Теплоизоляция как работает: Теплоизоляция — технологии | Стройдинг

Сен 14, 1972 Разное

Теплоизоляция как работает: Теплоизоляция — технологии | Стройдинг

Содержание

Что такое жидкая теплоизоляция и для чего она применяется. Особенности использования жидкой изоляции

Строите дом и планируете использовать жидкие теплоизоляционные средства? Тогда воспользуйтесь данной статьей, речь в которой пойдет об особенностях жидких утеплителей и рекомендациях по их нанесению на стену. Ответив на вопрос: Что представляет собой жидкая изоляция, и какие ее достоинства и недостатки? — многие мастера смогут сравнить данный материал с другими утеплителями, и выбрать для себя наиболее подходящий.

Оглавление:

  1. Что представляет собой жидкая теплоизоляция?
  2. Особенности материала и разнообразие форм
  3. Самые популярные жидкие теплоизоляторы, недостатки и достоинства
  4. Как правильно выбрать жидкую керамическую теплоизоляцию
  5. Рекомендации по нанесению жидкого утеплителя на стену
  6. Жидкий пенополистирол, недостатки и достоинства
  7. Эковата. Способы укладки, необходимое оборудования, основные этапы работ
  8. Сравнение жидкой теплоизоляции и других утеплителей

Что представляет собой жидкая теплоизоляция?

Жидкие теплоизоляционные средства вошли в современный обиход под названием “фантастическая краска”, и молниеносно заняли передовые позиции среди других утеплителей. Они представляют собой жидкий материал, консистенция которого напоминает сметану. Средства такого типа при нанесении на поверхность, под воздействием воздуха, превращается в эластичный, вспененный энергосберегающий слой.

В состав жидких теплоизоляторов входят наполнители различного рода (микросферы с керамики и т.п.), а также связующее вещество в виде латекса ибо акрила. Конкретные виды жидких утеплителей состоят из добавок, это зависит от области применения средства. Применения данного типа изоляции, позволяет сократить теплопотери в помещении до 40 %.

Особенности материала и разнообразие форм

Из особенностей жидких материалов, предназначенных для теплоизоляции можно выстроить целый ряд:

  • отличаются хорошей адгезией и качественным сцеплением с бетонными, деревянными, пластиковыми и металлическими поверхностями;
  • представляют собой влагостойкий слой, устойчив также к резким перепадам температуры, ультрафиолету и различным атмосферным осадкам;
  • при нанесении на поверхность не создают большую нагрузку;
  • не токсичны;
  • применяются для теплоизоляции самых труднодоступных участков и т.д.

Основные разновидности жидких изоляторов описаны в таблице:

 Жидкие изоляторы
Пенополиуретан Производится на основе реакции двух составных компонентов полиола и полиизоцианата. Различают два типа этого материала, которые отличаются по своей структуре (с открытыми и закрытыми пустотами).  Преимуществами пенополиуретана считается: эксплуатационный срок до 30 лет, устойчивость к низким температурам, низкая звукопроводность.
Пеноизол Жидкое вещество, очень напоминающее обычную монтажную пену. При контакте с поверхностью и воздухом застывает, образовывая плотное теплоизоляционное сырье, не образовывает стыки. Данный вид абсолютно безопасный для здоровья человека, отлично подходит для внутренней отделки помещений.
Пенобетон Один из самых дорогих изоляционных материалов, к тому же самый тяжелый.  
Монтажная пена Частоиспользуемый, дешевый изоляционный материал. Подходит для нейтрализации дыр и трещин в поверхности.
Термокраски Используют для термоизоляции трубопроводов, воздуховодов, а также для покрытия стен помещения внутри и снаружи. Этого типа материала называют сверхтонкими, максимальная продуктивность средств проявляется только при полном отсутствии трещин на поверхности. Материал выпускается в белом и сером оттенке, при необходимости его можно разбавить красителями.

Применение жидких утеплителей не требует длительных подготовительных работ. Их наносят несколькими способами: при помощи кисти и валика, а также методом распыления.

Самые популярные жидкие теплоизоляторы, недостатки и достоинства

В строительных магазинах реализуется большое количество различных жидких теплоизоляторов от отечественных и импортных производителей. Самыми известными и востребованными марками изоляционных средств считаются:

  • Астратек;
  • Корунд;
  • Тезолат;
  • Керамоизол;
  • Сферолит и др.

Изоляция от производителя Астратек предназначается для покрытия металлических поверхностей. Обладает высоким уровнем адгезии к металлам, образует прочную, без стыковую поверхность. Обладает хорошими антикоррозийными свойствами.

Корунд  — теплоизолятор, качественно зарекомендовавший себя как выгодный утеплитель для кровель зданий, бетонных потолков и т.д. Обладает высокой теплоотражающей способностью. Представляет собой сверхтонкий изолятор, который подходит для обработки цистерн, бидонов, трубопроводов и т.д.

Тезолат — современный изолятор, позволяющий обеспечить покрытию полную водонепроницаемость. Защищает покрытия от образования грибковых заболеваний, подходит для применения в труднодоступных местах. Часто этот тип изолятора используют в качестве фасадного покрытия. Эксплуатационный срок материала более 25 лет. Для работы с материалом нужно использовать валик или кисточку, после полного высыхания изолятор не отнимает пространство помещения.

Керамоизол — это специальная энергосберегающая краска, трудновоспламеняемая и абсолютно не токсична. По составу данный материал напоминает пасту серого цвета. Применяют данную смесь для утепления стен, полов, потолков и т.д., при этом она как и другие утеплители, характеризуется долговечностью. После нанесения термокраски Керамоизол и полного ее высыхания, фасадную поверхность можно красить другими материалами. Надежно защищает помещение от образования конденсата.

Сферолит представляет собой средство, защитные свойства которого, основываются на вакуумной способности. Этот материал обладает хорошей паропроницаемостью и имеет высокие дышащие свойства. Повышает сохранение тепла в помещении до 40 %, при этом надежно оберегает поверхность от воздействия влаги, образования грибка и плесени. Характеризуется высоким уровнем вентиляционной способности. Требует повторного нанесения спустя 10- 15 лет.

Как правильно выбрать жидкую керамическую теплоизоляцию

Жидкие керамические теплоизоляторы  пришли на смену рулонным и плитным утеплителям, при этом очень быстро завоевали доверие среди потребителей. Такого типа суспензии функционируют за счет вакуума, который образовывается в микрополостях материала. Применение жидких утеплителей целесообразно для всех поверхностей. Однако, выбирая тот или иной тип нужно внимательно прочитать в какой именно сфере его лучше использовать, так как керамическая теплоизоляция отличается добавками, которые имеются в том или ином средстве.

Выбирая жидкий керамический утеплитель, в первую очередь, нужно поинтересоваться его сроком эксплуатации. Не менее важным показателем качества материала считается его плотность. Хороший теплоизолятор жидкой формы, при растирании на пальцах,  должен явно сохранять шероховатые микрогранулы, если этот момент не прослеживаются, специалисты рекомендуют выбрать средство от другого производителя.

Покупая керамический теплоизолятор пользователю следует обратить внимание на цвет жидкого средства. Суспензия высокого качества имеет белый цвет, серый и бежевый оттенок допустимы, но только в небольшом проценте, а это значит, что наличие разнообразных цветовых гамм свидетельствует о плохом теплоизоляционном средстве.

Рекомендации по нанесению жидкого утеплителя на стену

В зависимости от разновидности, жидкие утеплители наносят на стену тремя способами: кисточкой, распылителем и валиком. Например, работая на абсолютно ровной поверхности при нанесении термокраски можно смело воспользоваться валиком. На участках с выемками лучше всего работать кисточкой. Мастеру стоит помнить, что термослой никогда не наносится одним уровнем, это действие на стене следует повторять от 2-х до 10-ти раз.

Перед нанесением жидкого средства стены очищают от пыли, по надобности обрабатывают отделочными материалами. Главное, чтобы поверхность было полностью сухой. Не следует открывать или размешивать материал заранее перед работой, это стоит делать незадолго до основного процесса, иначе средство потеряет свои первоначальные качества.

При размешивании жидкого утеплителя миксером или электродрелью не стоит использовать слишком большую скорость, под воздействием оборотов повреждаются микрогранулы суспензии и теплосберегающие свойства материала снижаются.

Жидкий пенополистирол, недостатки и достоинства

Пенополистирол — это материал, который достаточно часто применяется в целях гидро- и теплоизоляции. Он создан на основе сополимеров стирола и их взаимодействию с полистиролом. Для производства этого утеплителя активно применяют природный газ, которым наполняют пустоты. Дополнительно в состав данного жидкого материала входят красители, антипирены и пластификаторы.

Применение этого утеплителя стало активно возрастать, так как он обладает целым рядом преимуществ: паропроницаемый, прочный, влагостойкий, долгосрочный, химически и ультрафиолетово стойкий, применяется в качестве звукоизолятора, экологичный и т.п.

Минусом использования данного материала можно назвать то, что он требует идеально ровной, гладкой подосновы для нанесения. При плохо смонтированной вентиляции склонен к собранию конденсата, а также к возникновению плесени и грибка.

Эковата. Способы укладки, необходимое оборудования, основные этапы работ

Эковата — это одна из разновидностей утеплителей, в основе которой 80 % целлюлозы, антипирен и антисептик. Данный материал совсем недавно вошел в строительную сферу и пользуется небольшой популярностью. Он устойчив к появлению грибка, а также к повреждению грызунами.

Это теплоизоляционное средство хорошо поглощает влагу, но это никак не сказывается на его теплопроводных свойствах. Оно абсолютно не токсично, и не приносит вред человеку. Дышащая способность эковаты сравнима с натуральным деревом, что позволяет создать в любом утепленном помещении естественный, здоровый микроклимат.

Недостатком данного утеплителя является длительный монтаж процесса, в случае когда материал наносится уже влажным, все последующие работы можно начинать не раньше чем через сутки. В этот ряд можно внести и высокую стоимость эковаты, также применение специальной техники и наличие некого опыта для проведения монтажных действий.

Укладывать утеплитель данного типа можно двумя способами: ручным и автоматизированным. Первый метод подходит для утепления небольших участков. Его используют для утепления полов, при котором эковату необходимо высыпать в ведро или в другую емкость, вспушить с помощью дрели и только тогда засыпать в специально подготовленное место. Данный метод требует специальных знаний от мастера, которые касаются объема необходимого материала на кубический метр.

К специальной технике обращаются тогда, когда требуется утепление больших метражей. С этой целью используют профессиональные распылители, выдувное оборудование, гофрированные шланги и т.д. Достаточно распространенной считается сухая задувка материала, особенность которой заключается в утеплении стен, скатной кровли и т.д., без влажности, непосредственно в отверстие, которое требует изоляции.

Сравнение жидкой теплоизоляции и других утеплителей

В  сравнение с другими утеплителями жидкая теплоизоляция значительно отличается ценовой политикой, как известно стоимость жидких средств намного выше рулонных и плиточных. Но при этом утеплители — эмульсии способны качественно заизолировать самые отдаленные, труднодоступные места. Не требуют специальных навыков в процессе монтажа, их легко наносить вручную, без специализированного оборудования.

В отличие от таких утеплителей как минвата, эковата, пенополистирол  и других твердых материалов, жидкие применяются для обработки трубопровода, элементов горячего и холодного водоснабжения. Утеплители жидкой консистенции активно защищают металлические основания от воздействия коррозии. В отличие от пенополистирола, теплоизоляция жидкого типа не является токсичной, и подходит как для внешней отделки, так и изнутри. За счет своих теплоизоляционных свойств, миллиметр нанесенных, жидких утеплителей способен заменить сантиметры уложенных твердых материалов. Теплоизоляция, которая наносится кисточкой или валиком, при высыхании не утяжеляет поверхности.

Дополнительно к материалу о жидких утеплителях смотрите видео:

Как работает отражающая теплоизоляция | Статьи компании Малтифом

В холодное время года в доме всегда происходит потеря тепла, а в теплое — нагрев. Самопроизвольная передача тепла осуществляется от более горячего тела к менее горячему.

Отражение излученной тепловой энергии

Передача тепла может происходить путем

  • Излучения;
  • Конвекции;
  • Теплопроводности.

Отражающая изоляция относиться к теплоизоляционным материалам, которые уменьшают передачу тепла за счет отражения излученной тепловой энергии. Также из-за низкой теплопроводности материала, он обеспечивает снижение тепловых потерь из-за прямой теплопередачи.

 

В строительстве для оценки качества теплоизоляции используют величину — «термического сопротивления конструкции».

Термическое сопротивление ограждающей конструкции измеряется разностью температуры в кельвинах (либо в градусах Цельсия) у поверхностей этой конструкции, требуемой для переноса 1 Вт мощности энергии через 1 м2 площади конструкции (м2·K/Вт или м2·°C/Вт).

Для теплоизоляционных материалов, которые работают за счет низкой теплопроводности, термическое сопротивление линейно зависит от толщины материала и его коэффициента теплопроводности. Термическое сопротивление элемента ограждающей конструкции:

R = δ / λ,

где δ — толщина слоя материала (м), λ — коэффициент теплопроводности материала.

Правила монтажа отражающей изоляции

Для материалов с отражающей изоляцией все намного сложнее. Эффект теплового отражения зависит от многих факторов: расположения отражающей изоляции, наличия воздушного слоя за и перед изоляцией, температуры окружающей среды. Данные полученные вследствие многочисленных экспериментов позволяют определить следующие закономерности:

  1. При установке отражательной изоляции на поверхность конструкции более эффективен изолирующий эффект в области положительных температур, поэтому отражательную изоляцию рекомендуется применять внутри помещений.
  2. Отсутствие воздушной прослойки между изоляционным материалом и изолируемой конструкцией существенно повышает эффективную теплопроводность отражательной изоляции.
  3. Наличие воздушного слоя со стороны отражательной поверхности изоляции является необходимым условием для работы изоляционного материала.

Сопоставление отражательной изоляции с другими теплоизоляционными материалами показывает, что при равной толщине изоляции отражающая изоляция эффективней пенополистирола в 4 — 8 раз, минераловатных плит в 4 — 12 раз, пенобетона 12 — 25 раз.

Свойства отражающей изоляции

Остановимся подробнее на том, какие свойства самой отражающей изоляции важны для ее работы. Свойства отражающей изоляции зависят от ее толщины, количества отражательных слоев, и эффективности отражать тепло. Интернет пестрит статьями и информацией о высоком значении  коэффициента отражения фольги. Одни источники указывают значение 94 %, другие 97 — 98 %, кто-то пишет про высокую эффективность лавсанового покрытия, кто-то про ухудшение свойств чуть ли не  в два раза. Как бы там ни было в соответствии с рекомендациями НИИСКа применение отражательной изоляции основано на свойстве возврата тепловых лучей материалами с низкой степенью черноты поверхности. К таким материалам относиться алюминиевая фольга, имеющая степень черноты 0,04 — 0,06. Таким образом, коэффициент теплового отражения фольги не может быть выше 94 — 96 %. Свойства металлизированных полимерных пленок, к сожалению, намного менее изучены, средние значения коэффициента отражения — 0,82 %. Также оговаривается, что для эффективной работы теплоизоляции толщина самой металлизированной пленки должна быть не менее 0,3 мкм. Таким образом, эффективной можно назвать отражающую теплоизоляцию с алюминиевым и металлизированным покрытием с толщиной от 0,3 мкм.

Конструкции, в которых применяется отражающая изоляция

Утепление наружных стен только отражающей изоляцией возможно при условии использования изоляции толщиной 8 мм и более, наиболее оптимальным является комплексное утепление с использованием изоляции из минваты, пенополистирола и отражающей изоляции. Применение отражающей изоляции в конструкциях кровель достаточно эффективно не только зимой, но и летом, для предотвращения перегрева. Также отражающая изоляция широко применяется для изоляции вентиляционных каналов и в конструкциях «теплый пол».

При выборе отражающей изоляции важно учитывать не только факторы изложенные выше, но и осбенности монтажа и условия эксплуатации.

Сравнение отражающей изоляции с алюминиевой фольгой и металлизированным напылением

Если сравнивать фольгу и металлизированное напыления, то оба материала имеют как плюсы, так и минусы. Минусы фольги — легко повреждается, может окисляться со временем и тускнеть, не устойчива к воздействию агрессивной среды, например в конструкции «теплый пол» нельзя использовать без дополнительной защиты полиэтиленовой пленкой, не рекомендуется применять для электрических и инфракрасных (пленочных) теплых полов. В то же время минусы пленки, это меньший коэффициент отражения, но она более устойчива к механическим повреждениям, при условии защиты от прямых УФ лучей сохраняет отражающие свойства длительный период, не тускнеет и не трескается.

Таким образом, отражательная изоляция — это эффективное решение для теплоизоляции различных объектов, позволяющее сэкономить пространство и стоимость при высоких показателях теплоизоляционных свойств

Из чего состоит и как работает жидкая теплоизоляция?

Жидкая теплоизоляция имеет вид обычной краски, но сильно отличается от обычных красок составом.

Обычно теплоизоляционные составы содержат специальный наполнитель – пустые внутри, очень маленькие, микроскопические шарики из стекла, керамики или полимеров. Их заполняют разряженным воздухом. Сами шарики в разных составах и средствах могут быть разной формы, размера и материала изготовления.

Шарики объединены в составе средства с помощью связующего вещества, например из латекса или акрила. Этот связующий состав позволяет средству быть гибким и пластичным, легко наносится и обеспечивает ровную, привлекательную поверхность.

Связующее вещество в составе жидкой теплоизоляции составляет не более 20%, а все остальное – сами шарики, которые совсем не проводят тепло и соответственно не участвуют в теплопроводности. Шарики же отражают и рассеивают тепло, при этом отражаемое излучение образует на поверхности что-то вроде эффекта «термоса».  

Такой состав имеет практически каждая теплоизоляционная краска последнего поколения. Помимо обязательных компонентов, составы могут содержать различные добавки, которые добавляют средству дополнительные функции, например защиту от коррозии. Добавки могут быть специальными в зависимости от области применения средства, например, жидкая теплоизоляция Барьер- Стандарт, которая применяется специально для металлических поверхностей. Исходя из различных дополнительных компонентов, теплоизоляционные краски имеют разные качества и разные требования по нанесению.

Наносят жидкую теплоизоляцию по принципе обычной краски, используя кисти и валики, или же методы безвоздушного распыления.  

При выборе жидкой теплоизоляции необходимо учитывать, для каких поверхностей вы собираетесь ее применять, а так же очень строго соблюдать все инструкции по нанесению средства и подготовки поверхности. Только соблюдая все условия вы сможете добиться максимального эффекта от жидкого теплоизоляционного покрытия.
 


Остались вопросы? Наши технологи помогут с выбором

Телефон: 8 (800) 555-34-18 (Бесплатно по РФ)
Е-mail: [email protected]

Режим работы: пн-пт с 08:45 до 18:00 по МСК
 

Жидкая теплоизоляция: Актерм, Магнитер, своими руками

Содержание   

О чем вы подумаете, если мы начнем разговор про утеплительные материалы? Наверняка о минеральной вате или пенополистироле. Это очевидно, ведь такие материалы используются столь часто, что уже вошли в лексикон людей, что очень далеки от строительства.

Но прогресс ведь не стоит на месте. Ученые постоянно разрабатывают новые решения и стараются создать что-то уникальное. Не стоят на месте и разработки утеплительных материалов.

Жидкую теплоизоляция наносят на стену

Не так давно на нашем рынке появилась теплокраска. Материал, что совмещает в себе функции краски и утеплителя как жидкие утеплители для стен. Так что же это за вещество и как его применять? Сейчас разберемся.

1 Что такое теплокраска?

Теплокрасками или жидкой теплоизоляцией называют вещества, которые имея консистенцию лакокрасочных материалов, тем не менее, способны удерживать тепло внутри или снаружи помещения.

С их помощью можно утеплять внутренние стены, фасад здания, кровлю и т.д. Сама по себе теплоизоляционная краска кажется чем-то немыслимым. Ведь мы привыкли, что для теплоизоляции приходится покупать внушительных размеров плиты, а затем укладывать их вокруг стен.

Теплокраску же достаточно просто нанести на поверхность в несколько слоев. А все потому, что состоит она из уникальных ингредиентов. Сама по себе краска содержит несколько элементов.

Главный – это специальные керамические или стеклянные полусферы утеплителя для крыши. Звучит довольно дико и по научному, однако вам важно понимать только то, что эти полусферы являются микроскопическими отражающими элементами и содержат в себе воздух.

Жидкокерамическая теплоизоляция потому так и называется. Они выполняют основную функцию, которая заключается в отражении тепловых волн. Помимо сфер есть в жидкой теплоизоляции и другие частицы. Например, в некоторых составах марки теплоизоляции используются алюмосиликатные шарики и диоксидные добавки.

Все это связывается акриловыми вяжущими, которые позволяют существенно продлить срок эксплуатации теплоизоляционной краски. В итоге наносить подобные вещества можно практически везде. Некоторые краски даже специально разрабатываются под фасад зданий.

В их состав добавляют химические ингредиенты, что способствуют самоочищению краски. То есть при дожде вода сможет смывать со слоя изоляции всю грязь и сторонние элементы, оставляя только чистый слой краски.

Акриловый же вяжущий выступает чем-то вроде стабилизатора. Он же делает краску прочной и очень цепкой.

Помните, что акрил является разновидностью полимера из жидких утеплителей Корунд. А полимеры не боятся влаги, коррозии и других подобных воздействий. Хоть и приходится жертвовать ради такой стойкости эластичностью. Но для теплоизоляционных красок эластичность роли вообще не играет.

к меню ↑

1.1 Принцип действия жидкой теплоизоляции

Так как же действует жидкая теплоизоляция. Почему она вообще работает? Все очень просто. Такие составы сочетают в себе уникальные вещества и свойства. Но чтобы разобраться в этом, для начала перечислим способы передачи тепла.

Утепление кровли теплокраской

Таких способов есть несколько, но самые известные и действенные — три. Итак, тепло передается:

  • Конвекцией;
  • Излучением;
  • Теплопроводностью.

Конвекция – это возможность передавать тепло самим веществом. Для жидкой теплоизоляции конвекция вообще не является проблемой. Ведь она формирует прочный защитный слой из пустотелых керамических шариков. А они, как вы сами понимаете, проводить тепло вообще не способны.

Это же касается и акрилового вяжущего вместе с дополнительными химическими добавками. Вот и получается, что передавать тепло конвекцией краска не способна в принципе.

Излучение – еще один интересный способ передачи тепла (пенный утеплитель тому пример). Как вы все наверняка знаете, каждый организм выделяет тепловые волны. Эти волны не заметны человеческому глазу, но они есть и они оказывают свое влияние на обстановку вокруг человека.

Одни волны способствуют передаче тепла наружу помещения. То есть воздействуют на стены, посредством их нагрева. В итоге сила волна теряется и тепло рассеивается по стене. Затем фасад охлаждается, то есть снижает свою температуру, а соответственно и энергию волны.

Другие волны воздействуют на фасад или любую другую конструкцию снаружи. Именно с тепловым излучением стандартные утеплители бороться эффективно не способны. А вот жидкая теплоизоляция за счет своей структуры, наоборот, порядка 90% мощности излучения отражает.

Последний момент – теплопроводность. Это возможность нагреваться и передавать тепло через соседние конструкции. Обычные утеплители используют за счет их крайне низкой теплопроводности.

Этот показатель у них на таком уровне, что материалы типа пенопласта или минваты вообще не меняют свою температуру. Именно поэтому на пенопласт можно садиться даже зимой, и вам не будет холодно.

С теплопроводностью у жидкой теплоизоляции с пароизоляцией Изоспан В тоже все в порядке. Возможность передавать тепло у краски имеет только чуть меньше 20% состава. А если учесть, что каждый последующий уровень уменьшает это значение, то можно понять, что серьезные теплопотери от теплопроводности вам точно не грозят.

Жидкой теплоизоляцией защищают даже фасады

Как видите, жидкая теплоизоляция практически полностью нивелирует все основные способы передачи тепловой энергии.

к меню ↑

2 Плюсы и минусы теплокрасок

Плюсов у теплокрасок есть великое множество. Достаточно только взглянуть на их консистенцию или способ нанесения, чтобы в этом убедиться. Уже тот факт, что состав реально нанести своими руками с помощью обычной кисточки, должен прийтись вам по вкусу.

Ведь какая у нас есть альтернатива? Стандартные утеплители громоздкие и довольно дорогие. Монтировать их сложно. Ну, не то чтобы очень, но согласитесь, создавать полноценный каркас для утепления не так легко.

А теплокраску достаточно просто своими руками распылить над утепляемой конструкцией. Причем отделывать можно любые элементы.

Начиная от стандартных стен и заканчивая металлическими трубами. Краске не нужна основательная подготовка, каркас или что-то еще. Просто разведите смесь и нанесите ее равномерным слоем.

Помимо простоты в монтаже отметим ее гидрофобность, прекрасные теплоизоляционные свойства и еще множество полезных параметров. Таким образом, вырисовывается целый список преимуществ жидкой теплоизоляции на утепление чердака частного дома.

Основные плюсы:

  • Наносится своими руками.
  • Можно обрабатывать любые конструкции.
  • Продается в удобных емкостях.
  • Устраняет потери тепла по всем трем рабочим направлениям.
  • Не боится влаги.
  • Достаточно прочна, чтобы выдерживать внешние нагрузки.
  • Не вредит человеку.
  • Формирует надежный облицовочный слой.
  • Имеет красивый внешний вид.

Нанесение жидкой теплоизоляции на плоскую кровлю

Что же до недостатков, то тут можно отметить следующие моменты:

  • Расход материала может быть довольно высоким как в случае с жидкими утеплителями Астратек.
  • Стоит краска порядочно, а если вы хотите приобрести фирменные популярные марки, то ее цена будет еще выше. В сочетании с серьезным расходом это может оказать определенное влияние на ваш бюджет.
  • Краска сохнет дольше обычного.
  • Эффективный слой утепления начинается с пятого. Лучше наносить не меньше 10 слоев.

Как видите, не все тут так просто. Да, наносить вещество можно своими руками, но на это все равно уйдет достаточно много времени, ведь слоев должно быть несколько. Да и количество слоев влияет на расход материала, это очевидно.

Очевидно еще и то, что расход влияет на стоимость общей теплоизоляции конструкции. Но тут уже дело за вами. Если имеете возможность, то отказываться от жидкой теплоизоляции не рекомендуется. Ведь это новое слово в строительстве.

к меню ↑

2.1 Популярные производители и марки

Производят теплокраску во внушительных количествах. Для того чтобы окончательно определиться с выбором, следует оценить отзывы о краске от конечных покупателей и самих производителей.

Желательно пользоваться только материалами от фирм, проверенных временем. К сожалению, реально проверить качество краски можно только после ее нанесения. И если вы будете пользоваться неизвестными составами, то кто сможет вам гарантировать, что приобретена была не подделка?

Ведь зимой об этом уже никто думать не будет. А придется думать о том, как резко решать проблему утепления.

Если же не жалеть денег и покупать фирменную качественную продукцию, то и проблема подделок пропадет сама собой. Известным производителям интересно укрепление своих позиций на рынке. Поэтому они сами желают продавать своим клиентам качественный товар.

Из российских производителей выделяется жидкая теплоизоляция Актерм. Ее выпускает популярная московская компания.

Жидкая теплоизоляция Магнитерм

Теплоизоляция качественная, производится на основании акрила. Работает в диапазоне температур от -60 до + 250 градусов. Есть и разновидность жидкой изоляции, что способна выдерживать температуру до +600 градусов, то есть по сути является огнестойкой.

Также следует обратить внимание на составы от компаний Корунд и Изолат. Все они обладают схожими свойствами. Но основное отличие российских теплокрасок – их сравнительно низкая цена.

Из украинских производителей выделяется компания Белком, в числе продукции которой находится жидкая теплоизоляция Магнитерм. Это еще один неплохой вариант для тех, кто ценит удачное соотношение цены и качества материалов.

Жидкая теплоизоляция Магнитерм отличается повышенной прочностью, а 2 из 5 ее основных составов можно наносить зимой и при минусовых температурах.

к меню ↑

2.2 Отзывы о продукции

Рассмотрим отзывы о жидкой теплоизоляции.

Валентин, 48 лет, г. Москва:

Не очень-то я доверял этим рассказам про жидкую изоляцию, пока сам не попробовал. Да, стоит она порядочно, и наносится не так быстро как кажется. Но тут важен один момент. Краска действительно работает и работает хорошо. Искренне и приятно удивлен.

Владимир, 41 год, г. Сочи:

Поначалу для меня жидкая теплоизоляция была настоящей экзотикой. Но сталкиваться с ней по работе приходилось часто. Могу сказать, что она действительно работает, только покупать надо продукцию от хороших фирм.

Убежден, что со временем теплокраски полностью заменят стандартные утеплительные материалы. Я же пользуюсь только ими. Как в профессиональной сфере, так и дома.

к меню ↑

2.3 Нанесение жидкой теплоизоляции на жилой дом (видео)

Влажная теплоизоляция не работает. — Dörken

Влажная теплоизоляция не работает.

Помещая утеплитель в правильный «кровельный пирог», Вы надёжно защищаете его от намокания как в примере с мокрым свитером. С внешней стороны защиту утеплителя выполняет диффузионная мембрана DELTA®, которая не допустит намокания теплоизоляции внешними осадками, и будет служить ветронепроницаемым слоем, сохраняющим тепло и эффективность теплоизоляции.

Изнутри утеплитель предохраняет воздухоизоляция / пароизоляционная плёнка. Этот слой не только препятствует переносу водяного пара из мансарды за счёт диффузии, но и является непроницаемым барьером для конвективного движения влажного воздуха изнутри наружу через неплотности, плохо проклеенные нахлёсты и примыкания. Неконтролируемое движение воздуха представляет для утеплителя и стропильной конструкции самую большую опасность, т.к. количество влаги, перенесённое воздушным потоком, в несколько раз больше диффузионного переноса.

Таким образом, теплоизоляция надёжно защищена со всех сторон и постоянно остаётся сухой. Вы можете действительно быть уверены в том, что с применением системы изоляции DELTA® крыша прослужит Вам долгие годы, а ваши инвестиции будут оправданы.  

Поэтому нет другого выбора:

Теплоизоляция должна быть надёжно защищена от влаги. При попадании влаги в утеплитель его теплосберегающие свойства значительно ухудшаются. Следует предусмотреть защиту теплоизоляции в течение всего цикла строительства, включая транспортировку, складирование, кровельные и изоляционные работы.

Обзор характеристик жидкой керамической теплоизоляции

В последние несколько лет модным веянием в области утепления стала керамическая теплоизоляция в виде суспензии на основе микрополостей из смеси силикона, керамики, пигментов, полимеров и ряда дополнительных компонентов. Особенность материала — вакуум внутри полостей. Состав позволяет нанести сверхтонкий слой изоляции на поверхности (как внутренние, так и наружные) для создания надежного и эффективного теплоизоляционного слоя.

Жидкая теплоизоляция: где используется и какими свойствами обладает?

При виде жидкого утеплителя складывается впечатление, что приходится иметь дело с обычной краской. На самом же деле покрытие имеет существенные отличия от краски и ряд особенных свойств и характеристик. Во-первых, материал проявляет отличные адгезионные способности, что позволяет ему одинаково успешно контактировать с поверхностями любого типа.

Во-вторых, жидкий керамический теплоизоляционный материал справляется с защитой обработанных поверхностей от плесени, ржавчины, конденсата и все это при том, что наноситься может на материалы при высоких или наоборот, низких температурах. Стойкость к коррозии, грибку и влаге теплоизолятор обретает опять же за счет особого состава и вакуума в микрополостях.

Использование жидкого утеплителя эффективно в любых ситуациях, независимо от типа подверженной обработке поверхности. С одинаковым успехом жидкокерамический слой можно наносить:

  • на поверхности стен из дерева;
  • на металлические трубы;
  • на металлокерамическую кровлю;
  • на бетонные конструкции и т.д.

В каждом из вариантов теплоизоляционный слой не только сохранит тепло зимой, гарантируя прохладу летом, но и предотвратит образование повышенной влаги на поверхностях.

Сегодня над разработкой жидких утеплителей работают многие производители, в том числе и на отечественном рынке. Доступно несколько вариантов достойных внимания марок, в свою очередь представленных в различных модификациях для решения тех или иных задач.

Жидкий утеплитель TC Ceramic: особенности

Продукция этой марки реализуется в виде суспензии с входящими в состав акриловыми полимерами, синтетическим каучуком и различными пигментами. Дополнительно в состав включены керамические микрополости и силиконовые сферы. Наносят материал на разные типы поверхности:

  • кирпичную кладку;
  • стекло;
  • пластик;
  • металл;
  • дерево и пр.

Метод нанесения аналогичен методу обработки поверхностей краской — используют валик, кисточку или пульверизатор.

По заявлению производителя покрытие при обработке наружных поверхностей сохраняет эксплуатационные свойства на протяжении 10 лет, тогда как при создании теплоизоляционного слоя внутри помещения этот срок увеличивается в 2,5 раза.

Утеплять материалом можно как горизонтальные поверхности (пол, потолок), так и вертикальные (кровлю, стены, фасад и пр.). Материал защитит от скачков температур, уф-лучей и влаги.

Продукция RE-THERM: какая бывает и как работает

Для создания надежного теплоизоляционного слоя подойдет продукция компании RE-THERM. Производитель заявляет о способности материла предохранять поверхности любого типа в том числе и с нестандартными решениями рельефа. Теплоизоляция RE-THERM пожаробезопасна, не содержит в составе химически опасных веществ, является полностью экологически безопасным материалом, но что самое главное — проявляет способность к низкой теплопроводности.

Для покупки доступны утеплители в виде суспензии в нескольких модификациях для решения разных видов задач:

  • Стандарт;
  • Антипирен;
  • Ингибитор;
  • Рубер;
  • Антифриз;
  • Вертикаль.

Стандарт подходит для любого типа поверхностей, используется для утепления стен внутри и снаружи дома. Антипирен разработан был для помещений и конструкций с риском воспламенения, отличается устойчивостью к огню. Ингибитор позиционируется производителем как материал для утепления металлических поверхностей, предотвращающий образование ржавчины.

В транспорте, а также в системах с риском появления вибраций целесообразно использование утеплителя в жидком виде марки Рубер с повышенными показателями эластичности. А вот для утепления поверхностей, подверженных влиянию низких температур, подойдет теплоизоляция Антифриз, выдерживающая температуру до −40 градусов.

Чтобы утеплить вертикальные поверхности, предотвращая стекание материала, производитель разработал специальную версию теплоизоляции с повышенной вязкостью под названием Вертикаль.

Теплоизоляция Teplomett — просто наносить и удобно пользоваться

Еще один заслуживающий внимания материал для утепления поверхностей по современной схеме — продукция Teplomett. Так же, как и в предыдущих случаях, для утеплителя характерны отличные тепло- и влагозащитные свойства, долговечность, способность к взаимодействию с поверхностями любого типа.

Теплоизоляция Teplomett устойчива к температурным скачкам, механическим повреждениям, не содержит вредных веществ.

Утепление материалом не предусматривает использования дополнительного защитного слоя за счет его способности не пропускать влагу. Дополнительный бонус — включенные в состав цветные пигменты, позволяющие создавать покрытие с эстетичным внешним видом. Наносить материал можно одним из стандартных способов: кисточкой, валиком или пульверизатором.

Альфатек — жидкое утепление на годы

Именно на многие годы вперед производитель предлагает утеплить поверхности жидким утеплителем Альфатек. Так же, как и аналоги, материал состоит из множества компонентов, включая пеностекло и акрил. Теплоизоляция в таком виде совершенно безопасна, не включает в себя вредные летучие соединения, устойчива к открытому пламени, не теряет основного функционала при температурах от −60 до +260 градусов Цельсия.

По заявлению производителя срок службы жидкого утеплителя Альфатек составляет до 20 лет. Используют его для защиты от холода коммуникационных систем, зданий жилого и промышленного типа (утепляют стены, потолок, кровли и пол), систем кондиционирования, трубопроводов и пр.

Теплоизоляция Изоллат — специальное утепление нового поколения

Материал был разработан в Екатеринбурге и занимает уверенные позиции на рынке уже более 10 лет. Использовать теплоизоляцию производитель рекомендует при соблюдении температурного диапазона от −60 до +500 градусов Цельсия с возможностью увеличения крайней отметки до +600 градусов в критических ситуациях. Именно такой широкий диапазон допустимых для эксплуатации температур выгодно отличает утеплитель от аналогов.

Цвет теплоизоляции в базовом варианте — белый, по желанию покупателя в состав могут быть добавлены цветные пигменты любого оттенка.

В состав входят полые керамические капсулы с разреженным воздухом, за счет чего получается вывести эффективность материала на новый уровень.

Теплоизоляция доступна в шести вариантах:

  • Изоллат-01 — подходит для утепления стен и кровли, как внутри, так и снаружи, в том числе и в зданиях с многолетним сроком эксплуатации.
  • Изоллат-02 — базовый материал для утепления поверхностей для использования в температурном режиме от −60 до +170 градусов.
  • Изоллат-03 — включает в состав антипиреновые добавки, препятствующие воспламенению.
  • Изоллат-04 — единственный о всем мире способен выдерживать температуры до +500 градусов и до +600 градусов в критические моменты. Подходит в роли утеплителя для промышленного оборудования.
  • Изоллат-05 — подходит для утепления металлических поверхностей, подверженных образованию коррозии. Может эксплуатироваться при температурах до +160 градусов при дополнительной обработке кремнийорганическим лаком.
  • Изоллат-нано — используется для утепления наружных стен, обладает способностью самоочистки.

Последний вариант редко доступен на полках магазинов, так как предлагается покупателю под заказ.

Утеплитель в жидком виде Корунд — эксплуатационные характеристики

Изготовлением сверхтонкого утеплителя Корунд занимается ООО НПО «Фуллерен». На отечественном рынке продукция под этой маркой пользуется особенным спросом в первую очередь из-за распространения дилерских центров.

Теплоизоляционная суспензия подходит для утепления фасадов, крыш, стен, трубопроводов, цистерн и прочих объектов, систем и конструкций. Выпускается материал в нескольких вариантах:

  1. Классик — для отделки поверхностей любого типа с предполагаемым использованием в температурном диапазоне от −60 до +200 градусов Цельсия (возможно критическое повышение температуры до +260 градусов).
  2. Антикор — так же, как и аналоги используется для утепления и защиты поверхностей от коррозии, проявляет повышенную стойкость к уф-лучам и химическим веществам.
  3. Зима — покрытие для отделки поверхностей при минусовой температуре до −20 градусов. В состав включены гранулы пеностекла. Доступны образцы для пробы.
  4. Фасад — утеплитель для отделки бетонных наружных поверхностей.

Стоимость материала зависит от марки и назначения, наносят материал привычным способом: валиком, кисточкой или пульверизатором.

Актерм — принцип работы и линейка сверхтонкой теплоизоляции

Продукция производится на заводе в Подмосковье и позиционируется производителем, как материал, способный выдерживать эксплуатацию в температурном режиме от −60 до +250 градусов, а в случае применения специальной марки — до +600 градусов. Линейка утеплителей включает в себя следующие модификации:

  • Стандарт — жидкая теплоизоляция для утепления базовых поверхностей в том числе и из бетона, металла при эксплуатации в режиме от −60 до +260 градусов.
  • Фасад — специально разработанный утеплитель для теплоизоляции наружных стен из бетона и дерева.
  • Норд — универсальность утеплителя заключается в возможности нанесения на поверхности при минусовой температуре до −30 градусов.
  • Антикор — специальный теплоизолятор для поверхностей с риском поражения ржавчиной.
  • Негорючий — подходит для устройства сверхтонкого теплоизоляционного слоя, устойчивого к воспламенению.
  • Антиконденсат — разработан для утепления поверхностей с повышенным уровнем выделения конденсата.
  • Вулкан — материал для теплоизоляции объектов, температура эксплуатации которых превышает нормы и приравнивается к +600 градусам Цельсия.

Перечисленные марки утеплителей в виде суспензии наиболее широко используются именно на российском рынке. Помимо них доступны также материалы европейского производства, стоимость которых выше в связи с транспортными расходами и именитостью брендов, но никак не ввиду особых эксплуатационных характеристик.

эффективное решение утепления снаружи и изнутри

Жидко-керамическая теплоизоляция для стен – это сравнительно новая технология, которая быстро и уверенно становится популярной как в промышленном строительстве, так и у частных потребителей. Оптимальный микроклимат в помещении – это нормальная температура и влажность, сухие стены, отсутствие грибка и плесени. Такой комфорт не просто желаемый, а обязательный – от него зависит здоровье всех жильцов. Жидко-керамическая теплоизоляция способна обеспечить такой комфорт каждому. Как действует этот материал?

  • Не дает помещению остывать в холодный сезон.
  • Обеспечивает максимально возможную шумо- и теплоизоляцию стен.
  • Исключает перегрев в летнее время.
  • Препятствует проникновению влаги.
  • Защищает материал стен от эрозии.
  • Предотвращает появление конденсата и плесени на несущих стенах.
  • Устраняет мостики холода

Особенности жидко-керамического керамического теплоизоляционного материала для стен «Изоллат»

Жидко-керамическая теплоизоляция для внешних и внутренних стен «Изоллат» изготовлена на основе керамических сфер. У многих возникают вопросы по использованию, хранению «Изоллата». Вот некоторые его особенности, которые и являются ответами на наиболее часто задаваемые вопросы потребителей.

  1. После нанесения утеплителя поверхность можно дополнительно окрашивать при желании.
  2. Теплоизолятор показывает превосходную адгезию с бетоном, кирпичом, оргстеклом, деревом, металлом, а также с оштукатуренными стенами.
  3. Повышается уровень шумоизоляции, исключается риск коррозии.
  4. Материал можно наносить как спецоборудованием, так и ручным инструментом –шпателем, кистью и др.
  5. При нанесении жидкой теплоизоляции для стен изнутри оштукатуренную или деревянную поверхность нужно очистить, высушить и загрунтовать.

Все свои свойства материал сохраняет только при условии его правильного хранения. Минимально допустимая температура +5 оС. Нельзя хранить материал под прямыми солнечными лучами на жаре или допускать его замерзание. Тара должна быть закрыта герметично.

Сохраняйте тепло с теплоизоляцией

Ключевые концепции
Физика
Теплообмен
Изоляция
Материаловедение

Введение
Что вы делаете, когда зимой очень холодно? Вы, вероятно, включите обогреватель, наденете дополнительный слой одежды или прижметесь к теплому одеялу. Но задумывались ли вы когда-нибудь о том, почему куртка помогает не замерзнуть? Почему наша одежда изготовлена ​​из ткани, а не из фольги? Найдите ответы в этом упражнении; Ваши результаты могут даже помочь вам найти лучший способ согреться на морозе!

Фон
Тепло — это форма энергии.Вам нужна энергия, чтобы что-то нагреть: например, чашка чая. Для приготовления чая вы, вероятно, используете энергию электричества или газа. Однако, когда чай станет горячим, он не останется горячим вечно. Просто оставьте чашку чая на столе на некоторое время, и вы уже знаете, что чем дольше вы ждете, тем холоднее будет. Это происходит из-за явления, называемого теплопередачей, которое представляет собой поток энергии в виде тепла. Если два объекта имеют разную температуру, тепло автоматически перетекает от одного объекта к другому, когда они соприкасаются.Тепловая энергия передается от более горячего к более холодному объекту. В случае с чаем тепло жидкости передается окружающему воздуху, который обычно холоднее чая. Как только оба объекта достигнут одинаковой температуры, передача тепла прекратится. Передача тепла за счет движения жидкостей (жидкостей или газов) называется конвекцией.

Другой тип теплопередачи — теплопроводность, при которой энергия перемещается через вещество (обычно твердое) от одной частицы к другой (в отличие от конвекции, когда движется само нагретое вещество).Нагревающаяся ручка кастрюли может быть примером кондукции.

Тепло также может передаваться посредством излучения. Вы могли испытать это, сидя у костра. Хотя вы не прикасаетесь к огню, вы можете почувствовать, как он излучает тепло вам в лицо, даже если на улице холодно. Если вы любите пить чай горячим, вы можете спросить, как можно уменьшить теплопередачу и как чай не остывает? Ответ — теплоизоляция. Изоляция означает создание барьера между горячим и холодным объектом, который уменьшает теплопередачу за счет отражения теплового излучения или уменьшения теплопроводности и конвекции от одного объекта к другому.В зависимости от материала преграды утеплитель будет более или менее эффективным. Барьеры, которые очень плохо проводят тепло, являются хорошими теплоизоляционными материалами, тогда как материалы, которые очень хорошо проводят тепло, имеют низкую изоляционную способность. В этом упражнении вы с помощью стакана горячей воды протестируете, из каких материалов получаются хорошие или плохие теплоизоляционные материалы. Как вы думаете, какой материал будет наиболее эффективным?

Материалы

  • Пять стеклянных банок с крышками
  • Ножницы (и взрослые для помощи при стрижке)
  • Лента
  • Алюминиевая фольга
  • Пузырьковая пленка
  • Шарф шерстяной или другая одежда из шерсти
  • Бумага
  • Горячая вода из крана
  • Термометр
  • Холодильник
  • Таймер
  • Бумага для письма
  • Ручка или карандаш

Подготовка

  • Отрежьте кусок алюминиевой фольги, пузырчатой ​​пленки и бумаги (при необходимости обратитесь за помощью к взрослым).Каждый кусок должен быть достаточно большим, чтобы его можно было три раза обхватить по сторонам стеклянной банки.
  • Возьмите кусок алюминиевой фольги и оберните им стенки одной из банок. У вас должно получиться три слоя фольги вокруг стеклянной банки. Используйте ленту, чтобы прикрепить фольгу к банке.
  • Затем оберните другую банку пузырчатой ​​пленкой, чтобы стекло также было покрыто в три слоя. Обязательно прикрепите пузырчатую пленку к банке.
  • Используйте обрезанную бумагу, чтобы обернуть третью банку тремя слоями бумаги.Еще раз прикрепите бумагу к стеклянной банке.
  • Возьмите другую стеклянную банку и оберните вокруг нее шарф или другую шерстяную ткань. Сделайте только три слоя упаковки и убедитесь, что шарф остается прикрепленным к банке.
  • Оставить последнюю банку без упаковки. Это будет ваш контроль.

Процедура

  • Наполните каждую банку одинаковым количеством горячей воды из крана.
  • Используйте термометр для измерения температуры в каждой банке. Поместите палец в воду каждой банки (будьте осторожны, если вода из-под крана очень горячая) как ощущается температура воды?
  • Запишите температуру для каждой банки и закройте крышками. Все температуры одинаковы или есть различия? Насколько велики различия?
  • Откройте холодильник и положите внутрь все пять банок. Убедитесь, что они все еще надежно завернуты. Почувствуйте температуру холодильника — какова его температура?
  • Положите термометр в холодильник. Какую температуру показывает термометр, когда вы кладете его в холодильник?
  • Когда все банки будут в холодильнике, закройте дверцу холодильника и установите таймер на 10 минут. Как вы думаете, что произойдет с банками и горячей водой за это время?
  • Через 10 минут откройте холодильник и выньте все банки на улицу. Банки ощущаются по-другому?
  • Откройте каждую банку по очереди и измерьте температуру воды термометром.Также проверьте температуру пальцем. Изменилась ли температура? Как изменилось по градуснику?
  • Повторите измерение температуры для каждой банки и запишите температуру для каждого оберточного материала. Изменилась ли температура в каждой банке одинаково? Какой оберточный материал привел к наименьшему изменению температуры, а какой — наибольшему?
  • Для лучшего сравнения рассчитайте разницу температур в начале и в конце теста для каждой банки (начало температуры в зависимости от температуры после 10 минут хранения в холодильнике). Можете ли вы определить по вашим результатам, какой материал является лучшим или самым слабым теплоизоляционным материалом?
  • Дополнительно: Будет ли температура продолжать изменяться одинаковым образом для каждого материала? Вы можете снова закрыть каждую банку и убрать их в холодильник еще на 10 минут. На этот раз результаты разные или те же?
  • Extra : Температура воды в холодильнике изменяется так же, как в морозильной камере, или при комнатной температуре? Повторите тест, но на этот раз вместо того, чтобы ставить стеклянные банки в холодильник, поместите их в морозильную камеру или храните при комнатной температуре. Насколько изменится температура воды за 10 минут? По-разному ли ведут себя разные упаковочные материалы?
  • Extra : Попробуйте найти другие материалы, которые, по вашему мнению, являются хорошими или плохими теплоизоляторами, и протестируйте их. Какой материал работает лучше всего? Вы можете придумать причину, почему?
  • Extra : если вы вытащите банки из холодильника через 10 минут, вы, вероятно, все равно будете измерять разницу температур между водой внутри емкости и температурой внутри холодильника.Стеклянные банки можно дольше хранить в холодильнике и измерять их температуру каждые 15–30 минут. Сколько времени нужно, чтобы температура воды больше не изменилась? Какова конечная температура воды внутри стакана?
  • Extra : Помимо выбора правильного изоляционного материала, как еще можно улучшить теплоизоляцию? Повторите этот тест только с одним оберточным материалом. На этот раз измените толщину изоляционного слоя. Находите ли вы зависимость между толщиной изоляционного слоя и изменением температуры в холодильнике?

Наблюдения и результаты
Ваша горячая вода значительно остыла за 10 минут внутри холодильника? Хотя температура в холодильнике очень низкая, ваша горячая вода имеет высокую температуру. Когда тепловая энергия течет от горячего объекта к холодному, тепловая энергия от вашей горячей воды будет передаваться в окружающий холодный воздух внутри холодильника, как только вы поместите стеклянные банки внутрь.Наиболее важным механизмом теплопередачи в этом случае является конвекция, то есть воздух рядом с горячей водой нагревается горячей водой. Затем теплый воздух заменяется холодным, который также нагревается. В то же время холодный воздух охлаждает воду внутри банки. Тепло горячей воды отводится потоком холодного воздуха вокруг чашки. Если вы оставили банки в холодильнике достаточно долго, вы могли заметить, что температура меняется, пока горячая вода не достигнет температуры внутри холодильника.Без разницы температур воды и холодильника передача тепла прекратится.

Тепло из воды также теряется из-за теплопроводности: передачи тепла через материал, которая зависит от теплопроводности самого материала. Стеклянная банка относительно хорошо проводит тепло. Вы замечаете, что когда вы касаетесь стеклянной банки с горячей водой, она также становится горячей. Какой эффект имели разные упаковочные материалы? Вы должны были заметить, что при использовании упаковочных материалов температура воды через 10 минут внутри холодильника была выше, чем в неупакованном контроле.Почему? Упаковка стеклянной банки снижает передачу тепла от горячей воды к холодному воздуху внутри холодильника. Использование оберточных материалов с очень низкой теплопроводностью снижает теплопотери за счет теплопроводности. В то же время изолятор также может нарушать или уменьшать поток холодного воздуха вокруг стеклянной емкости, что приводит к меньшим потерям тепла за счет конвекции.

Одним из способов уменьшения конвекции является создание воздушных карманов вокруг банки, например, с помощью изоляторов, таких как пузырчатая пленка, ткань или шерсть, которые имеют много воздушных карманов.Воздух в целом является хорошим теплоизолятором, но может передавать тепло за счет конвекции. Однако, если воздушные карманы внутри изоляционного материала отделены друг от друга, тепловой поток из одного воздушного кармана в другой не может происходить легко. Это причина, по которой вам следовало измерить самую высокую температуру в банке, обернутой пузырьками, и банке, обернутой тканью. Это также объясняет, почему большая часть нашей одежды сделана из ткани и почему вам будет теплее, если надеть дополнительную куртку. Бумага и фольга облегчают отвод тепла, потому что у них не так много воздушных карманов.

Больше для изучения
Теплопередача — для детей, из Real World Physics Problems
Как животные сохраняют тепло с помощью жира, из Scientific American
Как работает термос? (Pdf), из Daily Science
Science Activity for All Ages !, from Science Buddies

Эта деятельность предоставлена ​​вам в сотрудничестве с Science Buddies

Излучающие барьеры | Министерство энергетики

Тепло передается из теплой области в прохладную за счет сочетания теплопроводности, конвекции и излучения.Тепло передается за счет теплопроводности из более горячего места в материале или сборке в более холодное, подобно тому, как ложка, помещенная в горячую чашку кофе, проводит тепло через ручку к вашей руке. Передача тепла путем конвекции происходит, когда жидкость или газ, например воздух, нагреваются, становятся менее плотными и поднимаются вверх. По мере охлаждения жидкость или газ становится плотнее и опускается. Лучистое тепло распространяется по прямой от любой поверхности и нагревает все твердое тело, которое поглощает его энергию.

Наиболее распространенные изоляционные материалы работают за счет замедления кондуктивного теплового потока и — в меньшей степени — конвективного теплового потока.Излучающие барьеры и системы отражающей изоляции работают за счет уменьшения притока лучистого тепла. Чтобы быть эффективной, отражающая поверхность должна быть обращена в воздушное пространство. Скопление пыли на отражающей поверхности снижает ее отражающую способность. Излучающий барьер следует устанавливать таким образом, чтобы свести к минимуму накопление пыли на отражающей поверхности.

Когда солнце нагревает крышу, это в первую очередь солнечная лучистая энергия, которая делает крышу горячей. Большая часть этого тепла проходит через кровельные материалы к чердачной стороне крыши.Затем горячий кровельный материал излучает полученную тепловую энергию на более прохладные поверхности чердака, включая воздуховоды и чердачный этаж. Излучающий барьер уменьшает лучистую теплопередачу от нижней стороны крыши к другим поверхностям чердака.

Лучистый барьер работает лучше всего, когда он перпендикулярен падающей на него лучистой энергии. Кроме того, чем больше разница температур между сторонами материала излучающего барьера, тем больше преимуществ может предложить излучающий барьер.

Излучающие барьеры более эффективны в жарком климате, чем в холодном, особенно когда каналы охлаждающего воздуха расположены на чердаке. Некоторые исследования показывают, что излучающие барьеры могут снизить затраты на охлаждение на 5-10% при использовании в теплом солнечном климате. Уменьшение притока тепла может даже позволить использовать меньшую систему кондиционирования воздуха. Однако в прохладном климате обычно более рентабельно установить дополнительную теплоизоляцию, чем добавить излучающий барьер.

Теплоизоляция от Рона Куртуса

SfC Home> Физика> Тепловая энергия>

от Рона Куртуса

Теплоизоляция — это метод предотвращения передачи тепловой энергии от одной области к другой.Другими словами, теплоизоляция может поддерживать тепло в замкнутом пространстве, таком как здание, или сохранять внутреннюю часть контейнера холодной.

Тепло передается от одного материала к другому за счет теплопроводности, конвекции и / или излучения. Изоляторы используются для минимизации передачи тепловой энергии. В домашней теплоизоляции R-value является показателем того, насколько хорошо материал изолирует.

Вопросы, которые могут у вас возникнуть:

  • Где используется теплоизоляция?
  • Как работает изоляция?
  • Что такое R-значение?

Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц



Где используется теплоизоляция

Если у вас есть объект или область, имеющая определенную температуру, вы можете не допустить, чтобы этот материал становился такой же температуры, как и соседние материалы. Обычно это делается с помощью теплоизоляционного барьера.

Например:

  • Если на улице холодно, вы можете защитить свою кожу, надев одежду, которая защищает от холода и тепла тела.
  • Если в вашем доме летом внутри прохладный воздух, вы можете предотвратить повышение температуры до уровня горячего воздуха снаружи, хорошо изолировав дом.
  • Если у вас есть горячий напиток, вы можете положить его в термос, чтобы он не нагрелся до комнатной температуры.

В любом месте, где есть материалы с двумя совершенно разными температурами, вы можете установить изолирующий барьер, чтобы предотвратить повышение температуры одного материала от другого.В таких ситуациях стараются минимизировать передачу тепла от одной области к другой.

Как работает изоляция

Изоляция — это барьер, который сводит к минимуму передачу тепловой энергии от одного материала к другому за счет уменьшения эффектов проводимости, конвекции и / или излучения.

Изоляционные материалы

Большая часть изоляции используется для предотвращения передачи тепла. В некоторых случаях радиация является фактором. Очевидно, что хороший изолятор — плохой проводник.

Менее плотные материалы — лучшие изоляторы.Чем плотнее материал, тем ближе друг к другу его атомы. Это означает, что передача энергии от одного атома к другому более эффективна. Таким образом, газы изолируют лучше, чем жидкости, которые, в свою очередь, изолируют лучше, чем твердые тела.

Интересным фактом является то, что плохие проводники электричества также являются плохими проводниками тепла. Дерево — лучший изолятор, чем медь. Причина в том, что металлы, проводящие электричество, позволяют свободным электронам перемещаться по материалу. Это увеличивает передачу энергии от одной области металла к другой.Без этой способности материал — например, дерево — плохо проводит тепло.

Изоляция от проводимости

Проводимость возникает, когда материалы, особенно твердые, находятся в прямом контакте друг с другом. Атомы и молекулы с высокой кинетической энергией сталкиваются со своими соседями, увеличивая энергию соседа. Это увеличение энергии может проходить через материалы и от одного материала к другому.

от твердого до твердого

Чтобы замедлить передачу тепла от одного твердого тела к другому за счет теплопроводности, между твердыми телами помещают материалы с плохой проводимостью.Примеры включают:

  • Стекловолокно и воздух не являются хорошими проводниками. Вот почему пучки неплотно уложенных прядей из стекловолокна часто используются в качестве изоляции между внешними и внутренними стенами дома.
  • Проводящее тепло не может проходить через вакуум. Вот почему у термоса есть вакуумированная подкладка. Этот тип тепла не может передаваться от одного слоя к другому через вакуум термоса.
Газ — твердое вещество

Чтобы замедлить теплопередачу между воздухом и твердым телом, между ними помещен плохой проводник тепла.

Хорошим примером этого является размещение слоя одежды между вами и холодным наружным воздухом зимой. Если холодный воздух попадет на вашу кожу, она понизит ее температуру. Одежда замедляет потерю тепла. Кроме того, одежда предотвращает отвод тепла от тела и его потерю для холодного воздуха.

От жидкого до твердого

Точно так же, когда вы плаваете в воде, холодная вода может снизить температуру вашего тела за счет теплопроводности. Вот почему некоторые пловцы носят резиновые гидрокостюмы для защиты от холодной воды.

Изоляция от конвекции

Конвекция — это передача тепла при движении жидкости. Поскольку воздух и вода плохо проводят тепло, они часто передают тепло (или холод) своим движением. Пример тому — печь с вентилятором.

Изоляция от теплопередачи за счет конвекции обычно выполняется путем предотвращения движения жидкости или защиты от конвекции. Ношение защитной одежды в холодный ветреный день предотвратит потерю тепла из-за конвекции.

Изоляция от излучения

Горячие и даже теплые предметы излучают инфракрасные электромагнитные волны, которые могут нагревать предметы на расстоянии, а также сами терять энергию. Изоляция от передачи тепла излучением обычно выполняется с помощью отражающих материалов.

Бутылка-термос не только имеет вакуумную подкладку для предотвращения теплопередачи за счет теплопроводности, но также сделана из блестящего материала для предотвращения передачи тепла излучением. Излучение от теплой пищи внутри термоса отражается обратно в себя.Излучение от теплого внешнего материала отражается, чтобы предотвратить нагревание холодных жидкостей внутри бутылки.

R-ценность

R-значение материала — это его сопротивление тепловому потоку и показатель его способности к теплоизоляции. Он используется как стандартный способ определить, насколько хорошо материал будет изолировать. Чем выше значение R, тем лучше изоляция.

Определение

R-значение обратно пропорционально количеству тепловой энергии на площадь материала на градус разницы между внешней и внутренней стороной.Единицы измерения R-значения:

(квадратный фут x час x градус F) / BTU в английской системе и

(квадратных метров x градусы C) / Вт в метрической системе

Стол

Изоляция для дома имеет R-значения обычно в диапазоне от R-10 до R-30.

Ниже приводится список различных материалов с английским значением R-value:

Материал

R-значение

Сайдинг из твердой древесины (1 дюйм.толстая)

0,91

Деревянная черепица (внахлест)

0,87

Кирпич (толщиной 4 дюйма)

4,00

Бетонный блок (заполненные стержни)

1,93

Ватин из стекловолокна (толщиной 3,5 дюйма)

10.90

Ватин из стекловолокна (толщиной 6 дюймов)

18.80

Плита из стекловолокна (толщиной 1 дюйм)

4,35

Целлюлозное волокно (толщиной 1 дюйм)

3,70

Плоское стекло (толщиной 0,125 дюйма)

0,89

Стеклопакет (0.25 в космосе)

1,54

Воздушное пространство (толщина 3,5 дюйма)

1.01

Свободный застойный воздушный слой

0,17

Гипсокартон (толщиной 0,5 дюйма)

0,45

Обшивка (толщиной 0,5 дюйма)

1,32

Справочная информация Hyperphysics Государственный университет штата Джорджия

Значение R пропорционально толщине материала.Например, если вы удвоили толщину, значение R удвоится.

Сводка

Теплоизоляция минимизирует теплопередачу во многих повседневных ситуациях. Это достигается за счет уменьшения эффектов проводимости, конвекции и / или излучения. Значение R является эталоном измерения этой изоляции.


Изолируйте себя от негативных мыслей


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайты

Тепловая масса и R-значение — Новости экологического строительства, апрель 1998 г.

Физические ресурсы

Книги

(Примечание: Школа чемпионов может получать комиссионные от покупки книг)

Книги по теплоизоляции с самым высоким рейтингом


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если да, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/science/
Thermal_insulation.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или диссертации.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

По физике

Теплоизоляция

Как теплоизоляция задерживает тепло?

Как теплоизоляция задерживает тепло? — Объясни это Реклама

Если тебя нет дома и зимой и вам холодно, скорее всего, вы наденете шляпу или еще один слой одежды. Если вы сидите дома, смотрите телевизор и та же самая мысль поражает вас, вы с большей вероятностью включите свой обогрев. Что, если мы изменим логику? Что если вы съели больше еды, когда вам стало холодно и вы наклеили шерстяную шапку на свой дом каждую зиму? Первое не имеет большого значения: пища поставляет энергию, в которой нуждается ваше тело, но не обязательно согреют тут же.Но надеть «одежду» ваш дом — путем его утепления — на самом деле очень хорошая идея: тем более теплоизоляция у вас есть, чем меньше энергии уходит, тем меньше ваши счета за топливо, и тем больше вы помогаете планете в борьбе с глобальным потеплением. Давайте посмотрим внимательнее!

Фото: Аэрогель — один из самых захватывающих в мире изоляционные материалы. Поместите кусок аэрогеля между газовым пламенем и восковыми мелками. и мелки не тают: аэрогель практически не пропускает тепло. Однажды мы могли бы сделать все наши окна из аэрогеля, но ученым нужно придумать, как сначала сделайте его прозрачным! Фото любезно предоставлено Лабораторией реактивного движения НАСА.

Зачем нужна изоляция?

Проще говоря: нам нужна изоляция, потому что топливо дорогое и горючее топливо так или иначе наносит вред окружающей среде. Некоторые виды топлива дороже других; одни более вредны, чем другие; некоторые из них более эффективны, чем другие. Но даже эффективное топливо стоит денег, поэтому чем меньше его вы сжигаете, тем лучше.

По сравнению с использованием устаревших технологий, таких как открытый угольный камин, большинство современных отопительных приборов на самом деле довольно эффективно; посмотрите на красные столбцы в таблице ниже, и вы увидите, что для каждого джоуля ( стандартная современная единица измерения энергии) топлива вам попадая в них, вы обычно получаете обратно около 70 процентов тепла (на практике термины, вот что означает процент эффективности использования топлива).

Насколько эффективно вы можете обогреть свой дом (и сколько это будет стоить), в значительной степени зависит от используемого вами топлива, которое не всегда можно легко изменить. Как показано на этой диаграмме, виды топлива для отопления домов сильно различаются по стоимости (электричество является самым дорогим, а уголь и природный газ — самыми дешевыми), хотя большинство из них имеют КПД около 70 процентов или выше. Древесина — наименее эффективное топливо, но, учитывая ее низкую стоимость, доступность и экологичность, это не всегда беспокоит людей.Несмотря на то, что уголь является одним из самых дешевых видов топлива, его грязь и другие экологические недостатки сделали его менее популярным в последние десятилетия. Своей популярностью природный газ обязан его низкой стоимости и высокой эффективности.

Диаграмма: Сравнение стоимости и эффективности различных видов топлива. Синие столбцы на этой диаграмме показывают стоимость в долларах за миллион британских тепловых единиц девяти распространенных видов бытового топлива (см. Вертикальную ось слева). Красные полоски рядом показывают эффективность каждого вида топлива в процентах (прочтите вертикальную ось справа).На основе данных за 2020 год из различных источников рынка, включая Управление энергетики США. Данные по эффективности практически не меняются из года в год.)

Держись за тепло

Настоящая проблема с домашним отоплением — это сохранение тепла, которое вы производите: в зимой, воздух, окружающий ваш дом, и почва или камень, на котором он стоит всегда при гораздо более низкой температуре, чем здание Таким образом, независимо от того, насколько эффективно ваше отопление, ваш дом все равно будет рано или поздно теряет тепло.Ответ, конечно же, создать своего рода буферной зоны между вашим теплым домом и холодом на улице. Этот это основная идея теплоизоляции, которая мы слишком мало думаем. По данным Министерства энергетики США, только пятая часть домов, построенных до 1980 года, имеет надлежащую изоляцию; Итак, как вы можете видеть из приведенной ниже таблицы, большинство из нас считает, что наша недвижимость лучше изолирована, чем есть на самом деле. (Хорошая новость заключается в том, что стандарты повышаются. Более четверти новых домов теперь соответствуют требованиям ENERGY STAR®, по данным Управления энергетической информации США, это означает, что они потребляют на 15 процентов меньше энергии, чем построенные в соответствии с строительными нормами 2009 года.)

Диаграмма

: Более 95 процентов домов, построенных в 1990-х годах и позже, хорошо или надлежащим образом изолированы, по мнению их владельцев, до 1950 года их было построено всего 68 процентов. (На самом деле, многие дома имеют гораздо более плохую изоляцию, чем думают их владельцы.) Составлено с использованием данных из [PDF] Восприятие домовладельцами адекватности изоляции и сквозняков в доме в 2001 г. Бехджат Ходжати, Управление энергетической информации США, 2004 г.

Как тепло уходит из вашего дома?

Работа: Куда уходит тепло в типичном доме? Он варьируется от здания к зданию, но это приблизительные типичные оценки.Стены дают наибольшие потери тепла, за ними следуют двери и окна, крыша и пол.

Почему из вашего дома уходит тепло? Чтобы понять это, нужно знать немного о науке о тепле. Как вы, вероятно, знаете, тепло распространяется тремя разными способами за счет процессов, называемых теплопроводностью, конвекцией и излучением. (Если вы не уверены в разнице, взгляните на нашу основную статью о тепле для краткого обзора.) Зная об этих трех типах теплового потока, легко увидеть множество причин, по которым ваш уютный теплый дом протекает. тепло к ледяному холодному миру вокруг него:

  1. Ваш дом стоя на холодной почве или скале, чтобы тепло стекало прямо в Земля по проводимости.
  2. Тепло распространяется по теплопроводность через сплошные стены и крышу вашего дома. На снаружи наружные стены и черепица горячее, чем атмосферу вокруг них, поэтому холодный воздух рядом с ними нагревается и утекает конвекцией.
  3. Ваш дом может показаться большим сложным пространством, внутри которого много чего происходит, но со стороны с точки зрения физики, это точно так же, как костер посреди бескрайних холодных окрестностей: это постоянно излучает тепло в атмосферу.

Чем больше тепла уходит из вашего дома, тем холоднее становится внутри, поэтому тем больше вам нужно используйте свое отопление, и тем больше это будет вам стоить. Чем больше вы используете отопления, тем больше топлива нужно где-то сжигать (либо в собственном дома или на электростанции в исправном состоянии), тем больше углекислого газа произведено, и ухудшается глобальное потепление. Это далеко лучше утеплить дом и снизить теплопотери. Сюда, вам нужно будет гораздо меньше использовать свое отопление. Самое замечательное в доме изоляция заключается в том, что она обычно довольно быстро окупается при более низких счета за топливо.Вскоре это даже приносит вам деньги! И это тоже помогает планете.

Дома с хорошей теплоизоляцией, сохраняющие тепло зимой, как правило, лучше удерживают тепло летом, поэтому любой улучшения, которые вы вносите в изоляцию, также должны помочь сохранить счета за кондиционер. Это важно, потому что «кондиционер» в настоящее время является самым быстрорастущим потребителем энергии в зданиях. (как в жилых, так и в коммерческих зданиях), по данным Управления энергетической информации США.

Рекламные ссылки

Как работает теплоизоляция

Предположим, вы только что налили себе чашку горячего кофе.Фундаментальный правило физики называется второй закон термодинамики говорит, что так никогда не останется: очень скоро это будет вместо этого чашка холодного кофе. Что вы можете сделать, чтобы отложить неизбежный? Каким-то образом вам нужно остановить тепло, уходящее за счет теплопроводности, конвекция и излучение.

Первое, что можно было сделать, это закрыть крышку на. Остановив подъем и опускание горячего воздуха над чашкой, вы сокращение тепловых потерь за счет конвекции. Также будет немного тепла исчезая через дно горячей чашки на холодном столе он стоит.Что, если бы вы могли окружить чашку слоем воздуха? Тогда проводимость может быть очень незначительной. Так что, может быть, выпей вторую чашку вне первого с воздушным зазором (а еще лучше вакуумом) в между. Вот конвекция и проводимость почти закончились, но что? насчет радиации? Если бы вы обернули алюминиевую фольгу вокруг чашке, большая часть инфракрасного излучения, испускаемого горячим кофе, будет отражаться обратно внутрь нее, так что это должно решить и эту проблему. Примените все три решения: крышку, воздушный зазор и металлическое покрытие — и получается, по сути, термос: действительно эффективный способ сохранить горячие напитки горячими.(Это также хорошо держать холодные напитки холодными, потому что это останавливает поступление тепла так же эффективно, как и отвод тепла). Кстати, стоит отметить, что в большинстве магазинов на вынос предлагают горячие напитки. в таре из полистирола неприятного вкуса. Вы когда-нибудь задумывались, почему? Ответ прост: полистирол (и особенно пенополистирол, наполненный воздухом — крошечный вид, который вы получаете в упаковочных материалах) — превосходный теплоизолятор (посмотрите таблицу ниже, и вы увидите, что он лучше, чем двойное и тройное остекление).

Фото: вверху: Пылесосы с металлическим покрытием — одни из лучших изоляторов, но они не всегда подходят для повседневного использования. В конце 1980-х два ученых, работающих в Национальной лаборатории возобновляемых источников энергии, Дэвид Бенсон и Томас Поттер, разработали более практичный способ использования этой технологии, названный компактная вакуумная изоляция (КВИ). Наружные металлические пластины, удерживаемые керамическими прокладками, герметизируют изолирующий вакуум внутри. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Фото: Ниже: аналогичная идея работает в таких продуктах, как Superfoil, доступный изоляционный материал, который (если его разобрать) очень похож на пузырчатую пленку, только он зажат между тонкими слоями алюминиевой фольги вместо бумаги. По словам производителей, базовая версия имеет R-значение около 0,97–2,33 (в зависимости от того, где вы ее используете), хотя более толстые версии справляются несколько лучше.

Лучший способ утеплить дом

Сейчас, к сожалению, мы не можем строить наши дома в точности как термос.Мы должны иметь воздух для дыхания, поэтому о вакууме не может быть и речи. Большинству людей нравится окна тоже, так что жить в запечатанном боксе, облицованном металлической фольгой, не это тоже практично. Но основной принцип вырубки тепла потери от теплопроводности, конвекции и излучения, тем не менее, применяются.

Если вы хотите улучшить свою изоляцию, вам необходимо применять очень систематический подход, учитывая все возможные пути попадания холодного воздуха в ваш дом и тепло может уйти. Вам нужно обойти все здание смотрит на каждую дверь, стену, окно, крышу и т. д. потенциальный источник тепловых потерь в свою очередь.Сколько делают утеплитель чердака у вас есть и вы могли бы сделать еще немного? Подходит ли ваш дом для изоляция пустотелых стен и продумали ли вы вероятную экономию и Период окупаемости? Сколько энергии вы теряете из-за этих сквозняков старые окна со створкой? Вы думали о вложении средств в конопатку, вторичное остекление, тяжелые шторы, пластик с магнитным креплением простыни или другие средства защиты от холода?

Стены

Фото: Сократите потери энергии из вашего дома, заполнив стены пенопластом.Этот Эко-дом утепляется пластиковым изоляционным материалом Айсинен, аналогичным тому, который используется в подушках и матрасах. Фото Пола Нортона любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Многие дома имеют так называемые полые стены из двух слоев кирпича. или блоки между внутренними комнатами и внешним миром и воздухом щель между стенами. Воздушный зазор снижает потери тепла от стен за счет теплопроводности и конвекции: теплопроводность, потому что тепло не может проводить через газы; конвекция, потому что есть относительно мало воздуха между стенами и он заперт, поэтому конвекция токи не могут циркулировать.

Сам по себе воздух не самый лучший изоляционный материал между стенами. Это на самом деле далеко более эффективно заполнить пустоты в стенах вспенивающаяся пена или другой действительно хороший изоляционный материал, который останавливает отвод тепла. Утепление стенок полости, как это известно, требует только часов на установку и относительно невысокая стоимость. Стены полостей часто наполнены неплотно упакованными, наполненными воздухом материалами, такими как вермикулит, измельченная переработанная бумага или стекловолокно (специально обработаны, чтобы сделать их пожаробезопасными).Эти материалы работают точно так же, как и ваша одежда: дополнительные слои одежда согревает, задерживая воздух — и это воздух, как (или больше, чем) сама одежда, что предотвращает отвод тепла.

Какие утеплители для дома самые лучшие?

Некоторые виды изоляции лучше других, но как их сравнить? В Лучше всего следить за измерениями, называемыми R-значениями и U-значениями.

R-значения

R-ценность материала — это его термическое сопротивление: насколько эффективно он сопротивляется тепло, протекающее через него.Чем больше значение, тем больше сопротивление, и чем более эффективен материал как тепло изолятор.

  • Одиночное стекло: 0,9.
  • Воздух: 1 (воздушный зазор 0,5-4 дюйма).
  • Двойное остекление: 2,0 (с воздушным зазором 0,5 дюйма).
  • Вермикулит: 2,5 на дюйм.
  • Стекловолокно: 3 на дюйм.
  • Тройное остекление: 3,2 (с воздушным зазором 0,5 дюйма).
  • Пенополистирол: 4 на дюйм.
  • Полиуретан: 6-7 на дюйм
  • Полиизоцианурат (покрытый фольгой): 7 на дюйм.
  • Аэрогель: Изоляционный материал космической эры: 10

Фото: Вы можете уменьшить потери тепла через пол, построив дом из такого толстого изоляционного материала, как этот, со значением R 30. Фото Пола Нортона любезно предоставлено США Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Показатели U

Другое распространенное измерение, которое вы увидите, называется U-значением, которое представляет собой общее количество тепла, теряемого через изоляционный материал определенной толщины.Чем ниже значение U, тем меньше тепловой поток и тем лучше материал выполняет роль изолятора (это противоположно R-value, где более высокие значения лучше). U-значения и R-значения, очевидно, являются взаимосвязанными понятиями, но U-значения более точны. Если значения R учитывают только потери проводимости, значения U учитывают потери из-за проводимости, излучения и конвекции. Потери проводимости являются обратной величиной R-значения (которое делится на R-значение), затем вы добавляете потери на излучение и конвекцию, чтобы получить общее U-значение.

Как правило, нас интересует только , сравнивающих различных материалов, так что все вы действительно нужно помнить, что высокие значения R и низкие значения U — это хорошо.

Крыша

Поскольку теплый воздух поднимается вверх, много тепла уходит через крышу вашего дома (точно так же, как много тепла уходит от вашего тела через голову, если вы не носите шляпу). У большинства людей также есть изоляция внутри крыши (чердак площадь) своих домов, но на самом деле нет такого понятия, как слишком много изоляция.Утеплитель чердака обычно выполняется из тех же материалов. в качестве заполнителей пустотных стенок — например, минеральной ваты и стекловолокна.

Радиационные потери

Фото: Двойное остекление: воздушный зазор между двумя стеклами обеспечивает теплоизоляцию, а также звукоизоляцию.

Изоляция стен и кровли снижает потери тепла за счет конвекции и теплопроводности, но что насчет радиации? В вакуумной колбе эта проблема решается иметь светоотражающую металлическую подкладку — и та же идея может быть использована в дома тоже.Некоторые домовладельцы устанавливают тонкие листы светоотражающего металла. алюминий в стенах, полах или потолках, чтобы уменьшить излучение убытки. Хорошие продукты такого типа могут снизить радиационные потери до аж 97 процентов. Вы можете узнать больше, выполнив поиск по запросу «отражающий изоляция »или« лучистый барьер »в одном из полей поиска на эта страница.

Тем не менее, окна остаются основным источником потерь тепла, но есть способы решить и эту проблему. Стеклопакеты состоят из двух оконных стекол, разделенных герметичной воздушной прослойкой.Воздух останавливает потери тепла за счет проводимость и конвекция, в то время как дополнительное стекло отражает больше света и тепла возвращается в ваш дом и снижает тепло потери тоже. Вы можете обработать свои окна очень тонкое светоотражающее металлическое покрытие или из специального термостекла (например, Pilkington-K, который улавливает тепло, как теплица) что еще больше снижает тепловые потери. (Подробнее читайте в нашем основная статья о теплоотражающих окнах.)

Как правило, чем больше у вас изоляции, тем вам будет теплее.Но необходимое количество зависит от того, где вы живете и насколько холодно.

Таблица

: Переход с одинарного на двойное или даже тройное остекление может иметь большое значение (темно-синий), особенно если вы используете теплоотражающее стекло с низким энергопотреблением (светло-синее). Показанные числа являются значениями R с воздушным зазором 0,5 дюйма.

Шторы и жалюзи

Если по какой-либо причине вы не можете утеплить окна, шторы и жалюзи могут иметь значение. Помните, что занавески предназначены не просто для того, чтобы обеспечить вам уединение: хорошо шторы должны задерживать значительный объем воздуха между тканью и окно и остановите его движение; это воздух, который дает вам изоляция, а не (как правило) ткань штор самих себя.Итак, вам нужны занавески, которые закрываются по бокам и плотно дотянитесь до пола (или коснитесь подоконника). Чем больше воздуха вы застряли между тканью и окном, тем лучше ваши шторы будут как утеплители. Вы можете предпочесть удобство жалюзи, но они почти никогда не так эффективны, как шторы, отчасти потому, что в большинстве жалюзи есть воздушные зазоры (поэтому они не создают никаких воздушных уплотнений), а также потому, что жалюзи имеют тенденцию быть расположены ближе к стеклу, чтобы объем воздуха, который они задерживают, был значительно уменьшается.

Изолируйте себя

Если ваши счета за отопление действительно начинают доходить до вас, или если ваш дом такой старый и сквозняк, что в нем просто не удержишь тепло на любой срок, почему бы не отвлечься от обогревает здание, чтобы согреться собственное тело? Используйте умеренный количество отопления каждый день, чтобы поддерживать ваш дом в хорошем состоянии и избегайте таких проблем, как сырость и конденсат, но не держите нагрев на столько, сколько обычно. Вместо этого купите себе термобелье (особенно шерсть мериноса хороший — и часто продается как одежда «базового слоя» на открытом воздухе. магазины) и наденьте еще несколько слоев одежды сверху.Другой вариант — оставить в доме одну-две комнаты. комфортно согревают и нагревают остальные только изредка, по очереди, когда вы чувствуете, что они становятся слишком холодными.

Изоляция против вентиляции

Чем лучше изолирован ваш дом, тем хуже он будет вентилироваться. Хотя это не похоже на проблему, это, безусловно, может быть: воздух в доме необходимо достаточно часто менять, чтобы избежать таких проблем, как конденсация и сырость, и потенциально опасное загрязнение помещений (от таких вещей, как приготовление пищи и отопление).Частота освежения воздуха зависит от размера помещения, количества людей в нем и того, чем они занимаются (например, для ванной или кухни требуется больше вентиляции, чем для жилого помещения). . Однако изоляция и вентиляция не должны быть врагами; есть технические решения проблемы, в частности системы вентиляции с рекуперацией тепла (HRV), которые используйте теплообменники, чтобы уловить теплый несвежий воздух, выходящий из здания, и повторно нагреть прохладный свежий воздух, поступающий в обратном направлении.

Рекламные ссылки

Узнать больше

На сайте

  • Тепло: более детальное изучение науки о тепловой энергии.
  • Вентиляция с рекуперацией тепла: исследует способы вентиляции дома без потери тепла, запертого внутри.
  • Пассивное солнечное излучение: предотвращение утечки тепла — это хорошо, но впуск тепла от Солнца — это тоже хорошо, что снижает ваши счета за электроэнергию. Это основная идея пассивных солнечных зданий.

На других сайтах

Книги

Статьи

  • EIA прогнозирует, что использование энергии для кондиционирования воздуха будет расти быстрее, чем любое другое использование в зданиях, Today in Energy, 13 марта 2020 г.Поддерживать прохладу в зданиях летом так же важно, как и поддерживать их в тепле зимой.
  • Отопление вашего дома помогает согреть планету Вацлав Смил. IEEE Spectrum, 19 мая 2016 г. Почему лучшая изоляция будет иметь большее значение, если мы уделяем больше внимания борьбе с изменением климата.
  • 90% домов в США находятся под изоляцией, результаты исследований: элементы зеленого строительства, 2 октября 2015 г. Исследование Североамериканской ассоциации производителей изоляционных материалов (NAIMA) показывает, что в Соединенных Штатах есть большие возможности для улучшения.
  • Могут ли норвежские методы утепления домов спасти жизни в других местах: BBC News, 31 декабря 2013 г. В более холодных странах, таких как Норвегия, уровень зимней смертности ниже, потому что их дома лучше изолированы.
  • Изоляция вашего дома? Попробуйте переработанные материалы от штор до ковров от Джоан О’Коннелл. Хранитель. 24 апреля 2014 года. Из отходов текстильной промышленности можно сделать идеальную изоляцию, убив двух экологических зайцев одним выстрелом.
  • На
  • домов ENERGY STAR приходилось 26% нового строительства в 2011 году, Today in Energy, 16 октября 2012 года.Все больше зданий строятся в соответствии с лучшими стандартами энергоэффективности.
  • Home Green Home: изоляционные материалы Том Зеллер-младший. The New York Times, 15 октября 2009 г. Сравнение наиболее распространенных изоляционных материалов.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2008, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2008/2020) Теплоизоляция. Получено с https://www.explainthatstuff.com/heatinsulation.html.[Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работает изоляция

Как работает изоляция

Изоляция обеспечивает сопротивление тепловому потоку.

На этой странице:

  • Где теряется тепло
  • R-значения
  • Как работает объемная изоляция
  • Светоотражающая изоляция
  • Тепловые мосты

Изоляция снижает потери тепла из здания, как правило, за счет использования объемных и легких материалов, таких как как стекловолокно или полистирол между элементами обрамления.

Изоляция — очень важный элемент тепловых характеристик здания, но не единственный. Даже если дом хорошо изолирован, тепло все равно может уходить через воздушные зазоры, окна, зазоры в изоляции и такие элементы здания, как каркас, как описано ниже в разделе «Мосты холода». Тепловые характеристики здания зависят от совместной работы всех элементов здания.

Где теряется тепло

Типичные потери тепла в неизолированном доме

В неизолированном доме с деревянным каркасом 3035% тепла теряется через крышу, 2131% через окна и 1825% через стены.Пол и утечка воздуха составляют оставшуюся потерю тепла.

Потери тепла из дома, утепленного в соответствии с действующими минимальными требованиями Строительного кодекса

В доме, утепленном в соответствии с текущими требованиями, окна составляют самую большую долю теплопотерь.

R-значения

Изоляционные характеристики измеряются в R-показателях, которые определяют термическое сопротивление строительного материала или любой части здания, такой как крыша, стена или пол.

Имеющиеся в продаже изоляционные материалы имеют значения R. Однако коэффициент сопротивления R любой части здания зависит не только от изоляции, но и от тепловых характеристик других элементов, таких как каркас и облицовка.

Материалы с высокой плотностью, такие как бетон, кирпич или камень, обеспечивают отличную тепловую массу, но имеют низкие значения R и поэтому являются плохими изоляторами. Тонкие металлы, такие как профилированные стальные облицовки и листы из фиброцемента, также имеют низкие значения R и, следовательно, также являются плохими изоляторами.

Чтобы определить требования к изоляции, необходимо рассчитать R-значения для каждой части здания. Для получения более подробной информации см. Определение требований к изоляции.

Как работает объемная изоляция

Объемная изоляция работает путем улавливания сухого воздуха в легких и объемных материалах. Неподвижный воздух плохо проводит тепло, поэтому объемные материалы, которые могут задерживать большое количество воздуха, могут снизить способность теплопередачи за счет теплопроводности. Если материал состоит из множества небольших карманов захваченного воздуха, а не из большого непрерывного объема воздуха, способность передавать тепло путем конвекции также снижается.Повседневный пример — пуховое или волокнистое одеяло.

Объемная изоляция

Объемные изоляционные материалы, такие как шерсть, полиэстер, стекловата и вспененные плиты, работают за счет захвата воздуха и снижения скорости теплопередачи.

Светоотражающая изоляция

Приемлемое решение h2 / AS1 больше не допускает использование фольгированной изоляции (с 1 января 2017 г.).

Модернизация или ремонт фольгированной изоляции под подвесными полами запрещены с 1 июля 2016 года.

Тепловые мосты

Мосты холода, также называемые мостиками холода, представляют собой части оболочки здания, через которые тепло может легче уйти, поскольку строительный материал соединяет или соединяет мосты с обеих сторон оболочки здания. Примеры тепловых мостов включают:

  • деревянный или стальной каркас в наружных стенах, которые соединяются как с внутренней, так и с внешней гранями стены
  • алюминиевые оконные рамы, не имеющие теплового разрыва
  • зазоры в (плохо) установленной изоляции.

Одна из областей теплового моста, сильно влияющая на производительность, — это деревянные каркасы в стенах. В одном исследовании, проведенном в 47 новых домах, было обнаружено, что среднее содержание деревянного каркаса в наружных стенах (за исключением дверей и окон) составляло 34%. Это намного выше, чем обычно предполагалось 1418%. Вы можете узнать больше в ER53 «Измерение степени теплового моста во внешних деревянных каркасных стенах в Новой Зеландии ».

Если изоляция была просто установлена ​​между балками или стойками, R-значение строительного элемента, вероятно, будет меньше, чем R-значение используемой изоляции из-за теплового моста.Тепловые мосты можно уменьшить за счет правильной установки изоляции и использования изоляционных свойств, таких как обшивка на внешней стороне стоек или использование термических разрывов в алюминиевом остеклении. Более подробная информация представлена ​​на страницах, посвященных изоляции крыши, изоляции стен, изоляции пола и окон.

Обновлено: 19 октября 2020 г.

Объяснение науки об изоляции

Объяснение науки об изоляции

Как течет тепло

Чтобы понять, как работает изоляция, сначала необходимо объяснить различные способы протекания тепла через конструкцию.Физически тепло всегда перемещается из областей с высокой температурой в области с более низкой температурой, поэтому при низких внешних температурах зимой тепло внутри здания будет пытаться уйти через стены, окна, крышу и пол.

Проводимость

Проводимость — это передача тепла через материал или от одного материала к другому посредством прямого контакта. Проводимость может иметь место в твердых телах, жидкостях и газах.

Что касается строительных материалов, металлы являются лучшими проводниками тепла, за ними следуют бетон и кладка.Напротив, древесина и изоляционные материалы являются плохими проводниками, так же как и воздух и другие газы.

Конвекция

Конвекция возникает в газах и жидкостях. Если горячая поверхность соприкасается с более холодным воздухом, тепло передается воздуху. Затем этот воздух становится теплее и, следовательно, менее плотным, чем прилегающий более прохладный воздух. Более теплый и легкий воздух поднимается вверх и заменяется более холодным воздухом, вызывая непрерывный поток воздуха за счет естественной конвекции — постепенно отводя тепло от горячей поверхности к воздуху.Процесс обратный, если теплый воздух попадает на холодную поверхность.

В конструкциях интересующая нас конвективная теплопередача происходит в основном в полостях стен и кровли.

Излучение

Излучение — это передача инфракрасной лучистой энергии от «горячей» поверхности к «холодной» поверхности через воздух или вакуум. Лучистая энергия движется через пространство, не нагревая ничего между ними — энергия поглощается только тогда, когда ее путь блокируется объектом, который поглощает энергию и преобразует ее в тепло.Все материалы излучают лучистую энергию в большей или меньшей степени в зависимости от характеристик их поверхности и температуры поверхности. Чем выше температура поверхности, тем больше излучается лучистая энергия.

Наиболее распространенным примером этого является лучистое тепло от солнца, которое распространяется на миллионы миль в космосе и оказывает какое-либо влияние только тогда, когда оно блокируется каким-либо объектом, например люди, здания или сама земля.

Как уменьшить тепловой поток за счет использования изоляционных материалов в зданиях

Чтобы работать эффективно, изоляционный материал должен уменьшать тепловой поток.

Как уменьшается проводимость

Чтобы уменьшить теплопередачу за счет теплопроводности, изоляционный материал должен иметь очень небольшое количество твердого материала по сравнению с пустотами. Кроме того, твердый материал должен состоять из тонких соединительных стенок или прерывистых волокон.

Как уменьшается конвекция

Для уменьшения теплопередачи за счет конвекции изоляционный материал должен содержать небольшие пустоты или воздушные карманы, внутри которых движение воздуха сводится к минимуму.Точно так же внутри конструкции конвекцию можно уменьшить за счет наличия небольших автономных воздушных пространств, а не больших вентилируемых воздушных пространств.

Как уменьшается излучение

Передача тепла излучением прекращается, когда оно поглощается поверхностью материала, это приводит к повышению температуры материала. Однако этот материал, в свою очередь, будет излучать лучистую энергию. Самая эффективная поверхность — это поверхность с «низким коэффициентом излучения», которая излучает очень мало лучистой энергии и поглощает очень небольшой процент падающей на нее лучистой энергии.Поверхность с «низким коэффициентом излучения» характеризуется блестящей металлической отделкой. В здании передача тепла излучением от одной внутренней поверхности к другой не рассматривается как потеря тепла, однако передача тепла от внешних элементов здания вдали от здания.

И наоборот, единица, используемая для описания теплоизоляционных характеристик материала, на самом деле является мерой того, сколько тепла материал позволяет течь, эта единица — теплопроводность (единицы Вт / мК), также известная как значение лямбда (λ). .

Теплопроводность по типу материала

На приведенном ниже графике показан классический тип кривой, связанный с характеристиками теплопроводности традиционных объемных изоляционных материалов.

Этот конкретный график показывает кривую для изделий из стекловаты, как можно видеть, теплопроводность изделия улучшается по мере увеличения плотности изделия, однако скорость изменения уменьшается при увеличении плотности и, в конечном итоге, при более высоких плотностях, теплопроводность начинает увеличиваться.

Основная тенденция этого графика верна для всех объемных изоляционных материалов, и его форма является функцией различной эффективности материала при ограничении трех различных методов теплового потока при разной плотности.

Теплопроводность также зависит от температуры. При повышении температуры теплопроводность материалов обычно увеличивается. Это не то явление, которое вызывает беспокойство в зданиях, потому что разница становится значительной только при температурах, которые не наблюдаются в нормальных условиях.Это необходимо учитывать при изоляции инженерных сетей и высокотемпературных процессов.

Измерение теплопроводности

Всем изоляционным продуктам свойственна изменчивость в отношении теплопроводности. Это в основном зависит от метода, с помощью которого изоляция сделана и фактически «работает». Проще говоря, значение лямбда для строительных изоляционных материалов должно быть таким, чтобы 90% полученных результатов находились в пределах 90% от указанного значения — отсюда «лямбда 90/90».Цель состоит в том, чтобы гарантировать, что значения, указанные для характеристик изоляции, согласованы и вселяют уверенность как пользователей, так и проектировщиков зданий в указанные продукты и решения.

Лямбда 90/90 фактически означает, что все теплоизоляционные изделия, произведенные в соответствии с гармонизированными европейскими стандартами, проходят испытания и декларируют свое значение лямбда с использованием одной и той же методологии, устанавливая равные условия для всех материалов.

Теплопроводность (значение K или значение λ)

Мера способности материала передавать тепло.Единицы: Вт / мК. Также называется значением лямбда (λ).

Термическое сопротивление (R-значение)

Мера способности материала сопротивляться передаче тепла, зависит от конкретной толщины материала. Единицы: м 2 К / Вт.

Значение R = толщина (м) / теплопроводность (Вт / мК)

Термическое сопротивление — это наиболее важная характеристика материала, которую следует определять при выборе изоляции. Из формулы расчета очевидно, что на термическое сопротивление влияют два фактора: толщина изоляции и теплопроводность материала.Недостаточно просто указать толщину материала.

Коэффициент теплопередачи (коэффициент теплопередачи)

Обычно известный как коэффициент теплопроводности, он является мерой степени теплопроводности элемента или компонента здания. Единицы: Вт / м2К.

Фактический коэффициент теплопередачи строительного элемента является функцией теплового сопротивления материалов, которые используются в конструкции, и способа их сборки.

Показатели U строительных элементов могут быть установлены путем лабораторных испытаний, но этот процесс является дорогостоящим, трудоемким и ограниченным по размеру.Более того, результат будет верным только для идентичной конструкции или элемента. Испытания широко используются для определения коэффициента теплопередачи стекол и дверей, но для других элементов конструкции более нормальным является использование числовых и математических моделей для прогнозирования значения коэффициента теплопередачи.

В простейшей форме значение U рассчитывается путем определения теплового сопротивления каждого слоя в элементе конструкции и сложения их вместе, чтобы получить значение общего сопротивления (TR). Значение U рассчитывается как величина, обратная суммарным сопротивлениям материалов в элементе, включая любые воздушные пространства и значения поверхностного сопротивления.

TR = Rsi + Ra + Rb + Rc + Rso
Rsi — сопротивление внутренней поверхности
Rso — сопротивление внешней поверхности
Следовательно, значение U = 1 / TR

Например, в наружной стене с полным тепловым сопротивлением

3,50 м 2 K / Вт будет иметь значение U 1 / 3,50 или 0,29 Вт / м 2 K.

Этот метод расчета значений U, однако, не учитывает существующие неоднородности в реальных конструкциях и, следовательно, не позволит рассчитать реалистичную модель.Неравномерности требуют факторов, включающих поправку на эффект повторяющихся мостов холода (например, деревянные стойки в конструкции деревянного каркаса, швы из раствора в легкой и газобетонной кладке или металлические направляющие и зажимы в конструкциях с двойной металлической обшивкой), крепежные детали, проникающие в конструкцию и возможность несовершенной подгонки слоев, которая может допускать движение воздуха вокруг слоев изоляции. Эти факторы включены в более сложные численные и математические модели.Эти методы определены международными стандартами, такими как BS EN ISO 6946 «Строительные компоненты и строительные элементы. Термическое сопротивление и коэффициент теплопередачи. Метод расчета», и даны рекомендации относительно пригодности каждого метода для предлагаемого строительства. Кроме того, следует также сделать ссылку на BR443: 2006 Соглашения для расчетов U-значений, издание 2006 г., в котором установлены соглашения и даны рекомендации по расчету U-значений.

Как правило, комбинированный метод подходит для большинства элементов конструкции, за исключением тех случаев, когда в изоляционном слое есть металлические повторяющиеся тепловые мостики.

Если в примере выше взять деревянную рамную панель, то станет очевидно, что изоляция перекрывается деревянными шпильками. В этих условиях уместен комбинированный метод.

Когда метод комбинированного значения U применяется к вычислению значения U этой конструкции, оно становится равным 0,32.

В этом расчете доля изоляции, замененной деревянной, составляет 15%. Эта пропорция определяется как фракция древесины по умолчанию в BR443, и была применена поправка уровня 0 для воздушных зазоров в изоляционном слое, поскольку считается, что минеральная вата разрезается с положительным допуском, поэтому ее необходимо сжать между деревянными стойками. должны быть подогнаны, а поперечные соединения сжаты вместе.Если использовалась плита из жесткого пенопласта, может быть сочтено необходимым применить коррекцию воздушного зазора уровня 1, потому что плита должна быть разрезана с отрицательным допуском, чтобы обеспечить возможность установки, и вполне могут быть воздушные зазоры шириной более 5 мм.

Очевидно, что точный расчет значений U требует детального знания характеристик продукта, методологий и стандартов расчета, а также методов строительства. Точный расчет значений U является фундаментальным строительным блоком при разработке энергетических моделей всего здания и подачи строительных норм.

Что такое изоляция? | Как работает изоляция?

Если вы хотите утеплить свой новый дом или повторно утеплить свой нынешний, вы пришли в нужное место. Здесь мы ответим на вопросы «Что такое изоляция?» и «Как работает изоляция?» Мы подробно обсудим, что такое изоляция и как она защищает ваш дом и обеспечивает вам комфорт круглый год.

Если у вас есть дополнительные вопросы, не стесняйтесь обращаться к команде MIG Building Systems по телефону 888-397-0988.Давайте начнем.

Что такое изоляция?

По сути, изоляция — это любой материал, используемый для заполнения пространств (включая небольшие зазоры, щели и труднодоступные места за стенами, над потолками и т. Д.) Вашего дома для уменьшения теплового потока путем отражения и / или поглощения.

Существует несколько различных типов изоляции, включая звукоизоляцию, электрическую изоляцию и теплоизоляцию. Говоря об изоляции вашего дома, следует отметить, что теплоизоляция повышает энергоэффективность и уровень комфорта.Термическая изоляция определяется как продукты, которые уменьшают и замедляют потерю или приток тепла, создавая барьер между областями, которые значительно различаются по температуре. Многие виды теплоизоляции, такие как целлюлоза и стекловолокно, также в определенной степени обеспечивают звукоизоляцию.

Как работает изоляция?

Тепло естественным образом перетекает из более теплых мест в более прохладные. Зимой тепло перемещается прямо из теплых помещений (например, из вашего дома!) В наружные и неотапливаемые помещения. В летние месяцы тепло перемещается из теплого помещения на улицу в более прохладный интерьер вашего дома.

Изоляция замедляет движение тепла от горячего помещения к более прохладному. Изоляция помогает повысить энергоэффективность вашего дома за счет уменьшения количества тепла, уходящего от него зимой (сдерживая тепло и сохраняя тепло в доме), и предохраняя его от перегрева в летние месяцы (сохраняя холодный воздух и сохраняя тепло). салон удобный).

При правильной установке изоляция может повысить уровень комфорта в вашем доме, поддерживая постоянную равномерную температуру из комнаты в комнату.Изоляция также повысит энергоэффективность вашего дома, значительно снизив счета за отопление и охлаждение.

Какие бывают типы изоляции?

На выбор предлагается несколько типов теплоизоляции, в том числе:

  • Изоляция из стекловолокна : Изоляция из стекловолокна — один из наиболее широко используемых типов изоляции, который может быть установлен как система покрытия из рулонов и войлока.
  • Целлюлозная изоляция : Один из наиболее экологически чистых видов изоляции, целлюлоза на 80% состоит из переработанного материала.Это также один из лучших видов утеплителя для звукоизоляции.
  • Изоляция из аэрозольной пены : Аэрозольная пена идеально подходит для всех мелких трещин, щелей и щелей за стенами и может помочь устранить утечки воздуха, которые могут привести к резкому увеличению счетов за электроэнергию!
  • Изоляционная барьерная изоляция : Компания MIG не предлагает излучающую барьерную изоляцию. Однако этот вид утеплителя идеально подходит для теплого климата. Он устанавливается на чердаке прямо под крышей, чтобы помочь вашему дому отражать, а не поглощать солнечное тепло.
  • Изоляция из жесткого пенопласта : Изоляция из жесткого пенопласта или жесткой плиты доступна в виде панели из вспененного материала, которую можно разрезать. Он в основном используется для новых строительных теплоизоляционных проектов.
  • Изоляция из минеральной ваты : Изоляция из минеральной ваты (или минеральной ваты), изготовленная из горных пород и минералов, скрученных в небольшие, устойчивые к высоким температурам волокна, используется для различных целей.
  • Изоляция Icynene : Изоляция из распыляемой пены, часто устанавливаемая между балками пола, а также вокруг проводки, трубопроводов и воздуховодов.Это отлично подходит для повышения энергоэффективности!

Многие типы изоляции — стекловолокно, целлюлоза и пенопласт — поглощают тепло. Они останавливают тепловой поток, известный как теплопроводность. С другой стороны, лучистые барьеры отражают солнечное тепло и устанавливаются на чердаках, чтобы в домах было прохладно и комфортно (и гораздо более энергоэффективно). Как следует из названия, изоляция излучающего барьера останавливает лучистую теплопередачу.

Где можно утеплить?

  • Изоляция чердака : Чердаки, как один из самых больших источников потерь энергии в домах, являются хорошим местом для утепления.
  • Изоляция стен : Стены — еще один большой источник потерь энергии, и их необходимо изолировать — это важно для повышения энергоэффективности дома. Как и на чердаке, вам, вероятно, потребуется использовать более одного типа изоляции для стен.
  • Изоляция подвала : Даже если ваш подвал не закончен, он имеет большой потенциал для экономии энергии. Фактически, правильная изоляция подвала может сэкономить сотни долларов в год.
  • Изоляция подвального помещения : Об изоляции подвального помещения, как и об изоляции подвала, иногда забывают.В конце концов, не все используют свое пространство для ползания ежедневно, но изоляция пространства для ползания может помочь предотвратить проникновение тепла в ваш дом или выход из него.

Подрядчики по изоляции, обслуживающие северную часть штата Нью-Йорк

Команда MIG Building Systems является ведущим подрядчиком по теплоизоляции в северной части штата Нью-Йорк. Мы сертифицированы нашим главным партнером по изоляции и их брендом Pink Panther, Owens Corning. Независимо от ваших потребностей, вы можете доверять компании MIG, которая предоставит вам самые передовые и индивидуальные решения для теплоизоляции новых зданий, утепления при ремонте дома и т. Д.

Если вы хотите узнать больше о том, что такое изоляция и как она работает, или если вам нужно нанять местную изоляционную компанию в районе Рочестера или Сиракузы, свяжитесь с MIG Building Systems сегодня!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *