Труб расчет: Трубный калькулятор онлайн, вес погонного метра стальных труб
калькулятор, формула и таблица СНИП 2.04.01-85
На чтение 7 мин. Обновлено
Предприятия и жилые дома потребляют большое количество воды. Эти цифровые показатели становятся не только свидетельством конкретной величины, указывающей расход.
Помимо этого они помогают определить диаметр трубного сортамента. Многие считают, что расчет расхода воды по диаметру трубы и давлению невозможен, так, как эти понятия совершенно не связаны между собой.
Но, практика показала, что это не так. Пропускные возможности сети водоснабжения зависимы от многих показателей, и первыми в этом перечне будут диаметр трубного сортамента и давление в магистрали.
Выполнять расчет пропускной способности трубы в зависимости от ее диаметра рекомендуют еще на стадии проектирования строительства трубопровода.
Расчитаем пропускную способность трубы с помощью онлайн калькулятора
Чтобы правильно посчитать, необходимо обратить внимание, что 1кгс/см2 = 1 атмосфере; 10 метров водяного столба = 1кгс/см2 = 1атм; 5 метров водяного столба = 0.5 кгс/см2 и = 0.5 атм и т.д. Дробные числа в онлайн калькулятор вводятся через точку (Например: 3.5 а не 3,5)
Введите параметры для расчёта:
Какие факторы влияют на проходимость жидкости через трубопровод
Критерии, оказывающие влияние на описываемый показатель, составляют большой список. Вот некоторые из них.
- Внутренний диаметр, который имеет трубопровод.
- Скорость передвижения потока, которая зависит от давления в магистрали.
- Материал, взятый для производства трубного сортамента.
Определение расхода воды на выходе магистрали выполняется по диаметру трубы, ведь эта характеристика совместно с другими влияет на пропускную способность системы.
Можно даже заявить, что на определение «трубной геометрии» не влияет только протяженность сети. А сечение, напор и другие факторы играют очень важную роль.
Помимо этого, некоторые параметры системы оказывают на показатель расхода не прямое, а косвенное влияние. Сюда относится вязкость и температура прокачиваемой среды.
Подведя небольшой итог, можно сказать, что определение пропускной способности позволяет точно установить оптимальный тип материала для строительства системы и сделать выбор технологии, применяемой для ее сборки. Иначе сеть не будет функционировать эффективно, и ей потребуются частые аварийные ремонты.
Расчет расхода воды по диаметру круглой трубы, зависит от его размера. Следовательно, что по большему сечению, за определенный промежуток времени будет выполнено движение значительного количества жидкости. Но, выполняя расчет и учитывая диаметр, нельзя сбрасывать со счетов давление.
Если рассмотреть этот расчет на конкретном примере, то получается, что через метровое трубное изделие сквозь отверстие в 1 см пройдет меньше жидкости за определенный временной период, чем через магистраль, достигающей в высоту пару десятков метров. Это закономерно, ведь самый высокий уровень расхода воды на участке достигнет самых больших показателей при максимальном давлении в сети и при самых высоких значениях ее объема.
Вычисления сечения по СНИП 2.04.01-85
Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.
Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:
Внешний объем трубного сортамента (мм)
Примерное количество воды, которое получают в литрах за минуту
Примерное количество воды, исчисляемое в м3 за час
20
15
0,9
25
30
1,8
32
50
3
40
80
4,8
50
120
7,2
63
190
11,4
Если ориентироваться на нормы СНИП, то в них можно увидеть следующее – суточный объем потребляемой воды одним человеком не превышает 60 литров. Это при условии, что дом не оборудован водопроводом, а в ситуации с благоустроенным жильем, этот объем возрастает до 200 литров.
Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.
Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:
Формула для вычисления по давлению и диаметру трубы: q = π×d²/4 ×V
В формуле: q показывает расход воды. Он исчисляется литрами. d – размер сечению трубы, он показывается в сантиметрах. А V в формуле – это обозначение скорости передвижения потока, она показывается в метрах на секунду.
Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.
Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.
В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.
По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное действие на пропускные возможности сети водоснабжения.
Определение потери напора
Расчет прохода воды производят не только по диаметру трубы, он вычисляется по падению давления. Вычислить потери можно посредством специальных формул. Какие формулы использовать, каждый будет решать самостоятельно. Чтобы рассчитать нужные величины, можно использовать различные варианты. Единственного универсального решения этого вопроса нет.
Но прежде всего, необходимо помнить, что внутренний просвет прохода пластиковой и металлопластиковой конструкции не поменяется через двадцать лет службы. А внутренний просвет прохода металлической конструкции со временем станет меньше.
А это повлечет за собою потери некоторых параметров. Соответственно, скорость воды в трубе в таких конструкциях является разной, ведь по диаметру новая и старая сеть в некоторых ситуациях будут заметно отличаться. Так же будет отличаться и величина сопротивления в магистрали.
Так же перед тем, как рассчитать необходимые параметры прохода жидкости, нужно принять к сведению, что потери скорости потока водопровода связанны с количеством поворотов, фитингов, переходов объема, с наличием запорной арматуры и силой трения.
Расчет расхода воды простыми методами провести нелегко. Но, при малейших затруднениях всегда можно обратиться за помощью к специалистам или воспользоваться онлайн калькулятором. Тогда можно рассчитывать на то, что проложенная сеть водопровода или отопления будет работать с максимальной эффективностью.
Видео – как посчитать расход воды
Калькулятор расчета минимально необходимого диаметра водопроводной трубы
Если хозяин дома берется за самостоятельное проектирование системы водоснабжения, то ему предстоит решить множество различных задач. Одна из основных – это правильный подбор труб для прокладки магистралей от источника к дому и для внутренней разводки. Они выбираются по нескольким важным критериям, в зависимости от условий эксплуатации на конкретном участке.
Согласитесь, мало толку от неправильно спланированного водопровода, если от недостаточного поступления воды из кранов льются слабые струйки, принять нормально душ в приобретенной кабинке – не выходит, стиральная или посудомоечная машина начинают сигнализировать кодами ошибок и т.п. Не особо комфортна бывает даже та ситуация, когда работа одного сантехнического прибора сказывается на возможностях другого. Например, кто-то моется в ванной, и поэтому на кухне практически ничего нельзя делать из-за слаого напора. А ведь таких точек в доме может быть и намного больше! Все эти неприятности, чаще всего – от неправильно подобранного диаметра трубы на определённом участке. И он просто не справляется с нужными объёмами подачи воды на конечные устройства.
Определиться с этим параметром поможет калькулятор расчета минимально необходимого диаметра водопроводной трубы. Ниже будет дано несколько полезных пояснений по работе с ним.
Калькулятор расчета минимально необходимого диаметра водопроводной трубы
Перейти к расчётам
Пояснения по работе с калькулятором
Расчет – совсем несложен, базируется на известных физических и геометрических формулах и на рекомендациях по эксплуатации водопровода и сантехнических устройств, изложенных в СНИП.
Итак, необходимо найти диаметр D, который обеспечит прохождение через трубу за единицу времени требуемого количества воды.
Вспоминаем формулу площади круга (в нашем случае – это внутреннее сечение трубы)
S = π × D² / 4
S — площадь сечения трубы, м²
D — внутренний диаметр трубы, м;
π — не требующая особого представления константа, значение которой можно взять равным 3.14 – супер-точность нам не требуется.
Отсюда, диаметр равен:
D = √(4 × S / π)
Идем дальше. Наш водопровод с сечением S должен быть способен обеспечить определенный расход воды на точке потребления (одной или одновременно нескольких).
Количество воды, проходящее через трубу в единицу времени (а это и есть расход), определяется несложной формулой:
Q = S × V
Q — необходимый расход воды, м³/с;
V — скорость потока воды в трубе, м/с.
Преобразуем это выражение для определения площади сечения S…
S = Q / V
… и подставим в первую формулу. Тем самым – получим необходимое нам рабочее выражение.
D = √ (4 × Q / (π × V))
Так как в формуле присутствуют числовые константы, можно сделать с ними некоторые упрощения. В итоге перед нами готовая формула для дальнейшей работы.
D = 1,129 × √ (Q / V)
Теперь о том, откуда берутся исходные величины.
- Расход воды. Любой сантехнический прибор характеризуется свойственным ему расходом воды (литров в секунду), при котором не нарушается комфортность пользования или корректность работы устройства. Аналогично – и для бытовой техники, подключаемой непосредственно к водопроводным трубам (стиральных и посудомоечных машин).
Примерные значения таких расходов показаны в таблице ниже:
Разновидности сантехнических приборов и бытовой техники, подключаемой к водопроводу. | Примерный нормальный расход (литров в секунду) |
---|---|
Смеситель умывальника | 0.1 |
Сливной бачок унитаза | 0.1 |
Биде | 0.08 |
Смеситель на кухонной мойке | 0.15 |
Посудомоечная машина | 0.2 |
Смеситель с душем для ванны | 0.25 |
Душевая кабинка обычная | 0.25 |
Душевая кабинка или ванна (джакузи) с гидромассажем | 0.![]() |
Стиральная машина-автомат | 0.3 |
«Хозяйственный» кран ¾» (полив участка, мытье автомобиля, уборка и прочие надобности) | 0.3 |
Практика, да и расчеты показывают, что для любой точки, потребляющей до 0,15 л/с обычно бывает достаточно диаметра трубы в 15 мм (½»), до 0,25÷0,3 л/с – 20 мм (¾»). Но хорошо спланированная водопроводная система должна обеспечивать и одновременную работу нескольких сантехнических и бытовых приборов. То есть значение расхода может быть и значительно выше. Безусловно, вероятность того, что все они будут включены разом – очень невелика. Поэтому при подсчете суммарного расхода в формулу вводят вероятностный коэффициент, зависящий от общего количества подключённых на рассчитываемом участке точек потребления.
В нашем калькуляторе этот коэффициент тоже предусмотрен. Пользователю необходимо лишь указать, какие конкретно приборы и в каком количестве подключены в системе (не менее двух). Или на определённом ее участке, для которого проводится расчет – например, на одном из ответвлений коллектора.
Суммарный расход программа подсчитает самостоятельно.
- Скорость потока воды в трубе. В соответствии с положениями СНИП 2.04.01-85 «Внутренний водопровод и канализация зданий» скорость потока во внутренних водопроводных сетях ограничивается максимальным значением в 3 м/с. Однако, практика показывает, что для домашних систем с их преобладанием труб малого диаметра (до 1 дюйма) скорость потока желательно иметь поменьше. Дело в том, что с ее ростом резко увеличиваются показатели гидравлического сопротивления. И плюс к тому — на этом фоне водопровод частенько начинает чувствительно шуметь.
Считается, что для домашних условий оптимальными значениями скорости, при которых достигается «гармония» между производительностью трубы (расходом) и требуемым напором воды, будет диапазон примерно от 0,6 до 1,0 м/с.
Впрочем, это рекомендация, и никто не мешает просчитать и для других показателей скорости — как больше указанного «номинала», так и меньше его. В программе такая возможность предусмотрена.
Результат показывается в миллиметрах.
Надо сказать, что это, возможно, еще не конечный… Возможно, придётся вносить корректировки на потери напора.
Как проверить проектируемый участок водопровода на потери напора?
Если упустить этот момент, то может случиться, что напор воды на конечной точке окажется слабоват для нормальной работы устройств. Заранее проверить собственный проект поможет калькулятор расчета потерь напора в водопроводе.
Как посчитать пропускную способность трубы для разных систем – примеры и правила
Содержание:
Прокладка трубопровода – дело не очень сложное, но достаточно хлопотное. Одной из самых сложных проблем при этом является расчет пропускной способности трубы, которая напрямую влияет на эффективность и работоспособность конструкции. В данной статье речь пойдет о том, как рассчитывается пропускная способность трубы.
Пропускная способность – это один из важнейших показателей любой трубы. Несмотря на это, в маркировке трубы этот показатель указывается редко, да и смысла в этом немного, ведь пропускная способность зависит не только от габаритов изделия, но и от конструкции трубопровода. Именно поэтому данный показатель приходится рассчитывать самостоятельно.
Способы расчета пропускной способности трубопровода
Перед тем, как посчитать пропускную способность трубы, нужно узнать основные обозначения, без которых проведение расчетов будет невозможным:
- Внешний диаметр. Данный показатель выражается в расстоянии от одной стороны наружной стенки до другой стороны. В расчетах этот параметр имеет обозначение Дн. Внешний диаметр труб всегда отображается в маркировке.
- Диаметр условного прохода. Это значение определяется как диаметр внутреннего сечения, который округляется до целых чисел.
При расчете величина условного прохода отображается как Ду.
Расчет проходимости трубы может осуществляться по одному из методов, выбирать который необходимо в зависимости от конкретных условий прокладки трубопровода:
- Физические расчеты. В данном случае используется формула пропускной способности трубы, позволяющая учесть каждый показатель конструкции. На выборе формулы влияет тип и назначение трубопровода – например, для канализационных систем есть свой набор формул, как и для остальных видов конструкций.
- Табличные расчеты. Подобрать оптимальную величину проходимости можно при помощи таблицы с примерными значениями, которая чаще всего используется для обустройства разводки в квартире. Значения, указанные в таблице, довольно размыты, но это не мешает использовать их в расчетах. Единственный недостаток табличного метода заключается в том, что в нем рассчитывается пропускная способность трубы в зависимости от диаметра, но не учитываются изменения последнего вследствие отложений, поэтому для магистралей, подверженных возникновению наростов, такой расчет будет не лучшим выбором.
Чтобы получить точные результаты, можно воспользоваться таблицей Шевелева, учитывающей практически все факторы, воздействующие на трубы. Такая таблица отлично подходит для монтажа магистралей на отдельных земельных участках.
- Расчет при помощи программ. Многие фирмы, специализирующиеся на прокладке трубопроводов, используют в своей деятельности компьютерные программы, позволяющие точно рассчитать не только пропускную способность труб, но и массу других показателей. Для самостоятельных расчетов можно воспользоваться онлайн-калькуляторами, которые, хоть и имеют несколько большую погрешность, доступны в бесплатном режиме. Хорошим вариантом большой условно-бесплатной программы является «TAScope», а на отечественном пространстве самой популярной является «Гидросистема», которая учитывает еще и нюансы монтажа трубопроводов в зависимости от региона.
Расчет пропускной способности газопроводов
Проектирование газопровода требует достаточно высокой точности – газ имеет очень большой коэффициент сжатия, из-за которого возможны утечки даже через микротрещины, не говоря уже о серьезных разрывах. Именно поэтому правильный расчет пропускной способности трубы, по которой будет транспортироваться газ, очень важен.
Если речь идет о транспортировке газа, то пропускная способность трубопроводов в зависимости от диаметра будет рассчитываться по следующей формуле:
Где р – величина рабочего давления в трубопроводе, к которой прибавляется 0,10 МПа;
Ду – величина условного прохода трубы.
Указанная выше формула расчета пропускной способности трубы по диаметру позволяет создать систему, которая будет работать в бытовых условиях.
В промышленном строительстве и при выполнении профессиональных расчетов применяется формула иного вида:
- Qmax = 196,386 Ду2 * p/z*T,
Где z – коэффициент сжатия транспортируемой среды;
Т – температура транспортируемого газа (К).
Эта формула позволяет определить степень разогрева транспортируемого вещества в зависимости от давления. Увеличение температуры приводит к расширению газа, в результате чего давление на стенки трубы повышается (прочитайте: «Почему возникает потеря давления в трубопроводе и как этого можно избежать»).
Чтобы избежать проблем, профессионалам приходится учитывать при расчете трубопровода еще и климатические условия в том регионе, где он будет проходить. Если наружный диаметр трубы окажется меньше, чем давление газа в системе, то трубопровод с очень большой вероятностью будет поврежден в процессе эксплуатации, в результате чего произойдет потеря транспортируемого вещества и повысится риск взрыва на ослабленном отрезке трубы.
При большой необходимости можно определить проходимость газовой трубы с помощью таблицы, в которой описана взаимозависимость между наиболее распространенными диаметрами труб и рабочим уровнем давления в них. По большому счету, у таблиц есть тот же недостаток, который имеет рассчитанная по диаметру пропускная способность трубопровода, а именно – невозможность учесть воздействие внешних факторов.
![]()
Расчет пропускной способности канализационных труб
При проектировании канализационной системы нужно в обязательном порядке рассчитывать пропускную способность трубопровода, которая напрямую зависит от его вида (канализационные системы бывают напорными и безнапорными). Для осуществления расчетов используются гидравлические законы. Сами расчеты могут проводиться как при помощи формул, так и посредством соответствующих таблиц.
Для гидравлического расчета канализационной системы требуются следующие показатели:
- Диаметр труб – Ду;
- Средняя скорость движения веществ – v;
- Величина гидравлического уклона – I;
- Степень наполнения – h/Ду.
Как правило, при проведении расчетов вычисляются только два последних параметра – остальные после этого можно будет определить без особых проблем. Величина гидравлического уклона обычно равна уклону земли, который обеспечит движение стоков со скоростью, необходимой для самоочищения системы.
![]()
Скорость и предельный уровень наполнения бытовой канализации определяются по таблице, которую можно выписать так:
- 150-250 мм — h/Ду составляет 0,6, а скорость – 0,7 м/с.
- Диаметр 300-400 мм — h/Ду составляет 0,7, скорость – 0,8 м/с.
- Диаметр 450-500 мм — h/Ду составляет 0,75, скорость – 0,9 м/с.
- Диаметр 600-800 мм — h/Ду составляет 0,75, скорость – 1 м/с.
- Диаметр 900+ мм — h/Ду составляет 0,8, скорость – 1,15 м/с.
Для изделия с небольшим сечением имеются нормативные показатели минимальной величины уклона трубопровода:
- При диаметре 150 мм уклон не должен быть менее 0,008 мм;
- При диаметре 200 мм уклон не должен быть менее 0,007 мм.
Для расчета объема стоков используется следующая формула:
Где а – площадь живого сечения потока;
v – скорость транспортировки стоков.
Определить скорость транспортировки вещества можно по такой формуле:
где R – величина гидравлического радиуса,
С – коэффициент смачивания;
i – степень уклона конструкции.
Из предыдущей формулы можно вывести следующую, которая позволит определить значение гидравлического уклона:
Чтобы вычислить коэффициент смачивания, используется формула такого вида:
Где n – коэффициент, учитывающий степень шероховатости, который варьируется в пределах от 0,012 до 0,015 (зависит от материала изготовления трубы).
Значение R обычно приравнивают к обычному радиусу, но это актуально лишь в том случае, если труба заполняется полностью.
Для других ситуаций используется простая формула:
Где А – площадь сечения потока воды,
Р – длина внутренней части трубы, находящейся в непосредственном контакте с жидкостью.
Табличный расчет канализационных труб
Определять проходимость труб канализационной системы можно и при помощи таблиц, причем расчеты будут напрямую зависеть от типа системы:
- Безнапорная канализация. Для расчета безнапорных канализационных систем используются таблицы, содержащие в себе все необходимые показатели. Зная диаметр устанавливаемых труб, можно подобрать в зависимости от него все остальные параметры и подставить их в формулу (прочитайте также: «Как выполняется расчет диаметра трубопровода – теория и практика из опыта»). Кроме того, в таблице указан объем проходящей через трубу жидкости, который всегда совпадает с проходимостью трубопровода. При необходимости можно воспользоваться таблицами Лукиных, в которых указана величина пропускной способности всех труб с диаметром в диапазоне от 50 до 2000 мм.
- Напорная канализация. Определять пропускную способность в данном типе системы посредством таблиц несколько проще – достаточно знать предельную степень наполнения трубопровода и среднюю скорость транспортировки жидкости.
Читайте также: «Как рассчитать объем трубы – советы из практики».
Таблица пропускной способности полипропиленовых труб позволяет узнать все необходимые для обустройства системы параметры.
Расчет пропускной способности водопровода
Водопроводные трубы в частном строительстве применяются чаще всего. На систему водоснабжения в любом случае приходится серьезная нагрузка, поэтому расчет пропускной способности трубопровода обязателен, ведь он позволяет создать максимально комфортные условия эксплуатации будущей конструкции.
Для определения проходимости водопроводных труб можно использовать их диаметр (прочитайте также: «Как определить диаметр трубы – варианты замеров окружности»). Конечно, данный показатель не является основой для расчета проходимости, но его влияние нельзя исключать. Увеличение внутреннего диаметра трубы прямо пропорционально ее проходимости – то есть, толстая труба почти не препятствует движению воды и меньше подвержена наслоению различных отложений.
Впрочем, есть и другие показатели, которые также необходимо учитывать. Например, очень важным фактором является коэффициент трения жидкости о внутреннюю часть трубы (для разных материалов имеются собственные значения). Также стоит учитывать длину всего трубопровода и разность давлений в начале системы и на выходе. Немаловажным параметром является и количество различных переходников, присутствующих в конструкции водопровода.
Пропускная способность полипропиленовых труб водопровода может рассчитываться в зависимости от нескольких параметров табличным методом. Одним из них является расчет, в котором главным показателем является температура воды. При повышении температуры в системе происходит расширение жидкости, поэтому трение повышается. Для определения проходимости трубопровода нужно воспользоваться соответствующей таблицей. Также есть таблица, позволяющая определить проходимость в трубах в зависимости от давления воды.
Самый точный расчет воды по пропускной способности трубы позволяют осуществить таблицы Шевелевых. Помимо точности и большого числа стандартных значений, в данных таблицах имеются формулы, позволяющие рассчитать любую систему. Данный материал в полном объеме описывает все ситуации, связанные с гидравлическими расчетами, поэтому большинство профессионалов в данной области чаще всего используют именно таблицы Шевелевых.
Основными параметрами, которые учитываются в этих таблицах, являются:
- Внешний и внутренний диаметры;
- Толщина стенок трубопровода;
- Период эксплуатации системы;
- Общая протяженность магистрали;
- Функциональное назначение системы.
Заключение
Расчет пропускной способности труб может выполняться разными способами. Выбор оптимального способа расчета зависит от большого количества факторов – от размеров труб до назначения и типа системы. В каждом случае есть более и менее точные варианты расчета, поэтому найти подходящий сможет как профессионал, специализирующийся на прокладке трубопроводов, так и хозяин, решивший самостоятельно проложить магистраль у себя дома.
Расчет нагрузки на профильную трубу калькулятор
Используя профильную трубу для создания несущих конструкций, в обязательном порядке должны выполняться расчеты на изгиб. Такой вид трубного проката применяется в промышленном, коммерческом и частном строительстве. Из него изготавливают навесы, всевозможные каркасные и лестничные конструкции, фермы, стеллажи, козырьки, тепличные сооружения, элементы кровельной системы, беседки. Поэтому без правильных и тщательных расчетов никак не обойтись. Превышение допустимого давления приведет к деформации или разрыву изделия в месте сгибания профтрубы.
Схема 1
Используя методы расчета нагрузок на профильную трубу, можно:
- сохранить первоначальную форму изделий;
- придать конструкции повышенной прочности;
- увеличить период эксплуатации;
- минимизировать расходы на материале;
- избежать негативных разрушительных последствий.
Какая нагрузка действует на профтрубу?
Важным критерием, который учитывается при подсчетах, является время воздействия и тип нагрузок. Данные показатели регламентированы СП 20.13330.2011 «Нагрузки и воздействия». Различают силу давления:
- Постоянные, когда масса и воздействующая сила не меняются на протяжении длительного временного периода. Воздействия создаются элементами здания (несущими и ограждающими конструкциями), грунтами, гидростатическим давлением.
- Длительные. Временные перегородки из ГКЛ, стационарное оборудование, складируемые материалы, а также как результат изменения влажности или усадки.
- Кратковременные. Оборудование, вес людей и транспортных средств, климатические, создаваемые снегом, ветром, перепадами температур, обледенением.
- Особые. Сейсмические и взрывные воздействия, влекущие изменения структуры грунта, результат столкновения транспортных средств и обусловленные пожаром.
В Своде правил представлены формулы для подсчета, таблицы и схемы по каждому типу нагрузок. Также берется в учет реалистичное сочетание все типов давления.
Показатели массы и нагрузки на изгиб
При расчете профильной трубы: масса и изгиб являются основными показателями. Знать вес погонного метра проката нужно, чтобы не ошибиться в прочностных значениях создаваемой конструкции. Метод определения направлен на подбор оптимального сечения трубного проката при разной его длине. Наглядный пример соотношений этих двух показателей представлен в таблицах ниже.
Табл.№1. Значения для изделий квадратного сечения:
Табл. №2. Значения для изделий прямоугольного сечения:
Методы и формулы для вычисления
Чтобы рассчитать прочность трубы профильной на изгиб необходимо определить максимальное напряжение на ту либо иную точку конструкции. Каждый вид материала, из которого изготавливается прокатная продукция, обладает индивидуальным показателем напряжения и точкой сопротивления. В учет берутся следующие параметры: вид проката, сечение, толщина стенки, общие характеристики. Владея такими данными, можно предположить, какие будут последствия от воздействия различных факторов, в том числе окружающей среды. При давлении на поперечную часть профтрубы напряжение создается даже в точках, которые удалены от нейтральной оси.
Получить данные можно разными способами:
- Берутся готовые показатели из строительных справочников и подставляются в формулу. Такие действия предусматривают выбор трубного проката в соответствии с указанными характеристиками, что позволяет делать самые точные подсчеты прогиба. ГОСТ 8639-82 (для изделий квадратного сечения) и ГОСТ 8645-68 (прямоугольного) регламентированы: момент инерции трубы (I), длину пролета (L), нагрузку (Q), модуль упругости в соответствии СНиП. Схемы вычислений индивидуальные и для каждого случая подбирается формула.
- Самостоятельно рассчитывается прочность на изгиб. В данном случае применим Закон Гука, который выражается формулой: Pизг = M/W, где Pизг — величина прочностного предела, M — изгибающий момент; W — сопротивление.
Такие вычисления требуют дополнений: учитываются характеристики исходного материала, давления и т.д.
- При помощи калькулятора. В специальную расчетную таблицу вносятся исходные данные — длина пролета, нормативная и расчетная нагрузка, Fmax,количество изделий, расчетное сопротивление, параметры. После нажатия на клавишу «Рассчитать» выдается готовый результат.
Не стоит выполнять расчеты самостоятельно. Нужно уметь пользоваться ГОСТами, СНиПами и владеть сложной специфической техникой — сопроматом. При малейших неточностях в подсчетах не избежать серьезных последствий.
Проще применить один из калькуляторов для расчета нагрузки на профильную трубу:
http://www.rsi-llc.ru/calculator/
http://svoydomtoday.ru/building-onlayn-calculators/336-rschet-kvadratnoy-trubi-na-progib-i-izgib.html
https://trubanet.ru/onlajjn-kalkulyatory/raschet-balok-iz-trub-na-izgib.html
Также полезно будет просмотреть видео:
youtube.com/embed/P5RZDuu5Hsk?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Калькулятор расчета характеристик кольцевого сечения (трубы)
- Подробности
Калькулятор онлайн рассчитывает геометрические характеристики (площадь, моменты инерции, моменты сопротивления изгибу, радиусы инерции) плоского сечения в виде кольца (трубы) по известным линейным размерам и выводит подробное решение.
Исходные данные: | ||
Наружный диаметр d, мм | ||
Толщина стенки s, мм | ||
Определение вспомогательных данных: | ||
Внутренний диаметр d1, мм | расчет внутреннего диаметра кольца | |
Решение: | ||
Площадь сечения, мм2 | расчет площади сечения кольца | |
Осевые моменты инерции относительно центральных осей, мм4 | расчет момента инерции кольца относительно оси ОХ расчет момента инерции кольца относительно оси ОY | |
Моменты сопротивления изгибу, мм3 | расчет момента сопротивления изгибу кольца относительно оси ОХ расчет момента сопротивления изгибу кольца относительно оси ОY | |
Радиусы инерции сечения, мм | расчет радиуса инерции кольца относительно оси ОХ расчет радиуса инерции кольца относительно оси ОY |
Помощь на развитие проекта premierdevelopment. ru
Спасибо, что не прошели мимо!
I. Порядок действий при расчете характеристик кольцевого сечения (трубы):
- Для проведения расчета требуется ввести наружный диаметр сечения d и толщину стенки s.
- По введенным данным программа автоматически вычисляет внутренний диаметр сечения d1.
- Результаты расчета площади, моментов сопротивления изгибу, моментов и радиусов инерции кольцевого сечения выводятся автоматически.
- На рисунке справа приведены необходимые размеры элементов сечения.
II. Примечание:
- Блок исходных данных выделен желтым цветом, блок промежуточных вычислений выделен голубым цветом, блок решения выделен зеленым цветом.
Выполнение расчетов высоты дымовой трубы
Дымоходному каналу при изготовлении камина или печи уделяется большое внимание, так как от этого элемента зависит, насколько эффективно будет функционировать вся система. При этом одной из основных задач является выполнение расчетов высоты дымовой трубы и ее сечения. Данные параметры определяют условия оптимальной тяги в зависимости от типа отопительного прибора и прочих параметров. Сегодня мы поговорим о том, как выполняются подобные расчеты. При этом не призываем выполнять их самостоятельно, так как без практики никакая теория не может гарантировать качественного результата — однако новые знания никому не повредят.
Выполнение расчетов высоты дымовой трубы
Содержание статьи
Для чего требуется вычислять высоту дымохода
Причин, по которым мы производим расчеты высоты дымовой трубы, несколько.
- Когда этот параметр подобран верно, в значительной степени увеличивается коэффициент полезного действия используемого отопительного прибора. Это говорит о том, что тепло, им производимое, будет отдаваться в помещение быстро при минимальных затратах топлива.
Нюансы воздействия на дымоход ветра, высоких густых деревьев и стен
- Вторая причина – это безопасность для здоровья людей, находящихся в помещении.
Если высота подобрана неверно, то велика вероятность, что продукты сгорания, вредные для человека, будут проникать в помещение.
Хорошая тяга у дымохода
- Третья причина – это исключение угрозы возникновения пожара. Дело в том, что при недостаточной тяге горячие газы не будут успевать остывать до нужной температуры, что, как понимаете, и увеличивает вероятность возгорания.
Допустимые возвышения дымохода над строениями
Цены на сэндвич-дымоходы
Сэндвич-дымоход
Как самому рассчитать высоту трубы
Далее будет приведена методика самостоятельного расчета — ориентирована она на СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование». Согласно этому документу мы располагаем следующими сведениями:
- минимальная высота дымовой трубы, которая считается от оголовка до колосника, составляет 5 м;
- оптимальная же высота должна быть 6 м.
Проход круглой трубы через кровлю
Однако эти данные ничего абсолютно не говорят о том, какой параметр выбрать в конкретном случае, под конкретное оборудование.
Поэтому специалисты пользуются следующей формулой.
Формула расчета высоты трубы
Ориентируясь на представленную формулу, выведем основные параметры, которые необходимы для точных расчетов.
- А – метеорологические условия окружающей местности. Имеется в виду некоторый коэффициент, который уже рассчитан профессионалами и представлен в описательных документах. Например, для северных регионов установлено значение этого параметра в 160.
- Mi – это масса веществ, проходящих через дымовую трубу за определенную единицу времени. Этот параметр можно узнать из документации, прилагаемой к отопительному прибору.
- F – скорость оседания частиц, которые образуются во время горения топлива. Этот показатель можно найти в нормативных документах по используемому типу топлива. В качестве примера возьмем дрова и электрический нагреватель. В первом случае рассчитано значение в 25 единиц, а во втором – 1.
- (Спдкi и Сфi) – концентрация разных веществ в газе, который необходимо вывести.
Оба показателя также берутся из инструкции, прилагаемой к отопительному оборудованию.
- V – объем отводимого газа.
- Т – температурная разница между поступающим воздухом и газом на выходе из трубы.
Вычисление высоты дымохода
Высота дымохода над крышей тоже очень важный параметр. Он определяется, исходя из формы крыши – все данные также взяты из приведенного выше СНиП.
Плоская крыша здания
Если крыша у строения плоская, то высота трубы определяется так.
Таблица. Высота трубы для плоской кровли.
Условия | Установленная высота над кровлей |
---|---|
У крыши отсутствуют парапеты и прочие установленные устройства. | 120 см. |
На крыше присутствуют защитные бордюры и прочее оборудование. | К максимальной высоте установленного оборудования прибавляется 1 м.![]() |
На крыше установлена вентиляционная труба. | Высота дымохода на 50 см должна быть больше высоты вентиляционной трубы. При этом расстояние между ними минимально должно составить 5 м. |
Высота дымохода на плоской крыше
Если крыша у вас скатная, то на высоту дымохода будет влиять его расположение относительно конька крыши – имеется в виду удаленность (расстояние между ними).
Таблица. Высота трубы для скатной кровли.
Условия | Установленная высота над кровлей |
---|---|
Расстояние от конька до дымовой трубы составляет 1,5 м или меньше. | Минимальная высота берется 50 см. |
Расстояние составляет 1,5-3 м. | Высота дымохода устанавливается по самой высокой точке крыши. |
Расстояние более 3 м. | В этом случае необходимо замерить угол между горизонтальной линией, проведенной по уровню конька и верхней точкой дымохода – он должен составить ровно 10 градусов.![]() |
Минимальная высота дымохода должна всегда быть 5 м
Также на высоту дымохода над коньком могут повлиять сторонние факторы, такие как расположенные в непосредственной близости строения и высокие деревья. Наличие таких помех образует зону ветрового подпора. В этой зоне практически невозможно обустроить хорошую тягу, которой будет достаточно для нормальной работы отопительного прибора. Чтобы выйти из этой ветровой зоны, требуется увеличить высоту дымовой трубы минимум на 50 см.
Для обеспечения стабильной тяги важно, чтобы оголовок трубы на крыше имел достаточную высоту относительно конька и не попадал в зону ветрового подпора
Аналогичная ситуация будет, если расположить отопительное оборудование в низком подсобном помещении, пристроенном к дому или расположенному в непосредственной близости. Оба варианта показаны на схеме выше.
Цены на различные виды кровельных коньков
Конек кровельный
Калькулятор расчета высоты конька
Перейти к расчётамКонек – важная часть стропильной системы
Расчет сечения дымовой трубы
Итак, с высотой мы определились, теперь поговорим про сечение, ведь оба показателя неразрывно связаны друг с другом.
Расчет сечения дымовой трубы
Чтобы приступать к расчетам тяги, определяемся с диаметром. Если говорить про математические расчеты, то они слишком сложны, чтобы пытаться их выполнить без соответствующей подготовки. Поэтому будем ориентироваться на рекомендации специалистов, сильно не углубляясь в дебри.
- Мощность отопительного оборудования не превышает 3,5 кВт — будет достаточно дымохода с сечением сторон 14х14 см.
- Если отопительный котел имеет мощность от 4 до 5 кВт, сечение будет уже большим – 14х20 см.
- При значениях мощности от 5 до 7 кВт, сечение выбирается не меньше 14х27 см.
Дымоход для твердотопливного котла
Сразу уточняем, что приведенные значения являются минимально возможными.
Совет! Использовать приведенные рекомендации вы можете только в том случае, когда вам известна мощность прибора, что и не удивительно. При отсутствии этих данных, как ни крути, придется выполнять расчеты.
Отношение площади проходного сечения дымовой трубы к площади портала камина
Давайте попробуем разобраться с основными принципами таких вычислений. Для работы вам потребуется узнать следующие данные.
- Количество топлива, которое сгорает в приборе за 1 час использования – можно выполнить эксперимент или все же отыскать технические характеристики (В).
- Объем газов, выделяемых при сгорании топлива – это значение можно узнать из различных сводных таблиц, согласно виду топлива (V).
- Температура газа на входе в дымовую трубу. Чаще всего это значение колеблется в пределах 150-200 градусов по Цельсию(t). Для бытовых печей в расчетах берется меньшее значение из указанного диапазона, хотя по факту оно может составлять и 130, и 120 градусов, но никак не ниже, иначе на выходе из дымовой трубы появится точка росы, и будет образовываться конденсат.
Схема газового котла и температура дымовых газов
- Высота дымохода – об этом мы уже подробно поговорили в предыдущей главе.
- Скорость прохождения газа по трубе – этот показатель по умолчании берется равным 2 м/с.
- Показатель естественной тяги – этот параметр обычно считается равным 4 Па, на каждый метр высоты дымохода.
Процесс отвода продуктов горения
Из всего перечисленного основным параметром является количество топлива, поэтому без этого знания точных результатов расчетов вы получить не сможете. Остальные, указанные в списке значения, для всех котлов примерно одинаковые, поэтому решающей роли они не играют.
Теперь, когда мы знаем, что требуется для расчетов, давайте попробуем их самостоятельно выполнить. Для этого следует запомнить, что тяга в дымоходе – это ни что иное, как разность плотностей выходящего газа и воздуха, умноженная на высоту конструкции. То есть отсюда и берется тот факт, что объем сгоревшего топлива напрямую влияет на диаметр конструкции.
Почему важно проверять тягу в дымоходе?
Итак, все расчеты выполняются в следующей последовательности.
- Мы знаем, какова мощность отопительного оборудования.
По этим данным мы можем точно определить объем газа, входящего в систему: Vг = BхVх(1+t/273)/360, (в м³/сек).
- Также нам известна скорость движения газа по дымоходу. Этот параметр поможет нам определить площадь сечения трубы: (F=πхd²/4)=S (в м²).
- Если вы помните школьный курс геометрии, то наверняка знаете, что существует формула расчета площади круга, при помощи которой мы сможем легко определить диаметр трубы: dт=√4хBхVх(1+t/273)/πхωх360 (в метрах).
Площадь круга
Теперь проведем пробный расчет по указанному алгоритму для дымовой трубы бытового назначения. Предположим, что в камере сгорания, на колоснике, может за час сгореть 10 кг топлива (максимальное значение). В качестве топлива выступают дрова, влажность которых составляет 25%. При сгорании этого топлива будет выделено 10 м³/кг газа. Все необходимые данные у нас имеются, так что можем приступать.
- Итак, сначала находим объем газа на входе: Vг = 10х10х(1+150/273)/360 = 0,043 м³/сек.
- Находим площадь сечения трубы, достаточную для отведения такого объема газа: S = (4х0,043)/3,14х2 = 0,027 м2.
- И берем формулу расчета диаметра, подставляя в нее полученные значения: √4х0,34х0.043х(1+150/273)/3,14х10х360=0,165 м.
Расчет сечения и высоты дымохода
Отлично, нам известен диаметр, теперь мы можем переходить к расчету тяги дымохода.
- Также нам понадобится значение мощности – находим его по установленным коэффициентам и знанию, что за час сгорает 10 кг топлива: Q = 10х3300х1,16 = 38,28 кВт.
- Далее находится значение теплопотери трубы на 1 метр длины. Используем для этого показатель теплопотери трубы на 1 метр ее длины, метраж и фактические теплопотери: 0,34/0,196 = 1,73 градуса потерь на метр.
- Нам известно, что минимальная длина трубы составляет 5 метров. Убираем отсюда два метра высоты самой печи и остается 3 м чистого дымохода. Рассчитываем падение температуры газов, проходящих по этому участку: 150 – (1,73х3) = 144,8 градусов – температура газов на выходе из трубы.
- Берем за основу показатели плотности при нулевой температуре 1,2932 и при полученных 144,8 градусов – 0,8452, получаем естественный напор газов в 1,34 ммН2О.
Такая тяга обеспечит хорошее горение дров в топке.
Понятие тяги
Конечно, данные расчеты могут показаться очень сложными, тем более что мы не стали углубляться во многие подформулы, получая некоторые коэффициенты. Но если разобраться, все становится понятным. При этом напомним, что браться за такие расчеты лучше мастеру, а информацию мы предоставляем для общего ознакомления.
Цены на дефлекторы для дымоходов
Дефлектор на дымоход
Видео — Как рассчитать высоту дымохода
Калькулятор расхода трубы| Уравнение Хазена-Вильямса
Уравнение Хазена-Вильямса
Уравнение Хазена-Вильямса — это эмпирически выведенная формула, которая описывает скорость воды в гравитационном потоке. Помните, что уравнение Хазена-Вильямса справедливо только для воды — его применение для любой другой жидкости даст вам неточные результаты. Он также не учитывает температуру воды и является точным только для диапазона 40–75 ° F (4–25 ° C).
Вы можете записать эту формулу как:
v = k * C * R 0.63 * S 0,54
где:
- v обозначает скорость воды, текущей в трубе (в м / с для метрической системы и фут / с для британской системы мер)
- C — коэффициент шероховатости
- R означает гидравлический радиус (в метрах или футах в зависимости от системы единиц)
- S — уклон трубы (безразмерный)
- k — коэффициент преобразования, зависящий от системы единиц (k = 0.849 для метрической системы и k = 1,318 для британской)
Вам не нужно знать значения C , R или S , чтобы использовать наш калькулятор расхода трубы — мы рассчитаем их для вас!
Коэффициент шероховатости C зависит от материала трубы. Вы можете выбрать материал из раскрывающегося списка или ввести значение C вручную, если вам известен коэффициент шероховатости вашей проточной системы. Мы используем следующие значения:
Материал | Коэффициент шероховатости |
---|---|
Чугун | 100 |
Бетон | 110 |
Медь | 140 |
Пластик | 150 |
Сталь | 120 |
Гидравлический радиус , R, — это пропорция между площадью и периметром вашей трубы.Если труба круглая, вы найдете ее по следующему уравнению:
R = A / P = πr² / 2πr = r / 2 = d / 4
, где r — радиус трубы, а d — диаметр трубы. Вы можете просмотреть и изменить все эти параметры (площадь, периметр, гидравлический радиус) в расширенном режиме этого калькулятора расхода трубы.
Чтобы рассчитать уклон , S, , нужно разделить длину трубы на перепад (разница высот между начальной и конечной точками).Помните, что если наклон трубы непостоянен, а постоянно меняется, реальная скорость потока воды будет отличаться от полученного результата.
Если вы знаете скорость гравитационного потока, вы также можете найти расход , Q, , умножив площадь поперечного сечения трубы на скорость потока:
Q = A * v
Обязательно используйте наш калькулятор расхода для преобразования расхода (объемного расхода) и массового расхода.
Формула, теория и уравнения для расчета падения давления в трубе
Когда жидкость течет по трубе, возникает падение давления в результате сопротивления потоку. Также может наблюдаться прирост / потеря давления из-за изменения высоты между началом и концом трубы. Этот общий перепад давления в трубе связан с рядом факторов:- Трение между жидкостью и стенкой трубы
- Трение между соседними слоями самой жидкости
- Потери на трение при прохождении жидкости через фитинги, изгибы, клапаны или компоненты трубопровода
- Потеря давления из-за изменения высоты жидкости (если труба не горизонтальна)
- Прирост давления из-за любого напора жидкости, добавляемого насосом
Расчет падения давления в трубе
Чтобы вычислить потерю давления в трубе, необходимо вычислить падение давления, обычно в напоре жидкости, для каждого из элементов, вызывающих изменение давления.Однако для расчета потерь на трение, например, в трубе, необходимо вычислить коэффициент трения, который будет использоваться в уравнении Дарси-Вайсбаха, определяющем общие потери на трение.
Сам коэффициент трения зависит от внутреннего диаметра трубы, внутренней шероховатости трубы и числа Рейнольдса, которое, в свою очередь, рассчитывается на основе вязкости жидкости, плотности жидкости, скорости жидкости и внутреннего диаметра трубы.
Следовательно, необходимо выполнить ряд дополнительных вычислений для расчета общих потерь на трение.Работая в обратном направлении, мы должны знать плотность и вязкость жидкости, диаметр трубы и свойства шероховатости, вычислить число Рейнольдса, использовать его для расчета коэффициента трения с использованием уравнения Колебрука-Уайта и, наконец, ввести коэффициент трения в коэффициент Дарси. Уравнение Вайсбаха для расчета потерь на трение в трубе.
После расчета потерь на трение в трубе нам необходимо учесть возможные потери в фитингах, изменение высоты и любой добавленный напор насоса.Суммирование этих потерь / прибылей даст нам общее падение давления в трубе. В следующих разделах каждый расчет рассматривается по очереди.
Расчет потерь на трение труб
Теперь нам нужно рассчитать каждый из элементов, необходимых для определения потерь на трение в трубе. Ссылки в следующем списке предоставляют более подробную информацию о каждом конкретном расчете:
Наше программное обеспечение Pipe Flow автоматически рассчитывает потери на трение в трубах с использованием уравнения Дарси-Вайсбаха, поскольку это наиболее точный метод расчета для несжимаемых жидкостей, и он также признан в отрасли точным для сжимаемого потока при соблюдении определенных условий.
Расчет потерь в трубной арматуре
Потери энергии из-за клапанов, фитингов и изгибов вызваны некоторым локальным нарушением потока. Рассеяние потерянной энергии происходит на конечном, но не обязательно коротком участке трубопровода, однако для гидравлических расчетов принято учитывать всю величину этих потерь в месте нахождения устройства.
Для трубопроводных систем с относительно длинными трубами часто бывает так, что потери в фитингах будут незначительными по сравнению с общей потерей давления в трубе.Однако некоторые местные потери, например, вызванные частично открытым клапаном, часто бывают очень значительными и никогда не могут быть названы незначительными потерями, и их всегда следует учитывать.
Потери, создаваемые конкретным трубопроводным фитингом, измеряются с использованием реальных экспериментальных данных, а затем анализируются для определения коэффициента K (местного коэффициента потерь), который можно использовать для расчета потерь фитинга, поскольку он изменяется в зависимости от скорости проходящей жидкости. через это.
Наши программы для измерения расхода в трубах позволяют легко автоматически включать потери в фитингах и другие локальные потери в расчет падения давления, поскольку они поставляются с предварительно загруженной базой данных фитингов, которая содержит множество отраслевых стандартных коэффициентов K для различных клапанов и фитингов различных размеров. .
Все, что нужно сделать пользователю, — это выбрать соответствующий фитинг или клапан, а затем выбрать «Сохранить», чтобы добавить его к трубе и включить его в расчет потери давления в трубе.
По этой ссылке можно получить дополнительную информацию о коэффициентах K фитинга и уравнении потерь в фитингах.
Расчет потерь компонентов труб
Часто существует множество различных типов компонентов, которые необходимо моделировать в системе трубопроводов, например, теплообменник или охладитель.Некоторые компоненты могут создавать известную фиксированную потерю давления, однако более вероятно, что падение давления будет изменяться в зависимости от скорости потока, проходящего через компонент.
Большинство производителей предоставляют кривую производительности компонентов, которая описывает характеристики расхода и потери напора их продукта. Эти данные затем используются для расчета потери давления, вызванной компонентом для заданного расхода, но сама скорость потока также будет зависеть от потери давления после компонента, поэтому очень сложно смоделировать характеристики потери напора компонента без использование соответствующего программного обеспечения, такого как Pipe Flow Expert.
Потеря давления из-за изменения отметки
Поток в восходящей трубе
Если начальная отметка трубы ниже конечной отметки, то помимо трения и других потерь будет дополнительная потеря давления, вызванная повышением отметки, которая, измеренная в напоре жидкости, просто эквивалентна повышению отметки.
то есть при более высоком уровне жидкости добавляется меньшее давление из-за уменьшения глубины и веса жидкости выше этой точки.
Поток в падающей трубе
Если начальная отметка трубы выше, чем конечная отметка, то, наряду с трением и другими потерями, будет дополнительный прирост давления, вызванный перепадом отметки, который, измеренный в напоре жидкости, просто эквивалентен понижению отметки.
то есть при более низком уровне жидкости добавляется большее давление из-за увеличения глубины и веса жидкости выше этой точки.
Энергетические и гидравлические марки
Высота жидкости в трубе вместе с давлением в трубе в определенной точке и скоростным напором жидкости может быть суммирована для расчета так называемой линии энергетической градации.
График гидравлического уклона может быть рассчитан путем вычитания скоростного напора жидкости из EGL (линия энергетического уклона) или просто путем суммирования только подъема жидкости и давления в трубе в этой точке.
Расчет напора насоса
Внутри трубопроводной системы часто находится насос, который создает дополнительное давление (известное как «напор насоса») для преодоления потерь на трение и других сопротивлений. Производительность насоса обычно предоставляется производителем в виде кривой производительности насоса, которая представляет собой график зависимости расхода от напора, создаваемого насосом, для диапазона значений расхода.
Поскольку напор, создаваемый насосом, изменяется в зависимости от расхода, определение рабочей точки на кривой производительности насоса не всегда является легкой задачей. Если вы угадываете расход, а затем рассчитываете добавленный напор насоса, это, в свою очередь, повлияет на перепад давления в трубе, что само по себе фактически влияет на скорость потока, который может возникнуть.
Конечно, если вы используете наше программное обеспечение Pipe Flow Expert, оно найдет для вас точную рабочую точку на кривой насоса, гарантируя, что потоки и давления сбалансированы по всей вашей системе, чтобы дать точное решение для вашей конструкции трубопровода.
Как бы вы ни рассчитали напор насоса, добавленный в трубу, этот дополнительный напор жидкости необходимо добавить обратно к любому перепаду давления, которое произошло в трубе.
Расчет общего падения давления в трубе
Таким образом, давление на конце рассматриваемой трубы определяется следующим уравнением (где все значения указаны в м напора жидкости):
P [конец] = P [начало] — Потери на трение — Потери в фитингах — Потери в компонентах + Высота [начало-конец] + Напор насоса
где
P [end] = Давление на конце трубы
P [начало] = Давление в начале трубы
Отметка [начало-конец] = (Отметка в начале трубы) — (Высота в конце трубы)
Напор насоса = 0, если насос отсутствует
Следовательно, перепад давления или, скорее, перепад давления dP (это может быть усиление) между началом и концом трубы определяется следующим уравнением:
dP = Потери на трение + Потери в фитингах + Потери в компонентах — Высота [начало-конец] — Напор насоса
где
P [end] = Давление на конце трубы
P [начало] = Давление в начале трубы
Отметка [начало-конец] = (Отметка в начале трубы) — (Высота в конце трубы)
Напор = 0, если насос отсутствует
Примечание. DP обычно указывается как положительное значение, относящееся к падению давления .Отрицательное значение указывает на увеличение давления.
Программное обеспечениеPipe Flow ® Официальное
Программное обеспечениеPipe Flow Expert используется проектировщиками трубопроводных систем и инженерами-гидротехниками более чем в 100 странах мира. Программа рассчитывает скорость потока, падение давления в трубопроводе и производительность насоса. Он может моделировать трубопроводные системы с несколькими точками подачи, сливными баками, компонентами, клапанами и несколькими насосами, включенными последовательно или параллельно.
Расчет необходимого напора насоса в трубопроводной системе Копирование атрибутов трубы
Узнайте, почему инженеры более чем в 100 странах мира используют программное обеспечение Pipe Flow Expert
Часто задаваемые общие вопросы — Программное обеспечение Pipe Flow Expert
Часто задаваемые технические вопросы — Программное обеспечение Pipe Flow Expert
Программное обеспечение Pipe Flow Expert можно использовать для моделирования трубопроводных систем с несколькими трубами до более сложных систем с несколькими сотнями труб.Узнайте, как программное обеспечение Pipe Flow Expert Piping Design может помочь вам (точно так же, как оно помогает другим профессиональным инженерам в более чем 100 странах мира).
Программный калькулятор Pipe Flow Wizard можно использовать для определения расхода, падения давления, размера или длины трубы на основе расчета одной трубы. Узнайте, как калькулятор для одной трубы с мастером расчета расхода в трубе может помочь вам выполнять расчеты для трубы одной длины, экономя ваше время и усилия и повышая надежность расчетных результатов.
Программное обеспечение Pipe Flow Advisor можно использовать для расчета расходов в открытых каналах, определения времени опорожнения резервуаров и определения объемов различной формы. Узнайте, как программное обеспечение Pipe Flow Advisor для каналов и резервуаров может помочь вам в расчетах каналов, резервуаров и объемов.
Отличное программное обеспечение, отличный сервис.
Мартин Маурач, Национальный исследовательский совет, Канада
Программное обеспечение Pipe Flow Expert было необычным инструментом для меня в Джорджии-Тихоокеанский регион в течение почти 3 лет, которые я использую.
Это одна из лучших программ в своем жанре, которые я когда-либо использовал. .Роберт Гастон, Джорджия-Тихоокеанский регион США
Pipe Flow Expert произвел революцию в нашей разработке , привнеся в нашу работу такой уровень знаний, который помог нам достичь большей энергоэффективности в наших гидравлических системах. См. Полный электронный адрес Ала .
Эл Трасс, Fountainhead Group Consulting Ltd, Канада
Ваш превосходный продукт просто превосходен …. позвольте мне сказать, что я не могу достаточно высоко отзываться о PipeFlow, вашей поддержке и ваших продуктах. См. Полный электронный адрес Рика .
Рик Фуллер, инженер по гидравлическому моделированию, Ричмонд, Калифорния, США
Простота в использовании, непревзойденная ценность, непревзойденная поддержка!
Купите онлайн сейчас и получите лицензию в
Программное обеспечение Pipe Flow Расположен в Дом Спрингфилда, Уотер-лейн, Уилмслоу, Чешир, СК9 5БГ, Англия. Телефон: +44 161 408 3569. https://www.pipeflow.com. |
Сжатый воздух — потеря давления в трубопроводах
Падение давления в линиях сжатого воздуха можно рассчитать по эмпирической формуле
dp = 7,57 q 1,85 L 10 4 / (d 5 p) (1)
, где
dp = падение давления (кг / см 2 )
q = объемный расход воздуха при атмосферных условиях (FAD) (м 3) / мин)
L = длина трубы (м)
d = внутренний диаметр трубы (мм)
p = начальное давление по манометру (кг / см 2 )
- 1 кг / см 2 = 98068 Па = 0.98 бар = 0,97 атмосферы = 736 мм рт. Ст. = 10000 мм H 2 O = 10 м H 2 O = 2050 фунтов на квадратный дюйм = 14,2 фунтов на кв. Дюйм = 29 дюймов рт. O
Примечание! — давление — это «сила на единицу площади», и обычно используемые единицы давления, такие как кг / см 2 и аналогичные, в принципе неверны, поскольку кг является единицей массы. Массу нужно умножить на силу тяжести г , чтобы получить силу (вес).
Сжатый воздух — Номограмма падения давления
Номограмма ниже может использоваться для оценки падения давления в трубопроводах сжатого воздуха с давлением 7 бар (100 фунтов на кв. Дюйм).
Онлайн-калькулятор падения давления в трубопроводе сжатого воздуха — метрические единицы
Калькулятор ниже можно использовать для расчета падения давления в трубопроводах сжатого воздуха.
Онлайн-калькулятор падения давления в трубопроводе сжатого воздуха — британские единицы
Калькулятор, представленный ниже, можно использовать для расчета падения давления в трубопроводах сжатого воздуха.
ВНИМАНИЕ! — падение давления выше 1 кг / см 2 (14-15 фунтов на кв. Дюйм) в общем случае не имеет значения, а приведенные выше формулы и калькуляторы могут быть недействительными.
Для более точного расчета — или для более длинных трубопроводов с большими перепадами давления — разделите линию на части и рассчитайте перепад давления и конечное давление для каждой части. Используйте конечное давление в качестве начального давления для следующих частей. Конечное давление после последней части — это конечное давление в конце трубопровода. Падение давления для всего трубопровода также можно рассчитать путем суммирования падений давления для каждой части.
Таблица падения давления в трубопроводе сжатого воздуха
С помощью этой таблицы Excel (в метрических единицах) можно выполнить расчеты для других значений давления и / или длины труб.
Одна и та же таблица, включая различные типы труб (британские единицы измерения).
Или, как вариант — Трубопроводы сжатого воздуха — расчет падения давления — в Google Docs. Вы можете открывать, сохранять и изменять свою собственную копию электронной таблицы Google, если вы вошли в свою учетную запись Google.
Таблица падения давления в трубопроводе сжатого воздуха — начальное манометрическое давление 7 кг / см 2 (100 фунтов на кв. Дюйм)
Падение давления в 100 м (330 футов) График сжатого воздуха 40 стальных трубопроводов указаны в таблицах внизу:
Гидравлические расчеты трубопроводов.Расчет диаметра трубопровода. Подбор трубопроводов
Пример № 1
Каковы потери напора на местные сопротивления в горизонтальном трубопроводе диаметром 20 х 4 мм, по которому вода перекачивается из открытого резервуара в реактор с давлением 1,8 бар? Расстояние между резервуаром и реактором 30 м. Расход воды 90 м3 / час. Общий напор 25 м. Коэффициент трения принят равным 0,028.
Решение:
Скорость потока воды в трубопроводе равна:
w = (4 · Q) / (π · d 2 ) = ((4 · 90) / (3,14 · [0,012] 2 )) · (1/3600) = 1,6 м / с
Находим потери на трение напора в трубопроводе:
H Т = (λ · l) / (d э · [w 2 / (2 · g)]) = (0,028 · 30) / (0,012 · [1,6] 2 ) / ((2 · 9,81)) = 9,13 м
Всего потерь:
h п = H — [(p 2 -p 1 ) / (ρ · г)] — H г = 25 — [(1,8-1) · 10 5 ) / (1000 · 9,81)] — 0 = 16,85 м
Убытки на локальном сопротивлении находятся в пределах:
16,85-9,13 = 7,72 м
Пример №2
Вода перекачивается центробежным насосом по горизонтальному трубопроводу со скоростью 1,5 м / с. Суммарный создаваемый напор равен 7 м. Какова максимальная длина трубопровода, если вода берется из открытого резервуара, перекачивается по горизонтальному трубопроводу с одной задвижкой и двумя отводами на 90 ° и вытекает из трубы в другой резервуар? Диаметр трубопровода 100 мм. Относительная шероховатость принята равной 4 · 10 -5 .
Решение:
Для трубы диаметром 100 мм коэффициенты местных сопротивлений будут равны:
Для колена 90 ° — 1.1; задвижка — 4,1; выход трубы — 1.
Затем определяем значение скоростного напора:
w 2 / (2 · g) = 1,5 2 / (2 · 9,81) = 0,125 м
Потери напора на местные сопротивления будут равны:
∑ζ МС · [w 2 / (2 · g)] = (2 · 1,1 + 4,1 + 1) · 0,125 = 0,9125 м
Суммарные потери напора на сопротивление трению и местные сопротивления находим по формуле полного напора насоса (геометрический напор в этих условиях равен 0):
h п = H — (p 2 -p 1 ) / (ρ · г) — H г = 7 — ((1-1) · 10 5 ) / (1000 · 9 , 81) — 0 = 7 м
Тогда потери напора на трение составят:
7-0,9125 = 6,0875 м
Рассчитаем значение числа Рейнольдса для потока в трубопроводе (динамическая вязкость воды принята равной 1 · 10 -3 Па · с, а плотность — 1000 кг / м 3 ):
Re = (w · d Э · ρ) / μ = (1,5 · 0,1 · 1000) / (1 · 10 -3 ) = 150000
В соответствии с этим числом с помощью таблицы рассчитываем коэффициент трения (арифметическая формула выбрана из того принципа, что значение Re попадает в диапазон 2,320 λ = 0,316 / Re 0,25 = 0,316 / 150000 0,25 = 0,016 Выразим и найдем максимальную длину трубопровода по формуле потерь на трение напора: l = (H об · d э ) / (λ · [w 2 / (2g)]) = (6,0875 · 0,1) / (0,016 · 0,125) = 304,375 м Дан трубопровод с внутренним диаметром 42 мм. Подключается к водяному насосу с расходом 10 м 3 / час и создающим напором 12 м. Температура перекачиваемой среды 20 ° C. Конфигурация трубопровода представлена на рисунке ниже. Необходимо рассчитать потери напора и проверить, способен ли этот насос перекачивать воду при заданных параметрах трубопровода. Абсолютная шероховатость труб принята равной 0,15 мм. Решение: Рассчитываем скорость потока жидкости в трубопроводе: w = (4 · Q) / (π · d 2 ) = (4 · 10) / (3,14 · 0,042 2 ) · 1/3600 = 2 м / с Напор, соответствующий найденной скорости, будет равен: w 2 / (2 · g) = 2 2 / (2 · 9,81) = 0,204 м Коэффициент трения следует найти до расчета c потерь на трение в трубах.В первую очередь определяем относительную шероховатость трубы: e = Δ / d Э = 0,15 / 42 = 3,57 · 10 -3 мм Критерий Рейнольдса для потока воды в трубопроводе (динамическая вязкость воды при 20 ° C 1 · 10 -3 Па · с, плотность 998 кг / м 3 ): Re = (w · d Э · ρ) / μ = (2 · 0,042 · 998) / (1 · 10 -3 ) = 83832 Узнаем режим протока воды: 10 / е = 10 / 0,00357 = 2667 560 / е = 560 / 0,00357 = 156863 Найденное значение критерия Рейнольдса находится в диапазоне 2667 <83832 <156,863 (10 / e λ = 0,11 · (e + 68 / Re) 0,25 = 0,11 · (0,00375 + 68/83832) 0,25 = 0,0283 Потери на трение напора в трубопроводе будут равны: H Т = (λ · l) / d э · [w 2 / (2 · g)] = (0,0283 · (15 + 6 + 2 + 1 + 6 + 5)) / 0,042 · 0,204 = 4,8 м Затем необходимо рассчитать потери напора на местные сопротивления.Из схемы трубопровода следует, что местные сопротивления представлены двумя задвижками, четырьмя прямоугольными коленами и одним выходом из трубы. Таблицы не содержат значений коэффициента местных сопротивлений для нормальных задвижек и прямоугольных колен с диаметром трубы 42 мм, поэтому воспользуемся одним из способов приблизительного расчета интересующих нас значений. Берем табличные значения коэффициентов местных сопротивлений нормальной задвижки для диаметров 40 и 80 мм.Мы предполагаем, что график значений коэффициентов представляет собой прямую линию в этом диапазоне. Составим и решим систему уравнений, чтобы найти график зависимости коэффициента местного сопротивления от диаметра трубы: { 4,9 = a · 40 + b = { а = -0,0225 Уравнение искомого имеет вид: ζ = -0,0225 · d + 5,8 При диаметре 42 мм коэффициент местного сопротивления будет равен: ζ = -0,0225 · 42 + 5,8 = 4,855 Аналогично находим значение коэффициента местного сопротивления для прямоугольного колена.Мы берем табличные значения для диаметров 37 и 50 мм и решаем систему уравнений, делая аналогичные предположения о характере графика на этом участке: { 1,6 = a · 37 + b = { а = -0,039 Уравнение искомого имеет вид: ζ = -0,039 · d + 3,03 При диаметре 42 мм коэффициент местного сопротивления будет равен: ζ = -0,039 · 42 + 3,03 = 1,392 Для выхода трубы коэффициент местного сопротивления принимается равным единице. Потери напора на местные сопротивления будут равны: ∑ζ МС · [w 2 / (2g)] = (2 · 4,855 + 4 · 1,394 + 1) · 0,204 = 3,3 м Суммарные потери напора в системе будут равны: 4,8 + 3,3 = 8,1 м На основании полученных данных можно сделать вывод, что данный насос подходит для перекачивания воды по этому трубопроводу, так как создаваемый им напор больше, чем общие потери напора в системе, а скорость потока жидкости остается в пределах оптимального запаса. Участок прямого горизонтального трубопровода внутренним диаметром 300 мм подвергся ремонту путем замены участка трубопровода длиной 10 м на внутренний диаметр 215 мм. Общая протяженность ремонтируемого участка трубопровода — 50 м. Заменяемый участок находится на расстоянии 18 м от начала. Вода течет по трубопроводу при температуре 20 ° C со скоростью 1,5 м / с. Необходимо выяснить, как изменится гидравлическое сопротивление ремонтируемого участка трубопровода. Коэффициенты трения для труб диаметром 300 и 215 мм принимаются равными 0.01 и 0,012 соответственно. Решение: Первоначальный трубопровод создавал потери напора только из-за трения жидкости о стенки во время перекачки. Замена участка трубы привела к появлению двух местных сопротивлений (резкое сжатие и резкое расширение проходного канала) и участка с измененным диаметром трубы, где потери на трение будут другими. Остающийся участок трубопровода не изменился и, следовательно, не может рассматриваться как часть данной проблемы. Рассчитываем расход воды в трубопроводе: Q = (π · d²) / 4 · w = (3,14 · 0,3²) / 4 · 1,5 = 0,106 м³ / с Поскольку расход не меняется по длине трубопровода, можно определить скорость потока на участке трубы, подлежащем ремонту: w = (4 · Q) / (π · d²) = (4 · 0,106) / (3,14 · 0,215²) = 2,92 м / с Полученное значение скорости потока в заменяемом участке трубы находится в оптимальном диапазоне. Для определения коэффициента местного сопротивления сначала рассчитывается критерий Рейнольдса для разных диаметров труб и соотношения площадей поперечного сечения этих труб.Критерий Рейнольдса для трубы диаметром 300 мм (динамическая вязкость воды при 20 ° C составляет 1 · 10 -3 Па · с, а плотность — 998 кг / м 3 ): e = (w · d Э · ρ) / μ = (1,5 · 0,3 · 1000) / (1 · 10 -3 ) = 450000 Критерий Рейнольдса для трубы диаметром 215 мм (динамическая вязкость воды при 20 ° C составляет 1 · 10 -3 Па · с, а плотность — 998 кг / м 3 ): Re = (w · d Э · ρ) / μ = (1,5 · 0,215 · 1000) / (1 · 10 -3 ) = 322500 Соотношение площадей поперечного сечения трубы равно: ((π · d 1 ²) / 4) / ((π · d 2 ²) / 4) = 0,215² / 0,3² = 5,1 По таблицам найдем значения коэффициентов местных сопротивлений, округленные до отношения площадей до 5.Для внезапного расширения он будет равен 0,25, а для внезапного сжатия также будет равен 0,25. Потери напора на местные сопротивления будут равны: ∑ζ МС · [w² / (2g)] = 0,25 · [1,5² / (2 · 9,81)] + 0,25 · [2,92² / (2 · 9,81)] = 0,137 м Теперь рассчитаем потери на трение в замененном участке трубопровода для начального и нового участков труб. Для трубы диаметром 300 мм они будут равны: H Т = (λ · l) / d э · [w² / (2g)] = (0,01 · 10) / 0,3 · [1,5² / (2 · 9,81)] = 0,038 м Для трубы диаметром 215 мм: H Т = (λ · l) / d э · [w² / (2g)] = (0,012 · 10) / 0,215 · 2,92² / (2 · 9,81) = 0,243 м Отсюда делаем вывод, что потери на трение в трубопроводе увеличатся на: 0,243-0,038 = 0,205 м Суммарный прирост потерь на трение в трубопроводе составит: 0,205 + 0,137 = 0,342 м всегда готовы оказать консультационные услуги или предоставить дополнительную техническую информацию по предлагаемому нами насосному оборудованию и трубопроводной арматуре. Запросы на трубопроводы просим направлять в технический отдел нашей компании на e-mail: [email protected], телефон +7 (495) 225 57 86 Центральный офис ENCE GmbH Головные представительства в странах СНГ: Россия Пример №3
4 = a · 80 + b
б = 5,8
1,1 = a · 50 + b
б = 3,03 Пример № 4
Наша сервисная компания Intekh GmbH
Казахстан
Украина
Туркменистан
Узбекистан
Латвия
Литва