Схема установки узо: как правильно + схемы и варианты подключения
Схема подключения УЗО как правильно подключить УЗО без заземления примеры советы
В современном электрораспределении большое значение уделяется функциональности и безопасности. Для надежной и безопасной эксплуатации электрооборудования применяется ряд защитных приборов, среди которых устройства защитного отключения (УЗО), отвечающие за обнаружение токов утечки с последующим отключением от энергопитающей сети.
Больше информации о назначении и принципе действия УЗО. В данной статье мы рассмотрим варианты подключения этого защитного устройства.
Приборы, защищающие от токов утечки на землю (дифреле и дифавтоматы), имеют разные типы и схемы подключения, отличаются назначением.
Как правильно подключить УЗО?
Схема подключения УЗО и автоматов в электрическом щите составляется заранее проектирующим специалистом, а в некоторых случаях – электриком-монтажником.
Обратим ваше внимание на то, что электрик, устанавливающий устройства защиты, должен быть компетентен, с опытом подобного монтажа.
Современным высококвалифицированным электрикам, имеющим опыт работы с различным профессиональным электрооборудованием, не составит большого труда правильно подключить УЗО.
Подключение УЗО в однофазной и трехфазной сетях
В двухпроводной сети распределения, где используются L-проводник (фаза) и N-проводник (нейтраль), применяется схема подключения УЗО без заземления.
Такой способ подключения применяется в основном в домах старой постройки, где нет заземления.
Варианты подключения УЗО в однофазной сети
Схема №1 – общее УЗО для 1-фазной сети
Вариант схемы подключение УЗО в квартире без заземления.
УЗО устанавливается в электрический щит на входе силовой линии.
В схеме УЗО находится между вводным 2-полюсным автоматом и остальными распределительными 1-полюсными автоматическими выключателями.
В данном случае УЗО обеспечит защиту всех отходящих линий, если возникнет ток утечки.
Данная схема подключения УЗО без земли имеет один недостаток – поскольку устройство защиты общее, одно на все линии, при аварийной ситуации нельзя будет точно определить, на какой линии неисправность.Схема №2 – общее УЗО для 1-фазной сети + счетчик + заземление
В этом варианте представлена схема подключения УЗО с заземлением в однофазной сети с электрическим счетчиком.
Обратите внимание, что в современных устройствах защиты, чтобы правильно подключить УЗО, нет необходимости монтажа питающих проводников только строго сверху или строго снизу устройства.
В современный аппаратах допускается подключение питающих проводников как сверху, так и снизу, но в любом случае чтобы избежать ошибки при подключении УЗО, внимательно ознакомьтесь с техническим паспортом устройства.Схема №3 – общее УЗО для 1-фазной сети + групповые УЗО
Схема подключение УЗО в квартире, где общее УЗО скомбинировано с групповыми устройствами защиты, является одной из самых практичных и самой защищенной. В этой схеме защитная функция по утечке тока групповых устройств дублируется (страхуется) общим УЗО.
В такой схеме целесообразно подобрать устройства защитного отключения так, чтобы при аварийной ситуации они не срабатывали одновременно – соблюсти селективность в подборе УЗО.Плюсы: это самая безопасная схема подключения УЗО и дифавтомата, поскольку каждая линия защищена от утечек тока отдельно и в общем.
Минусы: УЗО, схема подключения которых предполагает защиту отдельно выделенных групп, имеет два фактора, которые обязательно нужно учитывать – большое количество занимаемого места в электрическом щите и увеличение общего бюджета на закупку такого количества оборудования.
Варианты подключения УЗО в трехфазной сети
Схема №1 – общее УЗО для 3-фазной сети + групповые УЗО
Ниже показана схема подключения трехфазного УЗО на вводе, после вводного автоматического выключателя.
Также в схеме присутствуют отдельные групповые защитные устройства – однофазное и трехфазное УЗО. Селективность соблюдена по чувствительности к токам утечки, на вводном – 300мА, а на групповом – 30мА.Схема №2 – общее УЗО для 3-фазной сети + счетчик
Перед монтажными работами рекомендуем ознакомиться со всеми инструкциями к подключаемым аппаратам защиты.
Внимательность и соблюдение всех предписаний обеспечат вам безопасность и правильное подключение УЗО.
Типовые схемы подключения УЗО в распределительном щитке: варианты для однофазных и трехфазных сетей
Решение использовать устройство защитного отключения в домашнем распределительном щите заслуживает всяческого поощрения. Согласитесь, что еще может нас защитить от поражения электротоком при утечке тока на металлический корпус бытовых приборов. УЗО может стоять как на входе, так и на какой-то отдельной линии сети. Это значит, что схем их включения довольно много, и нам нужно разобраться, когда и какую использовать. Поверьте, это в интересах вашей же безопасности.
Как правильно подключить устройство защитного отключения?
Важно запомнить одну важную деталь: подводящие провода всегда подсоединяют к верхним контактам, это правило работает для любой марки прибора и не зависит от количества полюсов. Отвод на нагрузку подключают только к нижним контактам. Если правильная схема подключения УЗО не получается, например, короткие провода, то замените их, или, в крайнем случае, переверните устройство отключения вверх ногами.
Маркировка контактов
Получилось так, что у каждого производителя УЗО нулевой провод может быть заведен как с правой стороны, так и с левой. Поэтому смотрим на обозначения на корпусе, а потом уже подсоединяем:
- N – клемма для подключения «нуля».
- 1 – контакт для подсоединения приходящего фазного провода.
- 2 – зажим для подключения отходящего фазного провода.
Нужна ли защита УЗО автоматом при подключении его в распределительном щитке?
По правилам подключать устройство защитного отключения без автоматического выключателя нельзя. Зачем это нужно? Дело в том, что принцип работы УЗО основан на срабатывании только по причине утечки тока, при коротком замыкании или при перегрузке оно не срабатывает. Отсюда опасность возгорания проводки или выхода из строя самого устройства.
Здесь представлены две простые схемки соединения автомата с двухполюсным и четырехполюсным устройством отключения.
Вывод: всегда делайте защиту автоматическим выключателем. В большинстве случаев в схеме подключения однофазной сети квартиры используют УЗО и автомат с одинаковыми номиналами. Однако практика показывает, что лучше выбрать устройство отключения с номинальным током большим на одну ступень. Например, если автомат на 16А, то УЗО будем ставить на 25А. Почему так, а не иначе? Попытаемся смоделировать цепь событий:
- Если внимательно изучить время-токовую характеристику автомата, то станет понятно, что ему нужен определенный отрезок времени для срабатывания теплового расцепителя во время перегрузки.
- Это значит, что сквозь автомат будет протекать повышенный ток, такая ситуация может длиться от нескольких секунд до нескольких минут.
- Этот же ток пойдет и через УЗО, что крайне нежелательно для его контактов и механизмов – они попросту не рассчитаны на такой форс-мажор. Устройство определенно будет греться, и если оно просто сгорит, то считайте, что вы еще легко отделались.
Версии защиты для однофазной сети
О комплекте защитных приборов постоянно напоминают производители мощной домашней техники. Зачастую уже в сопроводительной документации к стиральной или посудомоечной машине, электроплите указано, какие дополнительные устройства необходимо установить.
Если учесть количество контуров, направленных на обслуживание розеток и мощной техники, можно с уверенностью утверждать, что проектов монтажа устройств защиты бесконечно много. Ниже рассмотрим базовые варианты, которые встречаются чаще всего, на их основе возможно построение модернизированной электросхемы, заточенной под конкретные условия.
Простая схема подключения общего УЗО на вводе однофазной сети квартиры или коттеджа
В этом проекте используют одно устройство защитного отключения. Его ставят на вводе после двухполюсного автомата перед отводящими выключателями. Здесь аппарат контролирует утечку тока во всей сети. Основной недостаток: определить линию, в которой произошла утечка довольно сложно. Зато все дешево и сердито.
Проект со счетчиком и общим устройством защитного отключения на вводе
Схема практически повторяет предыдущую, единственное отличие – установка прибора учета электроэнергии, что по нынешним временам обязательное условие. Что касается плюсов и минусов проекта, то они копируют прежний вариант: та же экономичность, но сложности с определением линии утечки.
Схема подключения в квартире общего УЗО на вводе и автоматов с групповыми УЗО на отводящих линиях
В таком решении устройства защитного отключения используются не только на вводе, но и на каждой отходящей цепи. Здесь важно соблюдать селективность, иначе во время утечки одновременно отключатся и групповое устройство, и вводное. Поэтому на ввод чаще всего ставят аппарат на 100мА, а на линии по 30мА.
К особенностям этой схемы подключения УЗО в распределительном щитке можно отнести два фактора, которые противоположны друг другу:
- Положительный аспект – при утечке отключается только аварийная цепь, остальные будут функционировать в штатном режиме.
- Отрицательный момент – дороговизна и большой объем работ.
Электросхема подсоединения групповых УЗО на отводящих цепях
Схема собрана по аналогии с предыдущей, единственное отличие – отсутствие общего УЗО на вводе. По мнению некоторых его установка – лишняя трата средств, потому что все линии уже ограждены от утечек групповой защитой. Так что решение о дополнительных тратах за вами.
Намерение поставить групповую защиту только на отходящие цепи уже можно поприветствовать. Большинство домовладельцев вообще ее не ставят, так же как и защиту от атмосферных перенапряжений и заземление.
Типичные схемы подключения четырехполюсного УЗО в трехфазную сеть в щитке частного дома
Вариант №1
Сеть частных домостроений часто питается от 380В. Представленный проект включает не только четырехполюсное устройство защитного отключения, но и групповые УЗО на каждую отходящую линию. Без последних схема тоже будет работать.
Вариант №2
Проект собран по аналогии с первым вариантом, но здесь уже задействован прибор учета электроэнергии.
Безопасность – прежде всего!
Основная часть правил безопасности при монтаже схемы подключения УЗО носят общий характер для всех электромонтажных работ. Перед оборудованием распределительного щита не забывайте:
- Обесточить сеть – выключить входной автомат.
- Провода должны иметь соответствующую цветовую маркировку.
- Входной выключатель всегда монтировать в первую очередь.
- Внимательно следить за полюсами приборов – путать их нельзя!
Поделиться в социальных сетях
УЗО схема подключения
В предыдущих статьях мы подробно разобрались с вопросами: что такое УЗО, какие типы бывают, как правильно его выбрать, как подключить и т.д. Если Вы еще всего этого не знаете, то в меню справа выбирайте раздел «УЗО и диф. автоматы» и знакомьтесь со всей этой информацией. А если уже все это знаете, то давайте ниже будем разбирать схемы подключения УЗО. Конкретно у каждого случая есть свои особенности и поэтому существует несколько схем подключения УЗО. Ниже я их все зарисовал, сопроводил необходимыми комментариями и выложил для вашего внимания. Вперед…
УЗО могут использоваться как в однофазных сетях, так и в трехфазных. Они могут стоять на входе и защищать всю квартиру от утечек тока, а могут стоять на отдельной линии и защищать только определенный участок сети. Поэтому у защитных устройств существует много схем подключения. Вам нужно их знать и уметь читать, так как у многих современных бытовых электроприборов в паспорте четко указано подключение их к электросети через определенный тип УЗО. Следуйте этим рекомендациям. Поверьте это не прихоть производителей микроволновок и стиральных машин, а прежде всего ваша безопасность.
Узо схема подключения
Так как их существует много, то приведу всего несколько общих электросхем, которые могут позволить разобраться с подключением УЗО в любой ситуации.
Схема с общим УЗО на входе в однофазной сети.В этой схеме применяется одно УЗО, которое ставится на входе после 2-хполюсного автоматического выключателя, но перед отходящими автоматами. В этом случае устройство защищает одновременно от утечек тока все отходящие линии. Недостатком выбора такой схемы является сложность в определении линии, где произошла неисправность (утечка тока).
Например, в какой-то момент попала фаза на металлический корпус электроприбора, включенного в какую-то розетку и сразу сработало УЗО (если есть в доме заземление). Обесточилась вся квартира. Что это за электроприбор, в какой розетке произошла авария сразу непонятно. Приходится долго искать место неисправности. Плюсами такой схемы является возможность применения небольшого щитка и ее дешевизна, так как нужно купить только одно защитное устройство.
Схема с общим УЗО на входе с прибором учета электроэнергии в однофазной сети.Данная схема аналогична предыдущей, но уже с использованием прибора учета электроэнергии.
Схема в однофазной сети с общим УЗО на входе и с групповыми УЗО на отходящих линиях.В данном варианте схемы помимо входного устройства защитного отключения подключены УЗО на каждой отходящей линии. Тут только необходимо соблюсти селективность, чтобы во время утечки тока не отключались одновременно групповое и общее УЗО. Как подобрать селективное УЗО читайте в статье: как выбрать УЗО. Плюсами данной схемы является, то что при возникновении неисправности отключится только аварийная линия. Остальная часть квартиры будет работать в штатном режиме. Минусами такого варианта являются дороговизна (УЗО недешевая игрушка) и необходимость установки большого распределительного щита, в котором можно это все разместить.
Схема подключения УЗО на отходящих линиях в однофазной сети.Данный вариант практически аналогичный предыдущему. Отличием является отсутствие общего входного УЗО. Многие считают, что покупка общего УЗО это пустая трата денег, так как каждая линия уже защищена от утечек тока групповым защитным устройством. Тут только принимать решение вам в дополнительных тратах. Кто-то скажет а вдруг групповое УЗО выйдет из строя и тогда вся линия будет не защищена. Конечно может быть и такое. Если так рассуждать, то можно предположить, что может отказать и некачественный автоматический выключатель. Тут не перестрахуешься. Если вы решили поставить только групповые УЗО на отходящие линии, то уже будет очень хорошо. Многие просто экономят и их вообще не ставят.
Если вы живете в частном доме, то может ваш дом питаться от трехфазной сети. Ниже представлена схема подключения четырехполюсного УЗО в сети 380В. Также на каждой отходящей линии я нарисовал групповые УЗО. Хотя имеет право на жизнь и схема без них. Все фазы, нули и землю я подписал. Думаю все понятно.
Схема подключения УЗО в трехфазной сети с прибором учета электроэнергии.Данный вариант практически аналогичен предыдущему, только тут используется еще и счетчик электрической энергии.
Если остались вопросы и что-то не понятно, то задавайте их в комментариях. С удовольствием буду на них отвечать.
Улыбнемся:
— Милый, ну что ты все молчишь и молчишь? Расскажи, о чем думаешь.
— Понимаешь, дорогая. Вот если обмотать Землю и Луну медной проволокой в несколько слоев, то получился бы неплохой генератор переменного тока.
— Опять ты куришь всякую дрянь. Не переменного, а постоянного.
расчет характеристик, подключение с заземлением и без
Каждый человек в процессе своей жизнедеятельности пользуется различными видами электроприборов, что повышает риск поражения электрическим током. В первую очередь подобная вероятность повышается в тех случаях, когда изоляция имеет повреждения. В таких ситуациях ток распространяется на корпус устройства, и, если дотронуться до него, то можно получить серьезную травму. Чтобы исключить короткое замыкание и избежать нанесения вреда здоровью, следует позаботиться об установке на щитке в квартире или доме автоматического выключателя.
Часто проблему защиты от утечки тока решают не только при помощи дифференциального автомата, но и специальных механизмов и устройств защитного отключения. Если в квартире установлены дифавтоматы, имеющие в корпусе два предохранителя, то владельцу не придется отдельно подводить к нему проводку для подключения УЗО. Очень важно знать особенности грамотного подключения УЗО. Выполнить же эту работу без ошибок можно лишь тогда, когда владельцу известны электрические характеристики проводки в квартире, а также суммарная сила тока используемых владельцем бытовых устройств.
Определение УЗО
УЗО представляют собой специальные автоматические защитные устройства, основное назначение которых заключается в защите человека от удара током. Также у них имеются и другие функции. Приборы позволяют предотвратить возникновение пожара, а также избежать последствий в случае утечки тока. Вне зависимости от того, на каком объекте установлено это устройство, его наличие позволит вам быть уверенным в том, что в случае утечки тока ни один из ваших коллег, членов семьи или иных людей не пострадает в результате удара тока.
Нелишним будет узнать о принципе работы УЗО. Для простоты понимания этого процесса необходимо рассмотреть следующий пример. В каждом доме можно найти немало бытовых приборов, в конструкции которых обязательно присутствуют металлы или же элементы, выполненные из них. Однако их использование создает серьезную угрозу в виде удара током при прохождении последнего через эти элементы. Это с каждым может произойти, если вышел из строя нагревательный ТЭН или же ваш ребенок по недосмотру засунул пальцы в розетку. В таких случаях очень полезно иметь в квартире УЗО.
Благодаря ему сеть будет обесточена в автоматическом режиме, в результате чего человек будет защищен от удара током, который в большинстве случаев приводит к серьезным травмам, а иногда и смерти. Действие УЗО основывается на постоянном контроле токов. В случае когда количество пришедшего и ушедшего тока совпадает, УЗО не вмешивается. Если же имеет место утечка тока, то происходит автоматическое обесточивание сети в квартире. Установив в доме такой механизм, как УЗО, вы можете быть уверены, что будете надежно защищены от случайного поражения электрическим током.
Классификация УЗО
Для грамотного использования УЗО не помешает знать, какие типы этих устройств бывают. Имея представление о существующих видах этих механизмов, владелец может с меньшими трудностями выполнить их грамотное подключение.
УЗО-Е
Представляют собой устройства емкостного типа, особенность которых заключается в очень высокой чувствительности к изменению тока, за счет чего в момент утечки они в считаные секунды отключают сеть. Их действие основано на принципе импульсного реле, суть которого сводится к постоянному контролю ёмкостного тока. Из минусов подобных устройств следует выделить то, что в процессе работы возникают электромагнитные помехи.
УЗО-Д
Представляют собой устройства дифференциального типа, действие которых основывается на контроле ушедших и пришедших токов. При равном количестве токов УЗО не вмешивается в работу сети. Если же было обнаружено отклонение по количеству пришедшего и ушедшего токов, устройство срабатывает и обесточивает сеть.
УЗО-ДМ
Представляют собой разновидность автоматических устройств дифференциального типа, которые имеют механический вариант исполнения. Эти приспособления были созданы еще в 80-х годах минувшего столетия, и на текущий момент чаще всего именно их устанавливают для защиты от утечки тока. Несмотря на то, что с момента их изобретения прошло немало времени, их действие основывается на том же принципе. Единственные изменения, которые произошли с ними, коснулись лишь внешнего исполнения. Сейчас при упоминании таких устройств приставка ДМ не используется. О них говорят как о простых УЗО.
Действие этих выключателей сводится к следующему. В процессе работы ведется контроль тока, и, когда наблюдается изменение его количества, магнитный поток также меняет свои характеристики, в результате чего на вторичную обмотку поступает электродвижущая сила. В таких ситуациях срабатывает электромагнит, из-за чего защелка контакторного механизма начинает затягиваться, что приводит к срабатыванию оборудования. Изобретение электромеханических УЗО позволило создать устройство, включающее в себя два приспособления – токовый автомат и УЗО.
УЗО-ДЕ
Представляют собой специальные защитные выключатели электронного типа. Чаще всего местом их установки выступают розетки. Среди особенностей следует выделить высокую чувствительность и оперативное выключение. По своему исполнению эти выключатели соответствуют современным требованиям, а потому сложностей с их подключением не возникает. Конечно, подобные выключатели стоят дорого, при этом следует помнить, что они имеют электронный механизм, из-за чего сохраняется вероятность их несрабатывания в случае скачков напряжения.
Важность индексов УЗО
Для того чтобы не ошибиться с выбором УЗО, учитывают не только заземление, но в первую очередь особенности помещения, которое планируется оснастить подобным выключателем. При выборе этих приспособлений учитывают такой параметр, как основные и дополнительные индексы. Во время выполнения работ по установке подобных защитных устройств в частном доме или квартире необходимо принимать во внимание систему индексации устройств.
Основные индексы УЗО
- АС. Подобное оборудование отключает сеть, когда разница токов достигает порядка 100 мА значения тока. В плане соотношения «цена-качество» эти устройства являются наилучшим выбором.
- А. Отключение подобных устройств происходит, когда разница токов достигает 30 мА. Используя это оборудование, следует учитывать ложные срабатывания, которые присущи этим моделям, наблюдаемые в системе TN-C. Если же их работа осуществляется в системе TN-C-S , то здесь также могут отмечаться ложные срабатывания либо несрабатывания, к чему может привести некачественное заземление.
- В. Их срабатывание происходит при обнаружении любых утечек тока вне зависимости от наличия заземления.
Дополнительные индексы
- S. На отключение подобного оборудования уходит порядка 0,005-1 секунды. Чаще всего их используют в энергоснабжении объектов промышленного назначения.
- G. Особенностью этого оборудования является молниеносное срабатывание на утечку тока. Наибольшее распространение эти защитные устройства получили в детских садах, больницах и учебных заведениях. Иными словами, они востребованы на тех объектах, где предъявляются высокие требования к защите от случайного поражения электрическим током.
Как правильно выбрать УЗО?
Познакомившись с особенностями доступных на рынке защитных устройств отключения, большинство потребителей сталкиваются с проблемой их грамотного выбора. Чтобы выбранное оборудование обеспечило высокий уровень защиты, необходимо обладать информацией об определенных характеристиках:
- Значении номинального тока;
- Показателе тока утечки, имеющего значение 30-100 мА;
- Правильно рассчитать показатель отсечки при перегрузке;
- Выбрать модель, наиболее удовлетворяющую требованиям.
Чаще всего предпочтение отдают дифференциальному автомату или отдельному УЗО. А вот от идеи установить дифавтомат следует сразу отказаться тем, кто проживает в доме старой постройки, в котором проложена двухпроводная сеть. Если же в квартире присутствует электрическая сеть с тремя проводами, то можно выбрать дифференциальный автомат, и УЗО, которое поможет дополнить первое оборудование.
Как подключить УЗО и рассчитать перегрузку?
Очень важно не ошибиться со схемой подключения УЗО, так как это может привести впоследствии к проблемам, вызванным просчетами при подключении. Правильная схема подключения защитных автоматов с заземлением и без, требует от владельца узнать показатель предельного тока потребления, данные о котором указаны в техпаспорте дома или квартиры, после чего это значение перемножают на коэффициент 1,25.
Если значение составляет 16А, это после перемножения итоговый показатель будет равен 20А. При определениии номинального тока УЗО его показатель должен превосходить ток утечки автомата. В рассматриваемой ситуации он будет равен 25А.
Если вы планируете установить защитный автомат отключения в квартире, частном доме или коттедже, то эту работу может выполнить как специалист, так и вы сами. Главное, о чем следует не забывать – точное выполнение правил техники безопасности.
В каждом случае используется своя схема подключения УЗО, что определяется конкретной электрической сетью. В большинстве случаев для установки этого устройства выбирают место рядом с источником электроэнергии. При этом возможна схема монтажа в виде одного автомата, обслуживающего все линии, а также, когда для каждой линии предусмотрено свое УЗО.
В первом случае во время обесточивания сети владельцу будет трудно понять, из-за чего сработал автомат. При отключении УЗО необходимо быть готовым к тому, что может исчезнуть ток во всей квартире. Вторая же схема более предпочтительна, так как позволяет сразу понять, какое защитное устройство было отключено и что послужило для этого причиной.
Из недостатков подобной схемы следует упомянуть лишь о громоздкости электрического щитка. Учитывая его чересчур большие размеры, придется выделить для него довольно много места. Благодаря используемой схеме подключения УЗО можно понять, что на вводной дифференциальный автомат поступает питание с показателем 50А, а с него на счетчик электроэнергии и со счетчика с проводами, один из которых фазный, а другой — нулевой, поступает ток 63A, подаваемый на защитное устройство. С самого УЗО фазный провод подводится к автоматам, используемым для подключения розеток. Скажем, нулевую фазу защитного устройства необходимо подключать к клеммным колодкам.
В том случае, если вы обладаете достаточными знаниями для того, чтобы своими силами правильно подключить защитный автомат, вам необходимо определиться со схемой и в точности соблюдать определенные рекомендации. В первую очередь необходимо не ошибиться с подключением проводов к клеммам УЗО. Здесь важно подсоединять их в соответствии с требуемыми фазами, иначе это может привести к замыканию цепи и повреждению оборудования.
Чтобы понять, какое количество устройств защитных автоматов вам потребуется подключать, нужно определиться с теми помещениями, где может возникнуть угроза для вас лично и членов вашей семьи в виде поражения током. Если вы неограничены в деньгах, то оптимальным вариантом будет схема, когда на каждой розетке устанавливается свое УЗО. Хотя такой вариант будет не лучшим решением, поскольку большинство розеток будут редко использоваться, из-за чего отключение приборов в этих местах может и не происходить.
Чаще всего подключать определенные бытовые устройства приходится в одних и тех же местах. Это касается такой техники, как телевизор, настольный ПК и прочего. Следует очень тщательно оценить риск со стороны розеток и помещений, в которых может возникнуть угроза поражения электрическим током. В этом случае вам не придется тратиться на установку чересчур большого электрического щитка, за счет чего вы уменьшите расходы на приобретение защитных автоматов.
УЗО без заземления
Наличие заземления не влияет на эффективность работы УЗО. Подобное оборудование будет также хорошо защищать от поражения электрическим током. В случае если вы решили подключать УЗО без заземления, то при утечке тока срабатывание оборудования будет происходить в момент утечки тока на проводниках, в качестве которых может выступать и человек, и объекты, обладающие токопроводящими свойствами. Поэтому здесь владелец должен решить, по какой схеме он будет подключать УЗО – с заземлением или без него.
Заключение
УЗО являются необходимым оборудованием для любого помещения, где может возникнуть опасность для людей со стороны электрического тока. Поэтому прежде чем принять решение об установке подобного устройства, необходимо оценить всю целесообразность выполнения этой работы. Учитывая же, что это оборудование является технически сложным и требует учета множества параметров, с которыми незнакомы многие владельцы, выполнять работу по расчету и монтажу должны квалифицированные специалисты. Только в этом случае можно быть уверенным в высокой защите от поражения электрическим током.
Как подключить УЗО: схема подключения, инструкция
УЗО – это устройства защитного отключения, которые предназначаются для защиты жизнедеятельности человека в ситуациях, опасных для последнего, а так же для предотвращения пожароопасных ситуаций. УЗО действуют по следующему принципу: постоянно сравнивая ток, что течет к прибору, с током, что из прибора вытекает, распознает утечки из цепи.
При возникновении опасных ситуаций, УЗО прекращает подачу напряжения. Несмотря на схожий с автоматами принцип действия, такие защитные устройства срабатывают при значениях тока, порой в разы меньших по значению, чем требуемые для срабатывания классических и привычных автоматов.
Важным моментом при установке УЗО в помещениях любого типа, является этап подключения, которое необходимо произвести по всем правилам и требованиям для того, чтобы устройство функционировало нормально.
Подключаем УЗО в квартире
Встроить такое устройство в цепь жилого помещения квартир или частных домов – довольно простая процедура, которую часто возможно выполнить своими руками. Процесс установки осуществляется посредством применения особой DIN-рейки. Она может быть как изначально встроенной в щит-распределитель, так и отличаться отдельным размещением.
Указанная составляющая специально оснащается перфорированными отверстиями. Они предназначаются для присоединения к тыльным защелкам автоматов. Клеммы, расположенные сверху и снизу устройства защитного отключения, имеют специальные обозначения: N и L (нуль и фаза).
Проводить подключение рекомендуется по следующей инструкции:
- Соединяются водный автомат и силовой кабель, который проходит от внешней сети. Выбрать автомат можно правильно, учитывая показатель максимального электротока и суммарных нагрузок в сети;
- Далее подключается счетчик. Он потребуется, чтобы регистрировать энергозатраты, а так же для обеспечения УЗО напряжением;
- Теперь подключаем сам защитный механизм. Чтобы сделать это правильно, подсоединяют силовой кабель сверху, а нагрузочный кабель снизу устройства;
- Так же необходимо произвести соединение фаз и нулей устройств так: L к L, N к N;
- Важно понимать, что фаза «защиты» требует подключения к фазе автомата, а ноль должен быть подсоединен к нейтрали.
Когда описанные шаги выполнены, работы по установке можно считать завершенными.
Подключаем «однофазку»
Когда проводятся работы по подключению однофазного устройства защиты, часто допускаются непозволительные ошибки, которые влияют на работоспособность системы.
Чтобы их не допустить, рекомендуется использование пошагового руководства:
- Автовыключатель переводится в режим, когда проводники будут обесточены;
- Далее монтируется защитное устройство в электрощит;
- К клеммам выхода подключаются проводники «нуль» и «фаза»;
- К клемме L присоединяется кабель автовыключателя;
- К клемме N подключается кабель нуля, который отсоединен от щита.
Чтобы проверить работоспособность и правильность подключения, необходимо будет активировать кнопку тестирования. Если прибор отключится после нажатия, то УЗО функционирует нормально.
Подключаем УЗО к «двухфазке»
Чтобы подключить устройства защиты к цепи с количеством фаз, равным двум, где нет заземления (а это особенно распространено в зданиях старого фонда), стоит придерживаться пошаговой инструкции:
- Провод питания отсоединяется от автовыключателя и проводника «нуль» щита;
- Производится установка прибора внутрь щита;
- Все, что ранее отключалось, подключается вновь к определенным выходам устройства защитного отключения;
- К входу фазы устройства подключается клемма выхода автомата;
- К «нулю» УЗО подключается «нуль», который начинается в корпусе электрического щитка;
- Подключается автомат.
Подключаем трехфазные устройства защиты
«Трехфазки» имеют 4 полюса, что придает процессу монтажа определенные особенности. Первые шаги подключения трехфазного УЗО схожи с теми, что выполняются для подключения «однофазки». Разница начинается, когда работы доходят до отходящих цепей. С этого момента и начнем рассматривать следующие шаги:
- При «трехфазке» потребуется установка дополнительных УЗО на 10 мА на все отходящие участки;
- Для этих защитных устройств устанавливаются так же дополнительные автоматы;
- Нейтральный кабель подключают к колодке, с неё вывод осуществляется лишь при наличии необходимости;
- На любой кабель фазы подключается автомат.
Подключаем устройство защиты по линии фазы
Устройство защитного отключения можно внедрить в сеть путем установки его по линии фазы, которая проводится так:
- Разводятся проводники фазы и подключаются к автоматам на 10 А, которые отвечают за освещение;
- Фаза подключается к дифференциальному автомату на 20 А;
- Следующие контакты соединяются с другим устройством на 30 А;
- Проводится подключение последовательно к трем автоматам на 16 А. Они ответственны за группы розеток;
- Тот же процесс проводится с 3-им устройством защиты;
- В завершение установки проводник выводится к иным автоматам, которые отвечают за группы розеток.
Подключение проводнику нейтрали
Опишем шаги:
- Проводится и фиксируется проводник «нуль» на требующейся шине, содержащей, так же, «нуль»;
- От этой шины проводник протягивают к следующим устройствам защиты и дифференциальному автомату;
- Далее «нуль» подключается к нагрузке;
- Со второго устройства проводник с нулем проводится ко второй шине с нулем.
Тот же принцип применяется при подключении шин третьего устройства защитного отключения и требующейся группы розеток.
Важно понять нюансы подключения устройств защиты при наличии заземления и без него.
Нюансы подключения УЗО
Некоторые из мастеров предполагают, что устройство защиты, подключенное без наличия заземления будет неработоспособно. На самом деле, это мнение ошибочно по ряду причин: заземление никак не учитывается УЗО; особенно «рукастые» мастера (от слов не совсем) умудряются организовать заземление таким образом, что оно не функционирует вообще; утечки тока имеют свойство попадать на объекты вне зависимости от наличия заземления.
Итак, вывод очевиден: роль заземления при подключении защитных устройств,грубо говоря, никакая. А значит, ни о каких нюансах, сопряженных с заземлением, при установке УЗО речи быть не может.
Ошибки при подключении защитных устройств
Чтобы разобраться подробнее в теме подключения, потребуется ознакомиться с самыми распространенными ошибками, допускаемыми неопытными или не имеющими соответствующей квалификации людьми. Среди них:
- Сплетения или пересечения проводников с нулем. Они недопустимы из-за невозможности дальнейшего тестирования и вероятности появления риска ложных срабатываний;
- Подключение розеточной группы к нейтрали, либо допущение контактов нулевых проводов УЗО с контурами заземления, выполненного собственноручно. Такие схемы небезопасны и могут вызвать короткие замыкания;
- Контакт заземления и нейтрали. Данная схема опасности не представляет, однако при ней устройство защитного отключения будет работать неправильно, либо не будет работать вообще, так как она, эта схема, нарушит сам принцип срабатывания УЗО. К тому же, появляется вероятность ложного срабатывания и, как следствие, обесточивания домашней электросети.
УЗО – необходимый элемент любо цепи, который позволит избежать опасных для жизни человека и его жизнедеятельности ситуаций. Их применение особенно актуально при нынешнем уровне качества проводок, кабелей и различных проводов не только в жилых помещениях, но и на производствах (особенно крупных) и местах, требующих постоянного освещения и наличия электроэнергии.
Для того, чтобы произвести установку защитного устройства правильно, нужно придерживаться некоторых правил, а так же избегать распространенных ошибок, которые нельзя допускать при монтаже УЗО для обеспечения надлежащей работоспособности последних.
15 схем установки УЗО | ehto.ru
В этой статье вы найдете 15 схем установки УЗО (устройства защитного отключения). При проектировании электропроводки УЗО располагаются в зонах защиты электрических цепей потребителей, с наибольшей вероятностью поражения малыми токами замыканий. Под эти условия попадают все бытовые приборы, имеющие контакт с водой, расположенных в мокрых и влажных комнатах, а также в детских комнатах для повышения безопасности.
При проектировании (установки) УЗО принимается во внимание ранжирование опасности и в различных схемах, количество УЗО, равно плановых помещений, может меняться. Для наиболее опасных, в смысле поражения током, бытовые приборов защищаются УЗО отдельно.
В каких цепях ставится УЗО
По своему основному назначению, УЗО защищает человека от малых токов, замыкания фазных проводов на проводящие корпуса приборов. Второе назначение УЗО это косвенное слежение за состоянием электропроводки и плотностью крепления жил проводов. Это позволяет использовать его, как защитное средство от пожаров.
15 схем установки УЗО, устройства защитного отключения
Для начала, посмотрим, как обозначаются УЗО в принципиальных электрических схемах. По ГОСТ-2.755-87 УЗО и дифференциальные автоматы защиты обозначаются следующим образом.
Буквенно-цифровое обозначение УЗО, согласно ГОСТ 2.710-81, выглядит так.
УЗО и групповые цепи
По нормативам, УЗО ставится на групповые цепи (функциональные группы) розеток, освещения, силового оборудования, а также, в электрических цепях одиночных установок (приборов).
Схема 3, подключение УЗО 380 В, 11 кВт
На данной схеме, УЗО подключаются в электрическую сеть, 380 Вольт, и расчетной нагрузкой до 11 кВт. Это может быть частный дом или квартира. Согласно схеме, общее противопожарное УЗО (25 А/100 мА) ставится вместе со счетчиком в УЭРМ (Устройство этажное распределительное многоящичное – современный этажный щит). Электросеть помещения разделена на 5 групп, три из которых защищены УЗО 16 А/30мА и цепь ванной, защищена УЗО 25А/10мА.
Схема 4, 8 групповых цепей
На схеме 4, УЗО подключаются в электрической сети 380 Вольт, и расчетной нагрузкой до 11 кВт. Данная схема, предусматривает 8 групповых цепей, 6 из которых защищены УЗО. (4 узо 16А/30мА и 1 узо 25А/10мА)
Примечание. Согласно стандартам, УЗО ставятся в распределительные, квартирные щитки и другие электрические шкафы. Открытая установка УЗО запрещена.
Схема 5, подключение УЗО в частном доме
Установка УЗО в частном доме с электропитанием от столба. Напряжение питания 220 Вольт.
Противопожарное УЗО (32А/100мА) ставится на вводе кабеля питания в ЩКВс (щит квартирный встраиваемый со стеклом) вместе со счетчиком. Вполне щит ЩКВс может быть заменен ЩКНс (щит квартирный навесной) или щитом ЩВУ (щит вводно-учетный).
Второй щит в доме, ЩР (щит распределительный), В нем ставится три УЗО (25А/30мА) для защиты цепей силовых розеток.
Схема 6, УЗО в большой квартире
Электрическая схема электропроводки большой квартиры или дома. Вводное защитное устройство поставлено до счетчика, вопрос зачем? Если мы говорим об установке УЗО, как такового, то такая установка УЗО до счетчика неправильная. Возможна установка защитного устройства до счетчика, если это дифференциальный автомат защиты, но здесь уже стоит автомат защиты.
Примечание. Номинал УЗО устанавливаемого после автомата защиты, должно иметь номинал на шаг больше номинала автомата защиты.
Схема 7, УЗО в сети tn-s
Устройство защитного отключения в квартире, без противопожарного узо, в сети типа tn-s.
Примечание: Сеть типа tn-s предполагает разделение нулевого рабочего (N) и защитного проводника (PE).
Если рассматривать данную схему, как схему только квартиры, то вполне допустимо, разделение PEN проводника на PE и N проводники в этажном щите, а сама сеть типа: tn-c-s.
Схемы 9 и 10, правильное и не правльное подключения узо
Это простые принципиальные схемы по правильному и не правильному подключению УЗО. Стоит обратить внимание, на неправильное подключение УЗО.
Примечание: К сожалению, на принципиальных схемах, не показаны особенности подключения нескольких узо для разных групповых цепей. Здесь важно, для каждой группы, на которой стоит УЗО, нужно ставить свою, независимую шину заземления и розетки этой группы присоединять только к этой шине.
На схеме 10
- (1) это подключение дифференциального автомата,
- (2) и (3) это подключение УЗО с автоматами защиты.
Схема 11 и схема 12, узо на принципиальных схемах
Простые принципиальные схемы, 220 Вольт. На них прекрасно и правильно показано подключение УЗО в сборке: вводной автомат-счетчик учета- УЗО противопожарное.
Схема 13, Муниципальная схема подключения квартиры
Муниципальная схема подключения квартиры. Противопожарное УЗО (50А/100мА) в этажном щите и общее УЗО в квартирном щитке (40А/30мА). Название говорит само за себя, схема экономичная.
Схема 14, Минимальная схема подключения квартиры
Минимальная схема подключения квартиры с одним противопожарным УЗО (40А/30мА).
Схема 15, Оптимальная схема подключения квартиры
В квартире планируются два УЗО, причем одно устройство защищает сразу две группы (розеток и кухни). На схеме хорошо иллюстрируется выше сформулированное правило, об отдельной шине заземления для УЗО на несколько групп.
Схема 16, удобная схема подключения квартиры
Аналогична схеме 15, но по непонятным причинам, убрана отдельная шина заземления.
Схема 17, Селективные узо
Последняя схема подключения УЗО. На ней видим, иллюстрацию еще одно правило установки УЗО: УЗО устанавливаемое на вводе, должно быть селективным, то есть иметь задержку по времени отключения по сравнению с другими УЗО сети.
Это все 15 схем установки УЗО, на самом деле их 17. Некоторые спорные, большинство полезные.
Антипов Игорь, специально для сайта «Электрика своими руками»
Статьи по теме
Подписка на новые статьи
Схема подключения УЗО, её разновидности и особенности
Устройство защитного отключения (УЗО) относится к виду выключающих устройств, в основе работы которого лежит автоматическое отключение электросети или ее части, при достижении или превышении определённой отметки дифференциального тока. Его использование в значительной степени повышает электробезопасность потребителя, а также предотвращает возникновение чрезвычайных происшествий, как в домашних условиях, так и на производстве.
Тем не менее, несмотря на то, что схема включения УЗО на первый взгляд кажется простой, даже малейшие недочёты при подключении могут нанести довольно серьёзный урон. Как не превратить средство защиты в источник неприятностей? Ответ на этот вопрос Вы сможете найти в данной статье.
Что нужно знать об УЗО
Перед тем, как углубиться в вопросы, касающиеся схемы установки УЗО, рассмотрим особенности этих устройств, а также основные требования к ним, на основе которых производится их выбор. В данной статье мы не коснёмся индексации, так как углубление в неё требует серьёзных знаний в области электротехники, а также эта надобность отпадает в связи с тем, что выбор защитного устройства будет совершен исключительно на основе исходных данных. Для этого необходимо выполнить несколько пунктов:
- Продумать о необходимости подключения отдельного УЗО с автоматом или дифавтомата.
- Определиться с номинальным током устройства. Для автомата актуально значение данного тока выбирать на одну ступень выше данных тока отсечки, в том же случае, если используется дифавтомат, то указываемое значение должно быть равно току отсечки.
- С помощью простого расчёта вычислить значение отсечки по экстратоку (перегрузке). Для его расчёта необходимо знать максимально допустимый ток потребления, а затем умножить полученное значение на 1,25. Далее необходимо отталкиваться от таблицы значений стандартного ряда токов. Если результат отличен он указанных параметров, то он округляется в большую сторону.
- Определить допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но бывают и исключения. Выбор будет зависеть от типа проводки.
Если необходимо использование «пожарного» УЗО, то следует определиться с типом и расположением вторичных «жизненных» устройств.
Устройство УЗО
Обозначение УЗО на однолинейной схеме
Говоря о схемах и проектах, очень важно уметь их правильно прочитать. Как правило, изображение УЗО на графической и проектной документации зачастую выполнено условно, наряду с другими элементами. Это несколько затрудняет понимание принципов работы схемы и отдельных её компонентов в частности. Условное изображение устройства защиты можно сравнить с изображением обычного выключателя, с той лишь разницей, что элемент на нелинейной схеме представлен в виде двух параллельно поставленных выключателей. На однолинейной схеме полюса, провода и элементы не прорисовываются визуально, а изображаются символически.
Этот момент подробно продемонстрирован на рисунке снизу. На нём изображено двухполюсное УЗО с током утечки 30 мА. На это указывает расположенная в верхней части цифра «2». Около неё можно увидеть пересекающую линию питания косую черту. Двухполюсность устройства дублируется и в нижней части схематического изображения элемента, в качестве двух косых чёрточек.
Обозначение УЗО на однолинейной схеме
Разберём типовую схему «квартирного» подключения защитного устройства с учётом наличия счётчика на примере, приведённом на рисунке снизу. Ознакомившись более детально с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально приближенно к вводу. Это должно быть осуществлено таким образом, что бы между ними были расположены счётчик и главный автомат. Тем не менее, существует несколько ограничительных нюансов. Так, например, общее устройство защиты не может быть подключено к системе типа TN-C в связи с её принципиальными особенностями. Устаревший образец советских времён имеет защитный проводник, который напрямую соединён с нейтралью, что и становится причиной «несовместимости».
Устройство защитного отключения, представляющее собой устаревший образец советских времён с защитным проводником, соединённым с нейтралью, не представляет возможным подключить к ней общее устройство защиты.
Это лучший пример того, как подключить УЗО с заземлением. Схема также имеет желтые полосы, демонстрирующие принцип подключения дополнительных защитных аппаратов для групп потребителей, которые схематически должны быть расположены за соответствующими им автоматами. При этом номинальный ток каждого вторичного устройства на пару ступней превышает показатель назначенного ему автомата.
Но всё это характерно для современной электропроводки, с учётом наличия «земли».
Типовая схема УЗО на примере «квартирной» электросети
Чтобы в дальнейшем более детально познакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к ней.
Подключение УЗО без заземления. Схема и особенности
Отсутствие контуров заземления в домах — ситуация распространённая, требующая больших усилий и знаний, ведь придётся вспомнить основы электродинамики, но она не является приговором. Главное следовать четырём обобщённым правилам:
- Проводка типа TN-C не допускает установку дифавтомата или общего УЗО.
- Следует определить потенциально опасных потребителей и защитить их дополнительным отдельным устройством.
- Следует выбрать кратчайший «электрический» путь для защитных проводников розеток и розеточных групп на входную нулевую клемму УЗО.
- Каскадное подключение защитных аппаратов допустимо при условии, что ближайшие к электровводу УЗО являются менее чувствительными, чем оконечные.
Многие, даже дипломированные, электрики, забыв или банально не зная принципы электродинамики, не задумываются о том, как подключить УЗО без заземления. Схема, предлагаемая ими, выглядит обычно так: ставится общее устройство защиты, а затем все PE (нулевые защитные проводники) заводятся на входной ноль УЗО. С одной стороны, здесь без сомнения видна разумная логическая цепочка, ведь на защитном проводнике не будет происходить коммутация. Но всё гораздо сложнее.
Такое подключение создаёт условия для образования для своеобразной петли, действие которой охватит магнитопровод дифтрансформатора. При этом возникнет нагрузка на эквивалентное сопротивление потребителя (R), осуществимая образованной паразитной обмоткой. Несмотря на всю сложность ситуации, её влияние кажется настолько малым, что ей могут попросту пренебречь. Исключают из рассмотрения и электромагнитное поле установки, которое уже сосредоточено внутри аппарата, и шнур, в котором проходящие вплотную один к другому провода создают Т-волну (своеобразное поле).
Выглядит всё довольно приемлемо и какое-то время работает без нареканий. Но любой пробой корпуса или появление наводок в сети, с большой вероятностью могут направить в паразитную петлю короткий мощный импульс тока. Такое стечение обстоятельств может привести к двум исходам:
- В обмотке может произойти кратковременный всплеск тока, компенсирующий разбаланс токов в фазе и нуле, называемый «Анти-дифференциальным» эффектом. Возникает он довольно редко.
- Более распространённым вариантом является неконтролируемое усиление разбаланса токов, называемое «Супер-дифференциальным» эффектом. Возникновение подобной ситуации заставляет срабатывать устройство защиты без свойственной ему утечки. Тем не менее, это не вызовет серьёзных сбоев или поломок, а лишь принесёт определённый дискомфорт при постоянном «выбивании».
Сила «эффектов» зависит от длины РЕ. Если его длина превышает два метра, то вероятность несрабатывания УЗО достигает вероятности 1 к 10000. Числовой показатель довольно мал, тем не менее, теория вероятности вещь практически непредсказуемая.
Схема подключения УЗО в однофазной сети
Так как в квартирах зачастую используется однофазное подключение сети. В данном случае в качестве защиты оптимально выбирать однофазные двухполюсные УЗО. Существует несколько вариантов схемы подключения для данного устройства, но мы рассмотрим наиболее распространённую, показанную на рисунке ниже.
Подключение аппарата довольно простое. В паспорте и на приборе указана основная маркировка и точки подключения фазы (L) и нуля (N). На схеме изображены вторичные автоматы, но их установка не является обязательной. Они нужны для распределения подключаемых бытовых приборов и освещения по группам. Таким образом, проблемный участок никак не затронет остальные части или комнаты квартиры. При этом важно учитывать, что установка максимально допустимых токов на автоматах не должна превышать настроек УЗО. Это объясняется отсутствием в устройстве ограничения по току. Внимательно следует отнестись и к подключению фазы с нулём. Невнимательность может привести не только к отсутствию питания микросхемы, но и к поломке устройства защиты.
Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости со счетчиком электрической энергии (рядом с источником электропитания)
Схема подключения УЗО в однофазной сети
Ошибки и их последствия при подключении УЗО
Как и любая электрическая схема, схематическое изображение подключения защитного устройства в общую сеть, должно быть составлено, как и прочитано в дальнейшем, без малейших изъянов. Даже самый скромный недочёт может привести к неисправной работе системы в целом или самого УЗО, в то время как серьёзные отклонения могут принести довольно серьёзный ущерб. Ошибки могут быть допущены самые разные, но среди них можно выделить ряд наиболее распространённых:
- Нейтраль и заземление соединяются после УЗО. В данном случае можно неверно интерпретировать схему, соединив нулевой рабочий проводник, с открытой частью электроустановки или с нулевым защитным проводником. В обоих случаях итог будет идентичен.
- УЗО может быть подключено неполнофазно. Допущение такой ошибки приведёт к ложному срабатыванию, возникающему, из-за того, что до УЗО нагрузка была подключена к нулевому рабочему проводнику.
- Пренебрежение правилами соединения в розетках нулевого и заземляющего проводника. Проблема кроется в процессе установки розеток, в котором допускается соединение защитного и нулевого рабочего проводников. При этом устройство будет срабатывать даже тогда, когда в розетку ничего не подключено.
- Объединение нулей в схеме с двумя устройствам защиты. Распространённой ошибкой является неправильное соединение в зоне защиты нулевых проводников обоих УЗО. Она допускается из-за невнимательности и неудобства электромонтажа внутри стеновой панели. Оплошность приведёт к неконтролируемым выключениям устройств.
- Применение двух или более УЗО усложняют работу по подключению нулевых проводов. Последствия невнимательности могут быть довольно серьёзными. Не поможет и тестирование, так как при нём работа устройства не вызовет никаких нареканий. Но первое же подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
- Невнимательность при подключении фазы и нуля, если они взяты с разных УЗО. Проблема возникает при соединении нагрузки с нулевым проводником, относящимся к другому устройству защиты.
- Несоблюдение полярности подключения, что выражается в подключении фазы и нуля, соответственно сверху и снизу. Это спровоцирует движение токов в одном направлении, вследствие чего создаются условия для невозможности взаимокомпенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть отличным.
- Пренебрежение деталями при подключении трехфазного УЗО. Распространённой ошибкой в подключении четырёхполюсного УЗО является использование клемм одноимённой фазы. Тем не менее, работа однофазных потребителей никак не повлияет на работу такого защитного устройства.
Ошибки при подключении УЗО
Посмотрите видео, где рассказано о подключении УЗО:
Вас могут заинтересовать:
REYNOLDS OUZO PRO ИНСТРУКЦИЯ ПО УСТАНОВКЕ Pdf Скачать
1
4
ПРОКЛАДКИ
ВЕРХНЕЕ УПЛОТНЕНИЕ
КОМПРЕССИОННОЕ КОЛЬЦО
ВЕРХНИЙ ПОДШИПНИК
ПОДШИПНИК ВЕРХНИЙ
ВЕРХНЯЯ ЧАШКА
НИЖНЯЯ ЧАШКА
ПОДШИПНИК НИЖНИЙ
НИЖНЯЯ КОРОБКА ПОДШИПНИКА
УПЛОТНЕНИЕ НИЖНЕЕ
ВИЛКА CROWN RACE
1.1 Нажмите верхний и нижний
стакана в головную трубу, используя
гарнитура пресс
STEM
ПРОКЛАДКИ
1.2 Нажмите на обойму короны вилки
ТРУБКА РУЛЕВОЙ ВИЛКИ
ВЕРХНЕЕ УПЛОТНЕНИЕ
КОМПРЕССИОННОЕ КОЛЬЦО
ВЕРХНИЙ ПОДШИПНИК
ПОДШИПНИК ВЕРХНИЙ
на седло обоймы вилки с помощью
ВЕРХНЯЯ ЧАШКА
подходящие инструменты для гоночного седла
1.3 Установить гарнитуру в сборе
НИЖНЯЯ ЧАШКА
ПОДШИПНИК НИЖНИЙ
по данным производителя гарнитуры
НИЖНЯЯ КОРОБКА ПОДШИПНИКА
УПЛОТНЕНИЕ НИЖНЕЕ
STEM
ВИЛКА CROWN RACE
характеристики
СИДЕНЬЯ CROWN RACE
ПРОКЛАДКИ
ВЕРХНЕЕ УПЛОТНЕНИЕ
КОМПРЕССИОННОЕ КОЛЬЦО
1.4 Вставьте рулевую трубку вилки в
ВЕРХНИЙ ПОДШИПНИК
ПОДШИПНИК ВЕРХНИЙ
ВЕРХНЯЯ ЧАШКА
ТРУБКА РУЛЕВОЙ ВИЛКИ
головная труба
1,5 Сдвиньте компрессионное кольцо,
СИДЕНЬЯ CROWN RACE
проставки и шток на
НИЖНЯЯ ЧАШКА
ПОДШИПНИК НИЖНИЙ
НИЖНЯЯ КОРОБКА ПОДШИПНИКА
Рулевая колонка. Не превышайте
УПЛОТНЕНИЕ НИЖНЕЕ
ВИЛКА CROWN RACE
максимальная высота стопки 1 дюйм на
Вилка диаметром 1 дюйм или 1 1/2 дюйма на 1
ТРУБКА РУЛЕВОЙ ВИЛКИ
Вилка диаметром 1/8 дюйма.
Никогда не используйте смазку между
СИДЕНЬЯ CROWN RACE
Рулевая колонка угольной вилки
и шток (обычно
с вилками из стали
рулевые колонки).
STEM
Руководство по установке
а
О Рейнольдсе
а
Когда вы говорите о разработке и производстве велосипедных компонентов,
Reynolds — один из немногих знаковых брендов. От престижного
Значки 531/753/853 на стальных каркасах с выступами для легендарного Узо
Карбоновая вилка марки, исторический вклад Рейнольдса в качество и мастерство,
и инновации в спорте не имеют себе равных.Более века название
Reynolds олицетворяет качество, дизайн и производительность в велосипеде
а
компонентов, потому что мы известны созданием продуктов, обеспечивающих
3 мм
опыта езды на велосипеде, не похожего ни на что другое. Запас победы никогда не был
б
более остро — в конкурентной велоспорте или в бизнесе. Поэтому наша страсть к
Лидерствопобуждает нас постоянно улучшать производительность — в наших продуктах
наши процессы и отношения с клиентами.
а
3 мм
б
3392 Запад 8600 Юг, Запад Иордания, UT 84088
Поздравления
а
при покупке номера один
карбоновая вилка на планете.
Инженеры Reynolds разработали эту вилку с одной вещью из
.mind — самая лучшая возможная поездка с высокими характеристиками.
При правильной установке вы обнаружите, что эта вилка справляется с
более гладкий, жесткий и надежный, чем любой другой
Вилкана рынке.Вы откроете для себя влияние этого эксперимента.
инженерные разработки делают в нашей запатентованной 100% углеродной
деталей.
Уведомление
Карбоновая вилка Ouzo Pro должна использоваться с кольцевой вилкой
Шток зажимного типа. Использование стержня с зажимом типа пережимного или клинового зажима может
вызвать повреждение рулевой колонки, что может привести к травме водителя
или смерть.
а
3 мм
Перед тем, как прикрепить шток к рулевой колонке, убедитесь, что
внутренняя часть стержня гладкая, без заусенцев и других дефектов
б
или материалы, которые могут поцарапать или поцарапать рулевую трубу.Подсчет очков
или царапины на рулевой колонке из углеродного волокна могут привести к ее выходу из строя,
, повлекшее за собой серьезные телесные повреждения или возможную смерть.
Частей в комплекте:
(1) Вилка Reynolds Ouzo Pro Carbon
(1) Пробка регулировки сжатия
(1) Тормозная гайка
Рекомендуемые инструменты:
a — Ножовка по керамической плитке
b — Инструменты гарнитуры
c — шестигранный ключ на 5 мм (с адаптером для динамометрического ключа)
d — шестигранный ключ на 6 мм (с адаптером для динамометрического ключа)
866-798-3040
www.reynoldscycling.com
e — файл (универсальный), или
•
•
f — наждачная бумага зернистостью 100-200
При появлении этого символа постарайтесь понять
направления, прежде чем продолжить. Ваша безопасность может
зависит от этого!
(PDF) Дисперсии жидких капель, образованные гомогенной жидко-жидкой нуклеацией: «Эффект Узо»
раствор самопроизвольно разделится на две фазы,
состав каждой из которых будет находиться на бинодальной кривой
.Перенасыщение раствора — это (приблизительно)
отношение фактической концентрации растворенного вещества к концентрации растворенного вещества
на бинодали.
Эффект узо возникает, когда растворы быстро вводятся
в метастабильную область за счет добавления воды
. Если растворимость некоторых абсолютов
уменьшается быстрее, чем линейно с увеличением концентрации воды
, раствор может стать перенасыщенным этими компонентами
.Если пересыщение велико, ядра
образуются спонтанно из-за небольших локальных колебаний концентрации растворенных молекул
. Этот процесс известен как
гомогенного зародыша. Ядра имеют величину, превышающую
исредней концентрации растворенного вещества; таким образом, их образование
вызывает адплецию растворенного вещества около каждого ядра. В результате
дальнейшее зародышеобразование происходит только в еще истощенных областях
, насколько это возможно, от существующих ядер. Нуклеация
заканчивается, когда не остается областей с высоким пересыщением
.Конечным результатом этого процесса (который происходит
в миллисекундной или более быстрой шкале времени) является относительно равномерная дисперсия
очень мелких капель жидкости, взвешенных
в непрерывной жидкой фазе. Дальнейший рост
капель происходит почти полностью за счет созревания Оствальда,
при этом растворяются мельчайшие капли, так как концентрация
упала ниже концентрации насыщения
для капель их размера, а более крупные растут, поскольку их
концентрация насыщения меньше.Этот процесс
происходит очень медленно (секунды и дольше), поскольку чистые скорости растворения
очень малы и скорости диффузии
, молекулы становятся небольшими по мере того, как капли становятся меньше
и, следовательно, дальше друг от друга.
Следует подчеркнуть, что эффект узо не является спинодальным
разложением. Если систему, которая изначально находится в области диаграммы с одной фазой
, быстро ввести внутрь спинодальной кривой
путем изменения ее состава, однофазный раствор
быстро разделится на две фазы.Внутри спинодали
система неустойчива к длинноволновым флуктуациям концентрации
. Флукции с наибольшей длиной волны —
быстро растут по амплитуде, 1 приводя к появлению больших
капель, которые, кажется, внезапно выскакивают из раствора
(в миллисекундном масштабе). Двухжидкостная экстракция
процессов, основанных на спинодальном разложении, названных com-
разделением фаз, индуцированным положением 2 (CIPS) и разделением фаз, индуцированным температурой 3 (TIPS), недавно было предложено
.
Эффект узо и процессы CIPS имеют разные полезные применения. В процессе CIPS спинодальный состав de-
вызывает чрезвычайно быстрое образование больших
капель. Эти большие капли очень быстро поднимаются или падают в растворе
; таким образом, объемная непрерывная вторая фаза
быстро образуется. 4 Процесс CIPS полезен, когда требуется быстрое разделение фаз без образования эмульсии
, как при жидкостно-жидкостной экстракции.Эффект узо обусловлен гомогенным зародышеобразованием, поэтому первоначально созданные
капли чрезвычайно малы. Поскольку начальная скорость зародышеобразования
чрезвычайно велика, образуются некоторые капли
, дальнейший рост которых происходит очень медленно. В результате эффект узо
полезен, когда нужно создать долгоживущие капли размером
микрон без использования механического перемешивания
.
Также следует отметить, что дисперсии масло в воде
, аналогичные интересующим в данном исследовании,
ранее изучались под заголовками спонтанной эмульсии
и образования микроэмульсии, 5-12, но это не те же явления, что и
. эффект узо.Когда две несмешивающиеся жидкие фазы
приводятся в контакт, иногда наблюдается, что маленькие капельки одного компонента
спонтанно образуются вблизи границы раздела в одной или
обеих непрерывных фазах. Было высказано предположение, что
медленная диффузия одного раствора в другой приводит к
«скручиванию» определенного нерастворимого компонента, который затем
агрегируется в капли.5,12 Объяснение1,2 образования микроэмульсии
состоит в том, что это происходит, когда концентрация
такова, что межфазное натяжение между
двумя (подлежащими формированию) фазами чрезвычайно мало (<10 дин /
см).Тогда энтропия смешения достаточно велика, чтобы сделать систему с разделением фаз
стабильной. В обычных растворах
энтропия смешения совершенно незначительна.
В обоих случаях капельные дисперсии образуются
медленно из контакта двух смешивающихся непрерывных жидких фаз
. Эффект узо, с другой стороны, представляет собой очень быстрый процесс
, который дает дисперсии капель без контакта
с двумя объемными несмешивающимися жидкими фазами.
Насколько известно авторам, было только две публикации
, которые анализировали или использовали эффект узо
. Рушак и Миллер экспериментально и теоретически изучали систему этанол-толуол-вода,
— эффект узо и области спинодального разложения.
McCrackenand Datyner13 описал новый метод «истинной эмульсионной полимеризации
», при котором вода добавляется к раствору стирол-метанол
.Затем микронные капли стирола
полимеризовали с образованием латекса из маленьких шариков полистирола
. Эта «настоящая эмульсия» — еще один пример эффекта узо. Полимеризация капель
, образованных эффектом узо, может оказаться полезной для
ряда практических применений, таких как полимерные шарики
для микрокапсулирования фармацевтических препаратов или для производства
частиц индикатора14,15 для скорости перемещения частиц —
метрических исследования.
3. Детали эксперимента
В этой работе в качестве третьего компонента всегда используется вода.
Раствор абсолют / растворитель становится все более перенасыщенным
по мере добавления все большего и большего количества воды; Капли образуются, когда пересыщение растворенного вещества
становится достаточно высоким (см. рис.
1). Во избежание путаницы, термин «соотношение» будет использоваться, когда
относится к концентрации органического растворенного вещества в растворителе
перед добавлением воды, а «массовый процент» будет использоваться
для концентрации растворителя в двухфазной дисперсии после
добавление воды.
Было использовано несколько различных нерастворимых в воде органических веществ для получения
эффекта узо: дивинилбензол (ДВБ), N, N-диметиланилин,
фтортолуол, фторстирол и бензиловый спирт. Использовали три различных смешиваемых с водой растворителя
для масла: этанол, ДМСО,
(1) Владимирова, Н .; Малаголи, А .; Mauri, R. Chem. Англ. Sci. 2000,
55, 6109-6118.
(2) Gupta, R .; Mauri, R .; Shinnar, R. Ind. Eng. Chem. Res. 1996,35,
2360-2368.
(3) Ullmann, A .; Ludmer, Z .; Shinnar, R. AIChE J. 1995,41, 488-
500.
(4) Островский, М.В .; Barenbaum, R.K .; Абрамзон, А.А. Коллоидн.
З. 1970,32, 565-572.
(5) Benton, W. J .; Miller, C.A .; Fort, T. J. Dispersion Sci. Technol.
1982,3,1-44.
(6) Davies, J. T .; Хейдон, Д. А. На втором международном конгрессе
SurfaceActivity; Academic Press: New York, 1957; Vol. 1. С. 417-425.
(7) Рущак, К.J .; Miller, C.A. Ind. Eng. Chem. Fundam. 1972,11,
534-540.
(8) Holt, S. L. J. Dispersion Sci. Technol. 1980,1, 423-464.
(9) Иранлое, Т. А.; Пильпель, Н .; Гровс, М. J.J. DispersionSci. Technol.
1983,4, 109-121.
(10) Minehan, W. T .; Мессинг, Г. Л. Прибой коллоидов. 1992,63, 181-
187.
(11) Островский, М.В .; Good, R.J. J. Dispersion Sci. Technol. 1986,
7,95-125.
(12) Groves, M. J. Chem. Ind.1978, 417-423.
(13) McCracken, J. R .; Datyner, A. J. Appl. Polym. Sci. 1974,18,
3365-3372.
(14) Fu, T .; Shekarriz, R .; Katz, J .; Хуанг, Т. T.J. Fluid Mech.1993,
269,79-106.
(15) Dong, R .; Chu, S .; Katz, J. J. Fluids Eng. 1992, 114, 393-403.
4106 Langmuir, Vol. 19, No. 10, 2003 Vitale and Katz
Произошла ошибка при настройке вашего пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Наличие фазы Узо с чередованием липо / гидрофильных сополимеров в воде
Выбор пар мономеров, обеспечивающих близкие к нулю отношения реактивности, является эффективной стратегией для индукции спонтанной сополимеризации в чередующейся последовательности.Кроме того, конструкция мономера и настройка взаимодействий растворитель-мономер открывает путь к функциональным сополимерам, демонстрирующим молекулярную самосборку, соответствующую их регулярной амфипатической структуре. В этой работе мы показываем, что дизайн сомономеров с адекватной реакционной способностью и взаимодействиями может быть использован для управления самосборкой сополимера в мезоскопическом масштабе. Мы исследуем спонтанное образование наночастиц в результате взаимодействия растворитель / нерастворитель, используя так называемый «эффект узо». Таким образом, была построена диаграмма узо для определения рабочего окна для самосборки в водных суспензиях чередующихся сополимеров, состоящих из винилфенола и малеимидных звеньев, несущих длинные алкильные боковые группы (C12h35 или C18h47).Также были проведены исследования для учета влияния боковых липофильных подвесных единиц на размер и структуру наноагрегатов, образующихся при однократном добавлении воды. Определение характеристик структуры методами светорассеяния (DLS и SLS), малоуглового рассеяния нейтронов (SANS) и просвечивающей электронной микроскопии (Cryo-TEM и TEM) подтвердило самосборку цепочек сополимера в наночастицы (диапазон размеров: 60-300 нм) , размер которых зависит от липофильности чередующихся сополимеров, сродства растворителя к воде и диффузии растворителя в воде.В целом, мы представляем здесь спонтанный эффект узо как простой метод получения стабильных чередующихся наночастиц сополимера в воде без добавления стабилизаторов.
У вас есть доступ к этой статье
Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуй еще раз?Универсальные нанокапли разветвляются от ограничения эффекта Узо
Значимость
Явление спонтанного образования нанокапель, называемое «эффектом Узо», является основой для многих процессов, от приготовления фармацевтических продуктов до приготовления косметических средств и инсектицидов до жидкости-жидкости. микроэкстракция.В этой работе делается попытка отделить эффекты градиентов концентрации от внешней динамики перемешивания путем пространственно-временного отслеживания образования нанокапель из-за эффекта Узо, заключенного в квазидвумерную геометрию. Мы наблюдаем поразительные универсальные разветвленные структуры зарождающихся капель под действием внешнего диффузного поля, аналогичные разветвлению потоковых сетей в крупном масштабе, и повышенную локальную подвижность коллоидных частиц, обусловленную градиентом концентрации, возникающим в результате развития структур ветвлений.Мы также демонстрируем, что эти нанокапли могут быть использованы для одноэтапной наноэкстракции и обнаружения.
Abstract
Мы сообщаем о самоорганизации универсальных паттернов ветвления масляных нанокапелек под действием Узо [Vitale S, Katz J (2003) Langmuir 19: 4105–4110] — явление, при котором спонтанное образование капель происходит при разбавление органического раствора масла водой. Смешивание органической и водной фаз ограничено квазидвумерной геометрией.Подобно разветвлению сетей наземных потоков [Devauchelle O, Petroff AP, Seybold HF, Rothman DH (2012) Proc Natl Acad Sci USA 109: 20832–20836 и Cohen Y, et al. (2015) Proc Natl Acad Sci USA 112: 14132–14137], но в масштабе на 10 порядков меньше, углы между ветвями капель демонстрируют удивительную универсальность со значением около 74 ° ± 2 °, независимо различных управляющих параметров процесса. Численное моделирование показывает, что эти схемы ветвления нанокапель регулируются взаимодействием между локальным градиентом концентрации, диффузией и коллективными взаимодействиями.Мы также демонстрируем способность локального градиента концентрации управлять автономным движением коллоидных частиц в сильно ограниченном пространстве и возможность использования зародышевых нанокапель для наноэкстракции гидрофобных растворенных веществ. Понимание, полученное в результате этой работы, обеспечивает основу для количественного понимания сложных динамических аспектов, связанных с эффектом Узо. Мы ожидаем, что это будет способствовать улучшению контроля образования нанокапель для многих приложений, начиная от приготовления фармацевтических полимерных носителей и заканчивая составом косметических средств и инсектицидов, изготовлением наноструктурированных материалов, концентрацией и разделением следовых количеств аналитов в жидкости — жидкая микроэкстракция.
Эффект Узо возникает в тройной смеси, обычно состоящей из воды, масла и этанола, когда масло, растворенное в спирте, выпадает в осадок с образованием крошечных капель при добавлении воды (1). Этот эффект также можно увидеть, например, когда дезинфицирующие средства на основе эвкалипта и репелленты от комаров разбавляются водой, когда масла смешиваются со спиртом, но не смешиваются с водой. Это спонтанное образование капель не требует механического перемешивания для диспергирования жидкости или добавления поверхностно-активных веществ или других стабилизаторов.Как таковой, он составляет основу для образования стабильных капель эмульсии в широком диапазоне применений, таких как приготовление напитков, парфюмерии и инсектицидов (2–4), а также изготовление полых наноматериалов (5, 6). При жидкостно-жидкостной микроэкстракции капли масла, полученные в результате эффекта Узо, используются для концентрирования и отделения следов гидрофобных аналитов от их водных проб перед судебно-медицинским анализом, биомедицинской диагностикой или мониторингом окружающей среды / безопасности (7–9). Небольшие гидрофобные органические молекулы, липиды или полимеры, растворенные в полярном органическом растворителе, проявляют эффекты, аналогичные эффектам масляной фазы, образуя субмикронные частицы с узким распределением по размерам при разбавлении водой.В процессе, называемом нанопреципитацией, смещением растворителя или смещением растворителя (10⇓ – 12), нерастворимые в воде лекарственные средства могут быть включены в биополимерные наноносители с возможностью адаптации их распределения по размерам при доставке с контролируемым высвобождением.
Несмотря на долгую историю эффекта Узо и его актуальность для широкого круга приложений, количественное понимание его основного механизма и способность предсказывать рост и стабильность нанокапель остается неуловимым.Более конкретно, эффект имеет место, когда составы воды, растворенного вещества и органического растворителя лежат в метастабильной области между спинодальной и бинодальной кривыми на тройной фазовой диаграмме. Гомогенное зародышеобразование капель, которое представляет собой быстрый процесс в ответ на внезапное увеличение перенасыщения в результате добавления водной фазы, требует чрезвычайно быстрого перемешивания между двумя фазами, например, за счет сопутствующих потоков в микрожидкостном устройстве, что мешает струи или непрерывное турбулентное перемешивание (13⇓ – 15).Размер и распределение капель определяется не только физико-химическими свойствами и концентрациями растворителей, но также временными и пространственными характеристиками, связанными с динамикой перемешивания (12, 16–20). Сложные физические явления, такие как быстрая диффузия растворителя, межфазная нестабильность и перенос массы, обусловленный локальным градиентом концентрации, были предложены для объяснения таких динамических аспектов на ранних стадиях образования капель. Тем не менее, лежащий в основе механизм, ответственный за эффект Узо, может быть выяснен только в значительной степени через понимание более поздних или заключительных стадий эволюции тройной системы из-за чрезвычайно короткого порядка шкалы времени микросигналов и малых размеров зарождающихся нанокапель.Таким образом, поиск оптимального рабочего окна для достижения желаемого размера капель на сегодняшний день по-прежнему зависит от метода проб и ошибок, что требует скрининга большой библиотеки комбинаций растворителей и условий впрыска растворителя. Лучшее понимание фундаментальных физико-химических механизмов, лежащих в основе эффекта Узо, поэтому будет чрезвычайно полезно для руководства рациональным дизайном соответствующих решений и условий смешивания для образования капель.
В этой работе мы различаем связанные эффекты между градиентом концентрации и внешней динамикой перемешивания в объеме жидкости, ограничивая эффект Узо в пределах квазидвумерной геометрии жидкости, так что в процессе преобладает диффузия.Учитывая, что водная фаза теперь приводится в контакт с органической фазой исключительно за счет диффузии, можно, таким образом, пространственно и во времени проследить динамику образования нанокапель. Мы наблюдаем формирование универсальных паттернов ветвлений нанокапель, которые удивительно напоминают разветвление потоков подземных вод, хотя и в гораздо меньших масштабах. Наше моделирование подтверждает, что ветви нанокапель являются результатом взаимодействия между локальным градиентом концентрации, диффузией и коллективными взаимодействиями.Ярко выраженный локальный градиент концентрации, выходящий из ветвей капель, четко проявляется в усилении транспорта коллоидных частиц по ветвям в этом сильно ограниченном пространстве. Помимо демонстрации того, что эти ветви капель предлагают возможность в качестве одноступенчатой техники наноэкстракции, мы также ожидаем, что понимание динамических аспектов эффекта Узо будет полезно для лучшего понимания способов управления образованием капель в других приложениях.
Результаты и обсуждение
Ограниченный эффект Узо в квази-2D геометрии.
Ограниченный эффект Узо в наших экспериментах был реализован в горизонтальном прямоугольном канале потока, как показано на рис. 1 A . Первоначально весь канал был заполнен первым раствором, который представляет собой масло, растворенное в водном растворе этанола (т.е. раствор Узо). Слабый растворитель, вода, впрыскивался из одного конца канала, протекая внутри более глубоких боковых каналов 1,7 мм к другому концу.В направлении, перпендикулярном первичному потоку, вода диффундирует вбок в квазидвумерный основной канал высотой 20 мкм от внутреннего края бокового канала.
Рис. 1.( A ) Трехмерная схематическая иллюстрация устройства канала жидкости, используемого для формирования ответвлений нанокапли. Горизонтальная проточная ячейка состояла из подложки и стеклянного окна, основной проточный канал которого примыкал к двум узким боковым каналам, как показано оранжевыми зонами на рисунке. Длина была 7.65 см как для основного, так и для боковых каналов, тогда как ширина составляла 6 мм и 250 мкм, а глубина составляла 20 мкм и 1,7 мм для основного и бокового каналов соответственно. Течение было в направлении, указанном черной стрелкой. В этой экспериментальной геометрии боковые каналы были достаточно глубокими, чтобы вода текла почти исключительно по ним, поскольку очень тонкая (похожая на Хеле-Шоу) щель (главный канал), заполненная узо между двумя глубоководными каналами, обеспечивала высокое гидродинамическое сопротивление. Ветви (зеленые) переходили в основной канал.( B — D ) Оптические изображения и ( E ) АСМ-изображение репрезентативных ветвящихся структур; крупным планом ( C и D ) показаны отдельные капли вдоль ветвей. Врезка в D показывает определение полного угла и местного угла вблизи точки слияния. Морфологические особенности ветвей будут характеризоваться этими двумя углами.
По мере того, как вода смешивается с раствором Узо, мы наблюдаем появление ярких разветвлений внутри основного канала.Оптические изображения высокого разрешения на рис. 1 C и D показывают, что эти ветви состоят из дискретных нанокапелек, что дополнительно подтверждается изображениями полимеризованных капель с помощью атомно-силовой микроскопии на рис. 1 E . Отдельные капли обычно вырастают до 3–6 мкм в поперечном диаметре и от 100 нм до 1 мкм в высоту (и поэтому их просто называют нанокаплями). Ветви состоят, самое большее, из нескольких отдельных капель по ширине (Рис. 1 C — E ), которая ничтожно мала по сравнению с ее протяженностью в миллиметры.
Верхняя часть ветвей капли начинается от внутреннего края бокового канала или из нескольких точек в основном канале. Для данного канала концы ответвлений всегда начинаются с одних и тех же мест на ободе бокового канала, в местах, содержащих структурные дефекты размером в несколько микрон (видеоролики S1 и S2). Чтобы проверить роль этих дефектов в формировании ответвлений, мы намеренно сделали отступы на равномерно распределенных микроструктурах вдоль края бокового канала, после чего наблюдали, что положение концов ветвей также равномерно распределено по краю (Movie S3).Таким образом, результаты ясно показывают, что начало ветвления капли определяется локальными геометрическими структурами. В квази-двумерном основном канале соседние ветви наклоняются друг к другу и сливаются в местах, более удаленных от бокового канала. Морфология всей ветвящейся структуры является дендритной, аналогичной дереву с вершиной на краю бокового канала и с корнем, простирающимся во внутреннюю область главного 2D-канала.
Универсальность в угле слияния.
Чтобы изучить универсальность образования ответвлений от ограниченного эффекта Узо, мы варьировали скорость потока воды в боковом канале, состав раствора Узо и гидрофобность стенки основного канала. Как показано на фиг. 2 A — C , общая морфология сформированных ветвей была очень похожей в широком диапазоне исследованных условий.
Рис. 2.Формирование ветвей нанокапли до 400 с после начала роста ветвей. Цвет в любом месте указывает время, когда ветвь достигла данного места.( A — C ) Оптические изображения ветвей, сформированные в восьми различных условиях. ( A ) Скорость потока воды в боковом канале составляла 100 мкл / мин, 200 мкл / мин и 400 мкл / мин. Состав раствора Узо был одинаковым для всех трех скоростей потока (вода: этанол: масло = 50: 50: 2). ( B ) Соотношение воды, этанола и масла в растворе Узо составляло 40: 60: 2, 40: 60: 4 и 40: 60: 6 при скорости потока воды 100 мкл / мин. ( C ) Подложки были гидрофильными или гидрофобными, а край бокового канала был либо шероховатым, либо гладким.Расход воды составлял 100 мкл / мин, а состав раствора Узо составлял 50: 50: 2. ( D и E ) Соответствующие PDF углов между двумя объединенными ветвями ( D ) во всем их диапазоне и ( E ) от сегментов около точки слияния. Гидрофобный и грубый канал использовался для всех случаев в A и B ; 100 мкл / мин в A представлен на графиках как «гидрофобный, грубый».
Чтобы количественно определить общие черты разветвленной структуры, мы измерили и проанализировали в общей сложности 660 углов между сливающимися ветвями.Для сравнения мы определяли полный угол точно так же, как это было сделано в работе по разветвлению грунтового потока (21, 22). Во всех восьми случаях, показанных на рис. 2, соответствующие функции распределения вероятностей (PDF) угла слияния нанесены на график на рис. 2 D , при этом между ними не наблюдается значительных различий. Средний угол ветвления для всех 660 углов составил 74 ± 2 ° (95% доверительный интервал).
Хотя процесс образования ветвей в целом универсален в отношении морфологии, углового распределения и значения наиболее вероятного угла, более внимательное рассмотрение восьми случаев, проанализированных на рис.2 показывает некоторые подробные изменения: по мере увеличения концентрации масла количество ветвей увеличивается, и основные ветви становятся более «волосатыми» с крошечными выступами, возникающими с обеих сторон. Кроме того, более высокий расход воды в боковом канале вызывает более выраженный наклон всей конструкции ответвлений в сторону потока.
Динамика роста с преобладанием диффузии.
Чтобы выявить механизм развития ветвей капель, мы проследили рост капли с помощью визуализации в светлом поле и перенос окрашенной воды в 2D-канале отдельно с помощью флуоресцентной визуализации.Фильмы S1 и S2 показывают, что ответвления продолжались одновременно с движущимся фронтом воды в основной квази-2D канал. С другой стороны, возникающие ветви на движущемся фронте во внутренней области росли по направлению к ближайшей родительской ветви. В любом случае было замечено, что все дерево ветвей простирается к «корню дерева» в направлении внутреннего основного канала.
Для количественной оценки скорости роста мы измерили длину ветви ℓ от вершины ветви до фронта воды в различные моменты времени t, построив график зависимости данных от t1 / 2 на рис.3 С . После короткого начального переходного процесса видно, что длина ответвления увеличивается примерно как t1 / 2, независимо от расхода воды, состава раствора или свойств подложки. Такое поведение t1 / 2 в расширении ветви, очевидно, предполагает, что в формировании ветви преобладает диффузия; то есть смешивание двух растворов происходит за счет поперечной диффузии воды. Подгоняя данные (исключая переходные процессы для t <50 с) с одномерным диффузионным соотношением ℓ = (2Dt) 1/2, мы получили эффективные константы диффузии D в диапазоне 2 × 10−9m2⋅s − 1 для наименьшей нефти. концентрация раствора Узо, которая сравнима с коэффициентом диффузии воды в этаноле.Следует отметить, что для более высоких концентраций масла в растворе Узо скорости роста и, следовательно, подобранные эффективные константы диффузии D ветвей в 10 раз больше, предположительно из-за некоторого конвективного вклада, что приводит к несколько более крутому увеличению, чем t1 / 2.
Рис. 3.Рост ветвей капли. ( A ) Светлопольные и ( B ) флуоресцентные изображения растущих ветвей. Вода была окрашена в зеленый цвет, а темные линии на изображениях — это ветви нанокапли.( C ) Графики зависимости расстояния ℓ от начала ветви до ее растущего фронта от t1 / 2. Почти линейная зависимость между ℓ и t1 / 2 после начального переходного процесса обнаруживает близкое к диффузионному поведению, которое лежит в основе роста ветви. Отметим, однако, что диффузиофорез также вызовет некоторые конвективные эффекты, как мы увидим из рис. 5. Оптические изображения сформированных ветвей показаны на рис. 2 A — C .
Механизм и моделирование образования ветвей.
Теперь мы предлагаем механизм ограниченного эффекта Узо и универсальные углы слияния двух ветвей капель. Во-первых, вода, диффундирующая из бокового канала в квази-2D основной канал, заполненный раствором Узо, приводит к локальному снижению концентрации этанола, так что масло становится перенасыщенным — эффект Узо. Неровности, такие как микроструктуры на краю бокового канала по направлению к квазидвумерному основному каналу, затем способствуют зарождению капель из перенасыщенного маслом раствора, тем самым инициируя разветвление.В квазидвумерной геометрии градиент концентрации наиболее резкий на движущемся фронте воды в богатый нефтью раствор в основном канале. Хотя фронт воды [обеспечивающий импульс локального перенасыщения нефтью в растворе Узо (18)] перемещается по всему поперечному сечению основного канала, новые капли только выборочно зарождаются позади старых, показывая, что равномерная и невозмущенная диффузия воды в раствора Узо недостаточно для инициирования зародышеобразования капель, но необходимы локальные искажения.Они возникают из-за старых капель или, в некоторых случаях, из-за неровностей в основном канале, из которых выходят новые ветви. Расширение старой ветви может вызвать асимметрию градиента концентрации, которая направляет рост новых боковых ветвей к ней, что в конечном итоге приводит к слиянию двух ветвей.
Процесс роста и слияния ветвей напоминает разветвление сетей ручьев, прорезанных подземными водами, где характерный угол разветвления составляет около 72∘ (21, 22), что близко к найденному здесь значению 74∘ ± 2∘. .Аналогичным образом рост одномерных потоков в сети контролируется двумерной диффузией. Такие процессы доступны для аналитической обработки гармонического поля, подчиняющегося двумерному уравнению Лапласа, с помощью преобразования Лёвнера (23, 24), что очень элегантно показано для образования и разветвления сетей водотоков в пористом эстуарии (21). . Основываясь на этом подходе, Лёвнер и другие смогли аналитически рассчитать угол бифуркации одномерных потоков в двумерном гармоническом поле, получив 72 °, что согласуется с их и нашими экспериментальными результатами.
Приведенное выше качественное описание процесса роста и слияния ветвей подтверждается численным моделированием двумерного уравнения диффузии, при этом растущие ветви реализуются методом погруженных границ; подробности см. в «Материалы и методы» . На рис. 4 A и B показаны моментальные снимки процесса роста ветвей и соответствующего поля концентрации воды, полученные в результате численного моделирования. Начальными точками ветвей на левой стенке являются небольшие возмущения (расчетной) области, которые мы помещаем в симметричную (рис.4 A ) или асимметричным (рис. 4 B ) способом. На вершине этих возмущений шероховатости градиент концентрации увеличивается до максимума, что заставляет ветвь расти оттуда. Когда ветвь растет, градиент концентрации максимизируется на кончике ветки, что приводит к дальнейшему росту ветки. Независимо от того, было ли начальное возмущение симметричным или асимметричным, концы ветвей всегда подчиняются закону диффузионного масштабирования l≈t1 / 2 (рис. 4 C ), подтверждая экспериментальное наблюдение.Усредняя бифуркационные углы, возникающие при численном моделировании, мы получили 76∘, что хорошо согласуется с теоретическими аргументами и экспериментальными наблюдениями. Это моделирование отражает основные особенности эволюции ветвей капли с точки зрения общей морфологии, скорости роста и, в частности, характерных углов слияния. Однако численная модель недостаточно сложна, чтобы можно было проводить однозначное сравнение с экспериментом. Такое количественное сравнение выходит за рамки данной статьи.
Рис. 4.Результаты численного моделирования, в котором красные линии показывают траектории ветвей, а контуры отображают поле концентрации воды. На ветвях образуются капли масла, поэтому концентрация воды в районе ветвей наиболее высока. ( A ) Симметричный случай с четырьмя идентичными начальными возмущениями при x = 0. ( B ) Асимметричный случай с шестью различными начальными возмущениями при x = 0. ( C ) Независимо от того, являются ли ветви симметричными или нет, их концы следуют очень похожему поведению с преобладанием диффузии, как видно из линейного масштабирования t1 / 2, определяющего расстояние ℓ между кончиками и левой границей за пределами начального переходного процесса, аналогично тому, что наблюдается на рис.3 С .
Локальный конкурентный эффект растущих капель.
Детальное рассмотрение изображений на рис. 2 A — C , в частности, в локальной области вокруг бифуркаций, показывает, что две сливающиеся ветви перед слиянием слегка растут наружу. Рис. 2 E показывает PDF локальных углов, полученных путем подгонки двух сегментов ответвления около узла. Ширина PDF аналогична ширине определяемых глобально углов бифуркации, а средний угол теперь составляет 97∘ ± 2∘, что намного больше, чем угол 74∘ ± 2∘ от соответствия всей ветви.Эти большие углы отражают конкуренцию между соседними растущими каплями за растворенную нефть при перенасыщении. Аналогичный конкурентный эффект наблюдался в процессе самоорганизации этих растущих капель, удерживаемых на ободке микролинзы из перенасыщенного маслом раствора (25), который возник как следствие избирательного роста капель в направлении большая концентрация, то есть направление, в котором другие капли не растут.
Повышенная подвижность коллоидных частиц за счет локального градиента концентрации.
Теперь мы обнаруживаем локальный градиент концентрации как важное следствие ветвлений капель, отслеживая движение коллоидных частиц в ограничении двумерного жидкостного канала. В качестве контрольного эксперимента мы сначала исследовали, как вода поступает в основной канал, заполненный безмасляным раствором этанола. Окрашенная вода с флуоресцеином в концентрации 0,02%, как наблюдали, полностью заполняла боковой канал вдоль внутреннего канала, прежде чем диффундировать в основной канал. Когда в воду были добавлены микрочастицы индикатора диаметром 2 мкм, флуоресцентные изображения показали, что эти микрочастицы остались в боковом канале, что свидетельствует о том, что вода диффундирует в раствор этанола, не вызывая достаточного градиента концентрации для переноса коллоидных частиц в основной канал. .Другими словами, градиент давления по водным каналам не привел к перетоку в раствор Узо. Однако, как только ветви капель образуются в результате двумерного ограниченного эффекта Узо, мы наблюдаем, что подвижность коллоидных частиц значительно увеличивается, как показано на рис. 5 и в видеороликах S4 – S6. Микрочастицы входили в основной канал движущимся фронтом, а затем притягивались к ветвям. Оказавшись там, частицы быстро перемещались в направлении, противоположном направлению фронта, хотя некоторые, казалось, рециркулировали вдоль боковых ветвей капель.Интересно отметить, что частицы обычно следуют по одному и тому же пути и рециркулируют в течение нескольких циклов по одной и той же боковой ветви. Количественный анализ их траекторий показал, что скорость микрочастиц вдали от ветвей составляла примерно 25 мкм / с, уменьшаясь до примерно 10 мкм / с примерно через 100 с. Скорость в обратном направлении по ветвям была примерно в 10 раз выше, до 300 мкм / с на движущемся фронте.
Рис. 5.Ветви капель для улучшенного транспорта коллоидных частиц и наноэкстракции в квази-2D-канале.( A ) Профиль скорости микрочастиц индикатора в основном канале. Взвешенные в воде микрочастицы попадали в основной канал слева при t = 0 с. Соотношение вода: этанол: масло в растворе Узо составляло 25: 25: 1. ( B ) Сравнение всех траекторий частиц до t = 250 с, ясно показывающее медленное движение частиц в канал между ветвями с последующим их быстрым возвращением по ветвям. ( C ) Изображения ветвей и ( D ) скорости частиц как функции времени.Цвета / символы соответствуют скоростям траекторий отдельных частиц, когда они проходят внутри прямоугольника с тем же цветом, выделенным в C в направлении соответствующих стрелок. ( E ) Флуоресцентные изображения, показывающие развитие ветвей капель, но с водой, допированной красным красителем при чрезвычайно низкой концентрации 10 нМ. Видно, что краситель извлекается из воды, накапливаясь и концентрируясь в зародышевых каплях масла.
Мы связываем значительно увеличенную подвижность коллоидных частиц с диффузиофорезом, движением коллоидных частиц под действием градиентов концентрации растворенного вещества (26).Здесь градиент концентрации создается во время образования ветвей капель масла, как показано на контурной карте на рис. 4. Таким образом, эти результаты предлагают подход к усилению переноса коллоидов в чрезвычайно ограниченном пространстве в тройной жидкой системе. Такая локально повышенная коллоидная подвижность дополняет диффузионнофорез, возникающий из-за градиентов концентрации электролита и неэлектролита в объемном растворе, потока растворенного вещества, испускаемого «маяком» или потоком Марангони в присутствии градиентов поверхностного натяжения (27⇓⇓⇓⇓– 32).Более того, коллоидная подвижность здесь также может иметь отношение к ряду интригующих явлений, таких как решение лабиринта или самодвижущиеся капли, усиленный перенос частиц в тупике каналов или автономное движение микронасосов с автономным питанием в наноразмерных и микромасштабных системах. (3, 27).
На пути к управляемой квази-2D наноэкстракции.
Теперь мы кратко продемонстрируем, что формирование ответвлений нанокапель потенциально может быть применено для наноэкстракции для концентрирования, разделения и анализа гидрофобных растворенных веществ в водных растворах.В этой демонстрации принципа действия вода, легированная красным красителем в концентрации 10 нМ, проходит через боковой канал, вызывая ограниченный эффект Узо, как показано на рис. 5 B . Красный краситель в воде экстрагируется и концентрируется в каплях масла на ветвях, что отражается в постепенно увеличивающейся интенсивности красного окрашивания капель с течением времени.
Этот метод наноэкстракции применим к широкому спектру гидрофобных соединений в воде, аналогично дисперсионной жидкостно-жидкостной микроэкстракции (7⇓ – 9).Небольшой объем и большая площадь поверхности капель позволяют быстро концентрировать и разделять. Однако мы предполагаем еще больший потенциал для процесса наноэкстракции: обогащение растворенными веществами поверхностных нанокапелек происходит непосредственно из воды, без необходимости использования дисперсных органических растворителей, обычно требуемых при микроэкстракции. Таким образом, для многих гидрофобных соединений ожидаются более высокие коэффициенты концентрирования. Кроме того, концентрация и анализ гидрофобного растворенного вещества объединены в один этап.Таким образом, весь процесс предлагаемого нами подхода позволяет анализировать растворенное вещество, не требуя дополнительной стадии отделения концентрированного растворенного вещества от смеси масляной фазы, обогащенной аналитом, в дисперсии.
Выводы
В этой работе мы сообщаем об образовании нанокапель, когда эффект Узо ограничен квазидвумерным каналом. Такое ограничение дает нам уникальную возможность отслеживать во времени и пространстве процесс образования капель и отделить свертку множества физико-химических процессов от динамики перемешивания.Мы наблюдали дендритные паттерны ветвления масляных нанокапелек, показывающих универсальные углы ветвления со значением 74∘ ± 2 analysis, количественный анализ которых позволяет предположить, что формирование этих ветвей определяется внешним диффузионным полем. Эта работа также демонстрирует, что локальный градиент концентрации масла, создаваемый ветвями капель, может приводить в движение быстрое автономное движение коллоидных частиц, явление, которое потенциально может быть применено для значительного увеличения локального переноса коллоидов в сильно ограниченном 2D-пространстве.Мы также использовали эти ответвления нанокапель для наноэкстракции гидрофобного растворенного вещества в воде, чтобы значительно упростить концентрацию растворенного вещества и анализ in situ в один этап. Понимание, полученное в результате этой работы, дает ценные рекомендации по разработке растворителя и условий смешивания для контроля образования нанокапель, возникающих из-за эффекта Узо, который полезен для широкого спектра применений в аналитических технологиях, напитках, фармацевтике, косметике и современных материалах.
Материалы и методы
Химические вещества и растворы.
Исходный раствор полимеризуемого масла получали смешиванием 1,6-гександиолдиакрилата (HDODA; Sigma-Aldrich) и фотоинициатора 2-гидрокси-2-метилпропиофенона (Sigma-Aldrich) при объемном соотношении 10: 1. Первый раствор (т.е. раствор Узо) готовили путем добавления указанной выше смеси к водному раствору этанола. Объемное соотношение воды и этанола в растворе составляло 50:50 или 40:60. Аналогичные результаты были получены, когда мы попробовали неполимеризуемые масла, такие как витамин А в жидкой форме, олеиновая кислота и додекан.Второй раствор содержал насыщенную маслом воду или просто воду в случае масел с чрезвычайно низкой растворимостью. Кремниевые подложки, покрытые октадецилтрихлорсиланом (OTS-Si), были подготовлены и очищены с использованием ранее задокументированной процедуры (33).
Экспериментальная установка и характеристика роста ветвей.
Канал для потока, схематически изображенный на рис. 1, был построен путем сборки подложки OTS-Si между двумя верхними стеклянными пластинами, герметизированными уплотнительным кольцом. Расстояние от верхней пластины до поверхности подложки составляет примерно 20 мкм.Канал заполнялся раствором Узо через входной патрубок с последующей закачкой воды в канал при постоянном потоке 200 мкл / мин с помощью шприцевого насоса. Затем вода вытеснила раствор узо в глубоких боковых каналах, прежде чем диффундировать в поперечном направлении в гораздо более узкий внутренний канал, что привело к образованию ветвей капель. После их образования подложку освещали УФ-лампой (20 Вт, 365 нм) через верхнюю стеклянную пластину, что позволяло проводить полимеризацию капель с использованием установленных протоколов (34).Затем полимеризованные капли были охарактеризованы с помощью оптического микроскопа в режиме отражения или атомно-силового микроскопа.
Для визуализации процесса смешивания воду добавляли флуоресцеином (0,02%) и использовали флуоресцентный микроскоп для наблюдения за формированием структур ветвей в основном канале. Структуры ветвей анализировали путем измерения длины ветвей (основной структуры) в разное время как под светлопольной, так и под флуоресцентной микроскопией. Кроме того, флуоресцентные микрошарики в окрашенной воде отслеживали с помощью флуоресцентной микроскопии.Видео снимались со скоростью 60 кадров в секунду.
Статистический анализ углов ответвлений слияния.
В наших угловых измерениях структура ветвей была преобразована в двоичную форму и скелетонизирована, чтобы найти точки ветвления. Чтобы облегчить сравнение между наблюдаемыми здесь ветвями и ветвями в разветвленных потоках, мы определили «полный» угол точно так же, как указано в справочниках. 21 и 22, аппроксимируя ветви как линейные сегменты с использованием уменьшенной большой оси. Отметим, что теоретическое предсказание в этих статьях фактически рассматривало угол в пределе, близком к точкам ветвления.С другой стороны, мы охарактеризовали угол около точек ветвления, приняв уменьшенную большую ось сегментов ветвления в непосредственной близости к точкам слияния. После фильтрации коротких волосатых веточек, которые невозможно отличить от выступающих капель, было получено от 47 до 160 углов в каждом случае, всего 660 углов. Мы получили средний угол 74∘ ± 2∘ (95% доверительный интервал) для всех полных углов и средний угол 97∘ ± 2∘ для всех ближних углов.
Численное моделирование.
Учитывая, что процесс образования ветвей определяется исключительно диффузией, мы решили уравнение диффузии ∂c∂t = D∇2c + s [1] с методом погруженной границы, чтобы учесть движущуюся границу. Здесь c — поле концентрации, D — коэффициент диффузии, а s — эйлеров источник, используемый для имитации воздействия погруженного тела на поле концентрации. Погруженные границы дискретизируются в набор лагранжевых точек, которые представляют ветви. Источники Эйлера и Лагранжа связаны друг с другом через регуляризованную дельта-функцию, задаваемую формулой s (𝐱, t) = ∫S (𝐗 (s, t)) δ (𝐱 − 𝐗 (s, t)) ds, [2 ], где 𝐱 и 𝐗 — позиционные векторы эйлеровой и лагранжевой точек соответственно, а S — лагранжев истоковый член.
Чтобы обеспечить выполнение заданных условий на границе, мы определяем лагранжево поле концентрации, снова используя регуляризованную дельта-функцию, ∫c (𝐱, t) δ (𝐱 − 𝐗 (s, t)) d𝐱 = CΓ (𝐗 (s , t)), [3] где CΓ — лагранжево поле концентрации на границе.
В вычислениях сначала вычисляется поле предварительной концентрации c * с эйлеровыми источниками из предыдущего временного шага. Затем c * интерполируется на границу с помощью уравнения. 3 , чтобы получить обновленную лагранжевую концентрацию C *, из которой мы вычисляем новый лагранжиан исходный член, используя S = CΓ − C ∗ Δt, [4] где Δt — временной шаг.Впоследствии мы заполняем S в эйлеровом поле, используя уравнение. 2 . Наконец, уравнение диффузии пересчитывается, чтобы завершить обновление этого временного шага. Для дискретизации используется неявный метод конечных разностей второго порядка.
Используемая регуляризованная дельта-функция определяется как δh (𝐱 − 𝐗) = 1h4ϕ (x − Xh) ϕ (y − Yh) ϕ (z − Zh). [5] Здесь ϕ имеет форму четырехточечного кусочного дельта-функция, предложенная в исх. 35, ϕ (r) = {18 (3−2 | r | + 1 + 4 | r | −4r2) для | r | ≤1,18 (5−2 | r | −−7 + 12 | r | — 4r2), для 1≤ | r | ≤2,0, для 2≤ | r |.[6]
Условия эксперимента были такими же для видеороликов, показанных в фильмах S1 – S5. Состав раствора Узо был 25: 25: 1 для воды: этанола: масла. Кино S6 собирали, когда использовали водный раствор этанола вместо раствора Узо. Объемное соотношение вода: этанол составляло 2: 3. Для всех видеороликов скорость потока воды составляла 100 мкл / мин, а субстрат был гидрофобным. Все масштабные линейки имеют размер 100 мкм.
Благодарности
X.H.Z. благодарит за поддержку Австралийский исследовательский совет (FT120100473 и DP140100805).Мы также благодарим Nederlandse Organisatie voor Wetenschappelijk Onderzoek за финансовую поддержку и Нидерландский центр многомасштабного каталитического преобразования энергии.
Сноски
Автор: X.H.Z. разработал проект; З.Я.Л. разработала экспериментальную установку; З.Я.Л. и M.H.K. провели эксперименты; М.Х.К. провели анализ данных и подготовили рисунки; X.J.Z. провели численное моделирование; L.Y.Y., D.L. и X.H.Z. интерпретировал результаты; и Д.L. и X.H.Z. написал газету.
Авторы заявляют об отсутствии конфликта интересов.
Эта статья представляет собой прямое представление PNAS. M.P.B. Приглашенный редактор по приглашению редакционной коллегии.
Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704727114/-/DCSupplemental.
Самосборка, вызванная испарением в водных смесях ароматизатора и этанола, и его влияние на характеристики ароматизатора
Основные моменты
- •
Путь испарения тройных систем вода-этанол-ароматизатор показан на фазовой диаграмме.
- •
Когда образуются микроэмульсии без поверхностно-активных веществ, активность ароматизатора усиливается.
- •
Сушка в двухфазной области вызывает спонтанное удержание аромата.
Abstract
Настоящее исследование демонстрирует, как испарение тройного раствора этанол – вода – ароматизатор приводит к переходу от неструктурированного трехкомпонентного раствора, богатого этанолом, к структурированному раствору, богатому водой, путем пересечения так называемого предварительного -узо область его фазовой диаграммы.Экзотермический характер этой самосборки, выявленный калориметрическим методом, предполагает, что он связан с переносом молекул между сосуществующими микродоменами.
Удивительно, но испарение ароматизатора сначала ускоряется в области до узо, о чем недвусмысленно свидетельствует одновременный онлайн-гравиметрический, калориметрический и газохроматографический мониторинг во время сушки. При дальнейшей сушке наблюдается переход от предузо к двухфазной мутной области на фазовой диаграмме, поскольку потеря воды становится более значительной, чем потеря этанола.На этом этапе размер области, богатой ароматизаторами, увеличивается на три порядка, поскольку капли ароматизатора, окруженные молекулами этанола, захватываются богатой водой внешней средой, и испарение ароматизатора подавляется.
Это начальное ускорение и последующее замедление кинетики испарения молекул аромата является общим для всех парфюмерных ингредиентов. Путь изменения состава на фазовой диаграмме при испарении впервые, насколько нам известно, исследован в условиях сильного потока инертного газа двумя комбинированными оперативными методами.
Ключевые слова
Испарение
Аромат
Pre-ouzo
Термогравиметрия
Калориметрия
Фазовая диаграмма
Рекомендуемые статьи Цитирующие статьи (0)
Полный текстB.V. Все права защищены © 2014. Else.
Рекомендуемые статьи
Цитирующие статьи
Нанопреципитация и «эффект Узо»: применение в устройствах для доставки лекарств.
ADR-12559; Количество страниц 12 Расширенные обзоры доставки лекарств xxx (2014) xxx – xxxСписки содержания доступны на ScienceDirect
Домашняя страница журнала Advanced Drug Delivery Reviews: www.elsevier.com/locate/addr
Нанопреципитация и «эффект Узо»: применение к устройствам доставки лекарств ☆ Элиз Лепельтье, Клоди Бурго, Патрик Куврёр UMR CNRS 8612, Institut Galien Paris-Sud, Université Paris-Sud, France
article
информация
История статьи: Принята 19 декабря 2013 г. Доступно онлайн xxxx Ключевые слова: Нанопреципитация Эффект Узо Наночастицы Зарождение и рост Терпеноидное пролекарство Скваленоилирование
аннотация Биоразлагаемые наноносители, такие как наночастицы на основе липидов или восстановленных полимеров, могут быть разработаны для улучшения эффективности токсические побочные эффекты лекарств.В соответствующих условиях нанопреципитация раствора гидрофобного соединения в нерастворителе может генерировать дисперсию наночастиц с узким распределением размеров без использования поверхностно-активного вещества (эффект «Узо»). Цель обзора — представить основные параметры, контролирующие зарождение и рост агрегатов в пересыщенном растворе, а также характеристики полученных наночастиц. Подчеркивается важность кинетики смешивания раствора, содержащего гидрофобное соединение, и нерастворителя.Приведены иллюстративные примеры полимерных наночастиц для доставки лекарств или нанопрепаратов на основе терпеноидов, полученных путем нанопреципитации. © 2013 Elsevier B.V. Все права защищены.
Содержание 1. Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Краткая теоретическая справка. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Стабилизация наночастиц. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. Удаление растворителя. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Экспериментальные процессы смешения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Нанопреципитация малых органических молекул: может ли играть роль спинодальный распад? . . . . . . . . . . . . . . . . . 7. Нанопреципитация полимеров: какие параметры имеют значение? . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 8. Примеры применения полимерных наночастиц, полученных методом нанопреципитации, для доставки терапевтических молекул. 9. Наночастицы на основе терпеноидов: новая платформа для тераностики. . . . . . . . . . . . . . . . . . . . . . . . . . . 10. Заключение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Рекомендации . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .
1. Введение Наноносители могут обеспечить решающее преимущество для различных лекарств и терапевтических биологических молекул, таких как нуклеиновые кислоты и белки, за счет повышения их эффективности и снижения потенциальных токсических и побочных эффектов. Биоразлагаемые наночастицы (НЧ) предлагают возможности для защиты терапевтических агентов от разложения, контроля их высвобождения, преодоления биологических барьеров и нацеливания на определенные участки действия [1–7]. Физико-химические свойства наночастиц, такие как состав, размер, морфология и свойства поверхности, могут влиять на биораспределение.
☆ Этот обзор является частью тематического выпуска Advanced Drug Delivery Reviews на «Выбор редакции 2014».
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
0 0 0 0 0 0 0 0 0 0 0
и фармакокинетика лекарственных средств путем модификации взаимодействия с биологической средой [8–15].Среди этих характеристик размер наночастиц является решающим параметром, особенно для внутривенного введения, поскольку он сильно влияет на адсорбцию белков плазмы (опсонинов), что приводит к распознаванию наночастиц макрофагами ретикулоэндотелиальной системы (RES) и быстрому удалению. из кровотока. Было показано, что клиренс более мелких частиц (~ 80 нм) был медленнее, чем клиренс более крупных частиц (~ 200 нм), из-за меньшего количества адсорбированных белков плазмы.Кроме того, фильтрация NPs селезенкой и захват в паренхиме печени также зависели от размера. Что касается терапии рака, наноносители могут воспользоваться преимуществом так называемого эффекта повышенной проницаемости и удерживания (EPR): протекающая сосудистая сеть некоторых солидных опухолей в сочетании со слабым лимфатическим дренажом,
0169-409X / $ — см. Передний материал © 2013 Elsevier BV Все права защищены. http://dx.doi.org/10.1016/j.addr.2013.12.009
Цитируйте эту статью как: E. Lepeltier, et al., Нанопреципитация и «эффект Узо»: применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
2
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
может привести к избирательному накоплению коллоидных носителей в ткани-мишени [16,17]. Сообщается, что эффективный размер пор в эндотелии кровеносных сосудов во многих опухолях человека составляет от 200 нм до 600 нм [18,19].Следовательно, существует консенсус, что частицы должны иметь размер менее 200 нм и предпочтительно менее 100 нм, чтобы получить выгоду от эффекта ЭПР. С другой стороны, в здоровых тканях диаметр более 10 нм обычно препятствует диффузии НЧ через эндотелий сосудов, сводя к минимуму побочные эффекты. На клеточном уровне механизмы интернализации NP, либо фагоцитоз, либо эндоцитоз, также зависят от размера [8-10]. Следовательно, размер и распределение наночастиц по размеру необходимо точно контролировать для эффективной и безопасной доставки лекарств.Среди различных методов, описанных для получения НЧ [20–22], метод замещения растворителя (или смещение растворителя, или нанопреципитация) представляет собой простой и быстрый процесс, отличающийся от методов на основе эмульсии (эмульгирование – диффузия, эмульсия – испарение и высаливание). методы) в том, что не требуется эмульсия-предшественник. На практике гидрофобное растворенное вещество (молекулы полимера или липидов) сначала растворяется в полярном органическом растворителе (обычно этаноле, ацетоне или ТГФ). Затем этот раствор добавляют к большому количеству нерастворителя (обычно воды) растворенного вещества, с которым полярный растворитель смешивается во всех пропорциях.Смешанный бинарный раствор становится нерастворителем для гидрофобных молекул, и система эволюционирует в сторону разделения фаз, что приводит к образованию частиц гидрофобного растворенного вещества. Затем органический растворитель можно удалить выпариванием. Эта методология проста, но основное практическое ограничение заключается в возможном скоплении частиц и образовании крупных агрегатов. В соответствующих условиях этот процесс мгновенно генерирует дисперсию мелких капель или наночастиц с узким одномодальным распределением по размерам в диапазоне 50–300 нм.Этот процесс самопроизвольного эмульгирования, для которого не требуется поверхностно-активное вещество, был назван Витале и Кацем «эффектом Узо» по типичному примеру греческого напитка [23]. Основными компонентами Узо (Pastis во Франции) являются вода (~ 55%), спирт (~ 45%) и трансанетол (~ 0,2%), нерастворимое в воде масло, извлекаемое из семян аниса. При разбавлении водой анетол больше не растворяется в смеси вода / этанол. Узо самопроизвольно становится молочным из-за образования долгоживущих метастабильных капель масла, которые рассеивают видимый свет.Пересматривая публикации (до 2005 г.), посвященные получению различных наночастиц или нанокапсул методом замещения растворителя, Ганачауд и Кац предположили, что образование этих дисперсий было вызвано эффектом Узо [24]. Небольшие гидрофобные органические молекулы и липиды или полимеры могут действовать аналогично молекулам масла, и поэтому эффект Узо может приводить к образованию наночастиц. Многочисленные исследования были направлены на определение наиболее подходящих экспериментальных параметров, контролирующих размер и полидисперсность НЧ.Некоторые исследования были сосредоточены на фазовых диаграммах тройных систем растворенное вещество / растворитель / нерастворитель, чтобы определить область карты состава, в которой получены только наночастицы (область Узо). Были предприняты попытки выяснить механизмы, контролирующие кинетику образования и характеристики полученных наночастиц. Эти знания имеют первостепенное значение для получения монодисперсных наночастиц эффективным и воспроизводимым способом с использованием рационального подхода, а не методом проб и ошибок.Цель этого обзора — представить последние достижения в знаниях о формировании органических наночастиц с использованием метода вытеснения растворителя с акцентом на приложениях для доставки лекарств. 2. Краткое теоретическое обоснование Когда раствор, состоящий из гидрофобного растворенного вещества в полярном, смешивающемся с водой, растворителе, смешивается с большим количеством воды, концентрация растворенного вещества
в полученном растворе превышает его термодинамический предел растворимости. Отношение фактической концентрации растворенного вещества к равновесной растворимости определяет пересыщение (S) раствора.На фазовой диаграмме тройной системы растворенное вещество / растворитель / нерастворитель бинодальная кривая соответствует пределу смешиваемости в зависимости от состава, тогда как спинодальная кривая определяет предел термодинамической стабильности. Система развивается путем зарождения растворенных частиц (или капель) в метастабильной области фазовой диаграммы (между бинодали и спинодали кривыми) или путем спинодального распада, то есть спонтанного роста концентрационных флуктуаций, в области, ограниченной спинодалью [25] .Классическая теория нуклеации (УНТ) является наиболее широко используемой моделью для объяснения гомогенной нуклеации в метастабильной области. Когда достигается критическое пересыщение, зародыши образуются спонтанно из-за небольших локальных колебаний концентрации растворенных молекул. УНТ принимает глобулярную форму ядер и постоянное поверхностное натяжение независимо от размера ядер. Таким образом, свободная энергия образования зародыша радиуса r определяется выражением: 2
2
ΔG ¼ 4π r γ þ 4 = 3π r Δgv, где γ — поверхностное натяжение, а Δgv — разность свободной энергии на единицу объема между две фазы.Два члена имеют противоположный знак, так что ΔG проходит через максимум при изменении r. Критический радиус зародыша r *, соответствующий максимуму свободной энергии, определяется выражением: r ¼ −2γ = Δgv. Частицы с радиусом меньше критического радиуса зародыша r * исчезают, тогда как более крупные частицы стабильны и могут расти дальше. Мгновенная скорость зародышеобразования и критический радиус зародыша связаны с пересыщением (S) раствора и термодинамическими свойствами границы раздела частицы / раствора через γ.Скорость нуклеации изменяется как exp (- γ3 / k3T3 (logS) 2), а r * пропорционально (γ / kT logS). Поэтому скорость зародышеобразования и критический радиус зародыша чрезвычайно чувствительны к пересыщению. При низком пересыщении образуется несколько стабильных зародышей, тогда как при высоком пересыщении образуется большое количество очень маленьких зародышей. Следует подчеркнуть, что в случае нанопреципитации для гомогенного перенасыщения требуется, чтобы смешивание водной и органической фаз и связанная с этим молекулярная диффузия компонентов были чрезвычайно быстрыми по сравнению со скоростью зародышеобразования наночастиц.Затем предполагается, что частицы растут из одной партии, в которой молекулы растворенных веществ распределены случайным образом. Ядра, размер которых превышает критический, могут расти дальше за счет прилипания других молекул растворенного вещества к окружающему раствору, пока концентрация все еще растворенного вещества не снизится до равновесной концентрации. Когда рост частиц ограничивается диффузией молекул растворенного вещества к поверхности ядра, скорость их роста зависит от пересыщения и от коэффициента диффузии (D) молекул растворенного вещества.Помимо этого процесса роста, ограниченного диффузией, может происходить ограниченная диффузией агрегация кластер-кластер (DLCA). Когда количество ядер очень велико, рост происходит в основном за счет случайных столкновений существующих частиц. Вероятность столкновения пропорциональна квадрату числа частиц, и предполагается, что каждое столкновение вызывает агрегацию двух вовлеченных частиц. При встрече мягкие НЧ перестраиваются, образуя плотные структуры, часто сферические. Прогнозируется, что средний размер будет линейно увеличиваться со временем.Ожидается, что очень высокое пересыщение благоприятствует механизму DLCA, тогда как при низком пересыщении зародышеобразование и рост являются доминирующим механизмом [26] (рис. 1). Что касается распределения наночастиц по размерам, разделение зарождения и роста во времени является ключом к образованию наночастиц с низкой полидисперсностью [27,28]. Требуется единичный всплеск зародышеобразования, который может быть достигнут процессами с очень коротким временем перемешивания для обеспечения однородности
Цитируйте эту статью как: E. Lepeltier, et al., Нанопреципитация и «эффект Узо»: применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
3
Рис. 1. Схематическое описание (а) механизма роста, ограниченного зародышеобразованием и диффузией, (б) ограниченного диффузией кластер-кластерной агрегации.
пересыщение. За зарождением может следовать ограниченный диффузией рост ядер.Было показано, что узкое распределение НЧ по размерам также может быть вызвано слиянием малых ядер [29–31]. Созревание Оствальда (OR) является потенциальным механизмом, участвующим в дальнейшем росте частиц (или капель) в более длительном масштабе времени [32]. Он заключается в росте более крупных частиц за счет более мелких в результате диффузионного переноса растворенных веществ через непрерывную фазу. Уменьшение межфазной энергии способствует этому процессу. Это приводит к уменьшению количества частиц по мере исчезновения мелких частиц.Растворимость и коэффициент диффузии гидрофобного растворенного вещества в непрерывной фазе, а также поверхностное натяжение между агрегатами и раствором являются основными параметрами, участвующими в созревании Оствальда. Они зависят от температуры. Созреванию по Оствальду препятствует очень низкая растворимость гидрофобного растворенного вещества в воде и / или частицах однородного размера. Подводя итог, можно сказать, что значения пересыщения (S), межфазного натяжения (γ) и коэффициентов диффузии растворенных молекул и кластеров во время различных стадий зарождения, роста и созревания частиц по Оствальду должны влиять на их конечную концентрацию, размер и полидисперсность.В небольшой области состава тройной гидрофобной системы растворенное вещество / растворитель / вода, «домен Узо», нанопреципитация дает дисперсию наночастиц (или капель) с узким распределением по размерам, тогда как за пределами границы Узо процесс замещения растворителя приводит к как наночастицы, так и более крупные агрегаты. Можно наблюдать бимодальное распределение размеров НЧ. «Домен Узо» представляет собой узкую область между бинодали и спинодали кривыми, соответствующую низким концентрациям гидрофобных растворенных веществ и соотношению растворитель / вода [33] (рис.2). Эффект Узо был подробно проанализирован в модельных системах дивинилбензол (ДВБ) / этанол / вода и транс-анетол (t-A) / этанол / вода [23,34–38]. Было обнаружено, что средний диаметр капли DVB в первую очередь является функцией одного параметра, отношения избытка масла к растворителю, «избыток масла», относящегося к концентрации масла, превышающей его концентрацию насыщения в непрерывной фазе растворитель / вода. Увеличение отношения избытка масла к растворителю привело к увеличению среднего диаметра капель [23].Что касается системы транс-анетол (t-A) / этанол / вода, ЯМР-спектроскопия показала, что спонтанное эмульгирование t-A в воде начинается с образования очень маленьких агрегатов (диаметром ~ 2 нм). Наблюдали очень медленный обмен между свободными молекулами t-A в водной фазе и молекулами t-A внутри агрегатов. Быстрое слияние этих агрегатов привело к появлению более крупных капель (~ мкм), ответственных за мутный вид эмульсии, которые были исследованы с использованием динамического рассеяния света (DLS) и малоуглового рассеяния нейтронов (SANS).Дальнейший рост капель происходил через созревание Оствальда в более длительном масштабе времени, таким образом обеспечивая
Рис. 2. Фазовая диаграмма тройной гидрофобной системы растворенное вещество / растворитель / вода (вверху, перепечатано из [33]) и схематическое описание процесс зародышеобразования жидкость-жидкость или эффект Узо (внизу, адаптировано из [24]): быстрое диспергирование в воде капель органического раствора, содержащего гидрофобное масло, сопровождается взаимной диффузией растворителя и воды, что приводит к перенасыщению масла и зародышеобразованию. мелких капель масла.Рост капель прекращается, когда водная фаза перестает быть перенасыщенной маслом. В конце процесса капли масла диспергируются в водной фазе. Приведена СЭМ-фотография наночастиц ПММА, полученных путем нанопреципитации в домене Узо (перепечатано из [26]).
долгий срок службы эмульсии. OR задерживается из-за однородного размера капель, очень низкой растворимости масла в воде и низкого межфазного натяжения капель t-A в смесях этанол / вода.Более того, образование адсорбированного слоя этанола на каплях t-A может стабилизировать их, как предполагают моделирование методом Монте-Карло [33]. Взятые вместе, наблюдения согласуются с гомогенным жидко-жидкостным зародышеобразованием капель и подчеркивают важность созревания Оствальда. Однако факторы, влияющие на рост и стабильность этих спонтанных капель, до конца не изучены. 3. Стабилизация наночастиц. Стабилизация первичных наночастиц имеет решающее значение для поддержания малых наночастиц.Медленные процессы, происходящие в более длительном масштабе времени, такие как созревание по Оствальду и / или дальнейшая агрегация НЧ, могут приводить к большим полидисперсным частицам. Удаление органического растворителя из водной фазы может уменьшить созревание по Оствальду, тем самым повышая стабильность НЧ [39]. Агрегацию наночастиц можно предотвратить за счет присутствия добавок, таких как поверхностно-активное вещество с низкой молекулярной массой, амфифильный полимер, полиэлектролит или полисахаридный полимер, такой как декстран, адсорбированных или закрепленных на поверхности наночастиц.Поэтому для стабилизации частиц нанопреципитация может проводиться в присутствии небольшого количества стабилизатора. Стабилизатор обычно не требуется, если НЧ демонстрируют гидрофильные части или ненулевой дзета-потенциал [40,41]. Интересно, что Roger et al. показали, что агрегация мягкого полимера
Цитируйте эту статью как: E. Lepeltier, et al., Нанопреципитация и «Эффект Узо»: Применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http: //dx.doi.org / 10.1016 / j.addr.2013.12.009
4
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
НЧ, ограниченные дальнодействующим электростатическим отталкиванием между заряженными НЧ, могут привести к снижению полидисперсности НЧ. Действительно, зависящий от размера потенциал отталкивания благоприятствовал столкновениям с участием большой NP и маленькой, а не двух больших NP [42]. Более того, агрегация НЧ может быть ограничена наличием добавок, которые увеличивают вязкость сплошной среды и снижают скорость диффузии кластеров.Природа и свойства стабилизатора влияют на размер НЧ, гранулометрический состав и коллоидную стабильность. Zhu et al. сравнили влияние адсорбции трех полиэлектролитов, ε-полилизина, полиэтиленимина (PEI) и хитозана на стабильность гидрофобных НЧ β-каротина. Высокомолекулярный PEI и хитозан, способные обеспечивать как стерическую, так и электростатическую стабилизацию, давали наименьшие НЧ и имели лучший стабилизирующий эффект [43]. НЧ чаще всего стабилизируют амфифильными диблок-сополимерами, которые либо добавляют в водную фазу, например, вододиспергируемые блок-сополимеры полипропиленоксида и полиэтиленоксида ([защищено по электронной почте] или [защищено по электронной почте]), либо растворяются в органическом растворителе, таком как ПЭГилированный сополимер молочной и гликолевой кислоты (PLGA-b-PEG).Было обнаружено, что некоторые цепи сополимера могут быть кинетически захвачены внутри ядра НЧ, когда НЧ образовывались в результате быстрого осаждения (нанопреципитация во вспышке) органического раствора, содержащего как гидрофобные молекулы (-каротин), так и сополимер. Влияние четырех широко используемых сополимеров на НЧ β-каротина было систематически исследовано, а размер и стабильность НЧ связаны со свойствами различных гидрофобных блоков (температура стеклования Tg, способность кристаллизоваться и параметр растворимости).Наилучший стабилизирующий эффект был получен с PLGA-bPEG, который демонстрирует некристаллизуемый гидрофобный блок с высокой Tg [44]. Когда рост НЧ останавливается адсорбцией добавок, ожидается, что концентрация добавки и относительные временные масштабы различных процессов, участвующих в образовании НЧ, будут иметь первостепенное значение для определения их окончательного размера. Это подчеркнули Lannibois et al. которые исследовали осаждение гидрофобных молекул (холестерилацетат) в воде в присутствии добавленного амфифильного диблок-сополимера, состоящего из стирольного блока (молекулярная масса 1000) и оксиэтиленового блока (молекулярная масса 1000) (PS-PEO) [45].Они оба были растворены в ацетоне, и раствор был смешан с большим избытком воды. Поскольку холестерилацетат почти нерастворим в воде, агрегаты образовывались немедленно и росли по механизму DLCA, о чем свидетельствует изменение среднего объема NP в зависимости от концентрации холестерилацетата. Стабильная дисперсия была получена, когда поверхность НЧ была полностью покрыта монослоем ПАВ. Конечный средний размер НЧ зависел от концентраций гидрофобных (CH, г / г) и поверхностно-активных молекул (CS, г / г).Для данного отношения CS / CH (например, CS / CH = 1) объем NP линейно увеличивается с начальной концентрацией гидрофобных молекул в ацетоне (от CH = 10-4 г / г до CH = 10-2 г / г). . Изменение объема НЧ с соотношением CS / CH показало, что при высоких концентрациях ПАВ размеры НЧ были больше, чем предполагалось, если бы все молекулы ПАВ были адсорбированы. Лишь небольшая часть сополимера эффективна для контроля агрегации. Было обнаружено, что часть сополимера образует мицеллы в воде.Эксперименты с гидрофобным гексадеканом и поверхностно-активным веществом C12E5 подтвердили существование двух режимов. При умеренных соотношениях поверхностно-активное вещество / гидрофобное растворенное вещество все молекулы поверхностно-активного вещества покрывали поверхность капель, но агрегация давала частицы довольно большого размера. При высоких отношениях CS / CH агрегация прекращалась на более ранней стадии, но часть поверхностно-активного вещества оставалась в воде. Следовательно, попытки получить все меньшие и меньшие НЧ путем добавления увеличивающихся количеств ПАВ в какой-то момент должны потерпеть неудачу (рис.3). Эти экспериментальные результаты можно объяснить путем сравнения с численным моделированием конкуренции между агрегацией гидрофобных молекул и адсорбцией поверхностно-активного вещества. Два различных степенных закона были продемонстрированы на логарифмическом графике объема НЧ Vav как функции отношения CS / CH, что соответствует двум режимам использования молекул поверхностно-активного вещества. Показатель степени, измеренный при низких отношениях CS / CH
Рис. 3. Влияние соотношения поверхностно-активное вещество (C12E5) / гидрофобное растворенное вещество (гексадекан) CS / CH на средние объемы Vav капель гексадекана в воде.Гексадекан и C12E5 растворяли в ацетоне и раствор смешивали с большим количеством воды. Для каждого набора данных концентрация гексадекана, CH, в ацетоне поддерживалась постоянной. Эволюция Vav как функции CS / CH показывает существование двух режимов (адаптировано из [45]).
было близко к теоретическому значению -3 (Vav α [CS / CH] -3), соответствующему всем молекулам поверхностно-активного вещества, адсорбированным на поверхности растущих наночастиц, тогда как оно составляло около -1,3 при высоких отношениях CS / CH. Также было исследовано влияние временной задержки между агрегацией гидрофобного растворенного вещества и адсорбцией поверхностно-активного вещества.Агрегации позволяли беспрепятственно протекать в течение времени τ до начала адсорбции поверхностно-активного вещества. Для постоянного отношения CS / CH (например, CS / CH = 4) размер NP определялся начальной концентрацией гидрофобных молекул (CH) и значением этой временной задержки τ. При τ = 0 объем НЧ незначительно увеличивался с увеличением CH. В пределе больших временных задержек объем НЧ линейно увеличивался с начальной концентрацией гидрофобных молекул, что отражало экспериментальные результаты. 4. Удаление растворителя Удаление растворителя из суспензий NP важно для биомедицинских применений.Поскольку растворитель смешивается как с гидрофобными молекулами, так и с водой, наночастицы, полученные путем нанопреципитации, должны содержать часть растворителя, определяемую коэффициентом распределения, в равновесии с растворителем в водной фазе. В качестве примера, коэффициент распределения этанола, определяемый как отношение массовой доли этанола в воде к доле в органической фазе, для DVB составил 6,9 [23]. В некоторых случаях суспензии диализуют против воды или буфера [46]. Обычные растворители (этанол, ТГФ и ацетон) обычно удаляют выпариванием при пониженном давлении, поскольку их точки кипения ниже, чем у воды.Кумар и Прюдом недавно разработали эффективный и масштабируемый процесс удаления растворителя, основанный на испарении во вспышке. Он заключается в частичном испарении предварительно нагретого потока жидкости, распыляемого внутри вакуумной камеры. Было показано, что концентрация ТГФ снизилась более чем на 95% после двух стадий вспышки, упав с ~ 10 до менее 0,5 мас.% В остаточной жидкости [39]. Недавно был также предложен новый подход с использованием процесса сверхкритической экстракции CO2 для эффективного удаления ацетона и смесей ацетон / этанол из суспензий полимерных наночастиц.Более низкие количества остаточного растворителя (несколько частей на миллион) были измерены по сравнению с обычным процессом испарения [47]. Несмотря на практическую важность, проблема остаточного растворителя в суспензиях НЧ решалась редко. 5. Экспериментальные процессы смешения. Зарождение в метастабильной области фазовой диаграммы или спинодальный распад в нестабильной области должны зависеть от условий смешения органического раствора, содержащего гидрофобный компонент, и воды. В частности, локальное мгновенное пересыщение, возникающее в результате взаимной диффузии растворителя и воды в мелких каплях
Цитируйте эту статью как: E.Lepeltier, et al., Нанопреципитация и «эффект Узо»: применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
Ожидается, чтоорганического раствора, диспергированного в водной фазе, будет зависеть от процесса смешивания. Зарождение и рост частиц могут быть инициированы внутри капель до того, как может произойти полное перемешивание. Когда нанопреципитация выполняется путем добавления по каплям органического раствора в водную фазу, вызывается непрерывное изменение состава смеси растворенного вещества / растворителя / нерастворителя.Поэтому были реализованы различные экспериментальные устройства для достижения лучшего контроля смешивания двух фаз (рис. 4). В установке с остановленным потоком определенные объемы двух фаз быстро смешиваются и вводятся в ячейку, где растут НЧ. В устройстве с непрерывным потоком сходящиеся каналы несут органический раствор и воду, которые смешиваются в Т (или Y) -переходе, а затем вытекают через выходной канал, где происходит нанопреципитация. На выходе из этого канала восстанавливается суспензия наночастиц.В эти устройства были вставлены смесители нескольких типов, например миллифлюидный или микрожидкостный смеситель или смеситель с прямой ударной струей, чтобы обеспечить быстрое и воспроизводимое смешивание двух растворов [28,40,48–51]. В зависимости от условий перемешивания перемешивание может быть ламинарным или турбулентным, а время перемешивания варьируется. Время перемешивания менее 1 мс было достигнуто с помощью микрожидкостного устройства, использующего фокусировку гидродинамического потока, когда раствор органического полимера сжимался в узкую струю, текущую между двумя водяными потоками.Малая ширина сфокусированного потока обеспечивала быструю взаимную диффузию растворителя и воды [49]. Численное моделирование динамики жидкости недавно было выполнено для оценки эффективности смешивания для встречно-штыревого микромиксера высокого давления [52]. В этом устройстве тонкие слои раствора полимера и воды поочередно укладываются друг на друга перед входом в секцию фокусировки потока, где их ширина уменьшается. Отношение воды к растворителю R определяется их относительной скоростью потока. Эффективность перемешивания определялась как объемная доля жидкости в секции фокусировки потока, где зародышеобразование было возможным из-за пересыщения.Моделирование показало, что увеличение скорости потока при сохранении постоянного R увеличивает эффективность перемешивания. Полимерные НЧ меньшего размера были получены экспериментально. Поэтому нанопреципитация определялась гидродинамикой микромиксера для данного отношения воды к растворителю и начальной концентрации полимера в растворителе. В своей новаторской работе Хорн и его сотрудники разработали процесс камеры непрерывного смешивания для промышленного производства нанодисперсных гидрозолей каротиноидов [25]. Эти тетратерпены, содержащие различные фрагменты на концах цепи, нерастворимы в воде и плохо растворимы в липидах.В этом процессе раствор каротиноида в смешивающемся с водой растворителе, обычно этаноле, наносили путем турбулентного перемешивания с водной фазой, содержащей растворенный желатин, что придает НЧ коллоидную стабильность. Полученные монодисперсные НЧ имели структуру ядро / оболочка с каротиноидным ядром, окруженным желатиновой оболочкой. В недавнем обзоре D’Addio и Prud’homme обсуждали образование наночастиц лекарств путем быстрой смены растворителя [48]. Они указали
5
на преимущества смесителей непрерывного действия с закрытой струей, которые можно масштабировать от лабораторных экспериментов до промышленного производства.Устройства с остановленным или непрерывным потоком могут быть объединены с методами измерения, такими как синхротронное малоугловое рассеяние рентгеновских лучей (SAXS), для отслеживания ранних стадий образования наночастиц. Кинетические исследования образования наночастиц могут позволить оценить модели зародышеобразования и роста. До сих пор почти все исследования образования коллоидных частиц в жидких средах с временным разрешением касались неорганических НЧ, таких как НЧ золота. Во многих экспериментах перенасыщение неорганического предшественника было вызвано химическими реакциями, происходящими при быстром смешивании двух растворов [28,30,31,54].Например, НЧ золота можно получить восстановлением водного раствора соли золота аскорбиновой кислотой. Эта химическая реакция аналогична быстрому снижению качества растворителя в процессе нанопреципитации. 6. Нанопреципитация малых органических молекул: может ли играть роль спинодальный распад? Образование аморфных наночастиц из небольших органических молекул (холестерилацетат, β-каротин, красители…), для которых кристаллическая фаза является термодинамически стабильной фазой, по-видимому, является общей чертой наносаждения низкомолекулярных соединений при высоком пересыщении.Механизм, лежащий в основе, является предметом обсуждения. Согласно Lannibois et al., Образование агрегатов аморфного холестерилацетата происходит из-за остаточного растворителя и воды, пластифицирующих НЧ [45]. Аморфное состояние стабилизированных полиэлектролитом НЧ β-каротина, полученных очень быстрым осаждением, считалось результатом кинетических барьеров для кристаллизации. Молекулы β-каротина не успевали выровняться и плотно упаковать [43]. Однако Brick et al. предположили, что преимущественное образование наночастиц аморфного красителя согласуется с процессом спинодального разложения после встречной диффузии растворителя и воды в каплях органического раствора.Разделение фаз могло происходить быстрее, чем кристаллизация [55]. Согласно Хорну и Ригеру, в большинстве систем, содержащих гидрофобные растворенные вещества с низкой молекулярной массой, может происходить либо гомогенное зародышеобразование, либо спинодальное разложение, в зависимости от перенасыщения растворенного вещества. Зарождение зародышей и рост могут происходить при умеренном пересыщении растворенного вещества, тогда как при высоком пересыщении может происходить спинодальное разложение. Граница между метастабильной областью и спинодальной областью может быть пересечена во время смешивания растворителя и воды, особенно если капли органического раствора в воде малы и диффузионный перенос растворителя и воды происходит быстро [25,55].Нынешний механизм нанопреципитации очень трудно разгадать из-за коротких временных и пространственных масштабов. Агрегаты, образующиеся в самом начале процесса, могут быстро эволюционировать. Были предприняты попытки наблюдать ранние стадии образования частиц хинакридона и бемита с помощью просвечивающей электронной микроскопии. Закалка образцов производилась сразу (~ 10 мс) после установления пересыщения [56]. Образование аморфных НЧ при нанопреципитации открывает новые перспективы для получения НЧ малорастворимых фармацевтических соединений с повышенной биодоступностью за счет повышенной скорости растворения.7. Нанопреципитация полимеров: какие параметры имеют значение?
Рис. 4. Различные устройства для нанопреципитации: (а). Схема капельного процесса, (б). Устройство впрыска, приводимое в действие давлением (адаптировано из [53]), (c). Ударно-струйный смеситель (адаптировано из [40]) и (d). Y-образный переход в устройстве для нанесения наночастиц с непрерывным потоком.
С момента новаторской работы Fessi et al. многочисленные наночастицы, приготовленные из различных полимеров и растворителей, были получены с использованием метода замещения растворителя [22,57,58].Наиболее широко используемыми полимерами были поли (молочная кислота) (PLA), сополимер лактида с гликолидом (PLGA), поли (алкилцианоакрилат) (PACA) и поли (ε-капролактон) (PCL) и соответствующие сополимеры. с фрагментом поли (этиленгликоля) (ПЭГ), который удовлетворяет требованиям устройства для доставки лекарств, касающимся биоразлагаемости, биосовместимости и отсутствия иммуногенности (рис. 5). Систематические эксперименты предоставили информацию о местонахождении «области Узо», где получают только наночастицы, и определили соответствующие параметры, контролирующие выход продукции,
Цитируйте эту статью как: E.Lepeltier, et al., Нанопреципитация и «эффект Узо»: применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
6
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
Рис. 5. Химическая формула нескольких полимеров, широко используемых для производства наночастиц методом замещения растворителей: PLA (поли (молочная кислота)), PLGA (поли (лактид-со- гликолид)), PACA (поли (алкилцианоакрилат)) и PCL (поли (ε-капролактон)).n, x и y соответствуют количеству соответствующих мономеров.
размер и полидисперсность наночастиц. Были исследованы соответствующие влияния соотношения растворитель / вода, соотношения полимер / растворитель, молярной массы полимера, природы растворителя, межфазного натяжения и времени смешивания растворитель / нерастворитель. Было показано, что на границе Узо начальная массовая доля полимера экспоненциально уменьшалась с увеличением отношения растворитель / вода: log [массовая доля полимера в растворителе] была линейной функцией [отношения растворитель / вода].Эта тенденция прослеживалась в нескольких системах, например. поли (метилметакрилат) (ПММА) / ацетон, PCL / ацетон и PLGA / ацетон [26,59,60]. Следовательно, релевантными параметрами для границы Узо являются начальная концентрация полимера в органическом растворителе и соотношение растворитель / вода. Как указали Обри и др., Предел Узо на самом деле отличается как от бинодали, так и от спинодали
линий [26]. Оптимальные условия для нанопреципитации были достигнуты, когда полимер был растворен в тета-растворителе и когда раствор находился в режиме разбавления, так что спирали полимера не перекрывались.Были получены наночастицы с меньшим средним размером и более низкой полидисперсностью в дополнение к лучшему выходу продукции. Напротив, при концентрации полимера в растворителе выше критической, в дополнение к наночастицам образовывались крупные агрегаты даже при увеличении соотношения вода / растворитель [21,61]. В системах PMMA / ацетон, PCL / ацетон и PLGA / ацетон было исследовано влияние начальной концентрации полимера в органическом растворителе на средний размер частиц [26,60,62]. Нанопреципитацию выполняли путем добавления за один прием большого объема водной фазы в органическую фазу (ПММА / ацетон) или путем впрыскивания при контролируемой скорости потока органического раствора в воду (PLGA / ацетон и PCL / ацетон).Увеличение концентрации полимера привело к увеличению среднего размера частиц. В области Узо средний диаметр частиц изменялся по степенному закону от массовой доли полимера. Лог-логарифмическое представление среднего диаметра наночастиц ПММА и ПКЛ как функции от исходной массовой доли или концентрации полимера (мг / мл) представляло собой прямую линию с наклоном, близким к 1/3, что указывает на то, что объем, приходящийся на одну частицу, пропорционален концентрация полимера в исходном растворе. Кисель с соавторами показали, что логарифмические кривые наночастиц PLGA, полученные для различных массовых долей ацетона (fa = 0.1, fa = 0,2, fa = 0,3), наложенные, когда средний диаметр наночастиц был перерисован как функция (fp / fa) (fp — конечная весовая доля PLGA) [60]. Это свидетельствует о том, что средний размер образующихся наночастиц зависел только от отношения полимера к растворителю fp / fa. Наклон полученной логарифмической кривой составил 1/3 (рис. 6). Экспериментальные данные о влиянии молярной массы полимера на нанопреципитацию немногочисленны. Legrand et al. изучили гомологичный ряд полимеров полимолочной кислоты (PLA) с молярными массами от 22 600 г / моль до 124 800 г / моль.При низкой концентрации полимера (5 мг / мл) молярная масса мало влияла на выход наночастиц, образующихся, когда ацетон был растворителем. Однако для молярных масс выше 32 100 г / моль средний гидродинамический
Рис. 6. Зависимость среднего диаметра полимерных наночастиц от конечной массовой доли полимеров fPLGA (a) и fPMMA (c) для различных массовые доли ацетона или как функция концентрации PCL в ацетоне (b). (c): символы представляют собой экспериментальные данные, а линии — теоретическую подгонку в соответствии с механизмом зародышеобразования-агрегации.Вставка (а): средний диаметр наночастиц PLGA как функция отношения fPLGA / fa (адаптировано из [26,60,62]).
Цитируйте эту статью как: E. Lepeltier, et al., Нанопреципитация и «эффект Узо»: Применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
Диаметр наночастицувеличивался с увеличением молярной массы (с менее 100 нм при 22 600 г / моль и 32 100 г / моль до примерно 250 нм при 124 800 г / моль ).Эти результаты предварительно коррелируют с более низким амфифильным характером длинных цепочек PLA, поскольку концы цепей несут полярную группу [61]. С другой стороны, Kissel et al. не наблюдали значительной разницы в размере частиц при изменении молярных масс PLGA (12, 34 и 48 кДа), растворенных в ацетоне при различных концентрациях (5-15 мг / мл), хотя вязкости растворов полимеров существенно различались, как и функция молярной массы [60]. Такие же результаты были получены для наночастиц ПКЛ с молярной массой от 2 до 80 кг / моль [62].Влияние межфазного натяжения между растворителем и нерастворителем на образование НЧ было исследовано Kissel et al. [60]. Они вводили растворенный в ацетоне PLGA либо в чистую воду, либо в смесь воды и ацетона, имеющую более низкое межфазное натяжение, чем чистая вода. Никаких значительных различий в размере НЧ не наблюдалось, как можно было бы ожидать, если бы нанопреципитация в основном определялась так называемым эффектом Марангони, описываемым как «поток, управляемый поверхностным натяжением». Предполагается, что эффект Марангони вызывает турбулентность на границе раздела растворителя и нерастворителя, что приводит к проникновению органической фазы в водную фазу и затем к образованию все меньших и меньших капель.В этом случае образование частиц должно происходить за счет агрегации цепочек, присутствующих в каплях [22]. Другие исследователи также отметили, что межфазное натяжение и механическая турбулентность не были движущими силами для спонтанного эмульгирования [23,37]. Было обнаружено, что средний размер наночастиц зависит от природы растворителя, используемого для солюбилизации полимера. Например, независимо от полимера, НЧ, полученные из растворов ацетона, всегда были меньше, чем НЧ, полученные из ТГФ в тех же условиях.Было высказано предположение, что более низкая вязкость и более высокий коэффициент диффузии ацетона в воде по сравнению с ТГФ должны способствовать более быстрому смешиванию растворителя и воды, что приводит к более равномерному перенасыщению, приводящему к более мелким частицам [60,61]. Cheng et al. исследовали влияние смешиваемости растворителя с водой на размер наночастиц PLGA – PEG, используя четыре растворителя (ацетонитрил, ТГФ, ацетон и ДМФ). Они наблюдали уменьшение среднего размера НЧ при увеличении смешиваемости растворитель / вода [63]. Время смешивания органического раствора, содержащего полимер, с водной фазой является решающим параметром.Было показано, что более быстрое перемешивание привело к уменьшению среднего размера получаемых наночастиц [40,49,52]. Выдающиеся результаты были получены Джонсоном и Прюдомом, чьи эксперименты охватывали время смешивания в диапазоне от ~ 5 мс до 10 000 мс, благодаря смесителю со встречной струей [40]. В смесительную камеру подавали две противоположные форсунки: одна из раствора сополимера амфифильного диблок-поли (бутилакрилата) -b-поли (акриловой кислоты) (PBA (59) -b-PAA (104)) в метаноле, а вторая — из вода. Время смешения двух фаз контролировалось скоростью струй.Внезапное падение качества растворителя для гидрофобных блоков PBA повлекло за собой быструю самосборку этих блоков, вызывая зародышеобразование.
Рис. 7. Средний диаметр наночастиц PBA (59) -b-PAA (104) как функция смешивания с водным растворителем время с различными начальными концентрациями полимера в метаноле (0,10 мас.%, 0,15 мас.%, 0,25 мас.% и 0,65 мас.%), адаптировано из [40,62].
7
и рост монодисперсных сферических агрегатов. Процесс роста был остановлен коронной щеткой из гидрофильных блоков, покрывающих НЧ.Джонсон и Прюдом продемонстрировали два режима изменения размера НЧ в зависимости от времени смешивания: по мере уменьшения времени смешивания размер НЧ также уменьшался до точки разрыва, после которой размер частиц оставался постоянным. В этой точке перерыва время перемешивания τmix и время агрегации τag были эквивалентны. Это характерное время агрегации уменьшилось с 60 до 26 мс, когда концентрация сополимера в метаноле увеличилась с 0,1 мас.% До 0,65 мас.%. При очень коротком времени перемешивания время, соответствующее образованию наночастиц, уменьшалось с увеличением начальной концентрации полимера, но размер наночастиц не зависел от концентрации.При увеличении времени перемешивания увеличение концентрации полимера в органической фазе увеличивает средний размер образующихся частиц (рис. 7). Как подчеркивают авторы, этот механизм нанопреципитации принципиально отличается от самосборки динамических мицелл сополимера в равновесии, характеризующейся быстрым обменом полимерных цепей. Нанопреципитация генерирует кинетически замороженные НЧ, не находящиеся в термодинамическом равновесии, а долгоживущие. Во время нанопреципитации размер НЧ увеличивается до тех пор, пока энергетический барьер для внедрения одиночных цепочек (унимеров) не становится слишком высоким, что происходит при количестве агрегации, меньшем, чем равновесное значение.Этот энергетический барьер зависит от величины изменения качества растворителя. Было высказано предположение, что оно ниже, когда взаимная диффузия вода-растворитель не завершена, что объясняет, почему размер НЧ увеличивается с увеличением времени перемешивания для τmix N τag. Более крупные НЧ могут образовываться до того, как будут кинетически заморожены. Когда τmix b τag, можно ожидать, что размер НЧ станет независимым от концентрации полимера. Достижение равновесия потребует дальнейшего обмена одиночными цепями между агрегатами, включая изменение количества агрегатов.Эти две стадии агрегации, быстрое зародышеобразование и рост, ведущие к метастабильным НЧ с последующим медленным процессом уравновешивания, наблюдались синхротронным МУРР с миллисекундным временным разрешением для другого амфифильного блок-сополимера поли (этилен-пропилен) -поли (этиленоксид) ( PEP – PEO) [64]. Агрегацию вызывали очень быстрым смешиванием (4,5 мс) разбавленного раствора сополимера с водой с использованием устройства с остановленным потоком. Быстрая начальная агрегация (~ 5–20 мс) привела к метастабильным НЧ, в то время как на медленном последнем этапе (~ 103-105 мс) число агрегации НЧ увеличивалось по мере приближения к термодинамическому равновесию.Процесс роста был основан на вставке и обмене унимеров. Скорость обмена цепями между агрегатами, образованными блок-сополимерами, может варьироваться в очень большом диапазоне в зависимости от системы. Основными параметрами, влияющими на скорость обмена, являются длина и химическая природа гидрофобных блоков, а также межфазное натяжение между гидрофобными блоками и водой [65]. Контроль кинетики обмена важен, когда агрегаты используются в качестве наноносителей для доставки лекарств [66]. НЧ амфифильных блок-сополимеров, полученные с помощью нанопреципитации, не всегда демонстрировали сферическое ядро, образованное гидрофобными блоками, окруженными оболочкой из гидрофильных блоков (обычно блоков PEG).Некоторые из гидрофильных блоков могут быть погребены внутри ядра NP, а не быть хорошо разделенными в короне, особенно при высоком молекулярном весе полимера, когда длина гидрофобных блоков была большой по сравнению с длиной блоков PEG. Об этом в основном свидетельствовали размеры НЧ больше, чем рассчитанные для мицелл, основанные на молекулярных массах полимеров. Более медленное перемешивание во время нанопреципитации привело к более высокой доле захвата ПЭГ ядрами НЧ. Напротив, структуры ядро-оболочка, напоминающие мицеллы, образованные небольшими поверхностно-активными веществами, были получены для сополимеров PLA-PEG с низкой молекулярной массой [67,68,44,49].Степанян и др. недавно предложили универсальное соотношение между размером НЧ и двумя параметрами, отношением времени смешивания ко времени агрегации и начальной концентрацией полимера [62]. Когда время перемешивания больше, чем время агрегации свернувшихся цепей, размер наночастиц зависит главным образом от времени перемешивания и начальной концентрации полимера, если концентрация поверхностно-активного вещества является достаточной. The
Цитируйте эту статью как: E. Lepeltier, et al., Nanoprecipitation and the «Ouzo effect»: Application to Drug Delivery devices, Adv.Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
8
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
Предполагается, что диаметрNP будет иметь степенной закон 1/3 как функцию этих параметров, но не зависит от молярной массы полимера. Нанопреципитация раствора PCL / ацетон в 1 мас.% Водном растворе Pluronic P127 хорошо описывалась этой моделью. Прогнозы модели Степаняна и др. подтверждались также экспериментальными данными Джонсона и Прюдомма [40].Таким образом, стабильные суспензии почти монодисперсных полимерных наночастиц могут быть получены с использованием спонтанного эмульгирования в узкой области состава тройной смеси полимер / растворитель / нерастворитель (вода). Домен Узо, расположенный между бинодали и спинодали кривыми, соответствует разбавленным растворам полимера и большим количествам воды. Образование НЧ объясняется механизмом зародышеобразования и роста в пересыщенном растворе полимера в присутствии стабилизатора. В качестве альтернативы гидрофильные блоки амфифильных сополимеров могут играть роль поверхностно-активного вещества.Исходная система состоит из изолированных полимерных клубков в растворителе. Поскольку качество растворителя падает при быстром смешивании с большим количеством воды, полимерные спирали разрушаются, затем сталкиваются и слипаются. Параллельно с этим стабилизирующие молекулы адсорбируются на образовавшихся НЧ и прекращают их коалесценцию. Параметр времени перемешивания имеет решающее значение для окончательного размера НП. Для типичных экспериментальных условий, то есть относительно медленного перемешивания в присутствии стабилизатора, конечный размер НЧ увеличивается с начальной концентрацией полимера, но не зависит от молярной массы полимера.8. Примеры применения полимерных наночастиц, полученных путем нанопреципитации, для доставки терапевтических молекул. Гидрофобные лекарственные средства были включены в наноносители путем соосаждения раствора полимера / лекарственного средства в воду. Например, плохо растворимые в воде паклитаксел и доцетаксел загружали в НЧ PLGA, используя преимущества нанопреципитации. НЧ, содержащие эти мощные антимитотические агенты, показали более низкую токсичность и повышенную эффективность по сравнению с препаратами на основе мицелл, в которых используются низкомолекулярные поверхностно-активные вещества [69].Bilati et al. предложено расширить использование нанопреципитации до инкапсуляции более гидрофильных молекул, например белки, путем точного выбора растворителя и нерастворителя. Они показали, что PLGA и PLA NP могут быть получены путем осаждения раствора ДМСО в спирте, что делает возможным включение белков [70]. Недавно была разработана универсальная платформа с наночастицами путем нанопреципитации сополимеров на основе поли (алкилцианоакрилата) (PACA) в водном растворе [71].Наноносители объединяли ядро PACA, внешнюю оболочку PEG, придающую коллоидную стабильность и скрытные свойства, флуоресцентные свойства, обеспечиваемые ковалентной связью красителя на основе родамина B с полимерным каркасом некоторых цепей, и концевые лиганды для специфического активного нацеливания (рис. 8). ). Что касается потенциальных применений для лечения рака, характеристики скрытности позволяют НЧ выйти из системы RES, тем самым продлевая кровообращение NP и усиливая эффект EPR в опухолях. Это пассивное нацеливание можно улучшить, используя лиганды, которые избирательно связываются с рецепторами, сверхэкспрессируемыми на опухолевых клетках.Биотин использовался в качестве лиганда для специфического распознавания различных линий раковых клеток (например, карциномы молочной железы человека MCF-7 и рака легкого мыши M109). Эффективная интернализация через биотин-рецептор-опосредованный эндоцитоз флуоресцентных НЧ-мишеней была подтверждена проточной цитометрией. Инкапсуляция паклитаксела в эти функционализированные НЧ была достигнута, что привело к специфической противораковой активности против клеток MCF-7 in vitro. Актуальность этой платформы была дополнительно продемонстрирована в области болезни Альцгеймера (БА).НЧ были функционализированы либо производными куркумина, известными своей потенциальной ролью в профилактике и лечении БА, либо новым специфическим антителом, чтобы связывать не только мономер β-амилоидного пептида 1–42 (Aβ1–42), a биомаркер AD, но также и соответствующие фибриллы, обычно расположенные в головном мозге AD. Эти НЧ проявляли сильное сродство как к мономерным, так и к фибриллярным пептидам. Эта универсальная платформа открывает путь к многофункциональным НЧ, нацеленным на различные патологии при функционализации соответствующими лигандами и несущих различные гидрофобные препараты в своих
Рис.8. Пример полимерных наночастиц с ядром PACA, внешней оболочкой PEG, красителем на основе родамина B и лигандами для специфического активного нацеливания: витамин B7 для специфического распознавания различных линий раковых клеток или куркуминоиды в качестве лигандов для пептида abeta, маркера Болезнь Альцгеймера (адаптировано из [71]).
PACA ядро. Это многообещающе, поскольку одни только НЧ PACA уже показали значительные доклинические результаты при различных патологиях. В настоящее время проходят III фазу клинических испытаний, НЧ PACA, нагруженные доксорубицином (i.e., Transdrug) улучшили выживаемость по сравнению со стандартным лечением пациентов с гепатокарциномой с множественной лекарственной устойчивостью. Помимо наночастиц, процесс нанопреципитации также позволил приготовить нанокапсулы. К раствору полимера добавляли небольшое количество масла, в котором могло быть растворено активное соединение. Когда этот раствор быстро смешивали с водой, НЧ ядро-оболочка (или нанокапсулы) образовывались в результате осаждения гидрофобного полимера на поверхности капель масла [57]. Природные фосфолипиды, которые самособираются в липосомы, вдохновили Discher и его сотрудников на создание нового класса везикул, называемых полимерсомами, сделанных из амфифильных диблок-сополимеров [72,73].Эти полимерные везикулы были получены разными методами, включая нанопреципитацию. Агрегация была вызвана взаимодействием между гидрофобными блоками, в то время как морфология определялась объемной долей от гидрофильного к гидрофобному. Полимерсомы сравнивали с вирусными капсидами из-за высокой стабильности и низкой проницаемости их оболочки. Эти свойства в основном коррелировали с толщиной мембраны, которую можно было в значительной степени регулировать за счет изменения длины блока. Лекоманду и его сотрудники использовали новое поколение поли (g-бензил L-глутамат) -блок-гиалуронана (PBLG-b-HA), сополимеры полипептид-блок-полисахарид, для получения полимерсом, нацеленных на сверхэкспрессированные гликопротеиновые рецепторы CD44 в раковых клетках. , благодаря гидрофильной части гиалуроновой кислоты.Доксорубицин был успешно загружен в эти полимерсомы с помощью соосаждения и эффективно доставлен в клетки рака груди (MCF-7) [46]. Также стоит упомянуть недавнее исследование Bui et al., В котором использовался оригинальный способ смещения растворителя для самосборки капсидоподобной оболочки блок-сополимера вокруг конденсированного комплекса siRNA и полиэтиленимина (PEI) [74]. На первом этапе разветвленный PEI и миРНК образовывали комплекс в водном буфере, давая положительно заряженные НЧ. Эти полиплексы затем диспергировали в растворе, обогащенном ДМСО, в котором блокируется амфифильный гиалуронан-поли (g-бензил-L-глутамат)
. Цитируйте эту статью как: E.Lepeltier, et al., Нанопреципитация и «эффект Узо»: применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
Сополимербыл растворен. Отрицательно заряженные части гиалуроновой кислоты взаимодействовали с предварительно сформированными наночастицами посредством электростатических взаимодействий, приводя к образованию поверхностного монослоя адсорбированного сополимера. Избыточные цепи сополимера в растворе сосуществуют с адсорбированными.На последней стадии к этой суспензии было добавлено большое количество воды, так что раствор стал нерастворителем для высокогидрофобных фрагментов PBLG, что привело к самосборке изолированных цепей сополимера с цепями, адсорбированными на НЧ. Гидрофобные взаимодействия между блоками PBLG позволили сформировать сополимерную двухслойную мембрану вокруг ядра комплексов siRNA-PEI (рис. 9). Этот наноконструкция, имитирующая морфологию вируса, обнаруживает более высокую активность по подавлению гена, чем только комплекс PEI-siRNA.Эти несколько иллюстративных примеров показывают важный вклад эффекта нанопреципитации / Узо в создание наноносителей для доставки и нацеливания лекарств. 9. Наночастицы на основе терпеноидов: новая платформа для тераностики НЧ, содержащие лекарственные препараты, представляют собой привлекательную стратегию для лечения тяжелых заболеваний, особенно в области рака. Однако увеличение загрузки лекарственного средства, обычно менее 5-10 мас.%, Остается проблемой, и НЧ часто демонстрируют так называемое «взрывное высвобождение», при котором значительная часть груза, как правило, соответствует молекулам, просто адсорбированным (или закрепленным на якоре). ) на поверхности наноносителя, быстро высвобождается при парентеральном введении.Создание наноносителей с молекулами, ковалентно связанными с лекарством расщепляемой связью (подход пролекарства), может помочь преодолеть эти ограничения [75]. Недавний прорыв был достигнут Куврёром и его сотрудниками, которые разработали уникальную и универсальную платформу для доставки лекарств, воспользовавшись также эффектом Узо. Он заключается в связывании изопреноидной цепи с биологически активной молекулой лекарства. Наносборки биоконъюгата затем получают путем нанопреципитации без необходимости в каком-либо поверхностно-активном веществе.Цепи изопреноидов были выбраны потому, что изопрен
9
является основным структурным мотивом встречающихся в природе терпеноидов, которые чрезвычайно разнообразны по химическому составу, структуре и функциям. Среди них сквален — широко распространенный в природе ациклический тритерпен. У человека это предшественник биосинтеза холестерина. Доказательство концепции этого подхода к нанопрепаратам было предоставлено с использованием сквалена в качестве политерпеноидного фрагмента и гемцитабина в качестве модельного противоракового аналога нуклеозидов [76,77].Гемцитабин — это фторированный аналог цитидина, используемый в клинике против различных солидных опухолей, а также активный против линий лимфоидных и миелоидных раковых клеток. Однако его терапевтический потенциал ограничен низкой стабильностью in vivo, ограниченной внутриклеточной диффузией и индукцией резистентности. Чтобы преодолеть эти недостатки, сквален был ковалентно связан с аминной функцией гемцитабина, давая биоконъюгат 4- (N) -трис-нор-скваленоил-гемцитабина (Sq-Gem) (рис. 10a). Это пролекарство самоорганизуется в воде в виде НЧ диаметром около 120–140 нм.После внутривенного введения эти наноузлы Sq-Gem с лекарственной нагрузкой почти 50% мас. / Мас. Проявляли впечатляюще более высокую противоопухолевую активность, чем гемцитабин, в отношении как твердых подкожно трансплантированных опухолей (panc-1, L1210 wt и P388), так и агрессивного метастатического лейкоза ( L1210 wt, P388 и РНК-16 LGL). Затем эта концепция была применена к другим нуклеозидам или аналогам нуклеозидов, таким как ddC, ddI, тимидин или аденозин. Примечательно, что независимо от нуклеозидной головной группы, биоконъюгаты на основе сквалена спонтанно образуют Nps при нанопреципитации этанольных растворов в воде.Эти НЧ обладают разнообразными супрамолекулярными структурами (т.е. ламеллярными, обратными бинепрерывными кубическими или обратными гексагональными фазами) [78–80]. Значительное улучшение активности гемцитабина в сочетании со скваленом привело к распространению концепции скваленоилирования на другие препараты, такие как паклитаксел и пенициллин G [81,82]. В отличие от амфифильных нуклеозидных биоконъюгатов, гидрофобные конъюгаты скваленоил-паклитаксел и скваленоил-пенициллин G самоорганизуются при нанопреципитации в виде плотных сферических НЧ, лишенных внутренней структуры (рис.10б). НЧ скваленоил-паклитаксел продемонстрировали противоопухолевую эффективность
Рис. 9. Создание вирусоподобных полимерных наночастиц путем самосборки молекул амфифильного блок-сополимера вокруг полиэлектролитных комплексов на основе миРНК (перепечатано из [74]).
Цитируйте эту статью как: E. Lepeltier, et al., Нанопреципитация и «эффект Узо»: Применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
10
E. Lepeltier et al./ Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
Рис. 10. (a). Скваленовая кислота в сочетании с молекулами гемцитабина самопроизвольно самоорганизуются в воде путем нанопреципитации и образуют наночастицы со средним диаметром (d) около 130 нм. (б). Выбранные Cryo-Tem изображения наночастиц скваленоил-паклитаксела (слева: d = 142 нм, PdI = 0,073) и скваленоил-пенициллина G (справа: d = 140 нм, PdI = 0,1). Наночастицы представляют собой плотные сферы (адаптировано из [81,82]).
сравним с исходным лекарственным средством, но с гораздо меньшей токсичностью.НЧ скваленоил-пенициллин G увеличивали антибактериальную активность пенициллина G против инфекции макрофагов Staphylococcus aureus благодаря их интернализации в клетки через эндоцитарные пути. Обе эти НЧ были очень стабильными и достаточно монодисперсными. Их коллоидная стабильность может быть коррелирована с их отрицательным дзета-потенциалом (~ — 20 мВ) и нерастворимостью конъюгатов, что препятствует созреванию Оствальда. Интересно, что было обнаружено, что начальная концентрация скваленоил-паклитаксела в этаноле была решающим параметром для контроля конечного размера НЧ; чем выше концентрация в этаноле, тем меньше размер НЧ.Эта тенденция согласуется с механизмом зародышеобразования и роста: поскольку количество ядер экспоненциально изменяется с пересыщением, ожидается, что более высокие концентрации растворенного вещества дадут большее количество ядер и, следовательно, меньшие НЧ, если ядра растут за счет захвата окружающих молекул растворенного вещества. Дальнейшие исследования были сосредоточены на систематической модуляции длины цепи, используемой для конъюгации гемцитабина. Либо природные, либо синтезированные терпены с числом изопренильных единиц от 1 до 6 были связаны с гемцитабином, и была оценена способность полученных биоконъюгатов образовывать НЧ [83].Все соединения давали наносборки, активные против нескольких линий раковых клеток, но пролекарства, демонстрирующие короткую гидрофобную цепь, осаждались вскоре после образования NP в отсутствие стабилизатора при испарении этанола. Созревание Оствальда может быть связано с нестабильностью суспензий НЧ, приготовленных с более короткими изопреновыми фрагментами. Помимо коротких цепей, с помощью метода живой радикальной полимеризации были получены хорошо определенные конъюгаты полиизопрен-гемцитабин [84]. Этот метод позволял выращивать полиизопреновые цепи с контролируемой молярной массой с гемцитабиновым фрагментом, присоединенным к одному из концов полимерных цепей посредством гидролизуемой амидной связи.При нанопреципитации в воде из раствора ТГФ эти конъюгаты образовывали НЧ с высокой полезной нагрузкой (Wgem / Mn, PI) гемцитабина, в диапазоне от 10,5 мас.% Для Mn, PI = 2510 г / моль до 31,2 мас.% Для Mn, PI = 840 г / моль. Размер НЧ (~ 137 нм в диаметре) не показал значительной зависимости от молярной массы ПИ для Mn в диапазоне от 1190 г / моль до 2510 г / моль. Замечательная коллоидная стабильность суспензий может быть объяснена отрицательным дзета-потенциалом НЧ (~ -68 мВ) и, вероятно, очень низкой растворимостью в воде конъюгатов PI-гем.НЧ PI-gem проявляли эффективную противоопухолевую активность как in vitro на различных линиях раковых клеток
, так и in vivo на мышах с карциномой поджелудочной железы человека, подавляя при этом присущую гемцитабину токсичность. Примечательно, что противоопухолевая активность конъюгата PI-гем увеличивалась in vivo с увеличением молярной массы PI. Платформа на основе сквалена для доставки лекарств была дополнительно наделена как магнитной чувствительностью, так и возможностями визуализации для сочетания диагностической и терапевтической деятельности [85].Многофункциональные наноносители были получены путем одностадийного наносаждения раствора скваленоил-биоконъюгата, содержащего нанокристаллы магнетита (USPIO). Нанокомпозиты USPIO / Sq-gem, вводимые мышам, несущим модель подкожной опухоли L1210 wt, могут направляться внешним магнитным полем в направлении опухолевой ткани, где их можно отслеживать с помощью магнитно-резонансной томографии (МРТ). Чтобы распространить эту тераностическую концепцию на другие контрастные вещества для МРТ, были также разработаны нанокомпозиты, связывающие Sq-Gem и контрастное вещество гадолиния Gd3 + в сочетании со скваленом.10. Заключение Нанопреципитация — это общая стратегия получения разнообразных коллоидных частиц, таких как полимерные или липидные наносферы, нанокапсулы, нанопузырьки… Она также использовалась для создания нанопрепаратов на основе терпеноидов. Это может позволить приготовить тонкие дисперсии плохо растворимых в воде или даже нерастворимых фармацевтических органических соединений, тем самым улучшая их биодоступность. Простота процесса и универсальность материалов, которые можно использовать, также дали решающий импульс разработке наноносителей, предназначенных для парентеральной доставки лекарств.Для наномедицины необходимо точно контролировать распределение наночастиц по размерам, что может быть достигнуто с помощью «эффекта Узо». Этот спонтанный процесс не требует эмульсии-предшественника и генерирует дисперсию квазимонодисперсных наночастиц. Ключевые факторы, контролирующие образование наночастиц, обсуждались, но остаются нерешенными вопросы. Характеристики НЧ определяются не только составом тройной системы в метастабильном состоянии. «Эффект Узо» и нанопреципитация тесно связаны с кинетикой смешения органического раствора, содержащего гидрофобное соединение и нерастворитель, что приводит к возникновению перенасыщенных систем.Существует мало экспериментальных исследований или моделирования явлений, происходящих во время турбулентности.
Цитируйте эту статью как: E. Lepeltier, et al., Нанопреципитация и «эффект Узо»: Применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
или ламинарное смешивание двух фаз, которое вызывает образование частиц. Кроме того, трудно исследовать ранние стадии формирования НЧ из-за коротких временных масштабов наряду с небольшими пространственными масштабами процесса.Основные механизмы часто выводятся из зависимости конечных характеристик НП от экспериментальных параметров. В частности, остается вопрос о спинодальном распаде в системах, содержащих небольшие гидрофобные молекулы при высоком пересыщении. Кинетические исследования с использованием синхротронного рентгеновского рассеяния могут позволить проверить механизмы образования и роста НЧ, несмотря на ограниченный контраст рассеяния между водой и органическими соединениями. Мало что известно о совместном осаждении различных соединений, чтобы загрузить лекарство в наноносители или остановить рост НЧ и стабилизировать их.Совместное осаждение лекарств и полимеров влияет на загрузку лекарств в наноносители и распределение наночастиц по размерам. Следует расширить исследования влияния свойств амфифильных блок-сополимеров на стабильность НЧ. Остаточный растворитель, а также добавки и лекарственные средства также могут мешать процессам образования частиц и стабилизации. Поэтому существует острая необходимость в дальнейших экспериментах и моделировании во всех этих областях. Часть результатов, раскрытых в этом обзоре, была поддержана Европейским исследовательским советом в рамках Седьмой рамочной программы Европейского сообщества FP7 / 2007–2013 (Соглашение о гранте № 249835).Список литературы [1] T.M. Аллен, П.Р. Куллис, Системы доставки лекарств: вход в основной поток, Science 303 (2004) 1818–1822. [2] Дж. Николас, С. Мура, Д. Брамбилла, Н. Мацкевич, П. Куврёр, Дизайн, стратегии функционализации и биомедицинские применения целевых биоразлагаемых / биосовместимых наноносителей на основе полимеров для доставки лекарств, Chem. Soc. Ред. 42 (2013) 1147–1235. [3] Э. Сусан, С. Кассель, М. Бланзат, И. Рико-Латтес, Доставка лекарств мягким веществом: матрикс и везикулярные носители, Angew. Chem.48 (2009) 274–288. [4] К. Вотье, П. Куврёр, Наномедицины: новый подход к лечению серьезных заболеваний, J. Biomed. Nanotechnol. 3 (2007) 1–12. [5] Л. Браннон-Пеппас, Дж. Бланшетт, Наночастицы и таргетные системы для лечения рака, Adv. Препарат Делив. Ред. 56 (2004) 1649–1659. [6] Дж. Паньям, В. Лабхасетвар, Биоразлагаемые наночастицы для доставки лекарств и генов в клетки и ткани, Adv. Препарат Делив. Ред. 55 (2003) 329–347. [7] К. Катаока, А. Харада, Ю. Нагасаки, Мицеллы блок-сополимера для доставки лекарств: дизайн, характеристика и биологическое значение, Adv.Препарат Делив. Ред. 47 (2001) 113–131. [8] Х. Хиллеро, П. Куврёр, Вхождение наноносителей в клетку: актуальность для доставки лекарств, Cell. Мол. Life Sci. 66 (2009) 2873–2896. [9] Х. Ли, Х. Фонж, Б. Хоанг, Р.М. Рейли, К. Аллен, Влияние размера частиц и молекулярного нацеливания на внутриопухолевое и субклеточное распределение полимерных наночастиц, Мол. Pharm. 7 (2010) 1195–1208. [10] Ф. Лу, С.Х. Ву, Ю. Хунг, С.Ю. Моу, Влияние размера на поглощение клетками хорошо взвешенных, однородных мезопористых наночастиц кремнезема, Small 5 (2009) 1408–1413.[11] Э.А. Симоне, Т.Д. Дзюбла, В. Музыкантов, Полимерные носители: роль геометрии в доставке лекарств, Экспертное мнение. Препарат Делив. 5 (2008) 1283–1300. [12] Д. Хюн, К. Кантнер, К. Гейдель, С. Брандхольт, И. Де Кок, S.J.H. Соенен, П. Ривера-Хиль, Дж.М. Черногория, К. Бракманс, К. Мюллен, Г.У. Ниенхаус, М. Клаппер, У. Дж. Парак, Наночастицы с полимерным покрытием, взаимодействующие с белками и клетками: акцент на знаке чистого заряда, ACS Nano 7 (2013) 3253–3263. [13] М.А. Добровольская, П. Аггарвал, Я.Холл, С. Макнил, Доклинические исследования для понимания взаимодействия наночастиц с иммунной системой и его потенциального воздействия на биораспределение наночастиц, Мол. Pharm. 5 (2008) 487–495. [14] Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, C. Chen, Поверхностная химия и соотношение сторон, опосредованные клеточными поглощение наностержней Au, Биоматериалы 31 (2010) 7606–7619. [15] П. Декуцци, Р. Паскуалини, У. Арап, М. Феррари, Внутрисосудистая доставка систем твердых частиц: действительно ли имеет значение геометрия? Pharm.Res. 26 (2009) 235–243. [16] Х. Маэда, Дж. Ву, Т. Сава, Ю. Мацумура, К. Хори, Сосудистая проницаемость опухоли и эффект ЭПР в макромолекулярной терапии: обзор, J. Control. Выпуск 65 (2000) 271–284. [17] Х. Маэда, Макромолекулярная терапия в лечении рака: эффект EPR и за его пределами, J. Control. Выпуск 164 (2012) 138–144. [18] Ф. Юань, М. Деллиан, Д. Фукумура, М. Леунинг, Д.Д. Берк, В. Йорчилин, Р. Джайн, Сосудистая проницаемость в ксенотрансплантате опухоли человека: зависимость молекулярного размера и размер отсечки, Cancer Res.55 (1995) 3752–3756. [19] В.П. Торчилин, Целевые фармацевтические наноносители для лечения рака и визуализации, AAPS J. 9 (2007) (статья 15). [20] C. Vauthier, K. Bouchemal, Способы получения и производства полимерных наночастиц, Pharm. Res. 26 (2009) 1025–1056. [21] С. Галиндо-Родригес, Э. Аллеман, Х. Фесси, Э. Дёлькер, Физико-химические параметры, связанные с образованием наночастиц в методах высаливания, эмульгирования-диффузии и нанопреципитации, Pharm. Res. 21 (2004) 1428–1439.
11
[22] C.E. Mora-Huertas, H. Fessi, A. Elaissari, Влияние параметров процесса и рецептуры на образование субмикронных частиц с помощью замещения растворителя и методов эмульгирования-диффузии. Критическое сравнение, Adv. Коллоид Интерф. Sci. 163 (2011) 90–122. [23] С.А. Витале, Дж. Л. Кац, Дисперсии жидких капель, образованные гомогенным зародышеобразованием жидкость – жидкость: «эффект Узо», Langmuir 19 (2003) 4105–4110. [24] Ф. Ганачауд, Дж. Л. Кац, Наночастицы и нанокапсулы, созданные с использованием эффекта Узо: спонтанное эмульгирование как альтернатива ультразвуковым устройствам и устройствам с большим усилием сдвига, ChemPhysChem 9 (2005) 209–216.[25] Д. Хорн, Дж. Ригер, Органические наночастицы в водной фазе, Angew. Chem. 40 (2001) 4330–4361. [26] Дж. Обри, Ф. Ганачауд, Дж. П. Коэн-Аддад, Б. Кабан, Нанопреципитация полиметилметакрилата смещением растворителя: 1. Границы, Langmuir 25 (2009) 1970–1979. [27] M.A. Watzky, R.G. Финке, Кинетические и механистические исследования образования нанокластеров переходных металлов. Новый механизм, когда водород является восстановителем: медленное, непрерывное зародышеобразование и быстрый автокаталитический рост поверхности, J. Am. Chem. Soc.119 (1997) 10382–10400. [28] Дж. Хан, Ф. Тестард, Ф. Малогги, П.Е. Кулон, Н. Менгуи, О. Спалла, Понимание контроля размера биосовместимых наночастиц золота в миллифлюидных каналах, Langmuir 28 (2012) 15966–15974. [29] Э. Матиевич, Однородные неорганические коллоидные дисперсии. Достижения и проблемы, Langmuir 10 (1994) 8–16. [30] J. Polte, TT Ahner, F. Delissen, S. Sokolov, F. Emmerling, AF Thünemann, R. Kraehnert, Механизм образования наночастиц золота в классическом методе синтеза цитрата, полученный на основе совместной оценки in situ XANES и SAXS Дж.Являюсь. Chem. Soc. 132 (2010) 1296–1301. [31] J. Polte, R. Erler, AF Thünemann, S. Sokolov, TT Ahner, K. Rademann, F. Emmerling, R. Kraehnert, Зарождение и рост наночастиц золота изучали с помощью малоуглового рассеяния рентгеновских лучей in situ на миллисекундное временное разрешение, ACS Nano 4 (2010) 1076–1082. [32] Ю. Лю, К. Катан, В. Саад, Р.К. Prud’homme, Оствальдовское созревание наночастиц β-каротина, Phys. Rev. Lett. 98 (2007) 036102. [33] Р. Ботет, «Эффект Узо», недавние разработки и применение в переносе терапевтических лекарств, J.Phys. Конф. Сер. 352 (2012) 1–8. [34] Д. Карто, И. Пианет, П. Брунери, Б. Гиллемат, Д.М. Бассани, Исследование начальных событий спонтанного эмульгирования транс-анетола с помощью динамической ЯМР-спектроскопии, Langmuir 23 (2007) 3561–3565. [35] Д. Карто, Д. Бассани, И. Пианет, «Эффект Узо»: после спонтанного эмульгирования транс-анетола в воде с помощью ЯМР, C.R. Chim. 11 (2008) 493–498. [36] И. Грилло, Исследование всемирно известной эмульсии методом малоуглового рассеяния нейтронов: Le Pastis, Colloids Surf., А 225 (2003) 153–160. [37] Н.Л. Ситникова, Р. Сприк, Г. Вегдам, Э. Эйзер, Спонтанно образующиеся эмульсии транс-анетол / вода / спирт: механизм образования и стабильность, Langmuir 21 (2005) 7083–7089. [38] Э. Шолтен, Э. ван дер Линден, Х. Это, Жизнь ароматного аниса алкогольного напитка: омрачает ли его стабильность или подтверждает теорию? Langmuir 24 (2008) 1701–1706. [39] В. Кумар, Р.К. Prud’homme, Стабильность наночастиц: способы обработки для удаления растворителя, Chem. Англ. Sci. 64 (2009) 1358–1361.[40] Б.К. Джонсон, Р. Прюдомм, Механизм быстрой самосборки наночастиц блок-сополимера, Phys. Rev. Lett. 91 (2003) 118302. [41] P.C. Хименц, Р. Раджагопалан, Принципы коллоидной химии и химии поверхности, 3-е издание, Marcel Dekker Inc., Нью-Йорк, 1997. [42] К. Роджер, Р. Ботет, Б. Кабане, Коалесценция отталкивающих коллоидных капель: путь к монодисперсности популяции, Langmuir 29 (2013) 5689–5700. [43] Z. Zhu, K. Margulis-Goshen, S. Magdassi, Y. Talmon, C.W. Macosko, Стабилизированные полиэлектролитом лекарственные наночастицы посредством флэш-нанопреципитации: модельное исследование с β-каротином, J.Pharm. Sci. 99 (2010) 4295–4306. [44] З. Чжу, Влияние амфифильного диблок-сополимера на образование и стабильность лекарственных наночастиц, Биоматериалы 34 (2013) 10238–10248. [45] H. Lannibois, A. Hasmy, R. Botet, O. Aguerre Charriol, B. Cabane, Ограниченная поверхностно-активным веществом агрегация гидрофобных молекул в воде, J. Phys. II Франция 7 (1997) 319–342. [46] К.К. Упадхьяй, А. Бхатт, А. Мишра, Б. Двараканатх, С. Джайн, К. Шац, Дж. Ф. Ле Майнс, А. Фарук, Дж. Чандраайя, А.К. Джайн, А. Мисра, С. Лекоманду, Внутриклеточная доставка лекарств и противоопухолевая активность нагруженных доксорубицином полимерсом поли (гамма-бензил L-глутамат) -b-гиалуронана, Биоматериалы 31 (2010) 2882–2892.[47] Р. Кампарделли, Дж. Делла Порта, Э. Реверчон, Удаление растворителя из суспензий полимерных наночастиц путем непрерывной сверхкритической экстракции, J. Supercrit. Жидкости 70 (2012) 100–105. [48] С. д’Аддио, Р. Prud’homme, Контроль образования наночастиц лекарственного средства путем быстрого осаждения, Adv. Препарат Делив. Ред. 63 (2011) 417–426. [49] Р. Карник, Ф. Гу, П. Басто, К. Каннисаро, Л. Дин, В. Кей-Ману, Р. Лангер, О.К. Фарохзад, Микрожидкостная платформа для управляемого синтеза полимерных наночастиц, Nano Lett.8 (2008) 2906–2912. [50] Б.К. Джонсон, Р. Prud’homme, Химическая обработка и микросмешивание в закрытых встречных струях, AIChE J. 49 (2003) 2264–2282. [51] Ю. Лю, Р.О. Фокс, прогнозы CFD для химической обработки в закрытом реакторе с ударной струей, AIChE J. 52 (2006) 731–744. [52] Ф. Балли, Д.К. Гарг, К.А. Серра, Й. Хоарау, Н. Антон, К. Брошон, Д. Парида, Т. Вандамм, Г. Хадзиоанну, Улучшенное получение полимерных наночастиц с регулируемым размером с помощью микрожидкостного нанопреципитации, Полимер 53 (2012) 5045–5051.[53] J. Molpeceres, M. Guzman, M.R. Arberturas, M. Chacon, L. Berges, Применение центральных композиционных конструкций для получения наночастиц поликапролактона путем вытеснения растворителя, J. Pharm. Sci. 85 (1996) 206–213.
Цитируйте эту статью как: E. Lepeltier, et al., Нанопреципитация и «эффект Узо»: Применение к устройствам доставки лекарств, Adv. Препарат Делив. Ред. (2014 г.), http://dx.doi.org/10.1016/j.addr.2013.12.009
12
E. Lepeltier et al. / Advanced Drug Delivery Reviews xxx (2014) xxx – xxx
[54] B.Абекассис, Ф. Тестард, О. Спалла, П. Барбу, Исследование in situ зарождения и роста наночастиц золота с помощью малоуглового рассеяния рентгеновских лучей, Nano Lett. 7 (2007) 1723–1727. [55] M.C. Брик, Х.Дж. Палмер, Т. Whitesides, Образование коллоидных дисперсий органических материалов в водных средах путем сдвига растворителя, Langmuir 19 (2003) 6367–6380. [56] H. Haberkorn, D. Franke, Th. Frechen, W. Goesele, J. Rieger, Ранние стадии образования частиц в реакциях осаждения — хинакридон и бемит в качестве общих примеров, J.Коллоидный интерфейс Sci. 259 (2003) 112–126. [57] Х. Фесси, Ф. Пюизье, Дж. П. Девиссаге, Н. Аммури, С. Бенита, Формирование нанокапсул путем осаждения межфазного полимера после вытеснения растворителя, Int. J. Pharm. 55 (1989) R1 – R4. [58] О. Тиун, Х. Фесси, Дж. П. Девиссаге, Ф. Пюизьё, Получение псевдолатекса с помощью нанопреципитации: влияние природы растворителя на характеристическую вязкость и константу взаимодействия, Int. J. Pharm. 146 (1997) 233–238. [59] S. Stainmesse, A.-M. Ореккьони, Э. Накаче, Ф.Puisieux, H. Fessi, Формирование и стабилизация биоразлагаемой полимерной коллоидной суспензии наночастиц, Colloid Polym. Sci. 273 (1995) 505–511. [60] М. Бек-Бройхситтер, Э. Риттинг, Т. Лебхардт, X. Ван, Т. Киссель, Получение наночастиц путем вытеснения растворителя для доставки лекарственного средства: сдвиг в «области Узо» при загрузке лекарственного средства, Eur. J. Pharm. Sci. 41 (2010) 244–253. [61] П. Легран, С. Лезье, А. Бошо, Р. Греф, В. Раатжес, Г. Барратт, К. Вотье, Влияние поведения полимера в органическом растворе на производство наночастиц полилактида с помощью нанопреципитации, Int.J. Pharm. 344 (2007) 33–43. [62] Р. Степанян, J.G.J.L. Лебуй, J.J.M. Слот, Р. Туинье, М.А.Коэн Стюарт, Контролируемое образование наночастиц за счет ограниченной диффузии коалесценции, Phys. Rev. Lett. 109 (2012) 138301. [63] Дж. Ченг, Б.А. Теплый, И. Шерифи, Дж. Сунг, Г. Лютер, Ф. Гу, Э. Леви-Ниссенбаум, А.Ф. Радович-Морено, Р. Лангер, O.C. Фарохзад, Формулировка функционализированных наночастиц PLGA – PEG для направленной доставки лекарств in vivo, Биоматериалы 28 (2007) 869–876. [64] Р. Лунд, Л. Виллнер, М. Монкенбуш, П.Панин, Т. Нараянан, Дж. Колменеро, Д. Рихтер, Наблюдение за структурой и кинетический путь образования полимерных мицелл, Phys. Rev. Lett. 102 (2009) 188301. [65] Т. Николай, О. Коломбани, К. Шассенье, Динамические полимерные мицеллы по сравнению с замороженными наночастицами, образованными блок-сополимерами, Soft Matter 6 (2010) 3111–3118. [66] В. Кумар, Л. Ван, М. Рибе, Х. Х. Тунг, Р.К. Прюдом, Формулировка и стабильность наночастиц итраконазола и оданакатиба: определяющие физические параметры, Мол. Pharm.6 (2009) 1118–1124. [67] Т. Райли, С. Стольник, К.Р. Хилд, К.Д. Xiong, M.C. Гарнетт, Л. Иллум, С.С. Дэвис, С.С. Пуркисс, Р.Дж. Барлоу, П.Р. Геллерт, Физико-химическая оценка наночастиц, собранных из блок-сополимеров поли (молочная кислота) –поли (этиленгликоль) (PLA – PEG), в качестве носителей для доставки лекарств, Langmuir 17 (2001) 3168–3174. [68] Z. Zhu, J.L. Anacker, S. Ji, T.R. Hoye, C.W. Macosko, R.K. Prud’homme, Формирование наночастиц, защищенных блок-сополимером, посредством реактивного смешивания со столкновением, Langmuir 23 (2007) 10499–10504.[69] G. Gaucher, R.H. Marchessault, J.C. Leroux, Мицеллы и наночастицы на основе полиэфира для парентеральной доставки таксанов, J. Control. Выпуск 143 (2010) 2–12. [70] У. Билати, Э. Аллеманн, Э. Дёлькер, Разработка метода нанопреципитации, предназначенного для улавливания гидрофильных лекарственных средств в наночастицах, Eur. J. Pharm. Sci. 24 (2005) 67–75. [71] Б. Ле Друмаге, Ж. Николя, Д. Брамбилья, С. Мура, А. Максименко, Л. Де Кимпе, Э. Сальвати, К. Зона, К. Аирольди, М. Канови, М. Гобби, М. Нойрей, Б.Ла Ферла, Ф. Никотра,
[72]
[73] [74]
[75] [76]
[77]
[78]
[79]
[80]
) [81]
[82]
[83]
[84]
[85]
W. Scheper, O. Flores, M. Masserini, K. Andrieux, P. Couvreur, Универсальное и эффективное нацеливание с использованием единая платформа наночастиц: приложение к раку и болезни Альцгеймера, ACS Nano 6 (2012) 5866–5879. Б.М. Дищер, Ю.Я. Вон, Д.С. Эге, J.C.M. Ли, Ф.С. Бейтс, Д. Дишер, Д.А. Молоток, Полимерсомы: хотя везикулы сделаны из диблок-сополимеров, Science 284 (1999) 1143–1146. D.E. Дишер, А. Айзенберг, Полимерные везикулы, Science 297 (2002) 967–973. Л. Буй, С. Аббу, Э. Ибарбор, Н. Гуидолин, К. Стадель, Дж. Дж. Toulme, S. Lecommandoux, C. Schatz, Инкапсидация комплексов РНК-полиэлектролит амфифильными блок-сополимерами: на пути к новому пути самосборки, J. Am. Chem. Soc. 134 (2012) 20189–20196. М.Дж. Джоралемон, С. Макрей, Т.Эмрик, ПЭГилированные полимеры для медицины: от конъюгации до самоорганизующихся систем, Chem. Commun. 46 (2010) 1377–1393. П. Куврёр, Б. Стелла, Л. Х. Редди, Х. Иллеро, К. Дюберне, Д. Десмаэль, С. Лепетр-Муэльи, Ф. Рокко, Н. Дередр-Боске, П. Клайет, В. Росилио, В. Марсо , JM Renoir, L. Cattel, Скваленоиловые наномедицины как потенциальные терапевтические средства, Nano Lett. 6 (2006) 2544–2548. П. Куврёр, Л.Х. Редди, С. Манжено, Дж. Х. Poupaert, D. Desmaële, S. Lepêtre-Mouelhi, B. Pili, C. Bourgaux, H.Аменич, М. Олливон, Открытие новых гексагональных супрамолекулярных наноструктур, образованных скваленоилированием противоракового аналога нуклеозидов, Small 4 (2008) 247–253. V. Allain, C. Bourgaux, P. Couvreur, Самособирающиеся нуклеолипиды: от супрамолекулярной структуры до мягкой нуклеиновой кислоты и устройств для доставки лекарств, Nucleic Acids Res. 40 (2012) 1891–1903. Э. Лепельтье, К. Бурго, В. Росилио, Дж. Х. Poupaert, F. Meneau, F. Zouhiri, S. Lepêtre-Mouelhi, D. Desmaële, P. Couvreur, Самосборка нуклеолипидов на основе сквалена: связь химической структуры биоконъюгатов с архитектурой наночастиц, Langmuir 29 ( 2013) 14795–14803.Ф. Беккара-Ауналлах, Р. Греф, М. Отман, Л. Х. Редди, Б. Пили, В. Аллен, К. Бурго, Х. Хиллеро, С. Лепетр-Муэльи, Д. Десмаэль, Дж. Николя, Н. Чафи , P. Couvreur, Новые ПЭГилированные наносборки, состоящие из самоорганизующихся аналогов скваленоил-нуклеозидов, Adv. Функц. Матер. 18 (2008) 3715–3725. J. Caron, A. Maksimenko, S. Wack, E. Lepeltier, C. Bourgaux, E. Morvan, K. Leblanc, P. Couvreur, D. Desmaele, Повышение противоопухолевой активности наноузлов конъюгата скваленоил-паклитаксел путем манипулирования линкером между паклитаксел и сквален, Adv.Здоровьеc. Матер. 2 (2013) 172–185. Н. Семирамот, К. Ди Мео, Ф. Зухири, Ф. Саид-Хассан, С. Валетти, Р. Горжес, В. Николас, Дж. Х. Poupaert, S. Chollet-Martin, D. Desmaële, R. Gref, P. Couvreur, Самособирающиеся биоконъюгаты пенициллина: оригинальный подход к лечению внутриклеточных инфекций, ACS Nano 6 (2012) 3820–3831. А. Максименко, Ж. Мужен, С. Мура, Э. Сливински, Э. Лепельтье, К. Бурго, С. Лепетр, Ф. Зухири, Д. Десмаэль, П. Куврёр, Конъюгаты полиизопреноилгемцитабина самособираются в виде наночастиц, полезно для лечения рака, Cancer Lett.