Трехфазный дифференциальный автомат: Страница не найдена — EvoSnab

Мар 26, 1980 Разное

Трехфазный дифференциальный автомат: Страница не найдена — EvoSnab

Содержание

Схема подключения дифавтомата в однофазной и трехфазной сети

Мы уже рассматривали с Вами, как подключить дифференциальный автомат своими руками. Мероприятие совсем не сложное, главное правильно продумать место установки устройства в распределительном щитке, а также выбрать наиболее подходящие характеристики изделия по мощности. Далее мы подробно остановимся на первом пункте и покажем Вам несколько схем подключения дифавтомата в однофазной и трехфазной сети.

Однофазная сеть 220 В

В квартирах и частных домах чаще всего используется устаревший вариант электропроводки – с одной фазой. В этом случае номинальное напряжение составляет 220 В, поэтому использовать необходимо двухполюсное изделие. Что касается схемы подключения дифавтомата, она может быть представлена в двух вариантах. Первый – когда защита устанавливается только после электросчетчика, обслуживая всю домашнюю проводку.

В этом случае при срабатывании и отключении автоматики будет сложнее найти причину выхода из строя, поэтому желательно отдавать предпочтение второму, более надежному варианту.

Правильная схема подключения дифавтомата в однофазной сети с заземлением:

Как Вы видите, на каждую группу проводов устанавливается по отдельному аппарату. Если сработает один дифавтомат, второй продолжит свое функционирование.

Трехфазная сеть 380 В

Единственное важное отличие 3-х фазной сети заключается в том, что вместо одного фазного проводника на вводе предоставляется сразу три фазы : L1, L2, L3. В этом случае необходимо использовать 4 полюсный дифавтомат на 380В, схема подключения которого будет выглядеть так:

Такой вариант может использоваться в новом доме, а точнее коттедже, который должен выдерживать высокую токовую нагрузку от электроприборов. Также такой вариант иногда используют при монтаже электропроводки в гараже, т.к. здесь могут применяться мощные сварочные аппараты, компрессоры и другое электрооборудование.

Без заземления

Все предыдущие схемы подключения дифференциального автомата были с заземлением, теперь хотелось бы предоставить устаревшую модель, в которой используется двухпроводная сеть 220В.

Подключать дифавтомат без земли нужно по следующей схеме:

Такой способ электромонтажа можно увидеть в старых домах панельного типа. Он является крайне не безопасным и, поэтому рекомендуем заменить электропроводку в доме на новую, с заземляющим контактом.

Рекомендуем также просмотреть существующие варианты подключения на видео обзорах:

Вот и все, что хотелось рассказать по поводу данной темы. Советуем Вам использовать дифференциальные автоматы только от популярных производителей: abb, legrand (легранд), IEK и Schneider electric, чтобы защита прослужила долго, а главное — на совесть.

Похожие материалы:

3-х полюсный автомат можно применять не только в трехфазной сети



При сборке распределительного щитка для трехфазной сети используются 3-х полюсные автоматические выключатели. При возникновении перегрузки сети или при коротком замыкании такой автомат расцепит сразу три фазы.

Сколько полюсов бывает

Однополюсный, двухполюсный, трехполюсный и четерехполюсные автоматы

В распределительном щитке квартиры или дома наиболее часто используются однополюсные автоматические выключатели. Их задача расцепить фазный проводник, тем самым прервав подачу электричества на контур. Дифференциальные автоматические выключатели и УЗО отключают одновременно и фазу и рабочий ноль, т.к. их срабатывание может быть связано с нарушением целостности проводки. Вводной автомат в таком щитке всегда должен быть двухполюсный.

Трехфазный ток используется предприятиями для питания мощных агрегатов, требующих напряжения в 380 вольт. Иногда четырехжильный кабель (три фазы и рабочий ноль) подводится к жилому дому или офису. В связи с тем, что в этих помещениях не используется оборудование, рассчитанное на такое напряжение, в распределительном щитке три фазы разделяются и получается напряжение 220 между каждой фазой и рабочим нулем.

Для таких щитков используют 3-х полюсные и четырехполюсные автоматические выключатели. Срабатывают они при превышении номинальной нагрузки по любому из трех проводов и отключают их все одновременно, а в случае с четырехполюсным – дополнительно отключается рабочий ноль.

Зачем использовать два и четыре полюса



Вводной автоматический выключатель обязательно должен полностью отключать все фазы и рабочий ноль, т.к. один из проводов вводного кабеля может давать утечку на ноль и если его не отключить, используя однополюсный или 3-х полюсный автоматический выключатель, есть вероятность поражения током.

Утечка при 3-х полюсном автоматическом выключателе

На рисунке видно, что в таком случае весь рабочий ноль в сети оказывается под напряжением. Если использовать вводной автомат, отключающий фазу и ноль, этого можно избежать, следовательно использование четырехполюсного и двухполюсного автоматических выключателей для трехфазных и однофазных электросетей более безопасно.

Схема 3-х полюсного автоматического выключателя

Каждый 3-х полюсный автомат – это три однополюсных, которые срабатывают одновременно. На каждую клемму 3-х полюсного автоматического выключателя подключается одна фаза.

Схема 3-х полюсного автоматического выключателя

Как видно из схемы, на каждый контур приходится отдельный электромагнитный и тепловой расцепители, а в корпусе 3-х полюсного автомата предусмотрены отдельные дугогасители.

3-х полюсный автоматический выключатель разрешается использовать и в однофазной электросети. В этом случае на две клеммы выключателя подключаются фазный и нулевой провода, а третья клемма остается пустой (сигнальной).

Стоимость

3-х полюсные автоматические выключатели, в зависимости от производителя, отличаются и по цене. В таблице ниже вы можете сравнить стоимость таких электроустановочных изделий самых популярных в РФ марок: IEK, Legrand, Schnider Electriс и ABB:

Таблица стоимости 3-х полюсных автоматических выключателей лидеров на рынке РФ

Видео о полюсности выключателей и способах подключения

Ролик будет полезен новичкам, желающим разобраться в вопросах отличия и функциональности однополюсных, двухполюсных, 3-х полюсных и 4-х полюсных автоматических выключателей. Как правильно их подключать и в каких случаях следует использовать тот или иной автомат.



Схема подключения двухклавишного проходного выключателя – особенности, а также последовательность осуществления работ Схема подключения проходного выключателя с трех мест – особенности, а также последовательность монтажа Особенности подключения двухклавишного выключателя, что нужно учитывать при монтаже Как подобрать и подключить дифференциальный автомат

Как подключить дифавтомат к однофазной и трехфазной сети

Дифавтомат – электромеханическое устройство, которое обеспечивает защиту потребителя от удара электрическим током, также он способен оградить линию от перенагрузок, токовых утечек и короткого замыкания. Этот защитный прибор включает в себя совокупность устройства защитного отключения и автомата. А как подключить дифавтомат?

Устройство дифавтомат

Подключение дифавтомата производится по такому же принципу как автомата и УЗО. Но в отличие от них он имеет отличительные особенности, присущи только ему: увеличенная реакция срабатывания; ограждение электроцепи от сверхтоков; предохранение от утечки тока в грунт.

Изоляция проводов имеет огромное значение. Читайте тут о том, какая изоляция лучше.

Существует несколько способов подключения дифавтоматов: по селективной схеме, по неселективной схеме, методы соединения при помощи заземления или без него.

Условия подключения дифавтомата

Для подключения данного устройства необходимо соблюсти ряд условий. Эти требования также заключаются в инструкции к защитному устройству.

Корпус дифавтомата должен быть целым без механических повреждений в виде трещин или сколов.
При подключении данного устройства необходимо обесточить всю электролинию. Рекомендуется убедиться, что в линии нет напряжения посредством индикаторной отвертки или другого измерительного инструмента.

Дифавтомат должен быть установлен на специальную рейку.

Устанавливая защитное устройство, следует обратить внимание, что входные жилы должны заходить сверху, а отходящие только снизу. Если поменять их местами, то данный прибор может просто перегореть.

На корпусе дифавтомата существуют отверстия, которые предназначены специально для каждого проводника в отдельности. N – для нулевого провода, L – для фазного провода. Отверстия обозначены цифрами: 1 – для присоединения входящей фазы, в гнездо под номером 2 подключается отходящий фазный провод.

Какие провода лучше использовать для проводки в квартире. Большая сравнительная статья тут.

При монтаже защитного прибора правило объединения всех нулевых проводников в этом случае не работает. Поэтому запрещается объединять провода с нулевыми значениями после расположения дифавтомата. При этом фаза и нули входят в устройство, и более не объединяются.

Специалисты в данной области рекомендуют в случае не соответствия длинны проводов и дистанции присоединения лучше их полностью заменить, чем наращивать. Со временем такой контакт придет в негодность и рано или поздно его все равно придется менять, также это может привести к плохим последствиям.

Следует рассчитать количество потребляемой энергии, численность нагрузочных электроприборов, а также особенности конфигурации создаваемой электрической линии.

Схема подключения

Как подключить дифавтомат? Существует несколько видов подключения дифференцированных автоматов:

Как подключить дифавтомат
  1. Диффавтомат установлен на входе, защищая всю электрическую цепь, находящуюся в квартире. Положительными чертами такого расположения являются: недорогой способ, имеющий в сети дифавтомат в единственном экземпляре; не занимает много места в главном распределительном щите. К недостаткам можно отнести: при возникновении ситуации для срабатывания обесточит полностью всю линию; осложнит поиск повреждения.
  2. Дифавтомат установлен один общий на входе и по одному на каждую линию. Это самая популярная и надежная схема. При этом каждое устройство контролирует свою электрическую линию, а общий – электрическую цепь в целом. В таком варианте соединения необходимо соблюдать селективность. Входной аппарат должен обладать номинальным током утечки от 100-300мА, у остальных ток утечки должен быть 30мА. Этот метод исключит одновременное срабатывание всех устройств сразу. Для лучшего эффекта селективности рекомендуется выбирать защитное устройство типа S, для которой характерный срок срабатывания имеет задержку. Отрицательными свойствами являются: дорогой в использовании; требуется много места в распределительном щитке; многосложность схемы.
  3. Отсутствие общего автомата, защитные устройства устанавливаются только на токоведущие линии.

Подключение в однофазной сети

В жилых домах зачастую используется однофазная система электропроводки. При этом в этой системе рабочее напряжение составляет 220 вольт. Для данной величины напряжения рекомендуется применять двухполюсное защитное устройство.

Подключение дифватомата

Электромонтаж схемы можно производить двумя способами. Одна из которых — это когда дифавтомат монтируется только после электросчетчика, выполняя свои защитные функции на протяжении всей электрической линии.

В результате такого соединения неполадку, из-за которой вышел из строя аппарат, будет отыскать намного сложнее.

Другой способ более надежный и безопасный. Он представляет собой установку прибора на каждую линию, защищая и контролируя ее по отдельности.

При установке защитного устройства в однофазную сеть следует помнить, что нулевой провод, идущий от источника питания подсоединяют с нижней стороны, а сверху присоединяется нулевой провод, идущий от нагрузки.

Подключение в трехфазной сети

Основное отличие однофазной от трехфазной в том, что в этой системе заходит сразу три проводника фазных проводов – L1, L2, L3. В этой электрической системе вступает в эксплуатацию четырехполюсное защитное устройство на 380 вольт.

Что делать если человека ударило током? Это должен знать каждый, читать всем!

Данный способ электрического соединения подразумевает более мощную нагрузку. Он используется в частных домах, обладающих большой площадью, а также в автомобильных гаражах, где используются мощное электрооборудование.

Подключение дифавтомата без заземления

Как подключить дифавтомат в жилых зданиях старой постройки? Зачастую конфигурация электрической сети заключается в двухпроводной схеме. При этом в таких проводках не имеется проводника заземления. Если не проводится ремонт и не меняется вовремя такая проводка на трехпроводную, то это чревато тяжелыми последствиями.

Такая проводка не способна обеспечить защиту современным бытовым приборам переменного тока. В случаях если нет возможности замены проводки, необходимо устанавливать дифавтоматы.

Лучшие производители розеток и выключателей для вашего дома. ТОП самых покупаемых, по мнению покупателей.     

В этой системе электрической сети господствует напряжение в 220 вольт двухпроводной сети. Электромонтаж данной линии более опасный и ненадежный.

Подключение дифавтомата: схема подключения, как установить

Дифференциальный автоматический выключатель подачи электроэнергии — это модульное устройство, объединяющее в своей конструкции два электротехнических прибора: автомат включения/выключения и УЗО (устройство защитного отключения). Прибор способен защитить электропроводку от перегрузок и коротких замыканий (КЗ), а также отключить сеть при утечке тока через поврежденную изоляцию или при касании человеком частей электроприборов, находящихся под напряжением. Следовательно, дифавтомат выполняет две функции: защищает проводку и электроприборы от перегрузок, а человека от поражения электротоком.

Универсальность устройства наделяет его определенными преимуществами перед раздельно установленными автоматом и УЗО. Физически дифференциальный автомат занимает меньше места, стоит дешевле, чем два защитных модуля автомат + УЗО. Но недостатки у этого электротехнического изделия тоже есть: при выходе из строя одной из составляющих частей устройства, придется полностью заменять весь дифавтомат, а это несколько дороже. Но достоинства дифференциального автомата, конечно, нивелируют этот несущественный его недостаток!

Все модели дифавтоматов, трехфазные и однофазные, имеют в своей конструкции специальные флажки, которые указывают на причину срабатывания устройства — перегрузка по мощности или ток утечки. Это очень важно при выяснении обстоятельств аварийного отключения. Дифференциальные выключатели-автоматы устанавливаются в распределительных электрощитах, чаще всего, на специальных DIN-рейках. В этой статье мы с вами последовательно рассмотрим следующие вопросы: принцип работы и схемы подключения дифференциального автомата, а также как правильно подключить дифавтомат к сети.

Конструкция и принцип работы дифференциального выключателя

Все корпуса дифавтоматов изготавливаются с использованием не проводящих электрический ток материалов. На задней стенке модуля устанавливается защелка для крепления к DIN-рейки. Монтаж устройства выполняется так же, как и простого автоматического выключателя или УЗО. В однофазных сетях с напряжением 220 В устанавливаются двухполюсные модули с четырьмя контактами, для ввода и вывода фазных и нулевых проводников. В трехфазных сетях с напряжением в 380 В используются четырехполюсные дифавтоматы с восемью контактами, для подключения входных и выходных проводников трех фаз и нейтрали.

Защиту цепей электропитания в дифференциальном автомате от КЗ и перегрузок по мощности выполняет встроенный блок автоматического выключения, состоящий из механизма расцепления электрических контактных площадок, который срабатывает на выключение подачи электроэнергии при превышении расчетного тока нагрузки. Кроме этого, модуль дифавтомата снабжен специальной рейкой ручного включения/выключения. Для защиты людей и животных от удара электрическим током предназначен второй блок дифавтомата, включающий в себя управляющий дифференциальный трансформатор с электромагнитной катушкой выключения устройства, мгновенно обесточивающей сеть при опасной разнице значений между входной и выходной величиной тока.

Дифференциальные автоматические выключатели с успехом используется как в трехфазных, так однофазных линиях передачи переменного электрического тока. Эти электротехнические изделия в значительной степени повышают безопасность эксплуатации различной бытовой техники и электроприборов. Но для того чтобы дифавтомат выполнял свои защитные функции, его необходимо правильно подключить к сети, соблюдая нормы ПУЭ (правил устройства электроустановок). Ниже мы рассмотрим схемы подключения дифференциальных защитных автоматов.

Где купить

Схемы подключения дифавтоматов

Схема подключения дифференциального автомата зависит от многих условий: количества фаз в сети, наличия заземления или его отсутствия, места монтажа дифавтомата и особенностей помещения, для защиты которого он предназначено. Все эти факторы влияют на выбор схемы подключения устройства, да и к тому же оно само может иметь разную конструкцию — двухполюсную или четырехполюсную, а также различные технические характеристики. Ниже мы рассмотрим наиболее распространенные схемы подключения дифавтомата к электрическим сетям.

  1. Простая схема подключения к однофазной линии с заземлением. Этот вариант предусматривает защиту всей внутренней электропроводки помещения одним вводным дифавтоматом, установленном в распределительном щите после счетчика электроэнергии. Такая схема проста в реализации, но имеет довольно серьезный недостаток. При возникновении аварийной ситуации дифференциальный автомат обесточивает всю проводку полностью. В этом случае найти причину срабатывания защиты значительно труднее, чем при других схемах подключения дифавтоматов.
  2. Надежная схема подключения к однофазной линии с заземлением. Эта схема подключения дифавтомата является усовершенствованным вариантом. В ней реализуется принцип разделения потребителей электроэнергии на группы, где для каждой из них устанавливается отдельный дифференциальный выключатель. Надежность такого подключения безусловно выше, да и определить где возникла утечка тока или перегрузка в сети намного проще, чем при первом варианте. Недостатком такого подключения дифавтомата является повышение материальных затрат на приобретения дополнительных устройств.
  3. Схема подключения дифференциального автомата без заземления. Данная схема подключения дифавтомата используется в старых многоэтажных домах, частных домовладениях и на дачах, где используется двухпроводная сеть без заземляющего проводника. Такое подключение способно защитить электроприборы от перегрузок и КЗ. Отсутствие заземления повышает риск поражения людей электротоком, но дифференциальный автоматический выключатель и в этом случае способен обеспечить безопасность человеку, мгновенно обесточив сеть при возникновении тока утечки через его тело. И все-таки, следует заменить электрическую проводку на новую, с полноценным заземляющим контактом.
  4. Селективная схема подключения дифавтомата для однофазной сети. Надежную защиту бытовой техники и человека в однофазной сети можно обеспечить используя селективный дифавтомат (имеет маркировку S) в комплексе с обычными устройствами. Селективная схема предназначена для подключения нескольких потребителей. В случае аварийной ситуации связка дифавтоматов отключит от сети только то помещение, где произошла перегрузка или утечка тока. Для других потребителей электроэнергии отключения от  сети не произойдет.
  5. Схема подключения для трехфазной сети с нейтральным проводником. Для реализации этой схемы следует использовать трехфазный дифференциальный автоматический выключатель. Сама схема подключения мало чем отличается от предыдущих если не учитывать то, что на входе и выходе из устройства будут применены по четыре токоведущих жилы. Такой вариант подключения дифавтомата чаще всего используется в коттеджах, гаражах и мастерских, где используется мощная техника и оборудование.

Любая схема с дифференциальным автоматическим выключателем — это отличная защита от КЗ и перегрузок для бытовых электроприборов и самой линии подачи электроэнергии, а также человека от поражения электротоком. Оптимально подобранная схема подключения способна выполнить все свои функции, конечно, если правильно выполнить монтаж дифавтомата.

Монтаж дифференциального автомата в распределительном щите

После выбора схемы подключения дифавтомата необходимо его правильно установить с интеграцией в электрическую сеть. Чаще всего, дифференциальный выключатель монтируется в распределительном щите, где установлен счетчик электроэнергии, но иногда набор модульных устройств устанавливают в дополнительной распределительной коробке, которая находится внутри помещения. В обеих случаях, правила и этапы подключения устройства одинаковы. Рассмотрим этот процесс на примере монтажа дифавтомата в дополнительном электрощите:

Технология монтажа дифавтомата, на первый взгляд, очень проста! Но даже такие работы можно выполнить с ошибками, о которых мы расскажем ниже.

Традиционные ошибки при монтаже дифавтомата

Если монтаж дифференциального автоматического выключателя выполнен с нарушением правил и норм, то в обязательном порядке возникнут проблемы, такие как ложные срабатывания дифавтомата или даже полный выход из строя всего устройства или отдельных его частей. Виновниками таких негативных событий могут стать следующие основные ошибки, возникающие при подключении дифавтомата к сети.

  1. Нулевой проводник на выходе из дифавтомата соединен напрямую с нулевыми контактами других модульных устройств, расположенных в распределительном электрощите. Такое подключение категорически запрещено! При таком некорректном монтаже обязательно появятся ложные срабатывания устройства, которые возникают за счет разных величин электрического тока в нулевых проводниках каждого модуля.
  2. Входящие в дифавтомат фазные (L) и нейтральные проводники (N) ошибочно заведены снизу корпуса устройства. Такой монтаж способен полностью вывести модуль из строя. Эту ошибку очень часто допускают невнимательные люди. На принципиальной схеме, нарисованной на передней панели самого дифференциального выключателя, точно указано, что входящие провода должны присоединятся к верхним контактам и никак иначе.
  3. Ноль дифавтомата заведен на «землю», что характерно для домов старой постройки, где используется однофазная двухпроводная линия подачи электроэнергии. Такое подключение дифференциального автоматического выключателя также недопустимо, так как этот вариант монтажа будет вызывать постоянные ложные срабатывания защиты.
  4. Нейтральный проводник (N) заведен в квартиру, дом или другое строение напрямую, минуя дифавтомат. При подключении устройства перепутаны фазы с нулем. Эти две ошибки приведут к ложному срабатыванию устройства или выходу его из строя, с необходимостью последующей замены.

Выше мы рассмотрели основные ошибки при монтаже дифавтоматов, которые может совершить человек в результате невнимательности или плохой профессиональной подготовке. Любая из них недопустима, так как приводит к тому, что устройство не способно выполнять свою главную функцию — защиту людей от удара электротоком, а электрическую проводку и бытовые приборы от перегрузок и коротких замыканий!

Заключение

Подключение дифференциального автоматического выключателя к сети своими руками — вполне решаемая задача, но только если вы обладаете навыками выполнения монтажных электротехнических работ. В противном случае, учитывая сложность этого изделия и необходимость учета многих параметров и характеристик сети, следует обратиться к профессиональным электрикам. При таком варианте установки дифавтомата можно не сомневаться, что он надежно защитит бытовую сеть от перегрузок, а вас от удара электрическим током!

Видео по теме

что это такое и подключение его к однофазной и трехфазной сети

В состав электрической сети, помимо токоведущих проводников и энергоприемников входит целый ряд устройств, которые обеспечивают как качество электроснабжения, так и его безопасность.

Одним из подобных устройств является дифференциальный автомат, или дифавтомат. Давайте попробуем разобраться, что же это такое – дифавтомат.

Понятие дифференциального автомата

Дифференциальный автомат – это комбинированный электрический аппарат, предназначенный для работы в сетях низкого напряжения и совмещающий в себе функции устройства защитного отключения (УЗО) и автоматического выключателя.

Назначение дифференциального автомата

Дифавтомат, называемый также автоматическим выключателем дифференциального тока (АВДТ), служит для защиты участка электроцепи, подключенного посредством данного автомата к питающей сети, от выхода из строя в случае возникновения в данной сети повышенных токов, возникающих при перегрузках и коротких замыканиях. Данная функция идентичная назначению автоматического выключателя.

Кроме того, дифференциальный автомат может предотвратить возгорания и травмы людей и животных (возможно, со смертельным исходом), возникающие по причине утечки электрического тока через повреждения в изоляционном слое проводника либо неисправное энергопринимающее устройство, что совпадает с функционалом УЗО.

Важно! Основное преимущество дифференциального автомата перед этими двумя устройствами в совокупности – его компактность. Особенно это актуально при необходимости установки в распределительном щитке целого ряда защитных автоматов.

Дифференциальный автомат

Дифференциальные автоматические выключатели широко применяются для защиты электрических систем как в быту, так и в офисных и производственных помещениях. Они ничем не уступают по своим характеристикам аналогичным УЗО и автоматическим выключателям, следовательно, не имеет каких-либо особенных ограничений в плане сферы применения. Дифавтоматы возможно устанавливать как на вводе в здание, так и на ответвительных кабельных трассах для обеспечения пожарной безопасности, а также безопасности людей и иных живых организмов.

Устройство дифференциального автомата

Основными рабочими элементами конструкции дифавтомата являются:

  • дифференциальный трансформатор;
  • электромагнитный расцепитель;
  • тепловой расцепитель.

Трансформатор, входящий в состав дифференциального автоматического выключателя, имеет несколько обмоток, количество которых напрямую зависит от числа полюсов устройства. Он предназначен для сравнения токов нагрузки проводников.

В случае их несимметричности на выходе из вторичной обмотки рассматриваемого трансформатора внутри дифференциальногоустройства возникает ток утечки, поступающий на пусковой элемент, который немедленно производит размыкание силовых контактов автомата дифференциального тока.

Электромагнитный расцепитель – это специализированный магнит с сердечником, оказывающий воздействие на отключающий механизм. Срабатывает указанный магнит в случае достижения током нагрузки порога срабатывания (в частности, при коротком замыкании). Электромагнитный расцепитель срабатывает практически мгновенно – за доли секунды.

Тепловой расцепитель предназначен для защиты электрической сети от токовых перегрузок. Конструктивно тепловой расцепитель – это биметаллическая пластина, отличающаяся эффективностью действия именно в подобных режимах. Механизм расцепления при этом срабатывает посредством изгиба пластины как следствия прохождения через нее повышенных токов. Срабатывания теплового расцепителя происходит не мгновенно, а с выдержкой некоторого времени, причем время его срабатывания напрямую зависит от величины тока нагрузки, проходящего через дифавтомат, а также от температуры окружающей среды.

Монтаж

Один раз в месяц рекомендуется осуществлять проверку дифференциального автомата на работоспособность. Для этого в его устройстве предусмотрена кнопка «test», подключаемая последовательно с сопротивлением. При ее нажатии осуществляется подача напряжения на специальный контакт. Если дифавтомат исправен, то в этом случае он должен отключиться.

Важно! Если ваше устройство успешно прошло подобный тест, то вы можете быть уверены только в том, что целостность цепи не нарушена. Но это не дает вам гарантии, что ток утечки отключения и скорость срабатывания дифференциального автомата соответствуют должным требованиям.

Помимо прочего, выключатель дифференциального тока может успешно проходить «test»-проверку, но при этом он проигнорирует реальную утечку электроэнергии по причине неверной установки его в сеть.

Производители дифференциальных автоматов

Помимо понятия о том, что это такое, диф автомат, необходимо иметь элементраные знания о фирмах-производителях данных устройств, самыми популярными среди которых на мировом рынке являются ABB, LeGrand, Schneider Electric и Siemens. Среди отечественных производителей можно выделить КЭАЗ, IEK и DEK raft.

Как подключить дифференциальный автомат?

Домашняя электрическая сеть может быть как однофазной с напряжением 220 вольт, так и трехфазной с напряжением 380 вольт. Кроме того, как упоминалось выше автоматический дифференциальный выключатель тока можно установить как на вводе в дом, так и отдельно на каждую группу электрических приборов.

В зависимости от исходных условий и задач схема подключения данного устройства может несколько отличаться от стандартной, да и сам дифавтомат может быть предназначен как для работы в однофазной сети (двухполюсный), так и для работы в трехфазной сети (четырехполюсный).

Подключение дифавтомата в однофазной сети

Наиболее простой способ организации защиты локальной электросети посредством дифференциального автомата – установка одного такого устройства на вводе в дом (квартиру). В этом случае необходимо приобрести достаточно мощное устройство, которое сможет обслуживать всю электрическую сеть и включенные в нее энергопринимающие устройства.

Недостаток такого монтажа защитной автоматики заключается в том, что при ее срабатывании достаточно сложно будет самостоятельно обнаружить неисправность в системе, поскольку она может возникнуть, где угодно.

Более совершенным и более надежным способом защиты домашней электросети при помощи дифавтоматов будет их отдельная установка на каждую группу проводников. При такой компоновке элементов электрической схемы в случае возникновения короткого замыкания либо перегрузки сработает только то защитное устройство, на участке, подключенном посредством которого, произошла нештатная ситуация. Другие устройства в это время продолжат функционировать в своем обычном режиме.

Подключение к однофазной сети на несколько линий

Достоинство такого способа монтажа автоматики заключается в оперативности определения участка, на котором возникла неисправность. Очевидным же недостатком выступают высокие трудовые и финансовые затраты на организацию указанной схемы подключения дифференциальных автоматов враспределительном щитке.

Важно! Заземляющая жила токоведущего кабеля подключается к шинке заземления, минуя всю защитную автоматику.

Устаревшая электрическая проводка зачастую лишена заземления. Разумеется, вы можете подключить дифавтомат как к сети без заземления, так и к сети с ним. Однако целесообразно перед его установкой все-таки модернизировать устаревшую электропроводку.Соединение защитных дифавтоматов между собой производится посредством перемычек.

Подключение дифавтомата в трехфазной сети

Во многих частных домах, а также в некоторых современных жилых комплексах можно встретить систему электропитания от трехфазной сети с напряжением 380 вольт. Реализация подключения дифференциального автоматического выключателя в данном случае мало чем будет отличаться от произведения работ в однофазной сети, за тем простым исключением, что на вход и выход устройства вы будете подсоединять не две, а четыре токоведущих провода.

Схема подключения трехфазных защитных автоматов также может предусматривать установку рассматриваемого устройства как на всю локальную электрическую сеть, так и монтаж отдельных автоматов на ее ветки.

Теперь вы имеете полное представления о том, что такое дифавтомат в электрике, а также в курсе принципа его работы и монтажа в электрическую сеть.

схемы и установка своими руками

Дифференциальный автомат сочетает в себе два механизма защиты: защиту от слишком большого тока и защиту от утечки тока.

Как мы знаем, неприемлемо большой ток бывает в двух случаях:

  • когда ток потребления устройств в данной цепи превысил некоторый предел;
  • когда ток в цепи потребления скачком перешел вообще все мыслимые пределы, как это бывает в случае короткого замыкания.

Эти два случая отличаются, кроме значений тока, еще временем возрастания. Если в цепь поставили слишком мощный электрический аппарат, то не будет скачкообразного изменения, ток возрастет плавно до номинала потребления и остановится на нем, даже и превысив предел автомата. В случае же короткого замыкания все будет наоборот, сначала нормальное потребление, потом скачкообразный выход за пределы.

Такие вопросы решает обычный автоматический выключатель, в нем есть несколько размыкателей, реагирующих как на ток, так и на время изменения. Все это — защита нас от пожара или других действий тока, связанных с его тепловым воздействием: воспламенение, задымление, выход из строя проводки и так далее.

Дифференциальная защита

Защита вторая более «интеллектуальная». Она включается, чтобы защитить нас от поражения, внезапного тока, уходящего из «обслуживаемой» цепи за ее пределы — скорее всего, через нас. На такой ток простой автоматический выключатель может не сработать — ничего не перегорело в схеме и не замкнуло, то есть нагрузка, вообще говоря, нормальная. Просто это случилось при подсоединении к сети еще одной цепочки, через которую ток уходит туда, где потребление не предусмотрено. А это как раз и может быть человек, нечаянно коснувшийся токоведущих частей. Через него и потечет ток в пол или в батарею отопления и далее в землю.

Для обычного установленного автомата этот добавочный ток может оказаться и невелик. Но, начиная с 30 миллиампер, он человеку опасен, такой ток вызывает судорожные сокращения мышц, которые препятствуют, например, высвобождению кисти руки, если она схватилась за провод под напряжением. Вот на такой порог срабатывания и настроены обычно дифференциальные автоматы. 

В них такой ток выявляется сравнением двух токов: текущего в цепь по фазовой линии и вытекающего из нее по нулевой. Эта схема сравнения УЗО и называется «дифференциальная», то есть разностная.

Схема работы дифференциальных автоматов по защите от пробоя

1 – входной контакт фазы дифавтомата
2 – выходной контакт фазы дифавтомата
N – нулевой провод

I1 – ток в нагрузку
I2 – ток из нагрузки
I0 – ток утечки

Ток по фазной линии протекает под вторичной обмоткой дифференциального трансформатора в одну сторону, а по нулевой линии — в противоположную. Когда они равны, то индукция от них во вторичной обмотке взаимно компенсируется, и разностный ток получается нулевой. Если в схеме потребления происходит утечка, то, в соответствии с первым законом Кирхгофа, ток по нулевой линии станет меньше тока по фазовой. Появившаяся разница будет усилена схемой логического управления, и в случае превышения ей некоторого порога произойдет размыкание реле дифавтомата.

Устройство и схема

Дифференциальный автомат сочетает в себе две защиты: защиту от чрезмерного тока в цепи как обыкновенный автомат отключения и защиту от тока утечки. Оби эти схемы включены последовательно.

Есть еще одна особенность. Механизм дифференциального реагирования на расход тока в сети может сам быть запитан от того же напряжения, цепь которого  он контролирует. Это нормально, когда происходит ситуация его реагирования в ней. Тогда отключаются и фазовый провод, и нулевой, и цепь оказывается полностью отделенной от питающего напряжения, что и нужно для защиты.

Но если по какой-то причине на дифавтомат подано фазовое напряжение, а нулевой провод оборван где-то раньше, на дифавтомате не будет полноценного питания, но сам он окажется в замкнутом состоянии. То есть фаза пройдет через него в сеть, и в этом случае возможны утечки — то есть аварийные ситуации в этой цепи, — а он на них не среагирует.

В этом случае два выхода: или сделать так, чтобы дифавтомат был в замкнутом состоянии только при наличии приходящих и фазы, и нуля, а при пропадании любого из них сразу размыкался, или  делать отдельную схему питания дифференцирующего механизма, независимо от напряжения на его входных клеммах.

Устройства, в которых имеется указанный недостаток, — это наиболее простые дифавтоматы, в них ток утечки усиливается операционным усилителем, который сам питается от того же напряжения. Такие дифавтоматы называются электронными, и они более дешевы, чем дифавтоматы без такого недостатка, называемые электромеханическими. Электронные дешевле, электромеханические дороже.

Две схемы дифавтоматов

а) – слева, схема, не зависящая по питанию от контролируемого
напряжения
 б) – справа, схема дифавтомата, в которой питание логической схемы А
заведено от L и от N, то есть подконтрольных фазы и нуля.
При обрыве N питание А прекращается, и дифавтомат
перестает выполнять свою функцию (справа – перечеркнуто),
хотя фаза так и будет поступать на выход L2

Схемы автоматов, которые приведены на картинке, рисуются на лицевой панели устройства, и легко выбрать, какой из них вам подойдет больше: дешевый или более точный. Казалось бы, банальный вопрос.

Однако и тут есть нюансы.

Общая и селективная защита

То, что такая защита — вещь, безусловно, хорошая и нужная, спору нет. Только будет ли обеспечена полная безопасность в большой и структурированной схеме потребления? Ведь таких схем теперь стало очень много, и все больше потребителей переходят к развитым системам потребления.

А для таких схем характерно использование множества потребляющих устройств с разными параметрами потребления. Различные мощности, токи, режимы включения и выключения, различная фазность.

Сумеет ли один дифференциальный автомат обеспечить одинаковую безопасность в совершенно разных цепях потребления? А один дифавтомат на распределительном щитке — это и есть самое дешевое решение. Пусть дорогой, совсем лишенный недостатков, но все-таки один?

Схема подключения дифференциального автомата: самый простой вариант

 Двухполюсный дифференциальный автомат — это и есть самый минимальный вариант общей защиты. Защита сработает при появлении тока утечки в любой из подсетей, хотя какой именно, автомат не скажет. Кроме того, суммарные мощности подсетей (следовательно, и номиналы токов) должны быть примерно равны, это диктует выбор номинала автомата по току.

В случае подключения более мощного потребителя вся картина будет нарушена.

Схема подключения дифавтомата: два дифавтомата без заземления

Если у дифавтомата схема подключения именно такая, то стоимость защиты возросла почти вдвое, а защиту нельзя считать надежной. Есть способ выставить свои параметры защиты на каждом из дифавтоматов, обслуживающих конкретные сети потребления — например, сеть мощную и сеть «мокрую». А отдельно поставить еще дифавтомат групповой защиты или селективный дифавтомат. Такие автоматы маркируются символом G или S.

Дифференциальные автоматы. Схема подключения селективная с заземлением

 

Конечно, сразу получаем скачок роста стоимости такой защиты.

Но вот тут и можно вспомнить о дешевых дифавтоматах. А их уже делали еще в 1970-е и 1980-е годы и в самых компактных исполнениях. Ведь задача перед дифавтоматом не стоит защитить провода, ведущие к нагрузке. При качественном выполнении схемы проводок провода, спрятанные в стену, опасности не представляют. Опасность исходит именно от устройств потребления электроэнергии, от их вставленных в розетки шнуров, от их внутренних казусов, могущих пробить изоляцию, от влаги, проникшей в электроприбор и замкнувшей фазу на корпус. Логично и защиту ставить где-то здесь, совсем близко от прибора.

Розетка-УЗО Адаптер-УЗО Удлинитель-УЗО

Для защиты детей выпущены УЗОШ — устройства защитного отключения школьного исполнения

УЗОШ

Такие средства защиты недешевы, но бесспорным плюсом является их универсальность и мобильность. Они представляют собой защиту конкретного устройства (стиральной машины или бойлера), не занимают места на щитке питания, а адаптеры, вилки, удлинители не требуют вносить никаких изменений в существующие схемы. Кроме того, процесс «наращивания безопасности» может быть постепенным по необходимости. А некоторые могут быть связаны с производством наружных работ для защиты работающих с дрелью, болгаркой, и так далее — удлинители — и использоваться только в случае необходимости.

Маркировка дифавтоматов

На лицевую панель нанесена схема дифавтомата и другая информация.

Обозначения на лицевой панели дифавтоматов и УЗО

Время реагирования устройства очень важно. Для человека это время должно быть меньше времени начала фибрилляции сердца при поражении током.

Время отключения дифавтомата по току утечки

Как видим, в селективном дифавтомате время реагирования больше, чем в обыкновенном.

Это правильно, время реакции и ток утечки должны быть больше, это делается для того, чтобы сначала срабатывали дифавтоматы, непосредственно защищающие конкретную подсеть или конкретное устройство.

Времена отключения и пороговые токи утечки

Еще дифавтоматы различаются по токам, в которых предназначены работать.

Типы дифавтоматов по форме рабочего тока

Ток типа АС — обычный переменный ток, который используется в бытовой сети. Тип А — срезанный ток, как это делается в некоторых схемах управления для снижения мощности. Тип В — токи разной непредсказуемой формы. Типы А и В ставят в сетях промышленных предприятий с различными характерами потребляющих устройств возникающих при этом токов.

Трехфазный вариант

Если в системе потребления используются три фазы, то, если фазы разведены раздельно, можно на каждой из них поставить по дифавтомату — обыкновенному, двухполюсному.

Но когда используется именно трехфазная схема питания, то есть смысл ставить и трехфазный дифавтомат, четырехполюсный.

Работа трехфазного дифавтомата

В нем на дифференциальный трансформатор подается один нейтральный провод и три фазных. Нулевой, так же, как и в двухполюсном дифавтомате, положен в обратном направлении, то есть образуемый им магнитный поток является компенсирующим для остальных трех обмоток. В результате в нормальном состоянии ток утечки равен нулю

Формула

Установка дифференциального автомата

Рассмотрим установку дифавтомата в распределительном щите. При наличии дифавтомата в нашей сети потребления нулевая шина не должна объединяться с шиной заземления, так как именно через  заземляющий провод и происходит утечка тока, которую измеряет дифавтомат. Если их объединить, то «фокус не получится» — ток, убегающий в заземление, вернется в ту же самую нулевую шину.

В случае отсутствия заземления вообще, как это часто у нас бывает, утечка при поражении током обычно происходит через какие-то металлические предметы (трубу, батарею), которые и можно считать «плохим заземлением».

Поэтому дифавтомат в сети без заземления работать будет, а в сети с нулевой шиной, объединенной с заземлением, нет.

В щите дифавтомат устанавливаем на DIN-рейку после счетчика, но перед группой автоматов.

Как и у всего остального модульного оборудования, сверху подаются входные провода, снизу отходят выходные. Как правильно подключить АВДТ в трехфазной сети, проблемы не составляет: надо подключать его не к одной фазе, а сразу к трем:

Монтаж дифференциального автомата

Правильно подключить дифавтомат своими руками — это не просто подать провода к входным и выходным клеммам. После того как автомат в щитке, надо еще проверить его работу.

На нем имеется кнопка «Тест», которая подключает сопротивление, имитирующее ток утечки. При нажатии кнопки дифавтомат должен среагировать — отключиться. Если этого не произойдет, это значит, что в аппарате имеется неисправность и необходимо его заменить.

Похожие статьи:

Схема подключения дифференциальных автоматов

21vek-220v.ru

5-07-2019

5-07-2019

Схема подключения дифференциальных автоматов

21vek-220v.ru

Правила установки

Главное правило установки дифференциальных автоматов заключается в том, что установку должен проводить только квалифицированный мастер, который знает, как правильно выполняется такая работа.

Выделяют два основных варианта возможной установки дифференциального автомата. Он может устанавливаться один на всю электрическую сеть, либо же можно установить несколько изделий, по одному на каждую отдельную линию. При выборочной установке можно установить дифавтомат не на каждую линию, а только на те, где необходимо обеспечить безопасность людей при контакте с токопроводящими частями электрического оборудования.

По правилам установки следует обязательно проверить устанавливаемое устройство на предмет трещин или повреждений. Так как при наличии каких-либо повреждений не сможет обеспечиваться полноценная защита. Это правило касается всех без исключения устройств, даже таких как «Автоматический выключатель дифференциального тока АВДТ 32 С6». Также следует обязательно проверить исправность работы выключающего механизма устройства и наличие соответствующей маркировки на корпусе изделия.

Описание схемы

Так как дифференциальные автоматы и устройства защитного отключения являют собою почти одинаковые изделия, то и подключаются они фактически одинаково. Потому рассмотрим следующую схему подключения:
 

Дифференциальный автомат, или УЗО на данной схеме, сравнивает электрический ток, который проходит по фазному проводнику (L) с тем током, который проходит по нулевому проводнику (N). Как правило, эти токи будут равны, если устройство будет полностью исправно и изоляции электропроводки не будет повреждена. Если же в цепи возникает ток утечки, то значения фазного и нулевого токов станут разными. Дифференциальный автомат сразу же зарегистрирует эти изменения и сравнит показатель тока утечки с номинальным током утечки, который предусмотрен для этого устройства. Если показатель тока утечки будет больше, чем показатель номинального тока утечки, то дифференциальный автомат отключит питание на защищаемом им участке электрической сети. Включения питания, как правило, производятся только после того, как устранена причина, по которой произошло отключение. Подобным образом работают все дифференциальные автоматы, даже такие как «Дифференциальный автомат DX 07978 AC 20A-300мА 400В 3Р+N(Legrand)».

Отличие дифавтомата от УЗО

Так сложилось, что многие считают, будто дифференциальный автомат и устройство защитного отключения это одно и то же. По сути, в этом есть доля правды, но все же это не совсем так.

Главное отличие этих двух устройств заключается в тех функциях, которые они выполняют. Так устройство защитного отключений это коммутационный аппарат, который защищает человека от возможного поражения электрическим током. А дифференциальный автомат это аппарат, который не только защищает людей от поражения электрически током, но и может произвести автоматическое отключение любой части сети в случае возникновения короткого замыкания или перегрузки. Иными словами, дифференциальный автомат представляет собою все то же УЗО, только со встроенной защитой от сверхтоков.

В соответствии с нормативными постановлениями, рекомендуется устанавливать именно дифференциальные автоматы, так как они способны обеспечить дополнительную защиты от сверхтоков. Более того, в групповых линиях категорически запрещено устанавливать обыкновенные устройства защитного отключения, если не устанавливается дополнительное устройство, которое отвечает за обеспечение защиты от перегрузок и коротких замыканий.

Также отдельно регламентируется установка таких устройств в жилых зданиях. Здесь допускается установка устройств защитного отключения типа «А», которые реагируют на переменные и пульсирующие токи повреждений. Также можно устанавливать устройства защитного отключения типа «АС», которые реагируют исключительно на переменные токи утечки. Одним из таких устройств является «Автомат дифференциального тока Ds941 C16 30 MA тип АС», реагирующий на ток утечки в 30 мА. https://www.21vek-220v.ru/cat/difavtomatabb2polyusnyjdsh941rc1630matipas.htm

Правила установки

Главное правило установки дифференциальных автоматов заключается в том, что установку должен проводить только квалифицированный мастер, который знает, как правильно выполняется такая работа.

Выделяют два основных варианта возможной установки дифференциального автомата. Он может устанавливаться один на всю электрическую сеть, либо же можно установить несколько изделий, по одному на каждую отдельную линию. При выборочной установке можно установить дифавтомат не на каждую линию, а только на те, где необходимо обеспечить безопасность людей при контакте с токопроводящими частями электрического оборудования.

По правилам установки следует обязательно проверить устанавливаемое устройство на предмет трещин или повреждений. Так как при наличии каких-либо повреждений не сможет обеспечиваться полноценная защита. Это правило касается всех без исключения устройств, даже таких как «Автоматический выключатель дифференциального тока АВДТ 32 С6». Также следует обязательно проверить исправность работы выключающего механизма устройства и наличие соответствующей маркировки на корпусе изделия.

Описание схемы

Так как дифференциальные автоматы и устройства защитного отключения являют собою почти одинаковые изделия, то и подключаются они фактически одинаково. Потому рассмотрим следующую схему подключения:
 

Дифференциальный автомат, или УЗО на данной схеме, сравнивает электрический ток, который проходит по фазному проводнику (L) с тем током, который проходит по нулевому проводнику (N). Как правило, эти токи будут равны, если устройство будет полностью исправно и изоляции электропроводки не будет повреждена. Если же в цепи возникает ток утечки, то значения фазного и нулевого токов станут разными. Дифференциальный автомат сразу же зарегистрирует эти изменения и сравнит показатель тока утечки с номинальным током утечки, который предусмотрен для этого устройства. Если показатель тока утечки будет больше, чем показатель номинального тока утечки, то дифференциальный автомат отключит питание на защищаемом им участке электрической сети. Включения питания, как правило, производятся только после того, как устранена причина, по которой произошло отключение. Подобным образом работают все дифференциальные автоматы, даже такие как «Дифференциальный автомат DX 07978 AC 20A-300мА 400В 3Р+N(Legrand)».

Отличие дифавтомата от УЗО

Так сложилось, что многие считают, будто дифференциальный автомат и устройство защитного отключения это одно и то же. По сути, в этом есть доля правды, но все же это не совсем так.

Главное отличие этих двух устройств заключается в тех функциях, которые они выполняют. Так устройство защитного отключений это коммутационный аппарат, который защищает человека от возможного поражения электрическим током. А дифференциальный автомат это аппарат, который не только защищает людей от поражения электрически током, но и может произвести автоматическое отключение любой части сети в случае возникновения короткого замыкания или перегрузки. Иными словами, дифференциальный автомат представляет собою все то же УЗО, только со встроенной защитой от сверхтоков.

В соответствии с нормативными постановлениями, рекомендуется устанавливать именно дифференциальные автоматы, так как они способны обеспечить дополнительную защиты от сверхтоков. Более того, в групповых линиях категорически запрещено устанавливать обыкновенные устройства защитного отключения, если не устанавливается дополнительное устройство, которое отвечает за обеспечение защиты от перегрузок и коротких замыканий.

Также отдельно регламентируется установка таких устройств в жилых зданиях. Здесь допускается установка устройств защитного отключения типа «А», которые реагируют на переменные и пульсирующие токи повреждений. Также можно устанавливать устройства защитного отключения типа «АС», которые реагируют исключительно на переменные токи утечки. Одним из таких устройств является «Автомат дифференциального тока Ds941 C16 30 MA тип АС», реагирующий на ток утечки в 30 мА. https://www.21vek-220v.ru/cat/difavtomatabb2polyusnyjdsh941rc1630matipas.htm

Трехфазный дифференциальный выключатель Автоматический выключатель УЗО 63A 300 мА Класс A omu systems | ADAJUSA

Электрическая дифференциальная защита Переключатель 63A 300 мА, 4 полюса, электромагнитного типа, для защиты людей от проблем с изоляцией / отводом в установках или электрических элементах . Высокая условная мощность резания (10кА).

Занятость класса «А», высокий уровень связи при наличии нарушений в ЛЭП. Продвинутая нейтросъемка над фазой, нейтральное положение слева.

Дифференциалы этого типа являются электромагнитными, что позволяет не потерять функцию безопасности при изменении напряжения питания или потере нейтрального проводника. Только при выводе в активную фазу возникает дифференциальный пожар.

Изготовлен из умеренно огнестойкого термопласта. Он имеет два визуальных индикатора состояния на передней панели, верхний указывает на состояние дифференциала (ВКЛ / ВЫКЛ), а нижний указывает на сбой тока утечки.Этот дифференциал поддерживает установку дополнительных элементов по бокам.

Технические данные:

  • Производитель / Импортер: omu systems
  • Модель: OMR104A6303
  • Количество полюсов: 4 (3 + N)
  • Класс: A
  • Тип: электромагнитный
  • Занятость в сфере услуг и промышленности
  • Рабочее напряжение (Eu): 240/415 В переменного тока.
  • Номинальная сила тока (В): 63А
  • Чувствительность (I’n): 300 мА (0.3А).
  • Мощность резания: 10кА
  • Напряжение изоляции (In): 500 В.
  • Степень защиты IP20.
  • Визуальная индикация положения контакта: красный-ВКЛ, зеленый-ВЫКЛ.
  • Нормы: IEC / EN 61008-1
  • Маркировка CE
  • Размер клеммы: 50 мм2
  • Вес нетто (кг): 0,410
  • Монтажное положение: вертикальное / горизонтальное.
  • Корпус и крышка: Литой термопласт, огнестойкий.
  • Возможность двойного подключения кабелем или гребенкой
  • Вспомогательные элементы: NO

Размеры:

Три основных принципа дифференциальной защиты, которые вы ДОЛЖНЫ правильно понимать

Генераторы, двигатели, трансформаторы и линии

Три основных принципа дифференциальной защиты, описанные в этой статье, которые были известны в течение десятилетий, по-прежнему применимы и не зависят от конкретного устройства технология.Дифференциальная защита сравнивает измеренные значения по величине и фазе. Это возможно путем прямого сравнения мгновенных значений или векторным (векторным) сравнением.

Три основных принципа дифференциальной защиты, которые вы ДОЛЖНЫ правильно понимать.

В каждом случае измерение основано на законах Кирхгофа, которые гласят, что геометрическая (векторная) сумма токов, входящих или выходящих из узла, должна составлять 0 в любой момент времени. .

Условное обозначение, используемое в этом контексте, гласит, что токи, протекающие в защищаемой зоне, положительные, а токи, выходящие из защищенной зоны, отрицательные.

Генераторы, двигатели и трансформаторы часто защищены дифференциальной защитой, так как высокая чувствительность и быстрая работа идеально подходят для минимизации повреждений. На фидерах дифференциальная защита в основном используется для защиты кабелей, особенно на коротких расстояниях, где невозможно легко применить дистанционную защиту.

Содержание:

  1. Дифференциальная защита по току
    1. Сравнение тока с цифровой передачей измеренных значений
  2. Смещенная (стабилизированная) дифференциальная защита
    1. Пример
    2. Важные примечания
  3. Дифференциальная защита с двумя пилотными проводами сердечники
    1. Сравнение напряжений (принцип противоположного напряжения)
    2. Принцип циркулирующего тока
    3. Сравнение принципов измерения

1.Дифференциальная защита по току

Это самый простой и наиболее часто применяемый вид дифференциальной защиты. Принцип измерения показан на рисунке 1. Трансформаторы тока на концах зоны дифференциальной защиты подключены последовательно на вторичной стороне, так что токи циркулируют через трансформаторы тока во время внешнего короткого замыкания (см. Рисунок 1a), и ток не протекает. через дифференциальную измерительную ветвь, где расположено дифференциальное реле.

В случае внутреннего повреждения (рис. 1b) токи повреждения текут к месту повреждения, так что вторичные токи складываются и протекают через дифференциальную ветвь. Дифференциальное реле срабатывает и инициирует отключение.

Рисунок 1 — Принцип измерения: Внешняя ошибка или нагрузка (a), Внутренняя ошибка (b)

Рисунок 1 — Принцип измерения: Внешняя ошибка или нагрузка (a), Внутренняя ошибка (b)

Принцип этой простой схемы ( не -смещенная дифференциальная защита по току ) может использоваться на всех нераспределенных объектах защиты, где трансформаторы тока расположены в непосредственной близости друг от друга.

В простейшем случае используются генераторы или двигатели (рис. 2а), в частности, когда трансформаторы тока имеют одинаковое передаточное отношение. Защита трансформатора требует установки трансформаторов тока для векторной группы и коррекции соотношения токов, используемых для сравнения (рис. 2b).

Рисунок 2 — Дифференциальная защита, трехфазный основной принцип

Рисунок 2 — Дифференциальная защита, трехфазный основной принцип

Для защиты сборных шин необходимо суммировать токи от нескольких фидеров (Рисунок 3).В случае нагрузки и внешних повреждений векторная сумма токов фидера равна нулю, поэтому в реле не протекает дифференциальный ток.

Во время внутренних неисправностей , однако, токи в сумме составляют большой дифференциальный ток .

Рисунок 3 — Защита сборных шин (нагрузка или состояние отказа)

Рисунок 3 — Защита сборных шин (состояние нагрузки или сбоя)

Для дифференциальной защиты фидера трансформаторы тока на двух клеммах защищаемого объекта находятся далеко друг от друга.В этом случае используется схема подключения согласно рисунку 4 (трехжильная дифференциальная защита пилот-сигнала). Для соединения между двумя станциями требуются три жилы контрольного провода, которые обычно предоставляются как «витая тройка » через кабель связи.

Дифференциальные реле тока подключены к обоим клеммам в дифференциальном сердечнике, которые в случае внутренней неисправности отключают автоматические выключатели на соответствующих станциях . Следовательно, дальнейшая передача команд отключения между станциями не требуется.

На практике вторичные токи трансформатора тока (1 или 5 А) преобразуются в 100 мА путем установки трансформаторов тока для уменьшения нагрузки на жилы контрольных проводов. Дифференциальная защита по току может использоваться на расстоянии около 10 км благодаря уменьшенной нагрузке на трансформатор тока.

На короткие расстояния от 1 до 2 км можно использовать кабелей управления (изоляция 2 кВ) .

Рисунок 4 — Дифференциальная защита линии

Рисунок 4 — Дифференциальная защита линии

Когда кабели управляющих проводов находятся в непосредственной близости от силовых кабелей или воздушных линий, требуется соответствующее экранирование от токов короткого замыкания через землю .На больших расстояниях в пилотных проводах могут возникать высокие напряжения в несколько кВ. Это влияет на изоляцию контрольных проводов от земли и требует специальных кабелей контрольных проводов с более высокой изоляцией (например, 8 кВ), а также может потребоваться барьерные трансформаторы для предотвращения попадания высокого напряжения на реле защиты.

Для дальнейшего уменьшения количества требуемых жил контрольных проводов промежуточные трансформаторы тока также являются суммирующими трансформаторами, посредством чего фазные токи объединяются в единый (суммированный) составной ток.


1.1 Сравнение тока с цифровой передачей измеренных значений

До сих пор был описан принцип дифференциальной защиты по току, основанный на классическом режиме аналоговой передачи измеренных значений 50/60 Гц через контрольную проводную связь. При числовой защите все чаще применяется последовательная передача данных.

Таким образом, измеренные значения кодируются в цифровом виде и передаются через выделенную оптоволоконную сердцевину или через систему передачи цифровых данных.Несмотря на передачу и обработку числовых измеренных значений, основной принцип остается неизменным. Примерами этого являются цифровая дифференциальная защита фидера 7SD52 компании Siemens и децентрализованная цифровая защита шин 7SS52 .

Описанные выше схемы защиты сравнения также обозначаются как « продольная дифференциальная защита ». Для полноты картины необходимо также упомянуть использовавшуюся ранее поперечную дифференциальную защиту.Он сравнивал ток на выводах двух или более цепей, соединенных параллельно.

Этот тип защиты почти никогда больше не используется с линиями, в частности, потому что цепи должны быть подключены параллельно для этого типа защиты и не могут работать независимо.

Рисунок 5 — Защита линии передачи с резервным алгоритмом в одном устройстве

Только с генераторами, у которых параллельные (разделенные) обмотки в каждой фазе выведены на отдельные клеммы, поперечная дифференциальная защита по-прежнему используется от коротких замыканий.

Вернуться к таблице содержания ↑


2. Смещенная (стабилизированная) дифференциальная защита

До сих пор, для простоты, для реле, измеряющего ток в дифференциальной цепи, предполагался фиксированный порог срабатывания. Однако на практике необходимо учитывать ложный дифференциальный ток, возникающий из-за ошибок преобразования трансформаторов тока. В линейном диапазоне трансформаторов тока эта ошибка пропорциональна сквозному току.

В случае больших токов короткого замыкания может возникнуть насыщение ТТ, вызывающее быстрое увеличение этого ложного дифференциального тока .Кроме того, переключатели ответвлений трансформатора вызовут ложный ток из-за изменения коэффициента трансформации.

На рис. 6 показан дифференциальный ток, измеряемый реле, относительно сквозного тока (I ) во время нагрузки или внешних повреждений.

Рисунок 6 — Ложный дифференциальный ток во время нагрузки и внешних КЗ с адаптированной характеристикой реле

Рисунок 6 — Ложный дифференциальный ток во время нагрузки и внешних КЗ с адаптированной характеристикой реле

Очевидно, что порог срабатывания должен быть увеличен, когда сквозной ток увеличивается.Это приводит к высокой чувствительности при нагрузке и малым токам короткого замыкания, в то же время обеспечивая улучшенную стабильность против неправильной работы с большими токами, когда ожидается насыщение ТТ.

В первые дни защиты это достигалось увеличением порога срабатывания пропорционально сквозному току. Этот метод был предложен еще в 1920 году как дифференциальное реле смещения . Принцип действия показан на Рисунке 7 — Дифференциальное реле со смещением по МакКроллу.

Рисунок 7 — Дифференциальное реле со смещением в соответствии с McCroll

Рисунок 6 — Дифференциальное реле со смещением в соответствии с McCroll

Электромеханические и статические реле, реализованные этим методом с использованием выпрямительного мостового компаратора Рисунок 7. Измерительный тракт был реализован с помощью поляризованного реле с подвижной катушкой, имеющего высокий чувствительность, а затем с электронной схемой запуска. Смещение (стабилизация) обеспечивалось сигналом I Bias = k 1 × (I 1 — I 2 ) , что соответствует «сумме» токов ТТ в случае сквозного тока. .

При этом необходимо соблюдать выбранную условность знаков для токов; он обозначает токи как положительные, когда они протекают в защищаемый объект. На работу влияет «разница» токов ТТ I Op = k 2 × (I 1 + I 2 ) .

Результат следующих состояний:

Таблица 1 — Смещение (стабилизация) и разность »токов ТТ

I Op = 0
I Смещение = k 1 × (I 1 — I 2 ) I Op = k 2 × (I 1 + I 2 )
Внешняя ошибка I Смещение = 2 × k 1 × I F
Внутренняя неисправность с односторонней подачей I Смещение = k 1 × I F I Op = k 2 × I F
Внутренняя неисправность с подачей с обоих концов I Смещение = 0 I Op = 2 × k 2 × I F

Критерий подхвата: : I Op > I Смещение

т.е.k 2 × | I 1 + I 2 | > K 1 × | I 1 — I 2 |

С помощью удерживающей пружины на реле срабатывания можно также установить минимальный порог срабатывания B. Таким образом получается основное уравнение для дифференциальной защиты со смещением:

| I 1 + I 2 | > K 1 × | I 1 — I 2 | + B , где k = k 1 / k 2

Позже измерительная схема была усовершенствована и дополнена комбинацией дополнительных диодных резисторов .Таким образом, ограничение с небольшими токами устанавливается медленно и только начинает сильно увеличиваться выше порогового значения (переменное ограничение), как показано пунктирной характеристикой на рисунке 8. Затем числовая защита реализовала характеристику, состоящую из нескольких секций.

Это позволяет лучше адаптироваться к области измерения ложного тока , которую необходимо исключить .

Рисунок 8 — Дифференциальная защита с мостовой выпрямительной схемой в измерительном тракте

Рисунок 8 — Дифференциальная защита с мостовой выпрямительной цепью в измерительном тракте

В более новых устройствах защиты порог B больше не добавляется к сдерживающей стороне, а предоставляется как отдельное значение настройки: I Op > B .В результате смещенная характеристика I Op > k × I Res больше не смещается на начальное значение B, а вместо этого проходит через начало координат.

Следовательно, достигается повышенная чувствительность при малых токах.

Описанный принцип измерения может также применяться к объектам защиты, имеющим более двух выводов (трехобмоточные трансформаторы или защита сборных шин). Таким образом, сумма значений тока (арифметическая сумма) используется для ограничения1, а величина геометрической (векторной) суммы токов используется для работы:

  • I Res = | I 1 | + | I 2 | + | I 3 | +… + | I n |
  • I Op = | I 1 + I 2 + I 3 +… + I n |

Условия, указанные выше, применяются в качестве критерия срабатывания: I Op > k × I Res и I Op > B

Коэффициент смещения k (% смещения / 100) , определяющий крутизну характеристики смещения, можно установить в диапазоне от k = 0.От 3 до 0,8, в зависимости от области применения и размеров трансформаторов тока. Порог B может быть установлен на 10% I N для генератора , в то время как 130% максимального тока фидера типично для защиты сборных шин.

Об этом подробно говорится в разделе о системах индивидуальной защиты. Соответствующая схема, основанная на обработке аналогового сигнала, показана на Рисунке
9 ниже. Расчет величины достигается за счет исправления.

В случае внешней неисправности рабочий ток I Op должен быть равен нулю, то есть векторы тока должны в сумме равняться нулю . Ток удержания соответствует сумме значений тока.

Рисунок 9 — Многопозиционная дифференциальная защита — схема

Где,

  • I Op = | I 1 + I 2 + I 3 +… + I n | = | ΣI |
  • I Res = | I 1 + I 2 + I 3 +… + I n | = | ΣI |

В случае внутренней неисправности рабочий ток является результатом суммирования векторов тока.В своей простейшей форме, когда все входные и, следовательно, связанные токи короткого замыкания примерно совпадают по фазе, вектор и суммы величин равны, то есть I Op = I Res .

При нормальных условиях (короткое замыкание с низким сопротивлением и подача фазового эквивалента) можно отметить следующее:

Таблица 2 — Внешние и внутренние отказы

Внешняя ошибка I Res = 2 × I F-thru I Op = 0 I F-thru — ток повреждения, протекающий через защищаемый объект
Внутренняя ошибка I Res = I F-int I Op = I F-int I F-int — это сумма токов короткого замыкания в месте замыкания

В случае внутренних замыканий с относительно большим сопротивлением замыканию однако следует учитывать, что часть тока нагрузки может все еще протекать через защищаемый объект во время повреждения.Сквозной ток нагрузки накладывается на токи короткого замыкания, протекающие в защищаемый объект.

Соответственно уменьшается соотношение I Op / I Res .


2.1 Пример

Короткое замыкание с защитой от короткого замыкания (рисунок 10):

  • I Op = 2300-300 = 2000
  • I Res = 2300 + 300 = 2600
  • I Op / IRes = 0.77

Рисунок 10 — Внутреннее повреждение с сопротивлением короткому замыканию, распределение тока

Рисунок 10 — Внутреннее повреждение с сопротивлением короткому замыканию, распределение тока

В расширенных системах передачи или в случае возникновения скачков мощности или даже несогласованности, неисправность Однако токи, протекающие в месте повреждения, могут иметь существенные разности фазовых углов. В этом случае векторная сумма токов меньше суммы значений тока и, следовательно, I Op Res .

Для двусторонней подачи будут выполнены условия, показанные на рисунке 11. Если для простоты предполагается, что оба тока имеют одинаковую величину, то применяется следующее:

I Res = 2 × | I F | и I Op = 2 × cos (δ / 2)

При δ = 30 ° получается меньшее отношение I Op / I Res = 0,87 .

Рисунок 11 — Внутреннее короткое замыкание со сдвигом фаз между входами

Рисунок 11 — Внутреннее короткое замыкание со сдвигом фаз между входами

Наблюдаемые эффекты, конечно, также могут быть сложными.Поэтому коэффициент смещения (стабилизации) k не следует устанавливать выше 0,8. Напротив, трансформаторы тока должны быть выбраны таким образом, чтобы установка выше 0,7 не требовалась .


2.2 Важные примечания

Примечание № 1

В литературе по защите и руководствах по реле очень часто протекающий ток берется за эталон и считается положительным. В этом случае рабочий ток соответствует I Op = | I 1 — I 2 | (дифференциальный ток) и ток торможения I Res = | I 1 + I 2 | с традиционными реле или I Res = | I 1 + I 2 | с цифровыми реле.Это правило, которое подходит для защиты двухконтактных объектов, однако, непрактично в случае нескольких оконечных объектов защиты, таких как защита сборных шин.

Поэтому знаковое правило , согласно которому токи, протекающие в объект защиты, считаются положительными , единообразно применяется в этой статье (также соответствует соглашениям Siemens о релейной передаче).


Примечание № 2

В этой статье величина ограничения соответствует сумме текущих величин I Res = (| I 1 + I 2 |) .Географическая точка I Op / I Res для внутренних неисправностей в данном случае представляет собой прямую линию с наклоном 45 ° (уклон 100%) на диаграмме работы / ограничения (см. Рисунок 8). Это также относится ко всем реле Siemens.

Некоторые производители реле используют только половину суммы токов в качестве величины ограничения: I Res = (| I 1 + I 2 |) / 2 даже с многополюсной защитой, т.е. е. I Res = (| I 1 | + | I 2 | + | I 3 | + | I n |) / 2 .

В этом случае локус внутренней неисправности имеет наклон 200% ! Это необходимо учитывать при сравнении реле разных производителей и установке коэффициента смещения (процента крутизны).

Вернуться к таблице содержания ↑


3. Дифференциальная защита с двумя жилами контрольного провода

Дифференциальная защита контрольного провода (витая пара контрольных проводов) была разработана для применения с кабелями связи со скрученными парами контрольных проводов (телефонные кабели) ).Он в основном используется за пределами континентальной Европы, где витые пары часто арендуются у телефонных компаний.

По существу возможны два варианта:

  1. Принцип встречного напряжения (пилотная схема отключения)
  2. Принцип циркулирующего тока (блокирующая пилотная схема)

Оба варианта были разработаны и применены на практике. Реле производства Siemens работают по принципу встречного напряжения.

Вернуться к таблице содержания ↑


3.1 Сравнение напряжений (принцип противоположных напряжений)

При использовании этого метода ток на каждой линейной клемме направляется через шунтирующее сопротивление (R Q ) , создавая таким образом напряжения U 1 и U 2 , каждое пропорционально с соответствующим током, рис. 12. Эти два напряжения затем сравниваются через пару проводов управления.

Соединение выбирается таким образом, что в случае тока нагрузки или тока внешнего повреждения, протекающего по линии , напряжения противоположны, и ток не течет через пару проводов управления.Однако во время внутренних неисправностей два напряжения находятся в фазе и пропускают ток через контур управляющего провода.

Этот ток, который составляет всего несколько мА относительно номинального тока трансформаторов тока, вызывает отключение через чувствительное реле тока (ΔI).

[highligt2] Рисунок 12 [/ highlight2] — Дифференциальная защита линии, принцип сравнения напряжений

Рисунок 12 — Дифференциальная защита линии, принцип сравнения напряжений

Напряжение на пилотных сердечниках составляет всего несколько вольт, когда номинальный ток течет через трансформаторы тока, но повышается при больших токах замыкания.Максимальное поперечное напряжение на пилотных жилах, однако, не может превышать 60% номинального напряжения изоляции телефонного кабеля (500 В), другими словами, 300 В.

Для ограничения напряжения в случае серьезного внутреннего повреждения. токи, варистор предусмотрен .

При внешних неисправностях, порог ограничения напряжения не должен достигаться . Небольшая нагрузка, создаваемая этими устройствами, позволяет преодолевать расстояния до 25 км. Что касается изоляции и экранирования жил контрольных проводов, здесь также применимы утверждения, сделанные в первом разделе «Токовая дифференциальная защита» в отношении трехжильных контрольных проводов.

Кроме того, жилы контрольных проводов должны быть правильно скручены, чтобы поперечное напряжение, индуцированное током короткого замыкания в земле, которое влияет на измерение, было уменьшено до минимума.

Применяемая на практике измерительная схема работает по принципу дифференциальной защиты со смещением. Таким образом, рабочий ток 1 пропорционален току управляющего провода. Ток смещения получается из тока в шунтирующей ветви вместе с дополнительной составляющей из тока управляющего провода (рисунок 13).

Рисунок 13 — Дифференциальная защита двухжильного управляющего провода — принцип противоположного напряжения

Рисунок 13 — Дифференциальная защита двухжильного управляющего провода — принцип противоположного напряжения

Для получения I Op и I Res суммируются токи управляющего провода и шунта в эстафете с указанными весовыми коэффициентами. В аналоговых устройствах это делается с помощью внутренних промежуточных трансформаторов с соответствующими ответвлениями. См. Рисунок 13.

R Q = k × R S / (1-2 × k)

Аналоговые реле, производимые Siemens, всегда реализуют фиксированное значение k = 1/8 , в других Словом, для выравнивания применяется настройка R Q = 1/6 × R S .

При цифровой защите юстировка (настройка R Q ) не требуется. Распределение тока всегда рассчитывается для каждого приложения из значения сопротивления контура управляющего провода R S , которое должно быть установлено на реле, и фиксированного значения R Q .

Вернуться к таблице содержания ↑


3.2 Принцип циркулирующего тока

Схема аналогична схеме, применяемой для сравнения напряжений. Однако операция и ограничение меняются местами.Вспомогательный трансформатор в цепи управляющего провода теперь подает ток I Res = (| I 1 — I 2 |) , а вспомогательный трансформатор в параллельном ответвлении питает I Op = (| I 1 + я 2 |) . Трансформаторы тока подключаются с противофазой к жилам управляющих проводов, как это обычно делается с дифференциальной защитой.

Следовательно, перекрестное соединение трансформатора тока с правой стороны, как показано на Рисунке 13, не применяется.Соответственно, вторичные напряжения ТТ находятся в фазе, когда ток течет через фидер . Таким образом, циркулирующий ток проходит через контур управляющего провода. Во время внутреннего короткого замыкания два напряжения противоположны, что приводит к уменьшению тока управляющего провода.

При одинаковой подаче с обеих сторон ток управляющего провода теоретически равен нулю .

Вернуться к таблице содержания ↑


3.3 Сравнение принципов измерения

При использовании принципа противоположного напряжения контрольные провода не пропускают ток во время нормальной работы . Однако в случае внутренней неисправности ток должен протекать через контур управляющего провода, чтобы вызвать отключение. Следовательно, в этом рабочем режиме используется принцип расцепления (схема срабатывания пилот-сигнала). Если управляющие провода оборваны, отключение невозможно.

В случае короткого замыкания управляющего провода отключение произойдет во время внешних неисправностей.Поэтому необходимо применить отдельное условие перегрузки по току, чтобы предотвратить неправильное отключение во время нагрузки при коротком замыкании управляющего провода. По принципу циркулирующего тока ток ограничения протекает через контур управляющего провода и предотвращает срабатывание реле во время нагрузки и внешних неисправностей .

Во время внутренней неисправности ограничивающий пилотный ток уменьшается и позволяет отключиться. Таким образом, этот режим работы основан на принципе блокировки (схема блокирующего пилот-сигнала). Обрыв управляющих проводов приводит к отключению с протекающими большими токами.

Следовательно, здесь также должен применяться дополнительный критерий перегрузки по току. Короткое замыкание управляющих проводов приводит к чрезмерному удерживанию и блокировке.

Вернуться к таблице содержания ↑

Дифференциальная токовая защита (87) | Системы измерения и контроля электроэнергии

Одним из фундаментальных законов электрических цепей является Закон Кирхгофа по току, который гласит, что алгебраическая сумма всех токов в узле цепи (соединении) должна быть равна нулю. Более простой способ заявить об этом — сказать: «То, что входит, должно выйти.«Мы можем использовать этот принцип для обеспечения другой формы защиты от определенных неисправностей в электрических цепях, измеряя величину тока, входящего и выходящего из компонента цепи, а затем отключая автоматический выключатель, если эти два тока не совпадают.

Важным преимуществом дифференциальной защиты по сравнению с максимальной токовой защитой мгновенного действия или максимальной токовой защитой с выдержкой времени является то, что она намного более чувствительна и действует быстрее. В отличие от любой формы максимальной токовой защиты, которая срабатывает только в том случае, если ток превышает максимальный номинал проводников, дифференциальная защита способна срабатывать при гораздо более низких уровнях тока, потому что Закон Кирхгофа предсказывает, что любая величина дисбаланса тока для любой отрезок времени является ненормальным.Более низкие пороги срабатывания вместе с отсутствием задержки по времени означают, что дифференциальная защита способна срабатывать раньше, чем любая форма максимальной токовой защиты, тем самым ограничивая повреждение оборудования за счет устранения неисправности за более короткий промежуток времени.

Предположим, мы должны были измерить величину тока на обоих концах каждой фазной обмотки трехфазного генератора, как показано на следующей диаграмме:

Как и большинство крупных генераторов энергии, этот блок подводит оба вывода каждой фазной обмотки к внешним точкам, так что они могут быть подключены по схеме звезды или треугольника по желанию.В данном случае обмотки генератора соединены звездой. Пока мы измеряем ток, входящий и выходящий из каждой обмотки индивидуально, не имеет большого значения, соединены ли эти обмотки генератора звездой или треугольником.

Если схема в точности такая, как показано выше, величина тока, входящего и выходящего из каждой фазной обмотки, должна быть одинаковой в соответствии с Законом Кирхгофа о токах. То есть:

\ [I_ {A1} = I_ {A2} \ hskip 30pt I_ {B1} = I_ {B2} \ hskip 30pt I_ {C1} = I_ {C2} \ hskip 30pt \]

Предположим теперь, что один из витков в обмотке фазы «C» должен был случайно коснуться металлического каркаса генератора, например, что могло произойти в результате повреждения изоляции.Это замыкание на землю вызовет третий путь для тока в поврежденной обмотке. \ (I_ {C1} \) и \ (I_ {C2} \) теперь будут разбалансированы на величину, равную току повреждения \ (I_F \):

Другой отказ, обнаруживаемый по закону тока Кирхгофа, — это межфазное замыкание обмотки, когда ток течет от одной обмотки к другой. В этом примере короткое замыкание между фазами B и C в генераторе нарушает баланс входящих и исходящих токов для обеих фаз:

Следует отметить, что величина замыкания на землю или тока замыкания между обмотками может быть недостаточно большой, чтобы создать угрозу перегрузки по току для генератора, но само наличие дисбаланса тока в любой фазе доказывает, что обмотка исправна. поврежден.Другими словами, это тип отказа системы, который не обязательно обнаруживается реле максимального тока (50/51), и поэтому он должен быть обнаружен другими средствами.

Тип реле, предназначенный для этой задачи, называется реле дифференциального тока . Цифровой код ANSI / IEEE для дифференциальной защиты: 87 . Также существуют реле дифференциального напряжения с тем же обозначением «87» ANSI / IEEE, поэтому при упоминании реле «87» необходимо указывать, является ли рассматриваемая дифференциальная величина напряжением или током.

Простая форма дифференциальной токовой защиты для этого генератора может быть реализована путем подключения трансформаторов тока с обеих сторон каждой обмотки к рабочим катушкам электромеханического реле, подобного этому. Для простоты будет показана защита только одной фазной обмотки (C) генератора. Практическая система реле защиты от дифференциального тока будет контролировать ток через все шесть проводов статора на генераторе, сравнивая токи на входе и выходе каждой фазы:

Если первичные токи ТТ \ (I_ {C1p} \) и \ (I_ {C2p} \) равны и коэффициенты ТТ равны, вторичные токи ТТ \ (I_ {C1s} \) и \ (I_ {C2s } \) также будут равны.Результатом будет нулевой ток через рабочую катушку (OC) дифференциального реле.

Если, однако, замыкание на землю или соседнюю обмотку должно было развиться где-нибудь в обмотке статора «C» генератора, первичные токи двух трансформаторов тока станут неравными, вызывая неравные вторичные токи, тем самым вызывая значительный ток. протекать через управляющую катушку дифференциального реле (OC). Если этого тока достаточно, чтобы вызвать срабатывание дифференциального реле, реле пошлет сигнал, дающий команду автоматическому выключателю генератора на отключение.

Даже если значение срабатывания реле смещено, чтобы избежать ненужного отключения, все же возможно, что большой фазный ток, требуемый от генератора, может вызвать срабатывание дифференциального реле из-за невозможности идеального совпадения между двумя фазными токами «C». трансформаторы. Любое несоответствие между этими двумя трансформаторами тока приведет к неравенству вторичных токов, которые будут увеличиваться по мере увеличения величины фазного тока. Большие, богатые гармониками пусковые токи , которые иногда возникают при первоначальном включении большого силового трансформатора, также могут вызывать ложные срабатывания в этой простой форме дифференциальной защиты.Мы не хотим, чтобы это дифференциальное реле срабатывало при каких-либо условиях, кроме внутренней неисправности генератора в его фазной обмотке, поэтому необходима модификация, чтобы обеспечить другую рабочую характеристику.

Если мы модифицируем реле так, чтобы оно имело три катушки, одна для перемещения его механизма в направлении срабатывания, а две для помощи «сдерживать» его механизм (работая для удержания механизма в его нормальном рабочем положении), мы можем соединить эти катушки таким образом. способ, которым две удерживающие катушки (RC) возбуждаются двумя вторичными токами ТТ, в то время как рабочая катушка видит только разницу между двумя вторичными токами ТТ.Мы называем эту схему дифференциальным реле с ограничением , а прежнюю (более простую) конструкцию — дифференциальным реле без ограничения :

.

Общая характеристика ограниченного дифференциального реле — срабатывание на основе дифференциального тока, превышающего установленный процентов фазного тока.

На этой фотографии показаны три дифференциальных реле, используемых для защиты обмоток трехфазного генератора газотурбинной электростанции.Обратите внимание, как требуется одно реле дифференциального тока для защиты каждой из трех фаз генератора:

Современные цифровые дифференциальные реле обычно воспринимают сигналы ТТ от всех трех фаз, обеспечивая защиту в одном блоке, монтируемом на панели. Цифровые реле защиты предлагают гораздо более сложные подходы к проблеме ложных срабатываний, основанные на несоответствии между парами трансформаторов тока и / или гармоническими токами. На следующем графике показана характеристика реле защиты трансформатора модели 745 компании General Electric, обеспечивающего защиту от дифференциального тока:

Пользователь может регулировать не только значение срабатывания, но также наклон каждого сегмента линии на графике, высоту ступеньки «точки изгиба» и т. Д.Обратите внимание на то, что термин «ограничение» все еще используется в конфигурации цифровых реле, даже несмотря на то, что он возник в конструкциях электромеханических реле.

Примечательно, что форма дифференциальной токовой защиты также находит применение в американских домах, где электрические нормы требуют установки защищенных цепей прерывателя тока замыкания на землю (GFCI) в местах, где возможен контакт между электрическими приборами и водой (например, в ванных комнатах). , кухни). Розетки GFCI функционируют, определяя любую разницу в токе между «горячим» и «нейтральным» проводниками, по которым ток идет к любой нагрузке, подключенной к розетке, и от нее:

Один трансформатор тока (CT) в блоке GFCI определяет любой дифференциальный ток, считывая сетевое магнитное поле вокруг обоих проводников с током.Если «горячий» и «нейтральный» токи равны, их противоположные направления будут создавать противоположные магнитные поля, с нулевым результирующим магнитным полем, обнаруженным ТТ. Однако, если в нагрузке, подключенной к этой розетке, происходит замыкание на землю, эти два тока будут неравными, и трансформатор тока обнаружит чистое магнитное поле. Эти защитные устройства чрезвычайно чувствительны, размыкая контакты со значениями дифференциального тока в диапазоне миллиампер . Это важно, так как замыкание на землю в электрическом приборе может очень хорошо пройти через тело человека или животного, и в этом случае всего миллиампер может оказаться вредным или даже смертельным.

Если срабатывает розетка GFCI, ее можно сбросить, нажав кнопку «сброса» на ее лицевой стороне. Блоки GFCI также можно протестировать вручную, нажав кнопку «тест», также установленную на передней панели.

Очень важной концепцией в области релейной защиты является концепция зон защиты , что легко объяснимо в контексте реле дифференциального тока. Проще говоря, «зона защиты» реле — это физический диапазон, в котором может быть обнаружено указанное электрическое повреждение, и, таким образом, любые компоненты и соединения в зоне могут быть защищены посредством надлежащего действия реле.Реле максимального тока (50/51), описанные в предыдущем разделе этой книги, не имеют четко определенных зон защиты, так как реле максимального тока срабатывают при определенном минимальном токе значения , а не обязательно на каком-либо определенном месте повреждения . Однако дифференциальные токовые реле имеют очень четкие и однозначные зоны защиты: область, лежащая между токовой парой ТТ :

Только неисправность в пределах зоны защиты реле (т.е.е. «внутренняя» неисправность) может заставить токи двух трансформаторов тока стать неравными. Благодаря закону Кирхгофа по току, никакое замыкание вне зоны защиты (т. Е. «Внешнее» замыкание), независимо от его серьезности, не может сделать первичные токи ТТ неравными.

Концепция защитных зон очень важна в релейной защите и находит применение далеко за пределами систем дифференциального тока (87). Это тесно связано с концепцией селективности , что означает способность защитного реле различать короткое замыкание в пределах своей собственной зоны защиты и замыкание за пределами этой зоны.Реле с высокой селективностью способно игнорировать внешние неисправности, в то время как реле с плохой селективностью может ошибочно срабатывать при возникновении внешних неисправностей.

Бытовые электрические розетки

с защитой от замыкания на землю (GFCI) также имеют четко определенные зоны защиты. В случае GFCI зона защиты — это все, что подключено к розетке (т.е. справа от ТТ на схеме):

Обычная практика электропроводки в жилых домах в Соединенных Штатах — это «шлейфовое соединение» обычных розеток с розеткой GFCI, где существуют водные опасности, так что все розетки, запитанные через GFCI, становятся частью защитной зоны GFCI.Например, ванная комната с такой проводкой обеспечивает одинаковую степень защиты от замыкания на землю для всех розеток в комнате. Если бы кто-то подключил электрический фен к одной из розеток с «гирляндной цепью», а затем случайно уронил бы этот прибор в ванну, полную воды, GFCI отключился бы и отключил питание всех розеток с такой же надежностью, как и отключение, если фен был подключен непосредственно к самой розетке GFCI.

Дифференциальная токовая защита наиболее практична для реализации на коротких физических расстояниях, например, по фазным обмоткам в генераторе или каком-либо другом компоненте энергосистемы, но основная концепция применима и на больших расстояниях, потому что Закон Кирхгофа не знает границ.Рассмотрим, например, линию передачи, охватывающую несколько миль между двумя автобусами, показанную на этой однолинейной схеме:

Здесь два дифференциальных реле управляют отключением автоматических выключателей (функция 52 ANSI / IEEE) на каждом конце линии передачи. Ток на каждом конце линии контролируется трансформаторами тока, подключенными к локальным реле 87, благодаря чему зона дифференциальной защиты по току покрывает всю длину линии передачи. Чтобы эта схема защиты работала, два локальных реле 87 должны каким-то образом связываться друг с другом, чтобы постоянно сравнивать измеренные значения тока на обоих концах линии.Это достигается через канал связи между двумя реле, который называется пилотным каналом . Термин «пилот» — это общий термин в области релейной защиты, относящийся к любой форме передачи данных. Если обнаруживается значительная разница в линейном токе (то есть в результате повреждения в любом месте по длине линии передачи), оба реле отключают свои соответствующие автоматические выключатели и тем самым обесточивают линию передачи.

Пилотные системы могут иметь форму аналоговой «петли» тока или напряжения, радиорелейной линии связи, линии связи линии электропередачи (ПЛК), линии передачи данных по оптоволоконному кабелю или любой другой формы двухточечной связи. точечный канал передачи данных, позволяющий реле обмениваться данными друг с другом.Детали пилотных систем в схемах защиты сложны и не будут здесь подробно рассматриваться.

Интересное предостережение при применении защиты от дифференциального тока к длинным линиям состоит в том, что емкостный зарядный ток линии в некоторых случаях может быть достаточно значительным, чтобы сработать реле 87, которое настроено слишком чувствительно. Емкость между фазой и землей можно представить себе как форму «замыкания на землю» переменного тока, потому что любой ток, идущий по этому пути к земле, является током, проходящим через один ТТ, но не через другой.

Текущий закон Кирхгофа не только неограничен в отношении расстояния, он также не ограничен в отношении количества линий, входящих или выходящих из узла. Этот факт позволяет нам применять дифференциальную токовую защиту к шинам , где соединяются несколько линий электропередач и / или устройств. Здесь показан пример высоковольтной шины, сфотографированной на плотине Гранд-Кули в штате Вашингтон, соединяющей несколько блоков трехфазных трансформаторов (каждая из которых питается от гидроэлектрического генератора):

Автобусы обычно изготавливаются из гибкого кабеля или жесткой трубы, подвешенной к земле с помощью изоляторов.Неисправности могут возникнуть в шине, если изолятор «вспыхивает» (т. Е. Вызывает электрическую дугу от проводника шины к земле) или если что-либо проводящее происходит с перемычкой между линиями шины. Таким образом, шины могут быть защищены по принципу дифференциального тока, как и любой другой электрический компонент или линия электропередачи. Алгебраическая сумма всех токов, входящих и выходящих из каждой фазы шины, должна равняться нулю, и если это не так, это означает, что шина должна быть неисправна.

Принципиальная схема, показывающая одну шину с пятью разными вводами, показывает, как дифференциальную токовую защиту можно использовать для защиты шины с любым количеством линий.Для простоты схема подключения реле CT и 87 показана только для одной фазы на этой трехфазной шине. В любой реалистичной схеме дифференциальной защиты шины все три фазы будут оснащены трансформаторами тока, и будет три отдельных 87 элементов «рабочей катушки», по одному на каждую фазу:

Закон Кирхгофа сообщает нам, что алгебраическая сумма всех токов в узле должна быть равна нулю. В этом случае рассматриваемый узел представляет собой сумму всех проводников, показанных внутри синего пунктирного контура зоны защиты.Поскольку все трансформаторы тока имеют одинаковое отношение витков и соединены параллельно, как показано, их суммарные вторичные токи должны в сумме равняться нулевому значению тока через рабочую катушку реле 87 во время нормальной работы. Однако, если замыкание на землю или межфазное замыкание произойдет где-нибудь в пределах зоны защиты, вторичные токи ТТ будут суммироваться до нуля, , а не , что приведет к срабатыванию дифференциального реле.

Еще одним важным понятием в релейной защите является перекрытие защитных зон .Философия здесь заключается в том, что размер каждой защитной зоны должен быть ограничен, чтобы избежать ненужного отключения большего количества секций энергосистемы, чем необходимо для изоляции любого повреждения, при этом ни один компонент или проводник не остаются незащищенными. На следующей однолинейной схеме показано, как настраиваются зоны защиты для перекрытия друг друга на каждом автоматическом выключателе, к которому они подключаются:

Например, короткое замыкание в верхней линии передачи относится только к этой зоне защиты, и поэтому сработает только автоматические выключатели F и G, оставляя другую линию передачи и связанные с ней компоненты для передачи энергии от генерирующей станции к подстанции.Обратите внимание на то, что каждый автоматический выключатель в вышеуказанной системе попадает в двух защитных зон . Если повреждение произошло внутри выключателя F, оно отключило бы выключатель E в верхней зоне трансформатора электростанции, а также выключатель G в верхней зоне линии передачи, изолируя вышедший из строя выключатель.

Перекрытие зон дифференциальной защиты достигается за счет разумного размещения трансформаторов тока по обе стороны от автоматического выключателя. Напомним, что граница любой схемы дифференциальной защиты по току определяется расположением трансформаторов тока, измеряющих ток в узле и на выходе из него.Таким образом, ТТ, к которому подключается реле дифференциального тока, определяет, насколько далеко будет достигнута граница зоны защиты этого реле. Мы более подробно рассмотрим однолинейную схему, чтобы изучить эту концепцию дальше, сосредоточив внимание на верхнем левом углу генерирующей станции и исключив все трансформаторы и все, кроме одного генератора, а также выключатели C, D и F для простоты:

Здесь мы видим, как достигается перекрытие зон путем подключения каждого дифференциального реле к дальнему ТТ на каждом автоматическом выключателе.Если вместо этого мы решим подключить каждое реле 87 к рядом с трансформатором тока , две зоны защиты не будут перекрываться, оставляя каждый автоматический выключатель незащищенным:

Возможно, наиболее интересным и сложным применением дифференциальной токовой защиты является защита силовых трансформаторов, которые страдают многими из тех же уязвимостей, что и генераторы и двигатели (например, неисправности обмотки). Сначала у нас может возникнуть соблазн подключить трансформаторы тока к каждому проводнику, входящему в трансформатор и выходящему из него, с установкой 87 реле для сравнения этих токов и отключения при обнаружении дисбаланса, точно так же, как для защиты отдельных обмоток в генераторе.Однофазного трансформатора достаточно, чтобы проиллюстрировать эту концепцию, опять же без удерживающих катушек (RC) внутри каждого из дифференциальных реле для простоты:

До тех пор, пока каждая пара трансформаторов тока для каждого реле дифференциального тока согласована (т. Е. С одинаковым соотношением витков), эта схема защитного реле будет обнаруживать замыкания на землю и замыкания между обмотками в силовом трансформаторе. Однако одна распространенная неисправность трансформатора, которая останется незамеченной, — это межвитковая неисправность в одной из обмоток.Такая неисправность исказила бы коэффициент трансформации силового трансформатора, но она бы , а не нарушила бы баланс тока, входящего и выходящего из любой данной обмотки, и, следовательно, не обнаруживалась бы дифференциальными реле, как показано.

Очень умный способ улучшить защиту трансформатора от дифференциального тока состоит в том, чтобы одно реле 87 сравнивало первичный и вторичный токи этого трансформатора, тем самым расширяя зону защиты по обеим обмоткам с помощью всего одного реле:

Одним из необходимых условий для того, чтобы эта стратегия работала, является использование трансформаторов тока с необходимыми отношениями витков, чтобы дополнить коэффициент трансформации силового трансформатора и дать реле 87 два эквивалентных тока для сравнения.Например, если у нашего силового трансформатора соотношение витков 20: 1, отношения двух наших ТТ должны отличаться друг от друга на один и тот же коэффициент (например, ТТ 50: 5 на слаботочной первичной обмотке и ТТ 1000: 5 на сильноточной вторичной обмотке).

Эта схема дифференциальной защиты по току работает для обнаружения общих неисправностей трансформатора следующими способами:

  • Замыкание на землю: этот вид замыкания заставляет токи, входящие и выходящие из поврежденной обмотки, быть неравными.Поскольку вся обмотка не видит одинаковый ток, она не может индуцировать правильную пропорцию тока в другой (исправной) обмотке. Это неправильное различие токов будет замечено реле 87.
  • Неисправность между обмотками: при таком типе повреждения часть тока из одной обмотки уходит и попадает в другую обмотку в соотношении 1: 1. Это эффективно искажает передаточное отношение трансформатора, что приводит к дисбалансу токов, наблюдаемых реле 87.
  • Поворотное повреждение: Этот вид неисправности непосредственно искажает передаточное отношение трансформатора, что приводит к дисбалансу токов, обнаруживаемых реле 87.

Интересным предостережением при использовании защиты от дифференциального тока на трансформаторе является явление броска тока , которое часто случается, когда трансформатор изначально находится под напряжением. Пусковой ток возникает, когда остаточный магнетизм в сердечнике трансформатора из его последнего включенного состояния оказывается значительным и имеет ту же полярность, что и начальная намагниченность при первом включении. В результате сердечник трансформатора начинает магнитно насыщаться, в результате чего в первичной обмотке возникает избыточный ток, который не , а генерирует ток во вторичной обмотке.Любое реле дифференциального тока, естественно, увидит эту разницу как неисправность и может без надобности отключить питание трансформатора.

Умное решение проблемы ложного срабатывания реле 87 из-за пускового тока трансформатора называется ограничением гармоник или блокировкой гармоник . Пусковые токи имеют тенденцию быть асимметричными при просмотре на осциллографе из-за смещения предварительно намагниченного сердечника трансформатора (т. Е. Магнитное поле сердечника достигает более сильных пиков в одной полярности, чем в другой).Эта асимметрия приводит к значительному содержанию второй гармоники (например, 120 Гц в энергосистеме с частотой 60 Гц) в первичном токе и, следовательно, является точным индикатором броска тока. Если реле 87 предназначено для обнаружения этой гармонической частоты, оно может быть сконфигурировано для обеспечения дополнительного ограничения или даже полного запрета («блокирования») своего собственного срабатывания до тех пор, пока гармоники не утихнут и трансформатор не стабилизируется до нормального режима работы.

Дифференциальная токовая защита трехфазных трансформаторов и трансформаторных батарей — более сложное дело, и не просто потому, что их всего три.Силовые трансформаторы часто имеют разную конфигурацию первичной и вторичной обмоток (например, звезда-треугольник или треугольник-звезда). Таким образом, токи, входящие и выходящие из силового трансформатора, могут не совпадать по фазе друг с другом, и в таких случаях нельзя напрямую сравнивать друг с другом для дифференциальной токовой защиты. Рассмотрим этот пример, где первичная обмотка — звезда, а вторичная обмотка — треугольник. Для простоты мы рассмотрим трансформатор с равным числом витков на каждой обмотке, так что каждая пара первичной / вторичной обмоток имеет соотношение витков 1: 1.{o} \) сдвиг фазы, передаваемый силовым трансформатором, мы должны соединить трансформаторы тока в дополнительной конфигурации треугольник-звезда, чтобы 87 реле могли сравнивать синфазные токи от первичной и вторичной сторон силового трансформатора.

На этой принципиальной схеме мы видим, как необходимо подключить первичный и вторичный трансформаторы тока (трансформаторы тока на стороне звезды на силовом трансформаторе соединены треугольником, а трансформаторы тока на стороне треугольника трансформатора соединены звездой) для обеспечения согласования 30 \ (^ {o} \) фазовый сдвиг.Токи, генерируемые каждой вторичной обмоткой ТТ, помечены строчными буквами (\ (i \), а не \ (I \)), чтобы представить их меньшие значения:

Обратите внимание на то, как каждый ток, входящий в сдерживающую катушку (RC) реле 87, выходит из другой удерживающей катушки с тем же математическим выражением, что указывает на равные значения тока. Это будет верно до тех пор, пока все соотношения ТТ правильные, а токи на входе и выходе силового трансформатора соответствуют друг другу.

Если обмотки силового трансформатора имеют соотношение витков 1: 1, как в случае этой демонстрационной схемы, токи вторичной линии будут больше, чем токи первичной линии, в \ (\ sqrt {3} \) раз, из-за к тому факту, что первичные обмотки соединены звездой (токи обмотки такие же, как и линейные токи), в то время как вторичные обмотки соединены треугольником (токи обмоток объединяются, образуя большие линейные токи).Это означает, что каждый вторичный ТТ будет видеть больший линейный ток, чем каждый из соответствующих первичных ТТ. Однако, учитывая тот факт, что трансформаторы тока на первичной стороне силового трансформатора имеют свои вторичные обмотки, соединенные треугольником, фактическая величина тока, которую они посылают на катушки реле 87, будет такой же, как величина тока, подаваемого на реле 87. другими трансформаторами тока при равных соотношениях трансформаторов тока со всех сторон.

Если обмотки силового трансформатора имеют соотношение витков, отличное от 1: 1, трансформаторы тока, установленные на первичной и вторичной линиях, вероятно, также будут иметь разные отношения.Маловероятно, что трансформаторы тока будут демонстрировать точно дополнительные отношения к внутренним отношениям обмоток силового трансформатора, что означает, что, когда эти трансформаторы тока подключены к 87 реле, их выходные токи будут , а не по величине. Унаследованные электромеханические реле 87 были оснащены «ответвлениями», которые можно было установить в различных соотношениях для выравнивания токов ТТ с точностью до нескольких процентов, согласованных друг с другом. {o} \) между первичной и вторичной сторонами, при этом сторона низкого напряжения трансформатора запаздывает.

Современные цифровые реле 87 предлагают «компенсацию ТТ», которая может использоваться вместо дополнительных подключений для коррекции фазового сдвига силового трансформатора звезда-треугольник, а также коррекции коэффициентов ТТ, которые не идеально согласованы. Вместо того, чтобы тщательно подключать вторичные обмотки всех ТТ таким образом, чтобы фазовые углы первичной и вторичной стороны и значения тока совпадали для всех нормальных условий работы трансформатора, мы можем подключать ТТ так, как сочтем нужным (обычно в конфигурации звезды. с обеих сторон для простоты) и пусть реле математически сопоставляет углы и величины.Эта цифровая альтернатива, конечно, требует пристального внимания к настройкам реле, чтобы работать.

(PDF) Дифференциальная защита для трехфазных силовых трансформаторов произвольной формы

212 Ссылки

[56] П. Херлет, J-C. Рибу, Ж. Марголофф, А. Танги, «Французский опыт создания фазосдвигающих трансформаторов

», CIGRÉ SC A2-204, сессия 2006 г., Париж, Франция.

[57] П. Лю, О. П. Малик, Д. Чен, Г. С. Хоуп, Ю. Го «Улучшенная работа дифференциальной защиты силового трансформатора

от внутренних неисправностей», IEEE

Транзакции по подаче питания, том.7, выпуск 4, стр. 1912–1919, октябрь 1992 г.

[58] Силовой трансформатор, международный стандарт IEC 60076, первое издание 1997–10 гг.

[59] Р. Грюнбаум, М. Норузиан, Б. Торвальдссон, «ФАКТЫ — мощные системы

для гибкой передачи энергии», ABB Review № 5, 1999.

[60] R.G. Андрей, М.Е. Рахман, К. Коппель, Дж. П. Артауд, «Новая конструкция автотрансформатора

, улучшающая работу энергосистемы», IEEE Transactions

о поставке электроэнергии, том 17, выпуск 2, стр.523-527, апрель 2002.

[61] Р.С. Гиргис, Э. teNyenhuis «Характеристики пускового тока современных конструкций силовых трансформаторов

», Общее собрание Энергетического общества,

июнь 2007 г., стр. 1-6.

[62] Transformer Book, Технологический университет Тампере, (http://www.e-

leeh.org/transformer/).

[63] В. Бартли, «Анализ отказов трансформаторов», Международная ассоциация

, 36-я ежегодная конференция инженерных страховщиков, Стокгольм, Швеция, 2003.

[64] В. Зейтлингер, «Фазовые трансформаторы», VA TECH T&D (VA TECH

ELIN TRANSFORMATOREN GmbH), публикация, 2001 г., www.vatechtd.com.

[65] Y.C. Канг, Э. Джин, С. Канг, П.А. Crossley, «Дифференциальное реле с компенсацией тока

для защиты трансформаторов», IEE Proceedings-Generation,

Transmission & Distribution, Vol. 151, № 3, стр. 281-289, май 2004 г.

[66] Y.C. Канг, Б. Ли, С.Х. Канг, П.А. Crossley, «Защита трансформатора

на основе увеличения потоковых связей», IEE Proceedings-Generation,

Transmission & Distribution, Vol. 151, № 4, стр. 548-554, июль 2004 г.

[67] З. Гайич, И. Иванкович, Б. Филипович-Грчич, «Проблемы дифференциальной защиты для комбинированного автотрансформатора

— фазосдвигающего трансформатора

», Конференция IEE on

Developments in Power System Protection, Амстердам, Нидерланды, апрель 2004 г.

(PDF) Схема дифференциальной защиты для типичного трехфазного силового трансформатора

209

M.O. Oyedoh et al. / Нигерийский научно-исследовательский журнал инженерных наук и наук об окружающей среде

4 (1) 2019 стр. 201-209

ССЫЛКИ

Адель А. и Рахман М. А. (2011). Методика проектирования программного обеспечения для дифференциальной защиты силовых трансформаторов.

В: Материалы Международной конференции по электрическим машинам и приводам IEEE (IEMDC), IEEE 2011,

ноября

1-3, 2011, Ньюфаундленд, Канада.

Али Э., Хелал А., Десуки Х., Шебл К. и Малик О. П. (2018). Дифференциальная защита силового трансформатора с использованием соотношений тока и напряжения

. Исследование электроэнергетических систем, 154, стр. 140-150.

Динеш, К. Н., Рамапрабха, Б. Р. и Нагараджан, В. (2015). Новое решение для ограничения короткого замыкания на землю с низким сопротивлением

Неисправность реле импеданса. Международный журнал электротехники, компьютеров, энергетики, электроники и

Коммуникационная инженерия, 9 (8), стр.809-814.

Гузьма А., (2000). Анализ характеристик традиционных и усовершенствованных реле дифференциальной защиты трансформатора.

В: Материалы 36-й ежегодной конференции по энергетическим системам Миннесоты, 12–17 ноября 2000 г., Миннеаполис,

США.

Махмуд, А. М., Эль-Наггар, М. Ф. и Элдин Э. Х., (2012). Новый метод защиты силового трансформатора

на основе переходных компонентов. Энергетические процедуры, 14, стр. 318-324.

Майкл П., (2017). Цифровая обработка сигналов 101. 2-е изд., Новизна, стр. 99–115

Пукел Г. Дж., Мур Х. М. и Лик В. (2006). Диагностика трансформатора: широко используемые и новые методы. In:

Proceedings of the International Conference on Condition Monitoring and Diagnosis (CMD), 2-5 апреля 2006 г.,

Changwon, South Korea.

Рина, М. и Дхатрак, Р. (2014). Исследование влияния пускового тока намагничивания на различные номиналы трансформаторов

. Международный журнал перспективных исследований в области электротехники, электроники и приборостроения

Engineering, 3 (4), стр.9021-9027

Ручита П., Наушин К. (2016). Обзор: Защита трансформатора от пускового тока намагничивания и различные схемы защиты

. Международный научно-исследовательский журнал техники и технологий, 3 (5), стр. 2982-2986.

Ситалекшми К., Сингх С. Н. и Шривастава С. К. (2011). Стабильность частоты и напряжения с помощью синхрофазора —

Схема сброса нагрузки на основе

для самовосстановления энергосистемы. Транзакции IEEE в Smart Grid 2 (2), 221-230.

Терзия, В., Вальверде, Г., Цай, Д., Регульски, П., Мадани, В., Фитч, Дж., Скок, С., Бегович, М.М. и Phadke, A. (2011).

Глобальный мониторинг, защита и контроль будущих электрических сетей. Труды IEEE, 99 (1), стр.

80-93.

Lucas Nülle — Реле дифференциальной защиты трансформатора / генератора с выдержкой по току

Учебный пульт с цифровой трехфазной дифференциальной защитой по току и временной защитой от сверхтоков для машин и трансформаторов (защищаемый объект).Уведомления о неисправностях и рабочее состояние отображаются светодиодами и отображаются на дисплее.

Функции токовой дифференциальной и максимальной токовой защиты

Настраиваемые задержки срабатывания
Настраиваемые характеристики срабатывания
Настраиваемые пределы срабатывания с независимой выдержкой времени

  • Дифференциальная защита по току (Id)
  • Стабилизирующая токовая защита (Is)
  • Функции контроля и защиты:

    • Дифференциальная защита трансформатора (для 2 обмоток), Id, кривая с калибровкой нулевой точки и тремя настройками градиента, плюс нестабилизированный сильноточный дифференциальный каскад IdH, стабилизация по 2-й, 4-й и 5-й гармоникам (ANSI 87T)
    • Дифференциальная защита по току заземления, IdE, кривая аналогична 87T (ANSI 87TN)
    • Защита от перегрузки по току / короткого замыкания (ненаправленная) (ANSI 50P / 51P)
    • I2>, асимметричная защита нагрузки с оценкой токов обратной последовательности (ANSI 46)
    • ThA, защита от перегрузки с тепловизором и отдельными настройками для сигнализации и отключения (ANSI 49T)
    • Ih3 / In, обнаружение броска тока перегрузки по току — защита от короткого замыкания (ANSI броски тока)
    • IE, максимальная токовая защита / защита от короткого замыкания (ненаправленная) (ANSI 50N / 51N)
    • Защита от отказа автоматического выключателя (ANSI 50BF)
    • Контроль цепи отключения (ANSI 74TC)
    • Контроль трансформатора тока (ANSI 60L)

    Входы и выходы: 4-мм безопасные гнезда:

    • 6 цифровых входов
    • 5 Реле аварийной сигнализации (250 В перем. Тока, 2 А)

    Управление и отображение:

    • ЖК-дисплей со светодиодной подсветкой, разрешение 128 x 64 пикселей
    • 14 Произвольно определяемые двухцветные светодиодные индикаторы
    • 8 Программные клавиши для управления и настройки параметров

    Технические данные:

    • Номинальный ток: I N = 1 A
    • Номинальное напряжение: U N = 400 В
    • Номинальная частота: 50-60 Гц
    • Интерфейсы: USB, Modbus TCP / IP
    • Размеры: 297 x 456 x 250 мм (В x Ш x Г)
    • Вес: 7 кг

    Типы дифференциалов и принцип их работы

    Как и большинство вещей в современных автомобилях, простая зубчатая передача, известная как дифференциал, подвергалась постоянным усовершенствованиям и экспериментам, что привело к появлению целого ряда типов, каждый из которых имеет свои преимущества и недостатки.

    Концепция дифференциала, то есть позволяющая колесам, установленным на одной оси, вращаться независимо друг от друга, является древней конструкцией, и первый известный пример ее использования был зарегистрирован в Китае в период 1 -го -го тысячелетия до нашей эры.

    Хотя это было задолго до изобретения автомобиля, повозки, повозки и колесницы по-прежнему страдали от той же проблемы, связанной с буксованием или волочением одного колеса на поворотах, повышением износа и повреждением дорог.

    Появление двигателей, приводящих в движение передние или задние колеса для приведения в движение транспортного средства, вместо того, чтобы просто тянуть их на лошади, добавило новую проблему, которую нужно было преодолеть — как обеспечить независимое вращение, сохраняя при этом возможность приводить в движение оба колеса.

    Первые автомобили не пытались, они просто приводили в движение только одно колесо на независимой оси. Но это было далеко от идеала, так как это означало, что они были недостаточно мощными и часто сталкивались с проблемами сцепления с дорогой на любом другом участке, кроме твердой, ровной поверхности.

    В конечном итоге это привело к разработке открытого дифференциала до того, как были разработаны другие более сложные типы для преодоления более сложных условий вождения.

    Посмотрите это видео, в котором с помощью трехмерных изображений объясняется, как работают следующие типы дифференциала:

    Открытый дифференциал:

    Дифференциал в своей основной форме состоит из двух половин оси с шестерней на каждом конце, соединенных вместе третьей шестерней, составляющих три стороны квадрата.Обычно это дополняется четвертой передачей для дополнительной силы, завершая квадрат.

    Этот базовый блок затем дополняется кольцевой шестерней, добавляемой к корпусу дифференциала, который удерживает основные основные шестерни — и эта кольцевая шестерня позволяет приводить колеса в движение, соединяясь с приводным валом через шестерню.


    В этом примере вы можете увидеть три стороны внутреннего зубчатого колеса, составляющего основной механизм, причем большая синяя шестерня представляет коронную шестерню, которая будет соединяться с приводным валом.На левом изображении показан дифференциал с обоими колесами, вращающимися с одинаковой скоростью, а на правом изображении показано, как внутренние шестерни входят в зацепление, когда одно колесо вращается медленнее, чем другое.


    Эта зубчатая передача составляет дифференциал открытого типа, и является наиболее распространенным типом автомобильного дифференциала , от которого происходят более сложные системы.

    Преимущество этого типа в основном ограничивается основной функцией любого дифференциала, как описано ранее, с упором в первую очередь на обеспечение возможности поворота оси более эффективно, позволяя колесу за пределами поворота двигаться с большей скоростью, чем внутреннее колесо. поскольку он покрывает больше земли.Он также выигрывает от того, что его базовая конструкция относительно дешева в производстве.

    Недостатком этого типа является то, что, поскольку крутящий момент распределяется равномерно между обоими колесами, количество мощности, которое может передаваться через колеса, ограничивается колесом с наименьшим сцеплением.

    По достижении предела тяги обоих колес вместе, колесо с наименьшим тяговым усилием начнет вращаться, что еще больше снижает этот предел, поскольку сопротивление со стороны уже вращающегося колеса еще меньше.

    Прочтите наш блог о турбонагнетателях, нагнетателях и безнаддувных двигателях

    Заблокированный дифференциал:

    Блокировка или блокировка дифференциала — вариант, встречающийся на некоторых транспортных средствах, в первую очередь на тех, которые едут по бездорожью. По сути, это открытый дифференциал с возможностью блокировки на месте для создания фиксированной оси вместо независимой. Это может происходить вручную или с помощью электроники в зависимости от технологии в автомобиле.

    Преимущество заблокированного дифференциала заключается в том, что он может получить значительно большее тяговое усилие, чем открытый дифференциал .Поскольку крутящий момент не разделен поровну 50/50, он может передавать больший крутящий момент на колесо, которое имеет лучшее сцепление с дорогой, и не ограничивается более низким сцеплением другого колеса в любой данный момент.

    Поскольку маловероятно, что вы будете двигаться со скоростью и обычно путешествуете по неровной поверхности, проблема сопротивления шин и износа на поворотах на неподвижной оси является меньшей проблемой.

    Одним из недостатков заблокированных дифференциалов называется заедание, которое возникает, когда в трансмиссии накапливается избыточная энергия вращения (крутящий момент), и ее необходимо высвободить — обычно это достигается за счет отрыва колес от земли для сброса положения.Или просто сняв замки, когда они больше не нужны.

    Представьте себе длинную картонную трубку, удерживаемую на каждом конце, а затем скручивающую трубку в противоположных направлениях до такой степени, что трубка не могла больше выдерживать силу, складывалась и рвалась — это связывание. Это происходит из-за того, что колеса движутся с разной скоростью, что приводит к скручиванию осей и увеличению давления на шестерни, но нагрузки на колеса и их повышенного тягового усилия достаточно, чтобы предотвратить проскальзывание шин и сбросить давление.

    Сварной / золотниковый дифференциал:

    Сварные дифференциалы, по сути, такие же, как заблокированный дифференциал, только он был постоянно приварен из открытого дифференциала к фиксированной оси (также известный как дифференциал золотника). Обычно это делается только в определенных обстоятельствах, когда характеристики заблокированного дифференциала / Фиксированная ось, которая облегчает одновременное вращение обоих колес, желательны — например, в автомобилях, предназначенных для дрифта.

    Обычно это не рекомендуется, так как тепло от сварки может снизить прочность компонентов и увеличить риск катастрофического отказа детали — что может даже привести к поломке шестерен дифференциала, вылетевшей через корпус дифференциала и создавая опасность для других участников дорожного движения и пешеходов.

    Дифференциал повышенного трения:

    LSD объединяет преимущества открытого и заблокированного дифференциалов через более сложную систему. Есть две категории, которые используют разные формы сопротивления для достижения одного и того же эффекта:

    Механическое сцепление LSD:

    Этот тип LSD окружает ту же самую центральную шестерню, видимую на открытом дифференциале, парой нажимных колец, которые оказывают усилие на два набора дисков сцепления, расположенных рядом с шестернями.Это обеспечивает сопротивление независимому вращению колес, изменяя действие дифференциала с открытого на заблокированный — и обеспечивая ему повышенное тяговое усилие, которое этот тип выигрывает от более открытого дифференциала.

    На этом разрезе вы можете видеть нажимные кольца (также срезанные), окружающие центральные шестерни, которые при вращении раздвигаются центральными штифтами шестерни, прижимающимися к наклонным поверхностям. Это движение толкает нажимные кольца на пакеты сцепления (желтый и синий) с обеих сторон, создавая сопротивление и изменяя поведение оси с открытого на фиксированный.

    LSD механического сцепления также подразделяются на подтипы, которые ведут себя немного по-разному и изменяются при воздействии давления на диски сцепления и нажимные кольца:

    • В LSD с односторонним движением давление действует только при ускорении. Это означает, что при прохождении поворотов и выключении питания дифференциал ведет себя как открытый тип, позволяя им поворачиваться независимо, но при ускорении принудительное вращение дифференциала создает трение в дисках сцепления, блокируя их на месте, чтобы получить больше тяги.
    • A Двусторонний LSD делает шаг вперед и оказывает давление на диски сцепления также при замедлении, чтобы улучшить устойчивость при торможении на дорожном покрытии с изменчивой поверхностью.
    • с полуторным ходом снова пытается объединить лучшее из обоих подтипов, оказывая большее давление при ускорении и меньшее — при замедлении.

    Обратной стороной механических LSD является то, что они требуют регулярного технического обслуживания для поддержания работоспособности и склонны к полному износу, что приводит к дорогостоящей замене деталей.

    Вязкостной LSD:

    Второй тип дифференциала повышенного трения, в котором вместо муфт используется густая жидкость для создания сопротивления, необходимого для изменения поведения дифференциала между разомкнутым и заблокированным состояниями. Из-за того, что у них меньше движущихся частей, чем у механических LSD, VLSD проще, но также имеют более широкий спектр преимуществ и недостатков по сравнению с ними.

    В своей основной работе эффект более плавный в применении, чем механические LSD, поскольку сопротивление растет в унисон со скоростью, на которой движутся колеса по сравнению с корпусом дифференциала, обеспечивая очень постепенное увеличение.

    VLSD также могут более эффективно направлять крутящий момент на колесо, которое имеет большее тяговое усилие . Поскольку жидкость действует так, чтобы сопротивляться пониженной скорости, если колесо когда-либо теряет сцепление с дорогой и вращается, разница в скорости между двумя колесами внутри дифференциала создает большее сопротивление медленнее движущемуся колесу, передавая больший крутящий момент от ведущего вала на него.

    VLSD становятся менее эффективными при длительном использовании, поскольку жидкость нагревается, они становятся менее вязкими и обеспечивают меньшее сопротивление.Он также не может блокироваться так же полно, как механический LSD, из-за того, что жидкость не может обеспечить абсолютное сопротивление в подходящем пространстве.

    Недостатком как механических, так и вязкостных LSD является то, что система не всегда эффективно направляет крутящий момент во время прохождения поворотов на высокой скорости, поскольку она может интерпретировать более быстро движущееся внешнее колесо как потерю сцепления. Затем он направляет крутящий момент на внутреннее колесо, создавая избыточную / недостаточную поворачиваемость в момент, противоположный тому, когда это необходимо.

    Дифференциал Torsen:

    В дифференциале Torsen ( Tor que — Sen sing) используется хитроумная передача, обеспечивающая тот же эффект, что и дифференциал с ограниченным скольжением, без необходимости использования муфт или гидравлического сопротивления.

    Это достигается за счет добавления слоя червячной передачи к традиционной передаче открытого дифференциала. Эти наборы червячных шестерен, действующих на каждую ось, обеспечивают сопротивление, необходимое для передачи крутящего момента, которое затем достигается за счет того, что червячные шестерни находятся в постоянном зацеплении друг с другом через соединенные прямозубые цилиндрические шестерни.

    На первом и втором изображениях показаны три пары червячных шестерен, находящихся в зацеплении с каждой половиной оси — с цилиндрическими шестернями на конце каждого червяка, соединяющими пары.Именно это соединение передает крутящий момент от одного колеса к другому, когда одна ось начинает вращаться быстрее, чем другая. В то время как первое и второе изображения имеют оригинальный дизайн торсена, третье изображение представляет собой вторую версию дифференциала торсена. В новой конструкции червячные шестерни переставлены на одну линию с осями, но при этом выполняют то же механическое действие. Каждая червячная передача все еще находится в контакте со своей парой, и только одна сторона оси с зазорами в шестерне удаляет зацепление с другой стороны.

    Постоянное зацепление между двумя сторонами дифференциала имеет дополнительное преимущество, заключающееся в немедленной передаче крутящего момента, что делает его чрезвычайно чувствительным к изменяющимся дорожным и дорожным условиям.

    В то время как открытый дифференциал всегда должен распределять крутящий момент 50/50 между каждым колесом, дифференциал Torsen способен направлять больший процент крутящего момента через одно колесо в зависимости от передаточных чисел шестерен. Этот устраняет ограничение мощности, которое испытывают открытые дифференциалы , потому что величина доступного крутящего момента не ограничивается величиной тяги в любом колесе.

    Кроме того, зубчатая передача также может быть обработана таким образом, чтобы придавать другое отношение сопротивления при ускорении и замедлении, как это делает полутораходовой дифференциал повышенного трения.

    Все это достигается механически без использования электроники или каких-либо скоропортящихся деталей, приносимых в жертву трению, и в целом дифференциал Torsen является превосходной механической системой , которая сочетает в себе основные преимущества всех перечисленных ранее типов дифференциалов.

    Прочтите наш блог о трансмиссиях с двойным сцеплением и принципах их работы

    Активный дифференциал:

    Очень похоже на дифференциал повышенного трения, в активном дифференциале по-прежнему используются механизмы, обеспечивающие сопротивление, необходимое для передачи крутящего момента с одной стороны на другую, но вместо того, чтобы полагаться на чисто механическую силу, эти муфты могут активироваться электронным способом.

    Активный дифференциал может использовать электронику для искусственного изменения механических сил, которые система испытывает при изменении условий движения.Это делает их управляемыми и, следовательно, программируемыми, а с помощью ряда датчиков на транспортном средстве компьютер может автоматически определять, на какие ведущие колеса и когда направить мощность.

    Это радикально улучшает характеристики, особенно на несовершенных дорожных покрытиях, и особенно предпочитают водители ралли, чьи автомобили выдерживают быстро меняющиеся условия движения и нуждаются в системе, которая может не отставать от их непрерывных настроек транспортного средства.

    Дифференциал с вектором крутящего момента:

    TVD продвигает эту усовершенствованную с помощью электроники систему еще дальше, используя ее для управления углом или вектором транспортного средства в поворотах и ​​выходе из них, побуждая определенные колеса получать больший крутящий момент в ключевые моменты, что улучшает характеристики прохождения поворотов.

    Активировав сцепление, противоположное тому, что обычно включает LSD с чисто механическим приводом, вы можете использовать этот эффект для помощи в рулевом управлении, а также снизить мощность, преодолевая недостатки системы LSD.

    При входе в поворот, многоходовой LSD оказывает сопротивление обоим колесам, чтобы хотя бы частично заблокировать ось и стабилизировать ее при торможении, которое затем высвобождается, когда скорость колеса падает и автомобиль поворачивает, позволяя колесам вращаться. на разных скоростях.

    Однако, вместо того, чтобы ослабить сопротивление на обоих колесах, TVD продолжает активировать сцепление только на внешнем колесе, увеличивая сопротивление, испытываемое этим колесом, и заставляя систему передавать через него больший крутящий момент. Этот дисбаланс внешней силы способствует более резкому повороту автомобиля в повороте и снижению недостаточной поворачиваемости.

    Продолжая применять это сопротивление через поворот, когда транспортное средство проходит вершину и начинает ускоряться, оно будет продолжать игнорировать нормальный многосторонний LSD, который снова будет интерпретировать более быстрое движение внешнего колеса как пробуксовку и отвлекать крутящий момент во время ускорения до внутреннее колесо, которое воспринимается как лучшее сцепление.

    Поскольку TVD оказывает большее сопротивление сцеплению внешних колес, обманом заставляет систему отводить через него больший крутящий момент — увеличивая мощность, которую можно приложить , и уменьшая недостаточную поворачиваемость, возникающую при ускорении на выходе из поворота.

    Желтая стрелка указывает на передачу крутящего момента через угол, создаваемую искусственным сопротивлением, оказываемым TVD на внешнее колесо. Это обеспечивает большее ускорение на выходе из поворота, в то же время повышая поворачиваемость автомобиля.

    Дифференциал с вектором крутящего момента способен передавать 100% доступного крутящего момента через одно колесо, когда это необходимо в самых экстремальных обстоятельствах.

    Обратной стороной этой системы является то, что она очень сложна и очень дорога, и обычно используется только для гонок / треков из-за ее потенциала для прохождения поворотов на высокой скорости.

    У каждой системы есть свои преимущества и недостатки, и хотя более сложные системы, как правило, лучше, их стоимость намного превышает стоимость более простых систем.

    Как и в случае с любым другим автомобилем, польза, которую вы получите от каждой системы, зависит от того, что именно вы будете делать со своим автомобилем и на что вам нужен ваш дифференциал. У вас не будет особой необходимости в дифференциале векторизации крутящего момента при посещении местного супермаркета, если только вы не воображаете себя в следующем WRC и не можете позволить себе штраф — но вам может понадобиться дифференциал блокировки, если вы живете в сельской местности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *