питания, у которого высокое напряжение на положительном конце (+) и 0 В на отрицательном конце (-). Но все это электричество будет потрачено зря, если мы не будем с ним что-то делать, так что давайте дадим ему немного работы (нагрузку).

Шаг 2. Добавляем немного работы

Теперь мы хотим, чтобы электричество поработало за нас, прежде чем оно успокоится, поэтому давайте включим простой светодиодный индикатор.Скорее всего, вы видели их повсюду: на своей рождественской елке, в фонариках, лампочках и т. Д. Итак, мы возьмем этот светодиод и поместим его с другой стороны нашей батареи.

Единственное, что следует упомянуть о светодиодах, это то, что они очень чувствительны и не могут пропускать слишком много энергии, поэтому нам нужно добавить так называемый резистор. Мы не будем вдаваться в подробности сейчас, но просто знаем, что резистор будет действовать так, как сказано в его названии, — противостоять току электричества, достаточному для того, чтобы наш светодиод справился с ним. Разместим резистор слева от светодиода.

Добавляем немного работы в нашу схему с помощью светодиода и резистора.

Отлично, Правило 2 выполнено, и у нашего электричества есть над чем поработать. Но у него нет возможности завершить свою работу без пути, давайте добавим это сейчас.

Шаг 3. Указание пути

Эта деталь проста, нам просто нужно соединить наши зажимы типа «крокодил» между всеми компонентами нашей схемы. Если вы все сделаете правильно, то ваш светодиод будет ярко светить! Помните, что при подключении проводов к батарее всегда подключайте сначала положительный конец, а затем отрицательный.Посмотрите на картинку ниже, чтобы увидеть, как все это должно быть связано вместе.

Теперь у нашего электричества есть проход с добавленными зажимами из крокодиловой кожи

Типы цепей

Теперь, прежде чем вы убежите в дикую природу и создадите свои собственные схемы, вам нужно знать о двух способах описания схемы, один из которых может испортить жизнь вашей схемы, они включают:

Замкнутый или открытый контур

Цепь считается замкнутой цепью , когда есть полный путь, по которому может проходить электричество.Это также называется полной схемой. Теперь, если ваша цепь не работает должным образом, это означает, что это разомкнутая цепь . Это может быть вызвано несколькими причинами, включая неплотное соединение или обрыв провода.

Вот простой и наглядный способ понять разницу между замкнутой и разомкнутой цепями. Взгляните на схему ниже и обратите внимание, что это та же самая цепь, которую мы создали выше, только теперь в ней есть переключатель.

Вот схема цепи, которую мы сделали выше.Обратите внимание на добавление переключателя.

Прямо сейчас переключатель поднят, и вы увидите, что электричество не имеет плавного пути, поскольку переключатель разрывает соединение. Это разомкнутая цепь. Но что произойдет, если щелкнуть выключателем?

Теперь наш выключатель срабатывает, замыкая цепь, позволяя электричеству течь к нашему светодиоду!

Ага! Теперь вы только что проложили полный путь для вашего электричества, и ваш светодиод загорится! Это замкнутая схема.

Короткое замыкание

Тогда есть короткое замыкание . Если вы не даете своей схеме никакой работы, но все же обеспечиваете некоторую мощность, приготовьтесь к некоторым проблемам. Посмотрите на нашу схему ниже, мы вынули светодиод, резистор и переключатель, оставив только медный провод и батарею.

Вот цепь, которая скоро станет коротким замыканием! Без выполнения каких-либо действий эта батарея скоро сгорит.

Если мы соединим эту штуку вместе в ее физической форме, то аккумулятор и провод сильно нагреются, и в конечном итоге батарея разрядится.Почему это происходит? Когда вы даете электричеству некоторую работу в цепи, такую ​​как зажигание светодиода или вращение двигателя, это ограничивает количество электричества, которое будет проходить через вашу цепь.

Но в ту минуту, когда вы убираете из своей цепи любую работу, электричество сходит с ума и бежит по своему пути на полной скорости, и ничто не сдерживает его. Если вы позволите этому случиться в течение длительного периода времени, то окажетесь с поврежденным источником питания, разряженной батареей или, может быть, что-то еще хуже, например, пожар!

Ого! Не пытайтесь делать это дома.Вот здоровенная батарея фонаря на 12 В, замкнутая во имя науки. (Источник изображения)

Итак, если вы когда-либо работали с цепью, и ваш провод или батарея сильно нагреваются, тогда немедленно выключите все, и ищите любые короткие замыкания.

Ты сейчас опасен

Итак, молодой мастер электроники, теперь у вас есть вся информация, необходимая для управления скромной схемой. Понимая, как работает схема, вы скоро сможете выполнять проекты любых форм и размеров.Но прежде чем начать собственное путешествие, запомните Руководящее правило троек:

.

  • Правило 1 — Электричество всегда должно течь от более высокого напряжения к более низкому.
  • Правило 2 — Электричество всегда требует работы.
  • Правило 3 — Электричеству всегда нужен путь.

И если ваша схема когда-нибудь станет очень горячей, выключите ее! У вас короткое замыкание.

Готовы построить свою первую схему сегодня? Попробуйте Autodesk EAGLE бесплатно.

Учебное пособие по физике: два типа соединений

Когда в цепи с источником энергии присутствуют два или более электрических устройства, существует несколько основных способов их соединения. Они могут быть соединены последовательно или соединены параллельно . Предположим, что в одну цепь включены три лампочки. При последовательном соединении они соединяются таким образом, чтобы отдельный заряд проходил через каждую из лампочек последовательно.При последовательном соединении заряд проходит через каждую лампочку. При параллельном подключении один заряд, проходящий через внешнюю цепь, будет проходить только через одну из лампочек. Лампочки помещаются в отдельную ветвь, и заряд, проходящий по внешней цепи, проходит только через одну из ветвей на обратном пути к клемме с низким потенциалом. Способы подключения резисторов будут иметь большое влияние на общее сопротивление цепи, общий ток в цепи и ток в каждом резисторе.В Уроке 4 мы исследуем влияние типа подключения на общий ток и сопротивление цепи.

Обычная физическая лаборатория состоит в построении обоих типов цепей с лампами, подключенными последовательно, и лампами, подключенными параллельно. Эти две схемы сравниваются и противопоставляются.

Основные вопросы, вызывающие беспокойство при такой лабораторной деятельности, как правило, следующие:

  • Что происходит с общим током в цепи при увеличении количества резисторов (лампочек)?
  • Что происходит с общим сопротивлением в цепи при увеличении количества резисторов (лампочек)?
  • Если один из резисторов выключен (т.е.е., лампочка гаснет ), что происходит с другими резисторами (лампочками) в цепи? Они остаются включенными (т.е. горят)?

Исследование последовательных соединений

При проведении лабораторных работ для двух типов цепей производятся совершенно разные наблюдения. Последовательная цепь может быть построена путем соединения лампочек таким образом, чтобы оставался единственный путь для потока заряда; луковицы добавляются к той же линии без точки ветвления.По мере того, как добавляется все больше и больше лампочек, яркость каждой лампочки постепенно уменьшается. Это наблюдение является индикатором того, что ток в цепи уменьшается.

Итак, для последовательных цепей по мере добавления резисторов общий ток в цепи уменьшается. Это уменьшение тока согласуется с выводом о том, что общее сопротивление увеличивается.

Последнее наблюдение, которое является уникальным для последовательных цепей, — это эффект вынимания лампы из розетки.Если одна из трех лампочек в последовательной цепи вывинчивается из своего патрона, то наблюдается, что остальные лампочки сразу же гаснут. Чтобы устройства в последовательной цепи работали, каждое устройство должно работать. Если один погаснет, погаснут все. Предположим, что вся бытовая техника на домашней кухне подключена последовательно. Чтобы холодильник работал на этой кухне, должны быть включены тостер, посудомоечная машина, мусоропровод и верхний свет. Чтобы одно устройство, включенное последовательно, работало, все они должны работать.Если ток равен , отрежьте от любого из них, он отключается от всех. Совершенно очевидно, что приборы на кухне не подключены последовательно.

Исследование параллельных подключений

Используя тот же набор проводов, D-элементов и лампочек, можно исследовать параллельные цепи таким же образом. Можно исследовать влияние количества резисторов на общий ток и общее сопротивление.На схемах ниже изображены обычные способы построения схемы с параллельным подключением лампочек. Следует отметить, что исследование общего тока для параллельных соединений требует добавления индикаторной лампы . Лампа индикатора размещена вне ответвлений и позволяет наблюдать влияние дополнительных резисторов на общий ток. Лампочки, размещенные в параллельных ветвях, служат только индикатором тока, протекающего через эту конкретную ветвь.Поэтому, исследуя влияние количества резисторов на общий ток и сопротивление, нужно внимательно следить за лампочкой индикатора, а не за лампочками, помещенными в ответвления. На диаграмме ниже показаны типичные наблюдения.

Из показаний лампочек индикаторов на приведенных выше схемах видно, что добавление большего количества резисторов приводит к тому, что лампочка индикатора становится ярче. Для параллельных цепей с увеличением количества резисторов общий ток также увеличивается.Это увеличение тока согласуется с уменьшением общего сопротивления. Добавление резисторов в отдельную ветвь приводит к неожиданному результату уменьшения общего сопротивления!

Если отдельная лампочка в параллельной ветви вывинчивается из патрона, то ток в общей цепи и в других ветвях все равно остается. Удаление третьей лампочки из патрона приводит к преобразованию схемы из параллельной цепи с тремя лампами в параллельную цепь с двумя лампами.Если бы приборы на бытовой кухне были подключены параллельно, то холодильник мог бы работать без необходимости включения посудомоечной машины, тостера, вывоза мусора и верхнего освещения. Одно устройство может работать без включения других. Поскольку каждое устройство находится в своей отдельной ветви, выключение этого устройства просто прекращает подачу заряда в эту ветвь. По другим ответвлениям к другим приборам по-прежнему будет поступать заряд. Совершенно очевидно, что бытовая техника в доме подключена параллельно.

Аналогия с телефонной будки

Эффект от добавления резисторов при параллельном добавлении совершенно иной, чем при их последовательном добавлении. Последовательное добавление большего количества резисторов означает увеличение общего сопротивления; однако добавление большего количества резисторов параллельно означает уменьшение общего сопротивления. Тот факт, что можно добавить больше резисторов параллельно и добиться меньшего сопротивления, многих очень беспокоит. Аналогия может помочь прояснить причину этой изначально надоедливой правды.

Поток заряда по проводам цепи можно сравнить с потоком автомобилей по платной дороге в очень многолюдном мегаполисе. Основными источниками сопротивления на платных дорогах являются посты. Остановка автомобилей и принуждение их к уплате дорожных сборов не только замедляет движение автомобилей, но и в районе с интенсивным движением, также вызовет узкое место с резервной копией на многие мили. Скорость, с которой автомобили проезжают через точку на этой платной системе, значительно снижается из-за наличия платы за проезд.Очевидно, что платные автодорожные сборы являются основным препятствием для движения автомобилей.

Теперь предположим, что в попытке увеличить скорость потока Управление взимания платы за проезд решает добавить еще две точки взимания платы за проезд на конкретной станции взимания платы, где узкое место создает проблемы для путешественников. Они рассматривают два возможных способа подключения своих платных пунктов оплаты — последовательно или параллельно. При последовательном добавлении платных постов (т. Е. Резисторов) они будут добавлять их таким образом, чтобы каждая машина, движущаяся по шоссе, должна была бы последовательно останавливаться у каждой платной поста.При наличии только одного пути через пункты взимания платы за проезд каждая машина должна будет останавливаться и платить за проезд в каждой будке. Вместо того, чтобы платить 60 центов один раз в одной будке, теперь им придется платить по 20 центов трижды в каждой из трех платных. Совершенно очевидно, что добавление платных постов последовательно имело бы общий эффект увеличения общего сопротивления и уменьшения общей скорости потока автомобиля (т. Е. Тока).

Другим способом добавления двух дополнительных платных пунктов на этой конкретной платной станции было бы параллельное добавление платных пунктов.Каждую будку можно разместить в отдельном филиале. Машины, проезжающие по платной дороге, останавливались только у одной из трех будок. У автомобилей будет три возможных пути, по которым они будут проезжать через станцию ​​сбора платы за проезд, и каждая машина выберет только один из маршрутов. Совершенно очевидно, что параллельное добавление платных постов приведет к уменьшению общего сопротивления и увеличению общей скорости потока автомобилей (т. Е. Тока) вдоль платной дороги. Как и в случае параллельного добавления большего количества электрических резисторов, добавление дополнительных плат в параллельных ветвях создает меньшее общее сопротивление.Обеспечивая большее количество путей (то есть ответвлений), по которым заряд и автомобили могут проходить через узкие места, скорость потока может быть увеличена.

Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействие — это именно то, что вы делаете, когда используете одну из интерактивных функций The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока.Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, а также расположить и подключить их так, как захотите. Вольтметры и амперметры позволяют измерять ток и падение напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение. Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


Проверьте свое понимание

1. Обратите внимание на электрическую проводку, указанную ниже. Укажите, являются ли соединения последовательными или параллельными. Объясните каждый выбор.

2. Ниже показаны две электрические схемы. Для каждой цепи укажите, какие два устройства подключены последовательно, а какие — параллельно.

Последовательно? ___________________

Параллельно? _________________

Последовательно? ___________________

Параллельно? _________________

Импульсный источник питания и импульсные регуляторы

Линейные регуляторы напряжения обычно намного эффективнее и проще в использовании, чем эквивалентные схемы регуляторов напряжения, сделанные из дискретных компонентов, таких как стабилитрон и резистор, или транзисторы и даже операционные усилители.

Самыми популярными типами линейных и фиксированных регуляторов выходного напряжения на сегодняшний день являются серия 78… положительного выходного напряжения и серия 79… отрицательного выходного напряжения. Эти два типа дополнительных регуляторов напряжения обеспечивают точное и стабильное выходное напряжение в диапазоне от примерно 5 до примерно 24 вольт для использования во многих электронных схемах.

Существует широкий спектр этих трехконтактных стабилизаторов напряжения, каждый со своими собственными встроенными схемами регулирования напряжения и ограничения тока.Это позволяет нам создавать множество различных шин и выходов для источников питания, как с одним, так и с двумя источниками питания, подходящих для большинства электронных схем и приложений.

Существуют даже линейные регуляторы переменного напряжения, обеспечивающие постоянное выходное напряжение от чуть выше нуля до нескольких вольт ниже максимального выходного напряжения.

Большинство источников питания постоянного тока состоят из большого и тяжелого понижающего сетевого трансформатора, диодного выпрямителя, двухполупериодного или полуволнового, и схемы фильтра для удаления любых пульсаций из выпрямленного постоянного тока для получения достаточно плавного выходного напряжения постоянного тока. .

Кроме того, для обеспечения правильного регулирования выходного напряжения источников питания в условиях изменяющейся нагрузки может использоваться какая-либо форма регулятора напряжения или схемы стабилизатора, линейная или переключаемая. Тогда типичный источник питания постоянного тока будет выглядеть примерно так:

Типовой источник питания постоянного тока

Эти типовые конструкции блоков питания содержат большой сетевой трансформатор (который также обеспечивает изоляцию между входом и выходом) и цепь последовательного регулятора.Схема регулятора может состоять из одного стабилитрона или трехконтактного линейного последовательного регулятора для создания необходимого выходного напряжения. Преимущество линейного регулятора состоит в том, что для установки выходного напряжения схеме источника питания требуются только входной конденсатор, выходной конденсатор и некоторые резисторы обратной связи.

Линейные регуляторы напряжения вырабатывают регулируемый выход постоянного тока, последовательно размещая непрерывно проводящий транзистор между входом и выходом, управляя им в его линейной области (отсюда и название) его вольт-амперных (i-v) характеристик.

Таким образом, транзистор действует больше как переменное сопротивление, которое постоянно подстраивается под любое значение, необходимое для поддержания правильного выходного напряжения. Рассмотрим эту простую схему регулятора последовательного транзистора ниже:

Схема транзисторного регулятора серии

Здесь эта простая схема регулятора эмиттерного повторителя состоит из одного транзистора NPN и напряжения смещения постоянного тока для установки необходимого выходного напряжения. Поскольку схема эмиттерного повторителя имеет единичный коэффициент усиления по напряжению, прикладывая подходящее напряжение смещения к базе транзистора, на выводе эмиттера получается стабилизированный выходной сигнал.

Поскольку транзистор обеспечивает усиление по току, выходной ток нагрузки будет намного выше, чем базовый ток, и еще выше, если используется схема транзистора Дарлингтона.

Кроме того, при условии, что входное напряжение достаточно высокое, чтобы получить желаемое выходное напряжение, выходное напряжение регулируется базовым напряжением транзистора и в этом примере задается как 5,7 В для получения выходного напряжения 5 В на нагрузку как примерно 0,7 напряжение падает на транзисторе между выводами базы и эмиттера.Тогда в зависимости от значения базового напряжения может быть получено любое значение выходного напряжения эмиттера.

Хотя эта простая схема последовательного регулятора будет работать, обратная сторона этого заключается в том, что последовательный транзистор постоянно смещен в своей линейной области, рассеивая мощность в виде тепла. Поскольку весь ток нагрузки должен проходить через последовательный транзистор, это приводит к низкому КПД, потере мощности V * I и непрерывному тепловыделению вокруг транзистора.

Кроме того, одним из недостатков серийных регуляторов напряжения является то, что их максимальный непрерывный выходной ток ограничен всего несколькими ампер или около того, поэтому обычно используются в приложениях, где требуются выходы малой мощности.

Когда требуется более высокое выходное напряжение или текущая мощность, обычной практикой является использование импульсного стабилизатора, обычно известного как импульсный источник питания , для преобразования сетевого напряжения в любую требуемую более высокую выходную мощность.

Импульсные источники питания или SMPS становятся обычным явлением и в большинстве случаев заменяют традиционные линейные источники питания переменного тока в постоянный как способ сократить энергопотребление, уменьшить тепловыделение, а также размер и масса.

Импульсные источники питания

теперь можно найти в большинстве ПК, усилителях мощности, телевизорах, приводах двигателей постоянного тока и т. Д., А также практически во всем, что требует высокоэффективного источника питания, поскольку импульсные источники питания становятся все более зрелой технологией. .

По определению, импульсный источник питания (SMPS) — это тип источника питания, в котором для обеспечения необходимого выходного напряжения используются полупроводниковые методы переключения, а не стандартные линейные методы. Базовый импульсный преобразователь состоит из каскада переключения мощности и схемы управления.

Каскад переключения мощности выполняет преобразование мощности из входного напряжения схемы V IN в ее выходное напряжение V OUT , которое включает фильтрацию выходного сигнала.

Основным преимуществом импульсного источника питания является его более высокая эффективность по сравнению со стандартными линейными регуляторами, и это достигается внутренним переключением транзистора (или силового MOSFET) между его состоянием «ВКЛ» (насыщение) и состоянием «ВЫКЛ». (отсечка), оба из которых производят меньшее рассеивание мощности.

Это означает, что когда переключающий транзистор полностью «включен» и проводит ток, падение напряжения на нем находится на минимальном значении, а когда транзистор полностью «выключен», ток через него не протекает. Таким образом, транзистор действует как идеальный переключатель ВКЛ / ВЫКЛ.

В отличие от линейных регуляторов, которые предлагают только понижающее регулирование напряжения, импульсный источник питания может обеспечивать понижение, повышение и отрицание входного напряжения с использованием одной или нескольких из трех основных топологий схемы переключения: Buck , Boost и Buck-Boost .Эти названия относятся к тому, как транзисторный ключ, катушка индуктивности и сглаживающий конденсатор соединяются вместе в основной цепи SMPS.

Блок питания с понижающим переключателем

Понижающий импульсный стабилизатор представляет собой схему импульсного источника питания, которая предназначена для эффективного снижения постоянного напряжения с более высокого напряжения до более низкого, то есть вычитает или «понижает» напряжение питания, тем самым уменьшая доступное напряжение. на выходных клеммах без изменения полярности.Другими словами, понижающий импульсный стабилизатор представляет собой схему понижающего регулятора, поэтому, например, понижающий преобразователь может преобразовывать, скажем, +12 вольт в +5 вольт.

Понижающий импульсный стабилизатор — это преобразователь постоянного тока в постоянный и один из самых простых и популярных типов импульсных стабилизаторов. При использовании в конфигурации импульсного источника питания понижающий импульсный стабилизатор использует последовательный транзистор или силовой полевой МОП-транзистор (в идеале биполярный транзистор с изолированным затвором или IGBT) в качестве основного переключающего устройства, как показано ниже.

Понижающий импульсный регулятор

Мы можем видеть, что базовая конфигурация схемы понижающего преобразователя представляет собой последовательный транзисторный переключатель TR 1 с соответствующей схемой управления, которая поддерживает выходное напряжение как можно ближе к желаемому уровню, диод, D 1 , индуктор L 1 и сглаживающий конденсатор C 1 . Понижающий преобразователь имеет два режима работы в зависимости от того, включен или выключен переключающий транзистор TR 1 .

Когда транзистор смещен в положение «ВКЛ» (переключатель замкнут), диод D 1 становится смещенным в обратном направлении, и входное напряжение V IN заставляет ток течь через катушку индуктивности к подключенной нагрузке на выходе, заряжая конденсатор, С 1 .

Когда изменяющийся ток протекает через катушку индуктора, он создает обратную ЭДС, которая противодействует потоку тока, согласно закону Фарадея, до тех пор, пока он не достигнет устойчивого состояния, создавая магнитное поле вокруг индуктора, L 1 .Эта ситуация будет продолжаться бесконечно, пока TR 1 закрыт.

Когда транзистор TR 1 переключается в положение «ВЫКЛ» (переключатель разомкнут) схемой управления, входное напряжение мгновенно отключается от цепи эмиттера, вызывая коллапс магнитного поля вокруг катушки индуктивности, вызывая обратное напряжение на катушке индуктивности.

Это обратное напряжение заставляет диод смещаться в прямом направлении, поэтому накопленная энергия в магнитном поле индукторов вынуждает ток продолжать течь через нагрузку в том же направлении и возвращаться обратно через диод.

Затем катушка индуктивности L 1 возвращает накопленную энергию обратно нагрузке, действующей как источник и подающей ток, пока вся энергия катушки индуктивности не вернется в схему или пока транзисторный ключ снова не закроется, в зависимости от того, что произойдет раньше. В то же время конденсатор также разряжает ток, подаваемый на нагрузку. Комбинация катушки индуктивности и конденсатора образует LC-фильтр, сглаживающий любые пульсации, создаваемые переключающим действием транзистора.

Следовательно, когда транзисторный полупроводниковый ключ закрыт, ток подается от источника питания, а когда транзисторный ключ открыт, ток подается через катушку индуктивности.Обратите внимание, что ток, протекающий через катушку индуктивности, всегда в одном и том же направлении, либо напрямую от источника питания, либо через диод, но, очевидно, в разное время в цикле переключения.

Поскольку транзисторный ключ постоянно замыкается и открывается, среднее значение выходного напряжения, следовательно, будет связано с рабочим циклом D, который определяется как время проводимости транзисторного ключа в течение одного полного цикла переключения.

Если V IN — это напряжение питания, а времена «ВКЛ» и «ВЫКЛ» для транзисторного ключа определены как: t ВКЛ и t ВЫКЛ , то выходное напряжение V OUT задается как :

Рабочий цикл понижающего преобразователя

Рабочий цикл понижающих преобразователей также можно определить как:

Таким образом, чем больше рабочий цикл, тем выше среднее выходное напряжение постоянного тока от импульсного источника питания.Из этого мы также можем видеть, что выходное напряжение всегда будет ниже входного, поскольку рабочий цикл D никогда не может достичь единицы (единицы), что приведет к понижающему регулятору напряжения.

Регулировка напряжения достигается за счет изменения рабочего цикла, а при высоких скоростях переключения, до 200 кГц, можно использовать более мелкие компоненты, что значительно снижает размер и вес импульсного источника питания.

Еще одним преимуществом понижающего преобразователя является то, что схема индуктор-конденсатор (LC) обеспечивает очень хорошую фильтрацию тока индуктора.В идеале понижающий преобразователь должен работать в непрерывном режиме переключения, чтобы ток в катушке индуктивности никогда не падал до нуля. С идеальными компонентами, то есть нулевым падением напряжения и коммутационными потерями в состоянии «ВКЛ», идеальный понижающий преобразователь мог бы иметь КПД до 100%.

Помимо понижающего импульсного стабилизатора для базовой конструкции импульсного источника питания, существует еще одна операция основного импульсного регулятора, который действует как повышающий регулятор напряжения, называемый повышающим преобразователем.

Блок питания с импульсным переключателем

Импульсный стабилизатор Boost — это еще один тип импульсной схемы источника питания. Он имеет те же типы компонентов, что и предыдущий понижающий преобразователь, но на этот раз в другом положении. Повышающий преобразователь предназначен для увеличения постоянного напряжения от более низкого до более высокого, то есть он также добавляет или «повышает» напряжение питания, тем самым увеличивая доступное напряжение на выходных клеммах без изменения полярности.Другими словами, импульсный импульсный регулятор представляет собой схему повышающего регулятора, поэтому, например, повышающий преобразователь может преобразовывать, скажем, +5 вольт в +12 вольт.

Ранее мы видели, что понижающий импульсный стабилизатор использует последовательно переключаемый транзистор в своей базовой конструкции. Отличие от конструкции импульсного импульсного стабилизатора состоит в том, что он использует параллельно подключенный переключающий транзистор для управления выходным напряжением импульсного источника питания.

Поскольку транзисторный ключ эффективно подключен параллельно выходу, электрическая энергия проходит через катушку индуктивности на нагрузку только тогда, когда транзистор смещен в положение «ВЫКЛ» (переключатель разомкнут), как показано.

Регулятор переключения наддува

В цепи повышающего преобразователя , когда транзисторный ключ полностью включен, электрическая энергия от источника питания V IN проходит через катушку индуктивности и транзисторный переключатель и обратно к источнику питания. В результате ничего из этого не проходит на выход, поскольку насыщенный транзисторный ключ фактически создает короткое замыкание на выходе.

Это увеличивает ток, протекающий через катушку индуктивности, поскольку она имеет более короткий внутренний путь для возврата к источнику питания.Между тем, диод D 1 становится смещенным в обратном направлении, поскольку его анод подключается к земле через транзисторный ключ, при этом уровень напряжения на выходе остается довольно постоянным, когда конденсатор начинает разряжаться через нагрузку.

Когда транзистор полностью выключен, входной источник подключается к выходу через последовательно соединенные индуктивность и диод. По мере того, как поле индуктора уменьшается, индуцированная энергия, накопленная в катушке индуктивности, подается на выход V IN через смещенный в прямом направлении диод.

Результатом всего этого является то, что индуцированное напряжение на катушке индуктивности L 1 меняется на противоположное и добавляется к напряжению входного источника, увеличивая общее выходное напряжение, которое теперь становится равным V IN + V L .

Ток от сглаживающего конденсатора C 1 , который использовался для питания нагрузки, когда транзисторный ключ был закрыт, теперь возвращается в конденсатор входным питанием через диод. Тогда ток, подаваемый на конденсатор, является током диода, который всегда будет «ВКЛ» или «ВЫКЛ», поскольку диод постоянно переключается между своим прямым и обратным состоянием посредством переключающего действия транзистора.Тогда сглаживающий конденсатор должен быть достаточно большим, чтобы обеспечить плавный устойчивый выход.

Поскольку индуцированное напряжение на катушке индуктивности L 1 отрицательно, оно добавляется к напряжению источника, V IN , заставляя ток катушки индуктивности поступать в нагрузку. Выходное напряжение в установившемся режиме повышающих преобразователей равно:

Как и в предыдущем понижающем преобразователе, выходное напряжение повышающего преобразователя зависит от входного напряжения и рабочего цикла.Следовательно, регулируя рабочий цикл, достигается регулировка мощности. Не то чтобы это уравнение не зависело от величины индуктивности, тока нагрузки и выходного конденсатора.

Мы видели выше, что для базовой работы неизолированной схемы импульсного источника питания может использоваться либо понижающий преобразователь, либо конфигурация повышающего преобразователя, в зависимости от того, требуется ли нам понижающее (понижающее) или повышающее (повышающее) выходное напряжение. . В то время как понижающие преобразователи могут быть более распространенной конфигурацией переключения SMPS, повышающие преобразователи обычно используются в емкостных схемах, таких как зарядные устройства, фотовспышки, стробоскопические вспышки и т. Д., Потому что конденсатор обеспечивает весь ток нагрузки, когда переключатель замкнут.

Но мы также можем объединить эти две основные коммутационные топологии в единую неизолированную схему переключающего стабилизатора, которая, что неудивительно, называется понижающе-повышающим преобразователем .

Регулятор переключения понижающего и повышающего напряжения

Импульсный стабилизатор Buck-Boost представляет собой комбинацию понижающего преобразователя и повышающего преобразователя, которая вырабатывает инвертированное (отрицательное) выходное напряжение, которое может быть больше или меньше входного напряжения в зависимости от рабочего цикла. Понижающий-повышающий преобразователь представляет собой разновидность схемы повышающего преобразователя, в которой инвертирующий преобразователь передает в нагрузку только энергию, накопленную катушкой индуктивности, L 1 .Базовая схема импульсного источника питания повышающего и понижающего режимов приведена ниже.

Регулятор переключения понижающего и повышающего напряжения

Когда транзисторный ключ TR 1 полностью включен (закрыт), напряжение на катушке индуктивности равно напряжению питания, поэтому в катушке индуктивности накапливается энергия от входного источника питания. На подключенную нагрузку на выходе ток не подается, поскольку диод D 1 имеет обратное смещение. Когда транзисторный ключ полностью выключен (открыт), диод становится смещенным в прямом направлении, и энергия, ранее накопленная в катушке индуктивности, передается нагрузке.

Другими словами, когда переключатель находится в положении «ON», энергия подается в катушку индуктивности от источника постоянного тока (через переключатель) и не поступает на выход, а когда переключатель находится в положении «OFF», напряжение на катушке индуктивности меняется на противоположное. поскольку катушка индуктивности теперь становится источником энергии, энергия, ранее накопленная в катушке индуктивности, переключается на выход (через диод), и никакая энергия не поступает напрямую от входного источника постоянного тока. Таким образом, падение напряжения на нагрузке, когда переключающий транзистор находится в состоянии «ВЫКЛ», равно напряжению на катушке индуктивности.

В результате величина инвертированного выходного напряжения может быть больше или меньше (или равна) величине входного напряжения в зависимости от рабочего цикла. Например, повышающий-повышающий преобразователь положительного напряжения в отрицательный может преобразовывать 5 вольт в 12 вольт (повышающий) или 12 вольт в 5 вольт (понижающий).

Выходное напряжение в установившемся режиме понижающе-повышающего импульсного стабилизатора, В OUT задается как:

Затем понижающий-повышающий стабилизатор получил свое название от создания выходного напряжения, которое может быть выше (например, повышающий силовой каскад) или ниже (как понижающий силовой каскад) по величине, чем входное напряжение.Однако полярность выходного напряжения противоположна входному.

Сводка по импульсному источнику питания

Современный импульсный источник питания, или SMPS, использует твердотельные переключатели для преобразования нерегулируемого входного напряжения постоянного тока в регулируемое и плавное выходное напряжение постоянного тока на разных уровнях напряжения. Входной источник питания может быть истинным постоянным напряжением от батареи или солнечной панели или выпрямленным постоянным напряжением от источника переменного тока с использованием диодного моста вместе с некоторой дополнительной емкостной фильтрацией.

Во многих приложениях управления мощностью силовой транзистор, MOSFET или IGFET, работает в режиме переключения, когда он многократно переключается в положение «ВКЛ» и «ВЫКЛ» на высокой скорости. Основным преимуществом этого является то, что энергоэффективность регулятора может быть довольно высокой, потому что транзистор либо полностью открыт и проводит (насыщен), либо полностью отключен (отсечка).

Доступно несколько типов преобразователей постоянного тока в постоянный (в отличие от преобразователя постоянного тока в переменный, который является инвертором), с тремя основными топологиями импульсного источника питания, рассматриваемыми здесь: Buck , Boost и импульсные регуляторы Buck-Boost .Все три эти топологии неизолированы, то есть их входное и выходное напряжения имеют общую линию заземления.

Каждая конструкция импульсного регулятора имеет свои уникальные свойства в отношении рабочих циклов в установившемся режиме, соотношения между входным и выходным током и пульсаций выходного напряжения, создаваемых действием твердотельного переключателя. Еще одним важным свойством этих топологий импульсных источников питания является частотная характеристика переключающего действия на выходное напряжение.

Регулировка выходного напряжения достигается за счет процентного регулирования времени, в течение которого переключающий транзистор находится в состоянии «ВКЛ», по сравнению с общим временем ВКЛ / ВЫКЛ. Это соотношение называется рабочим циклом, и, изменяя рабочий цикл, (D — величина выходного напряжения, V OUT можно контролировать.

Использование одного индуктора и диода, а также твердотельных переключателей с быстрым переключением, способных работать на частотах переключения в диапазоне килогерц, в конструкции импульсного источника питания позволяет значительно увеличить размер и вес источника питания. уменьшенный.

Это связано с тем, что в их конструкции не должно быть больших и тяжелых понижающих (или повышающих) сетевых трансформаторов напряжения. Однако, если требуется электрическая изоляция между входными и выходными клеммами, перед преобразователем необходимо установить трансформатор.

Двумя наиболее популярными неизолированными конфигурациями переключения являются понижающий (вычитающий) и повышающий (аддитивный) преобразователи.

Понижающий преобразователь — это импульсный источник питания, предназначенный для преобразования электрической энергии от одного напряжения к более низкому.Понижающий преобразователь работает с последовательно включенным переключающим транзистором. Поскольку рабочий цикл D <1, выходное напряжение понижающего всегда меньше входного напряжения V IN .

Повышающий преобразователь — это тип импульсного источника питания, который предназначен для преобразования электрической энергии от одного напряжения к более высокому. Повышающий преобразователь работает с параллельно включенным переключающим транзистором, что приводит к образованию пути постоянного тока между V IN и V OUT через катушку индуктивности L 1 и диод D 1 .Это означает, что на выходе нет защиты от короткого замыкания.

Изменяя рабочий цикл (D) повышающего преобразователя, можно управлять выходным напряжением, и при D <1 выход постоянного тока повышающего преобразователя больше, чем входное напряжение V IN вследствие саморегулирования катушек индуктивности. -индуцированное напряжение.

Также предполагается, что выходные сглаживающие конденсаторы в импульсном блоке питания очень большие, что приводит к постоянному выходному напряжению импульсного источника питания во время переключения транзисторов.

электрическое — кажется, что заземляющий провод проходит через выключатель света

Это жарко, а не земля

То, что вы видите, — это, скорее всего, всегда горячий провод, , а не на землю, который попадает на клеммный винт, а затем продолжается дальше где-то еще в цепи; некоторые электрики перережут провод и косичку, другие будут использовать обе клеммы в виде винта и зажима, а третьи намотают на винт серединный провод с зачищенной частью, как вы видите здесь. К счастью, у трехполюсников Kasas есть клеммные винты, так что вы можете оставить их «как есть» или соединить их. если бы вместо этого вы использовали выключатель со встроенным проводом, вам пришлось бы разрезать и зачистить, чтобы можно было прикрутить косичку к обрезанным концам.

Хорошие новости: это работа кабелепровода.

Желтые провода и использование металлической коробки с грязевым кольцом также говорят мне, что это труба , и это хорошая новость: это не только означает, что у вас, вероятно, есть металлический кабелепровод, обеспечивающий путь заземления, это означает, что даже Если в этой коробке нет нейтрали, подключить нейтраль к этой коробке легко для любого электрика. Это также означает, что вам не нужен заземляющий провод для переключателя; вместо этого он просто может собирать землю через крепежные винты.

Хорошие новости # 2: кажется, что присутствует нейтральный

Еще одна хорошая новость заключается в том, что, поскольку это работа с кабелем, мы знаем, что белые провода должны быть нейтральными, чтобы соответствовать требованиям Кодекса. Итак, мы сразу знаем, что эти два связанных белых провода должны быть нейтральным пучком. Однако, поскольку в одном кабелепроводе может быть несколько цепей, нам нужно больше узнать о внутренней части коробки, чтобы выяснить, подходит ли вам нейтраль для подключения к нейтрали .

Плохие новости: это 3-полосный

Плохая новость об этой паре желтых проводов, подключенных к отдельным клеммам переключателя, заключается в том, что они говорят нам, что это один конец трехпозиционного переключателя.Это означает, что вам понадобится трехпозиционная версия интеллектуального переключателя Kasa, номер детали HS210, вместо однополюсного переключателя, и вам нужно будет найти другой трехпозиционный переключатель в комплексе, чтобы вы также могли его заменить. .

Поиск и устранение неисправностей 3-позиционных переключателей

Проверка 3- позиционного переключателя

  1. Отключите питание переключателей на автоматическом выключателе и с помощью тестера убедитесь, что питание отключено.Снимите два переключателя 3-, чтобы получить доступ к клеммам переключателя. Соединения проводов удалять не нужно.
  2. С помощью прибора для проверки целостности цепи проверьте целостность цепи между общей (черной) клеммой и каждой из клемм бегунка (латунного цвета) каждого 3- -позиционного переключателя.
  3. Между общим выводом и только одним из выводов путешественника должна быть непрерывность. После переключения переключателя между общим выводом и только другим подвижным выводом должна быть связь.

При выходе из строя 3- -позиционного переключателя обычно не будет непрерывности между общей клеммой и одной (иногда обеими) путевой клеммой одного из 3- -позиционных переключателей.

Подключите провода тестера непрерывности к общей (черной) клемме и одной из бегущих (латунных или серебряных) клемм

Подключите провода тестера целостности к общей клемме и другой клемме бегунка

Найдите неисправный 3-

-позиционный переключатель

Обычно при выходе из строя 3- -позиционного переключателя свет можно включать и выключать одним переключателем, но не другим.Если один из двух переключателей 3- включает и выключает свет (ы), другой переключатель 3-, вероятно, вышел из строя. Выполните следующие действия, чтобы определить, какой переключатель неисправен.

  1. Переключайте каждый переключатель, пока не загорится свет. Переключите один переключатель, чтобы увидеть, включает ли он и выключает свет. Если да, то это хороший переключатель. Оставьте свет включенным.
  2. Переключите другой переключатель, чтобы увидеть, включает ли он и выключает свет. Если да, то это хороший переключатель, а другой — плохой.

Один из этих переключателей не включает и не выключает свет (пока он горит), и это неисправный переключатель.

После определения неисправного переключателя выполните следующие действия, чтобы убедиться, что он неисправен и нуждается в замене.

Примечание. Эта статья применима только к проводке обычного 3- переключателя, а не к альтернативной 3- проводке.

Переключатели

подпружинены, чтобы свести к минимуму изгибание и продлить срок их службы.Однако при переключении переключателя возникает очень небольшое искрение. Неисправный переключатель может не выйти из строя полностью, сгоревшие контакты могут вызвать периодический отказ. Помните об этом при поиске и устранении неисправностей переключателей. Периодическая неисправность может затруднить поиск и устранение неисправностей, особенно с 3- и 4-позиционными переключателями .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *