Установка осушки водорода: Установки средней и глубокой осушки технологических газов

Ноя 17, 2020 Разное

Установка осушки водорода: Установки средней и глубокой осушки технологических газов

Установка для осушки водорода в системе охлаждения электрического генератора — PatentDB.ru

Установка для осушки водорода в системе охлаждения электрического генератора

Реферат

 

Изобретение относится к электротехнике, в частности — к холодильной технике и установкам для осушки газа путем его охлаждения и удаления сконденсировавшейся в нем влаги и может найти применение, например, на электростанциях для осушки водорода в системе охлаждения электрического генератора. Сущность данного изобретения состоит в следующем. Водород охлаждается в рекуперативном испарителе 7, в испарительной полости которого осуществляется воздушно-испарительный процесс в вакууме, создаваемом последовательно включенными паровыми эжекторами 12 и 15, в активные сопла которых подается пар фактически отработавший в турбине. Эжектор 15 является основным эжектором конденсатора 3 турбины 2. Патрубок 11 выхода испаряемой среды из испарителя 7 выполнен в виде пассивного сопла эжектора 12. Хладагентом в испарителе служат обессоленная вода и воздух, подсасываемый через дроссельное устройство 22 из окружающего пространства. Для организации воздушно-испарительного процесса в испарителе 7 служат распределительная решетка 19 и регулятор уровня жидкости 24. Удаляется сконденсированная из водорода влага через конденсатоотводчик 23. Изобретение направлено на обеспечение работоспособности экологически чистой установки осушки водорода в широком диапазоне вакуума в конденсаторе турбогенератора. Установка проста и надежна, имеет низкие эксплуатационные расходы. 1 ил.

Изобретение относится к холодильной технике, предназначенной для обеспечения осушки газа способом его охлаждения и удаления сконденсировавшейся в нем влаги, и может найти, в частности, применение на электростанциях для осушки водорода в системе охлаждения электрических генераторов.

Для обеспечения максимального коэффициента полезного действия электрического генератора важное значение имеет минимальное содержание водяных паров в охлаждающем водороде. Содержание водяных паров в водороде, которые попадают в него различными путями, отрицательно влияет на экономичность и работоспособность генератора: растут вентиляционные потери и потери на трение из-за роста плотности и вязкости газовой смеси, а при некоторых значениях содержания водяных паров может быть нарушена электроизоляция. Известны установки осушки газа, в частности водорода, адсорбционного типа. В них осушка газа осуществляется в адсорберах, заполненных твердым адсорбентом-силикагелем или цеолитом. Установки обязательно содержат минимум два адсорбента, один из которых находится в регенерации (а.с. СССР NN 603414, 603415, G 01 B, 3/58 и N 1011502, G 01 B, 3/56). Известна также установка адсорбционного типа осушки водорода, представленная в книге «Газомасляное хозяйство генераторов с водородным охлаждением» авторов В.С. Иванова и Ф.З.Серебрянского (издательства «Энергия» 1955 г. стр. 67-71). В этой установке силикагель, заполняющий адсорбер, регенерируется горячим воздухом с температурой (573 — 673)K, который продувается газодувкой через специальный электронагреватель. Процесс регенерации длится несколько часов, а до регенерации и после нее адсорбер должен быть продут нейтральным газом (CO
2
или N2) во избежание контакта водорода с воздухом. Известны установки осушки водорода, использующие принцип охлаждения водорода в теплообменном аппарате, хладагент последнего охлаждается в холодильной машине (а.с. 1170557). Образовавшийся в результате конденсации водяных паров из водорода конденсат удаляется из водорода, что и приводит к его осушке. Наиболее распространенным типом является фреоновая установка, описанная в книге. Ю.И.Азбукина «Повышение эффективности эксплуатации турбогенераторов» (Атомэнергоиздат, 1983 г., стр. 20 — 22) Наиболее близким решением является установка для осушки водорода в системе охлаждения электрического генератора по патенту N 2071162 H 02 K 9/26 с приводом в виде паровой турбины с конденсатором, содержащая, вентилятор с всасывающей и нагнетательными зонами и рекуперативный испаритель с патрубками входа и выхода водорода и патрубками входа и выхода испаряемой среды, при этом нагнетательная зона соединена с патрубком входа водорода, а патрубок выхода последнего с всасывающей зоной с образованием замкнутого циркуляционного контура, причем выходной патрубок испаряемой среды выполнен в виде пассивного сопла эжектора, активное сопло которого соединено с зоной отбора турбины, а смешивающее сопло — с паровым объемом конденсатора; испаритель имеет оросительное устройство, испаряемая среда в нем — конденсат из конденсатора турбины; теплообменная поверхность испарителя снабжена фитилями. Недостатками перечисленных установок являются: 1. Громоздкость и энергоемкость, связанные с необходимостью использования газодувки, электрического нагревателя и минимум двух адсорберов для обеспечения бесперебойной работы во время регенерации адсорбционных установок; 2. Высокие эксплуатационные расходы, связанные с обслуживанием холодильной машины или газодувки и электрического нагревателя; 3. Экологическая вредность из-за использования фреона и других подобных хладагентов; 4. Невозможность получения низких температур в процессе чистого испарения воды при одноступенчатом эжекторе и плохом вакууме в конденсаторе турбины, например, при работе конденсатора на встроенных пучках в зимний период, т.е. неработоспособность при давлениях в полости испарителя больших 830 Па. Целью изобретения является обеспечение работоспособности экологически чистой установки осушки водорода в широком диапазоне вакуума в конденсаторе турбогенератора. Это достигается тем, что установка для осушки водорода в системе охлаждения электрического генератора с приводом в виде паровой турбины с конденсатором содержит вентилятор с всасывающей и нагнетательной зонами и рекуперативный испаритель с патрубками входа и выхода водорода и патрубками входа и выхода испаряемой среды, при этом нагнетательная зона соединена с патрубком входа водорода, а патрубок выхода последнего — с всасывающей зоной с образованием замкнутого циркуляционного контура, причем выходной патрубок испаряемой среды выполнен в виде пассивного сопла эжектора, активное сопло которого соединено с зоной отбора турбины, а смешивающее сопло соединено с пассивным соплом дополнительного эжектора; пассивное сопло дополнительного эжектора также соединено с паровой полостью конденсатора; между входным патрубком испаряемой среды и теплообменной поверхностью испарителя установлена решетка с образованием подрешеточной и надрешеточной полостей, последняя из которых соединена с патрубком входа испаряемой среды, а первая — с окружающей средой через дроссельное устройство, испаритель снабжен регулятором уровня испаряемой среды, который соединен с патрубками входа и выхода испаряемой среды. Все признаки влияют на достигаемый технический результат, т.е. находятся в причинно-следственной связи с указанным результатом. На чертеже схематично изображена установка осушки водорода в системе охлаждения электрического генератора с приводом в виде паровой турбины с конденсатором. Установка содержит электрический генератор 1, паровую турбину 2 с конденсатором 3, вентилятор 4 с всасывающей 5 и нагнетательной 6 зонами, рекуперативный испаритель 7 с патрубками 8 и 9 выхода водорода и патрубками 10 и 11 входа и выхода испаряемой среды; установка снабжена также эжектором 12 с пассивным соплом в виде выходного патрубка 11 испаряемой среды и активным соплом 13, соединенным отбором 14 турбины 2; установка имеет дополнительный эжектор 15, пассивно сопло 16 которого соединено со смешивающим соплом 17 эжектора 12 и паровой полостью конденсатора 3, а между входным патрубком 10 испаряемой среды и теплообменной поверхностью 18 испарителя 7 установлена решетка 19 с образованием подрешеточной 20 и надрешеточной 21 полостей, подрешеточная полость 10 соединена с окружающим пространством через дроссельное устройство 22; испаритель 7 снабжен также конденсатоотводчиком 23 и регулятором уровня 24, который соединен с патрубками 9 и 10 испаряемой среды испарителя 7. Установка работает следующим образом. Влажный водород с влагосодержанием порядка d = 0,15 кг/кг сух.газа и температурой до 323 K подается из генератора 1 вентилятором 4 из нагнетательной зоны 6 к патрубку 8 входа водорода в испаритель 7, где циркулируя внутри трубок, являющихся теплообменной поверхностью 18, охлаждается благодаря фазовому переходу испаряемой среды в воздух, поступающий в подрешеточную полость 20 из окружающей испаритель 7 среды через дроссельное устройство 22. В результате охлаждения водорода до температуры порядка 278 K, что соответствует влагосодержанию 0,032 кг/кг сух. газа при избыточном давлении 0,25 МПа, водяные пары, бывшие в нем, конденсируются; сконденсированная влага удаляется через конденсатоотводчик 23, а осушенный водород поступает во всасывающую зону 5 вентилятора 4, т.е. в генератор 1. Испаряемая среда (обессоленная вода) поступает в установку через регулятор уровня 24 на решетку 19, где происходит адиабатический процесс смешения с воздухом, поступающим из окружающей среды через дроссельное устройство 22. В результате смешения происходит охлаждение воздушно-водяной смеси до T 275K, которая затем поступает на теплообменную поверхность 18, где происходит воздушно-испарительный процесс охлаждения этой поверхности. Это позволяет достигнуть необходимого охлаждения водорода в широком диапазоне значений вакуума в конденсаторе 3 турбины 2 от минус 0,05 МПа до минус 0,0998 МПа, чего невозможно было достичь в чисто испарительном процессе без каскада последовательно включенных эжекторов и, связанного с этим, большого усложнения установки. Уровень воды над решеткой 19, поддерживается регулятором уровня 24, обеспечивающим устойчивый и развитый барботажный режим движения газожидкостного потока, характеризующегося критерием устойчивости Кутателадзе изменяющегося в диапазоне 0,2 — 0,8. Решетка 19 обеспечивает распределение воздуха по фронту испарителя 7 в соответствии с передаваемой поверхностью 18 тепловой нагрузкой. Используемым хладагентом является обессоленная вода, температура которой не превышает 313 К, что значительно эффективнее, чем использовать конденсат из конденсатора 3, т.к. температура конденсата при ухудшенном вакууме достигает 353 К. Вакуум в испарителе 7 создается эжектором 12, активное сопло 13 которого соединено с отбором 14 пара из турбины 2. Из отбора берется порядка 50 кг/час пара с давлением (абсолютным) 0,3 — 0,5 МПа, что практически не сказывается на работе турбины через которую проходят сотни тонн пара в час; в режимах же хорошего вакуума в конденсаторе 3 расход пара на эжектор 12 может быть значительно уменьшен. Выход испаряемой среды из испарителя 7 осуществляется через патрубок 11, выполненный в виде пассивного сопла эжектора 12. Сброс смеси паров из эжектора 12 производится в пассивное сопло 16 дополнительного эжектора 15, соединенного с паровым пространством конденсатора 3. Таким образом, отсутствие в установке хладагентов типа фреонов и аммиака делает ее экологически чистой. Использование минимального расхода пара, практически отработавшего в турбине 2, в качестве активной среды в эжекторе 12, а также использование обессоленной воды и воздуха из окружающего пространства делают установку высокоэкономичной по сравнению с установками, использующими холодильные машины с электроприводом. Воздушно-испарительный процесс вместо чистого испарения, осуществленный в испарителе 7, позволяет осушать водород во всем диапазоне изменения вакуума в конденсаторе 3 от минус 0,05 до минус 0,0998 МПа, в то время как охлаждение водорода в режиме чистого испарения воды в испарителе 7 возможно только при вакууме в конденсаторе 3 турбины 2 не хуже минус 0,098 МПа, при ухудшении вакуума в конденсаторе 3 для осуществления охлаждения водорода в режиме чистого испарения воды необходим каскад эжекторов. При воздушно-испарительном процессе охлаждения водорода отпадает необходимость в зоне орошения в испарителе 7 и в фитилях на теплообменной поверхности 18. Установка проста и надежна, имеет низкие эксплуатационные расходы. Установка, разработанная по данному предполагаемому изобретению, изготовлена и находится в эксплуатации на ряде электростанций г. Москвы. Осуществление данного предлагаемого изобретения возможно везде, где есть необходимость в осушке газа и есть активный поток газа (пара) с избыточным давлением 0,3 — 0,5 МПа.

Формула изобретения

Установка для осушки водорода в системе охлаждения электрического генератора с приводом в виде паровой турбины с конденсатором, содержащая вентилятор с всасывающей и нагнетательной зонами и рекуперативный испаритель с патрубками входа и выхода водорода и патрубками входа и выхода испаряемой среды, при этом нагнетательная зона соединена с патрубком входа водорода, а патрубок выхода последнего — с всасывающей зоной с образованием замкнутого циркуляционного контура, причем выходной патрубок испаряемой среды выполнен в виде пассивного сопла эжектора, активное сопло которого соединено с зоной отбора турбины, отличающаяся тем, что в установке размещен дополнительный эжектор, пассивное сопло которого соединено со смешивающим соплом эжектора испарителя и с паровой полостью конденсатора, а между входным патрубком испаряемой среды и теплообменной поверхностью испарителя установлена распределительная решетка с образование подрешеточной и надрешеточной полостей, последняя из которых соединена с патрубком входа испаряемой среды, а первая — с окружающей средой через дроссельное устройство, причем испаритель снабжен регулятором уровня испаряемой среды, который соединен с патрубками входа и выхода испаряемой среды.

РИСУНКИ

Рисунок 1

ЭЛЕКТРОЛИЗНЫЕ КОМПРЕССОРНЫЕ ТЕХНОЛОГИИ — Осушка водорода

Осушители водородаЦ

ООО «ЭЛЕКТРОЛИЗНЫЕ КОМПРЕССОРНЫЕ ТЕХНОЛОГИИ» разработало и производит установку для осушки водорода методом вымораживания, взамен установки осушки водорода методом парового нагрева и адсорбции с применением силикагеля.

Установка для осушки водорода методом вымораживания.

Данная установка состоит:

  1. Испаритель для осушки водорода (ИОВ)- вертикальный сборный трех камерный аппарат, трехходового потока прохождения газа, снабженный двойным змеевиком из медной трубы, предназначенный для охлаждения водорода с целью понижения его влагосодержания. Змеевик изготавливается из красномедной трубки с увеличенной толщиной стенки и не имеет внутренних сварочных соединений, что гарантирует его надежность от утечек холодоносителя. Испаритель снаружи покрыт теплоизоляционным материалом и оболочкой из оцинкованной стали. Устанавливается на специальной раме. Количество теплообменных аппаратов 3 (три) штуки – один комплект.

    Испарители располагаются в помещении электролизной на месте демонтированных паровых осушителей. Холодильный агрегат располагается в помещении электрощитовой или в помещении вентиляционной (либо в другом месте по согласованию).

    При подключении к блоку испарителей холодильного агрегата система является установкой (агрегатом) для осушки водорода методом вымораживания, в соответствии с ТУ У 29.2-00130441-026:2010.

  2. Холодильная машина на базе полугерметичного поршневого компрессора «Bitzer» (Германия) холодопроизводительностью 7,2 кВт при температуре кипения фреона -150С. В комплектацию холодильной установки входит: компрессорно-конденсаторный агрегат с регулировкой производительности, терморегулирующий вентиль, соленоидный вентиль, маслоотделитель, отделитель жидкости, фильтр-осушитель, фильтр на всасывание, смотровой глазок с индикатором влажности, регулятор оборотов вентиляторов конденсатора, прессостаты высокого и низкого давлений, ручные запорные вентили, шкаф управления, комплект материалов для монтажа (медные трубы теплоизоляция трубопроводов, кабеля, крепежные материалы, припой, фреон и т. д.).

Расчет и подбор оборудования выполнен при следующих технических условиях:

  • Расход охлаждаемого водорода: 20 м3/час при давлении 10 бар.
  • Начальная температура водорода: +400С.
  • Конечная температура водорода: -5 0С.
Технические характеристики сосуда (испарителя)
Наименование рабочего пространства.
Характеристика, параметры
КорпусЗмеевик
Рабочее или условное давление, МПа (кгс/см2)1 (10)4 (0,4)
Расчетное давление, МПа (кгс/см2)1,035 (10,35)5(0,5)
Пробное давление, МПа (кгс/см2) Гидравлическое1,5 (15)-
Пневматическое1,5 (15)
Испытательная средаВодаАзот
Температура испытательной среды оС5…40-
Внутренний диаметр корпуса, мм25710
Длина (высота), мм11853500
Наименование рабочей средыводородфреон
Внутренний объем, м30,01820,00247
Масса пустого сосуда, кг12625

Контроль влажности водорода при охлаждении электрогенераторов

Для регистрации и оформления заказа на сайте pnc.ru (далее – Сайт), в соответствии с Федеральным законом от 27 июля 2006 года № 152-ФЗ «О персональных данных» Пользователь дает АО «Практик-НЦ» (далее – Оператор), зарегистрированному по адресу 124460, город Москва, город Зеленоград, проезд 4922-й, дом 4, строение 2, пом I, ком. 25 свое согласие на обработку любой информации, размещенной на Сайте (включая, без ограничения: сбор, систематизацию, накопление, хранение, уточнение (обновление, изменение), использование, распространение (в том числе передачу), обезличивание, блокирование, уничтожение, а также осуществление любых иных действий с персональными данными с учетом действующего законодательства РФ) и подтверждает, что давая такое согласие, Пользователь действует по своей воле и в своем интересе, а также в интересах третьих лиц.

Своим согласием Пользователь подтверждает согласие третьих лиц, информация о которых размещается на Сайте, на передачу и обработку их персональных данных и предоставляет право Оператору на осуществление любых действий в отношении персональных данных третьих лиц, которые необходимы для достижения целей обработки персональных данных, указанных в Политике обработки персональных данных.

Согласие на обработку персональных данных, загруженных на Сайт Пользователем считается полученным Оператором от Пользователя с момента выбора варианта «Зарегистрироваться», расположенного в конце формы регистрации на Сайте.

Настоящее согласие на обработку персональных данных действует до момента его отзыва Пользователем. Согласие на обработку персональных данных может быть отозвано в любое время путем направления Оператору официального запрос в порядке предусмотренным Политикой обработки персональных данных.

Оператор Системы обязуется в течение 30 (тридцати) рабочих дней с момента получения уведомления об отзыве согласия на обработку персональных данных Пользователя прекратить их обработку, уничтожить и уведомить Пользователя об уничтожении персональных данных.

Настоящее согласие распространяется исключительно на персональные данные Пользователя, размещенные на Сайте.

Осушка газа | Методы осушки газа

28.01.2015

Осушка газа имеет важное практическое значение потому, что многие технологические процессы весьма чувствительны к наличию в них паров воды. Часто перед использованием газовых смесей в технологических процессах производится их предварительная осушка. При использовании централизованных заводских осушающих установок обычно не удается получать газ с очень низкой степенью содержания влаги.

Схема осушки газов

Это связано с тем, что магистраль от участка газоподготовки к месту непосредственного использования газа является достаточно протяженной. В этом случае правильным решением является предварительная осушка газа с помощью малогабаритных установок, располагаемых вблизи места потребления газа. В такой установке газ, поступающий из заводской магистрали, дополнительно осушается до более низких значений влажности. Осушающие установки на более высокую влажность (влажность выходящего из установки газа составляет -70…-60 °С по точке росы) могут успешно применяться при заполнении осушенным газом внутреннего объема изделий перед их герметизацией в технологических процессах электронного, авиационного приборостроения и других областях, требующих использования газов с очень низким содержанием влаги.

Степень осушки газов, как правило, определяют по температуре точки росы, которая показывает степень их насыщения парами воды. Низкое содержание влаги в газах может быть измерено и в других единицах: ppm и г/м3.

Осушку технологического газа можно осуществить абсорбционным удалением паров воды при его пропускании через жидкие поглотители. У этого метода есть два существенных недостатка: небольшая производительность при относительно низких давлениях технологического газа и возможное его загрязнение примесями поглотителя. Осушка газа таким способом обеспечивает значение точки росы осушаемых газов на уровне -5…-25 °С, а эти результаты не являются достаточными для многих технологических процессов.

Процесс адсорбции является наиболее эффективным способом. Эффективность протекания адсорбционных процессов при осушке определяется многими факторами, и, в первую очередь, это характеристики используемого твердого адсорбента. Как правило, адсорбционные процессы в установках осушки газов являются периодическими. Адсорбер, наполненный адсорбентом, является главным звеном в схеме данного процесса и после насыщения адсорбента парами воды переключается на стадию десорбции (регенерации). При этом цикл работы адсорбера может проходить через ряд дополнительных стадий, таких как изменение температуры адсорбента, его замену, изменение давления газа, проходящего через него.

Осушка газов в статических условиях достаточно широко используется как в промышленности, так и в лабораторных исследованиях, например, при консервации оборудования или поддержании требуемой влажности в замкнутых объемах и др.

Более широкое применение данный процесс получил в динамических условиях. В большинстве адсорбционных осушающих установках регенерацию насыщенного водой адсорбента выполняют с помощью горячего газа. Для этих целей может использоваться часть осушенного газа или сторонний инертный газ.

Адсорбционные установки осушки от АО “ЭКСИС”

Адсорбционные установки осушки

АО “ЭКСИС” производит малогабаритные адсорбционные осушающие установки, с помощью которых осуществляется финишная глубокая осушка и подготовка сжатого воздуха или азота сразу перед непосредственным использованием газа в технологическом процессе.

Установки осушки газа, производимые на предприятии, имеют высокие надежные эксплуатационные характеристики, что позволяет применять оборудование в разных технологических процессах. Рабочее давление осушаемого газа составляет от 4 до 16 атмосфер. Осушенный сжатый газ, выходящий из установки, относится к 1 классу чистоты: максимальное содержание масла в нем составляет 0,01 мг/м3, а содержание твердых частиц не превышает 0,1 мг/м3. Влажность выходящего под давлением воздуха/азота из установки осушки не ниже -70 °С по точке росы.

АО «ЭКСИС» выпускает осушающие установки в 2-х вариантах исполнения, отличающихся только наличием возможности измерения влагосодержания осушаемого газа на входе. В состав установки входит аттестованный измеритель влажности газов гигрометр ИВГ-1, зарегистрированный в Государственном Реестре средств измерений РФ под №15501-12.

Непрерывную работу установки осушки обеспечивают два встроенных в нее адсорбера. Осушка газа и процессы регенерации адсорбента происходят попеременно в обоих адсорберах. Регенерация адсорбента, содержащего влагу, происходит за счет частичного потока осушенной среды. Установка снабжена мощным микрофильтром на входе для отделения конденсата, аэрозолей масла и частиц грязи, а на выходе имеет еще один фильтр дополнительной очистки. Фильтр удерживает мельчайшие частицы примесей, которые могли остаться в осушаемом газе. Таким образом, в рабочую систему подается газ с высокой степенью осушки и очистки. Возможности установки позволяют выполнять работы с газом, класс чистоты которого не хуже 3. Глубокая и стабильная степень осушки инертного газа достигается при достаточно продолжительной непрерывной эксплуатации адсорбционной установки. В случае остановки работы оборудования, влага вследствие диффузии накапливается в аппаратуре. Это значительно ухудшает степень осушки после повторного запуска установки и требует времени для выхода установки на рабочий режим. Чтобы гарантированно получать нужную высокую степень осушки при эксплуатации адсорбционных установок, необходимо сокращать протяженность коммуникаций и располагать установки вблизи мест потребления сухого газа.

 

Установка осушки газов (исполнение 1)

Установка осушки газов (исполнение 1)

Установка осушки газов (исполнение 1)

Установка осушки газов (исполнение 1)

Установка осушки газов (исполнение 1)

Установка осушки газов (исполнение 2)

Установка осушки газов (исполнение 2)

Установка осушки газов (исполнение 2)

Установка осушки газов (исполнение 2)

Установка осушки газов (исполнение 2)

Установка осушки газов (исполнение 2)

Получение водорода. Установки получения (производства) водорода.

Общее описание

  • Генератор водорода
    • Установка оборудована 2 пакетами элементов для производства водорода 30 нм³/ч
    • Контейнер модернизирован и подготовлен для увеличения производительности в будущем до 45 нм³/ч. Так же если в будущем потребуется дополнительно увеличить мощность, то контейнер рассчитан на увеличение до 60 нм³/ч.
  • Модуль хранения объемом 50 м³ по воде для хранения 450 нм³ водорода при 10 бар.

Предложенная нами система включает стандартные встроенные системы безопасности, стандартное заводское приемочное испытание и комплект технической документации.

Услуги на месте включают: пуск системы, ввод в эксплуатацию и обучение на месте. Строительные работы и подготовка площадки, выполняемые на месте, осуществляются заказчиком в соответствии с требованиями.

Энергоисточники (вода, электричество, азот, воздух КИП,…) должны быть доступны на месте.

Характеристики электролизера:

  • Полностью автоматическая работа
  • Полный контроль получения водорода
  • Производство под давлением (10 бар изб.) без установки компрессора
  • Высокая эффективность и надежность
  • Очень низкие затраты на техническое обслуживание (ограниченное число подвижных деталей, без насоса для электролита)
  • Водород не содержит углерода – без вредных выбросов
  • Производственный процесс сертифицирован по ISO 9001, 14001
  • Услуги по пуску и пост-продажному обслуживанию

Введение

Установка производства водорода в контейнерном исполнении для установки снаружи представляет собой комплексную установку производства водорода с производительностью по водороду 60 нм³/ч при чистоте 99,998% и давлении 10 бар (изб.)

Разработан модифицированный ISO контейнер повышенной вместимости для размещения генератора водорода и всего его питающего оборудования.

Ввод оборудования для наружного размещения в эксплуатацию на площадке заказчика тем самым значительно облегчен по сравнению с установкой в существующее помещение генератора на базе скида.

Надежность

Используя принцип внедрения технологического уровня эксплуатационной безопасности оборудования каждая установка помимо прочего обладает следующими характеристиками:

  • минимальное присутствие газа в системе
  • определение минимального давления для предотвращения попадания воздуха
  • система непрерывного мониторинга/обнаружения водорода в атмосфере
  • система защитной вентиляции зона II (только с кожухом или корпусом (каркасом) для наружного размещения)
  • надежная логическая схема для всех параметров
  • Система бесперебойного питания, обеспечивающая безопасное отключение в случае аварийного отключения питания
  • Система постоянного мониторинга, чистота производства О2 газа
  • Системы множественного / параллельного управления
  • Многократное резервирование параметров, которые являются критичными в рамках безопасности системы

Автоматизация

Надежность – это одно из наиболее значимых требований для наших заказчиков. Установка разработана для полностью непрерывной эксплуатации с минимальной потребностью в присутствии оператора, обеспечивая константный поток водорода.

  • Система контроля давления: Человеко-машинный интерфейс на панели управления позволяет операторы выбрать требуемое давление газа (между 8 и 10 бар изб.). Установка автоматически регулирует свою производительность с тем, чтобы обеспечить установленное давление.
  • Автоматизация охлаждения: охлаждающая вода поступает в теплообменники через клапан, регулируемый ПЛК. При повышении температуры клапан открывается, тем самым подавая большее количество охлаждающей воды в контур. В результате этого – стабильная производственная температура.
  • Автоматическая продувка азотом: следуя принципам системы, продувка азотом требуется перед запуском установки при внутреннем давлении ниже 15 кПа. Процесс продувки регулируется ПЛК системы путем активации клапана в последовательном процессе.
  • Удаленный I/O: используя современное соединение PROFIBUS, мы значительно уменьшили количество соединительных кабелей и соответственно время, необходимое на установку. Внедрение прокола в комбинации с безопасным ПЛК и безопасным I/O позволяет системе полностью соответствовать самым строгим актуальным нормам и стандартам безопасности. ПЛК автоматически диагностирует любые ошибки передачи данных, не только делая систему безопаснее, но также сокращая время и силы на устранения неполадок.

Объем поставки

Сенсорный экран с человеко-машинным интерфейсом (HMI)

Экран HMI расположен на панели управления и позволяет оператору контролировать и эксплуатировать электролизер либо с экрана, либо с удаленного соединения, через защищенное соединение VPN. Система мониторинга включает в себя запись данных на компактную флэш карту. Она также позволяет нашим техническим специалистам подключаться к электролизеру, для диагностики и исправления случаев неисправностей и тревожной сигнализации при необходимости.

Исполнение контейнера

ISO 40’ футовый контейнер спроектирован и модифицирован для размещения водородной установки 60 нм³/ч и включает:

  • изолированные стенки и перекрытия
  • пол из металлических листов
  • запираемые двери во внешних стенках
  • Освещение во всех отсеках
  • Все устройства полностью оснащены и установлены на место вкл. трубную обвязку и кабели, что значительно сокращает время и затраты на установку / межсоединения на месте.
  • Два вытяжных вентилятора, которые вытягивают воздух через технологическое помещение из помещения общего назначения. Первый обеспечивает минимальный поток и работает постоянно. Поток проверяется между помещением общего назначения и технологическим помещением и подается аварийный сигнал, если минимум не достигнут.

Второй вентилятор активируется, когда температура окружающего воздуха в технологическом помещении находится вне пределов спецификации или когда обнаружен водород.

Технологический скид

Ключевым компонентов электролизного скида является пакет биполярных ячеек для электролиза воды под давлением. Пакет ячеек состоит из кольцевых электролизных ячеек, в каждой из которых содержатся два электрода и одна щелочная неорганическая ионообменная мембрана.

Генерация H2 и O2 происходит при подаче тока на пакет ячеек. Газы затем направляются на газовый сепаратор, который представляет собой двойной сосуд под давление из нержавеющей стали, после которого они промываются в специально спроектированном напорном сосуде, расположенном над газосепаратором.

Технологическая часть поставляется как полностью собранный скид, в который включено оборудование, например:

  • Пакеты ячеек
  • Газосепарторы, установка промывки газообразного водорода и коалесцирующие фильтры
  • Теплообменники для электролита и системы газового охлаждения
  • Лоток детектора утечек с реле уровня
  • Детектор водорода , панель анализатора для водорода в кислороде
  • Приборы кип и распределительные коробки: датчики, трансмиттеры, реле и т.д.
  • Клапаны и вентиляционные коллекторы (H2 и O2)

Блок управления

Шкаф панели управления включает в себя ПЛК и все соответствующее оборудования для обеспечения автоматической и надежной эксплуатации установки. Панель управления с помощью кабелей будет подсоединена как к технологической части, так и к силовой стойке. Характеристики:

  • Утвержденный электрический кожух с 2 запираемыми дверцами
  • Вентиляторы охлаждения + система фильтрации воздуха
  • ПЛК (Siemens S-7 программное обеспечение)
  • Снаружи: терминал с дисплеем для визуализации и HMI
  • Аварийный останов на дверце кожуха
  • Блок бесперебойного питания для безопасного отключения
  • Источник питания 24 В пост. тока
  • Автоматические выключатели и трансформаторы
  • Печатные платы и звуковая сигнализация

Блок питания

Блок питания конвертирует входящей 3х фазный переменный ток в стабилизированный постоянный ток, требуемый для процесса электролиза.

Каждый блок питания может питать до 2 пакетов элементов и состоит из:

  • Кожух с запираемой дверцей
  • Охлаждающие вентиляторы + система фильтрации воздуха
  • Защитная блокировка дверного переключателя
  • ПЛК контролируется тиристорами
  • Трансформатор
  • Выпрямительный диод
  • Автоматические выключатели, контакторы
  • Измерительный пакет элементов на дверце амперметр и вольтметр
  • Устройство проверки фазы

Система очистки водорода

Система очистки водорода спроектирована для дальнейшей очистки водорода до минимального уровня в размере 99.998%. Данная чистота достигается в 2 этапа:

Этап 1. Деоксидизация: для уменьшения содержания O2 в потоке газообразного H2 с помощью каталитической реакции. Выход O2 в H2 составляет менее 10 ppm или опционально менее 2 ppm.

Этап 2. Осушка: для удаления влажности в 2 колоннах осушки. Одна колонна находится в работе, в то время как вторая находится в режиме резерва / регенерации. Водород на выходе будет иметь атмосферную точку росы менее -60 °C или опционально менее -75 °C.

Система очистка водорода сконструирована на скиде и располагается в технологическом помещении. Система очистки водорода управляется с помощью центрального ПЛК в панели управления и имеет следующие особенности:

  • Сосуд деокисидзации с катализатором для удаления О2 в H2 (с обогревом и изоляцией)
  • Теплообменник
  • Коалесцирующий фильтр
  • Система дренажного сосуда для удаления воды
  • Оборудование КИП
  • Две колонны осушки с молекулярным ситом (с обогревом и изоляцией) (с временной регенерацией)
  • Соединения до контура охлаждения газа
  • Соединение до вентиляционных коллекторов технологической части (H2 и O2)

Холодильник (охлаждение газа)

Холодильник подает охлаждающую воду низкой температуры в замкнутый контур газообразного водорода и кислорода в сторону теплообменников при температуре 15 °C, вне зависимости от температуры окружающей среды. Охлажденная вода охлаждает газообразный водород и кислород, превращая водяной пар, появляющийся в процессе электролиза, в конденсат. Затем он фильтруется и удаляется из потока газа. Холодильник устанавливается внутри кожуха для применения внутри помещения и включает насос и расширительный бак.

Спецификация на чиллер

Система охлаждения электролита

Данная система охлаждения, включающая в себя насосный скид и сухой охладитель, выводит тепло в окружающий воздух.

Охлаждающая вода, как правило, водный раствор этиленгликоль, циркулирует в закрытом контуре, через высокопроизводительный теплообменник по типу «электролит-вода», установленный в технологической части установки производства водорода.

Благодаря системе охлаждения закрытого цикла гарантируется полная выходная способность установки по водороду в диапазоне температуры окружающей среды от -40 до +40°C. Сухой охладитель и насосный скид регулируются с помощью центрального ПЛК в панели управления.

Спецификация на сухой охладитель

Система подготовки питательной воды

Система подготовки питательной воды превращает водопроводную воду в чистую деминерализованную воду, необходимую для процесса электролиза. Осуществляется постоянный мониторинг за качеством воды, прежде чем она сможет поступить в процесс. Размеры ВхШхГ – 1,5х1,0х0,5 м

Система включает в себя такие фильтрационные очистные этапы как:

  • Мембрана обратного осмоса
  • Ионообменная система смешанного типа со смолой (2 резервуара, наполненные смолой)
  • Система смягчения воды с цифровым дозирующим насосом (анти-накипь)
  • Измеритель электропроводности
  • Активированный уголь и предварительные фильтры для улавливания частиц
  • Указатели давления и реле

Спецификация на питательную воду

Техническая спецификация

Вышеуказанные данные представлены только для информации и не могут быть использованы для гарантийных целей.

Общий вид

Дополнительные опции (по запросу)

Улучшение чистоты -75 °C 2ppm O2

Данная опция снижает атмосферную точку росы произведенного H2 с -60 °C до -75 °C, а содержание О2 в произведенном H2 с 10ppm до 2 ppm.

Уменьшенное содержание N2 – распылительный разбрызгиватель

Распылительный разбрызгиватель – это устройство, устанавливаемое на входе деминерализованной воды установки производства водорода для уменьшения содержания N2 менее 2 ppm произведенного H2.

Замер чистоты в режиме реального времени

Производится непрерывный мониторинг произведенного H2 в реальном времени как по содержанию воды («точка росы»), так и по содержанию кислорода. Данная опция может быть выбрана только в сочетании с системой очистки водорода.

Спускной клапан (только в комбинации с системой замера чистоты в режиме реального времени)

Данное устройство автоматически выпускает H2 в атмосферу, в случае если его качество не соответствует спецификации. Данная опция может быть выбрана только в комбинации с системой замера чистоты H2 в режиме реального времени.

Использование кислорода

Стандартно О2 сбрасывается в атмосферу. Производитель может обеспечить опциональную систему для очистки О2 и его подготовки для дальнейшего использования / очистки со стороны заказчика.

Система кондиционирования воздуха на панели управления

Это модульная установка кондиционирования воздуха, устанавливаемая на электропанелях. Данное устройство рекомендовано для систем, часто эксплуатируемых в температурах окруж. среды более +40 °C

Массовый расходомер

Массовый расходомер – это непосредственный замер объема H2, идущего в линию заказчика.

Содержание кислорода в детекторе атмосферы

Трансмиттер кислорода в атмосфере может быть реализован в технологическом помещении для непрерывного мониторинга уровня O2 в атмосфере технологического помещения. Система сигнализации срабатывает, если уровень кислорода падает ниже или поднимается выше безопасных предельных значений.

Автоматический перезапуск

Данная функция позволяет установке непрерывно определять актуальное давление в линии заказчика. Если установка находится в резервном режиме, то с помощью данной функции установка может быть автоматически повторно запущена, как только давление линии заказчика окажется ниже заданного порогового значения.

Опции по каркасу для наружной установки

Низкотемпературная опция:

Будут предприняты специальные действия, чтобы допустить работу при температуре окружающей среды до -40 °C. Например, адоптированная система охлаждения с закрытым контуром и усиленная система обогрева.

Аварийные огни:

В случае отключения сетевого питания аварийные огни в помещении с приборами управления будут светить до 30 минут.

Внешние огни:

Огни снаружи контейнера при входе в помещение с приборами управления / для инженерного оборудования и технологического помещения.

Вентиляционные трубы:

Две трубы из высококачественной нержавеющей стали с колпачками от дождя для безопасной вентиляции H2 и О2. Длина данных вентиляционных труб соответствует спецификации, для каркаса для наружного размещения, который установлен в зоне без прилегающих конструкций. Вентиляционные трубы должны быть вертикально соединены на месте к специально определенным фланцам на боковой стороне контейнера. Кабели обогрева для защиты труб от нулевых температур (точка замерзания) включены в данный объем.

Границы объема поставки

Границей установка электролиза является каркас для наружного размещения. На внешних стенках каркаса для наружного размещения имеются металлические пластины, которые включают следующие соединения:

  • Пользователь водородного газа
  • Вход питательной воды
  • Вход воздуха КИП
  • Вентиляционное отверстие кислорода (вентиляционная линия не включена)
  • Вентиляционное отверстие водорода (вентиляционная линия не включена)
  • Соединение дренажа конденсата
  • Вход инертного газа (азот)
  • Электрические межсоединения: включены внутри контейнера
  • Механические межсоединения: включены внутри контейнера
  • Энергопитание: автоматический прерыватель на стороне электролиза.
  • Охлаждающая вода (2 контура):

Сухой охладитель (охлаждение электролита)

  • Сухой охладитель поставляется в отдельной коробке. Он спроектирован для установки на крыше каркаса для наружного размещения, а объем поставки включает технические условия на крыше контейнера для их установки.
  • Трубка обвязки и кабели для соединения контейнера к внутренней части контейнера включены, но монтаж сухого охладителя на крыше и осуществление соединений на месте осуществляются заказчиком.

Холодильник (охлаждение газа):

  • Холодильник поставляется с полностью выполненными соединениями в каркасе для наружного размещения

Установка водоподготовки:

  • Установка водоподготовки поставляется с полностью выполненными соединениями в каркасе для наружного размещения.

Производство водорода | Водород

Метод: Электролиз
Вкратце:
Процесс, при котором вода (h3O) расщепляется на водород (h3) и кислород (O2) газ с подводом энергии и тепла в случае высокотемпературного электролиза.
На практике:
Электрический ток разделяет воду на составные части. Если используется возобновляемая энергия, газ имеет нулевой углеродный след и известен как зеленый водород.

Метод: Риформинг — в первую очередь риформинг природного газа, но также и биогаза
Вкратце:
Основные способы превращения природного газа, в основном метана, в водород включают реакцию либо с паром (паровой риформинг или паровой риформинг метана, когда используется метан), кислородом (частичное окисление) или с обоими последовательно (автотермический риформинг)
На практике:
Паровой риформинг: в качестве окислителя используется чистый водяной пар.Реакция требует введения тепла («эндотермический»).

Метод: Водород из других промышленных процессов, которые создают водород в качестве побочного продукта.
Вкратце: Электрохимические процессы, такие как промышленное производство каустической соды и хлора, производят водород как побочный продукт.
На практике:
Производство хлора и каустической соды сводится к пропусканию электрического тока через рассол (раствор соли — хлорида натрия — в воде).Рассол диссоциирует и рекомбинирует посредством обмена электронов (доставляемых током) на газообразный хлор, растворенную каустическую соду1 и водород. По характеру химической реакции хлор, каустическая сода и водород всегда производятся в фиксированном соотношении: 1,1 тонны каустика и 0,03 тонны водорода на тонну хлора.

риформинг

Паровой риформинг метана (SMR):

reform
Как уже было описано выше, в настоящее время большая часть производимого сегодня водорода производится посредством процесса с интенсивным выбросом CO2, который называется паровым риформингом метана.

Высокотемпературный пар (700–1000 ° C) используется для производства водорода из источника метана, например природного газа. При паровом риформинге метана метан реагирует с паром под давлением 3–25 бар (1 бар = 14,5 фунтов на кв. Дюйм) в присутствии катализатора с образованием водорода, монооксида углерода и относительно небольшого количества диоксида углерода. Паровой риформинг эндотермический , то есть для протекания реакции в процесс необходимо подвести тепло.

Затем в так называемой «реакции конверсии водяного газа» монооксид углерода и водяной пар реагируют с использованием катализатора с образованием диоксида углерода и большего количества водорода.На заключительном этапе процесса, называемом «адсорбция при переменном давлении», диоксид углерода и другие примеси удаляются из газового потока, оставляя практически чистый водород. Паровой риформинг также можно использовать для производства водорода из других видов топлива, таких как этанол, пропан или даже бензин.

Для химиков:

Реакция парового риформинга метана
Ch5 + h3O (+ тепло) → CO + 3h3

Реакция конверсии водяного газа
CO + h3O → CO2 + h3 (+ небольшое количество тепла)

Частичное окисление

При частичном окислении метан и другие углеводороды в природном газе реагируют с ограниченным количеством кислорода (обычно из воздуха), которого недостаточно для полного окисления углеводородов до диоксида углерода и воды.При доступном количестве кислорода меньше стехиометрического, продукты реакции содержат в основном водород и монооксид углерода (и азот, если реакция проводится с воздухом, а не с чистым кислородом), а также относительно небольшое количество диоксида углерода и других соединений. Впоследствии в реакции конверсии водяного газа монооксид углерода реагирует с водой с образованием диоксида углерода и большего количества водорода.

Частичное окисление — это экзотермический процесс , при котором выделяется тепло.Этот процесс обычно намного быстрее, чем паровой риформинг, и требует меньшего размера реактора. Как видно из химических реакций частичного окисления, в этом процессе первоначально образуется меньше водорода на единицу входящего топлива, чем получается при паровом риформинге того же топлива.

Для химиков:

Реакция частичного окисления метана
Ch5 + ½O2 → CO + 2h3 (+ тепло)

Реакция конверсии водяного газа
CO + h3O → CO2 + h3 (+ небольшое количество тепла)

Источник: энергетика.gov

Паровой риформинг метана (SMR) для биогаза
Процесс SMR можно также использовать для производства водорода из биогаза.

Электролиз

electrolyser
Несмотря на то, что водород можно получить множеством способов, наиболее интересной, но и многообещающей частью является получение водорода путем электролиза воды.

В этом процессе электролиз расщепляет воду на водород и кислород с помощью электричества.Если используемое электричество поступает из возобновляемых источников энергии, таких как ветер или солнце, а произведенный водород используется в топливных элементах, то весь энергетический процесс не будет создавать чистых выбросов. В данном случае речь идет о «зеленом водороде».

Электролизер состоит из источника постоянного тока и двух электродов с покрытием из благородного металла, разделенных электролитом. Электролит или ионный проводник может быть жидкостью, например проводящим раствором едкого калия (гидроксид калия, КОН) для щелочного электролиза.
В щелочном электролизере катод (отрицательный полюс) теряет электроны в водном растворе.

Вода диссоциирует, что приводит к образованию водорода (h3) и гидроксид-ионов (OH —
Носители заряда движутся в электролите к аноду. На аноде (положительный полюс) электроны поглощаются отрицательными анионами OH -. Анионы ОН — окисляются с образованием воды и кислорода. Кислород поднимается на аноде. Мембрана предотвращает смешивание продуктовых газов h3 и O2, но пропускает ионы OH -.Электролизеры состоят из отдельных ячеек и узлов центральной системы (баланс завода). Комбинируя электролитические ячейки и батареи, производство водорода можно адаптировать к индивидуальным потребностям.

Электролизеры различаются по материалам электролита и температуре, при которой они работают: низкотемпературный электролиз (LTE), включая щелочной электролиз (AE) , электролиз с протонообменной мембраной (PEM ) и анионообменная мембрана ( AEM) электролиз (также известный как щелочной PEM) и высокотемпературный электролиз (HTE).Последняя группа, в первую очередь, включает электролиз твердого оксида (SOE ), но он все еще находится на продвинутой стадии исследований и разработок, и продукты еще не коммерчески доступны. Ожидается, что по достижении рыночной зрелости его преимущества будут включать повышенную эффективность преобразования и возможность производства синтез-газа непосредственно из пара и CO 2 для использования в различных приложениях, таких как синтетическое жидкое топливо (E4tech 2014, IEA 2015b).

Высокотемпературный электролиз особенно интересен, когда рядом с электролизером есть источник тепла (как это часто бывает на промышленных предприятиях или), более экономически эффективен, чем традиционный электролиз при комнатной температуре.Действительно, часть энергии поставляется в виде тепла, которое либо бесплатно, либо дешевле, чем электричество, а также потому, что реакция электролиза более эффективна при более высоких температурах.
Выбор той или иной технологии электролиза зависит от потребностей использования и местных условий.

Водород похож на электричество в том смысле, что его использование не вызывает никаких выбросов. Его углеродный след связан с его производственным режимом. В случае водорода, полученного путем электролиза, его углеродный след водорода напрямую связан с источником электричества.Таким образом, водород, производимый из безуглеродных возобновляемых источников или атомной энергии, не содержит углерода. Водород, произведенный с помощью сетки, имеет ту же углеродную интенсивность, что и смесь сетки.

Водород как побочный продукт

Как объяснено выше, водород получают путем отделения от его соединения.

Если производство водорода может быть первой целью процесса разделения, то также может быть, что процесс разделения направлен в первую очередь на производство другой молекулы и получение водорода в качестве побочного продукта.

Производство хлора и каустической соды сводится к пропусканию электрического тока через рассол (раствор соли — хлорида натрия — в воде). Рассол диссоциирует и рекомбинирует посредством обмена электронов (доставляемых током) на газообразный хлор, растворенную каустическую соду и водород. По характеру химической реакции хлор, каустическая сода и водород всегда производятся в фиксированном соотношении: 1,1 тонны каустика и 0,03 тонны водорода на тонну хлора.

Ряд исследований был направлен на определение количества доступного промышленного остаточного водорода.В рамках проекта ЕС «Дороги 2 HyCom» (Maisonnier et al. 2007) среди прочих результатов была получена карта, показывающая места производства водорода в Европе. На этой карте источники водорода разбиты на три категории: категория «коммерсант» поставляет водород другим промышленным потребителям, а категория «зависимая» сохраняет водород на месте для собственного использования. Только «побочный продукт» водород больше не используется в процессе или на месте; только эта категория может быть доступна для других приложений, таких как электромобили на топливных элементах.

Водород в качестве побочного продукта представляет собой интересный и дешевый источник водорода, необходимый для развертывания применения водорода в области его производства. Неудивительно, что регионы с большим количеством водорода в качестве побочного продукта являются одними из самых продвинутых в своей стратегии использования водорода.

.Интегрированный блок генератора водорода

с генератором и сушкой водорода электролиза воды для электростанции

Завод, интегрированный с водным электролизом

Производство и осушка водорода для электростанции

Integrated Hydrogen Generator Unit With Water Electrolysis Hydrogen Genere and Drying For Power Plant

Integrated Hydrogen Generator Unit With Water Electrolysis Hydrogen Genere and Drying For Power Plant

Введение в продукт
1. Составные части завода: основное оборудование, вспомогательное оборудование и электрооборудование.
2. Части основного оборудования: электролизер, корпус вспомогательного оборудования интегрированный.
3. Детали вспомогательного оборудования: бак питательной воды, бак для щелока, насос питательной воды и водородная рама для понижения давления и распределения.
4. Детали электрооборудования: щит выпрямителя, щит управления, распределительный шкаф.
5. Особенности: Установка разработана специально для электростанции. Электролизер, газожидкостное оборудование и оборудование для осушки водорода установлены в единый блок, поэтому занимают меньше места.

Чистота продуктового газа лучше, а влажность ниже.

Имеет высокий уровень автоматизации, установка может запускаться и выключаться автоматически нажатием кнопки.

Integrated Hydrogen Generator Unit With Water Electrolysis Hydrogen Genere and Drying For Power Plant Integrated Hydrogen Generator Unit With Water Electrolysis Hydrogen Genere and Drying For Power Plant

Система очистки и другие крупномасштабные установки, пожалуйста,

посетите наш веб-сайт

http: // westitan.ru.alibaba.com/

Мы являемся одним из лучших профессиональных поставщиков газогенераторов!

Просто напишите нам и получите то, что хотите!

Westitan International

Зеленый Integrated Hydrogen Generator Unit With Water Electrolysis Hydrogen Genere and Drying For Power Plant Integrated Hydrogen Generator Unit With Water Electrolysis Hydrogen Genere and Drying For Power Plant Энергетика

.

АЗС | Водород

Водородная заправочная станция (HRS) — это инфраструктура, предназначенная для заправки автомобилей водородным топливом. Это может быть часть станции заправки ископаемым топливом или отдельная инфраструктура.

  • HRS состоит из базовой установки или базовой установки и производственной установки, если водород производится на месте.
  • Базовый блок включает как минимум накопительную систему высокого давления и один или несколько дозаторов.
  • Если h3 производится на месте или доставляется на станцию ​​при промежуточном давлении или в жидком состоянии, для базового блока также требуется промежуточное хранилище (на основе технологии газообразного или жидкого водорода) и система сжатия.
  • Для строительства водородной заправочной станции необходимы определенные технические компоненты. Для всех заправочных станций они включают в себя хранилища водорода подходящего размера, компрессоры, которые доводят водород до желаемого уровня давления газа, систему предварительного охлаждения и заправочные колонки для подачи топлива.За счет стандартизации этих компонентов можно быстрее и дешевле установить заправочные станции.

Refueling

Емкости для хранения водорода

Резервуары для хранения должны содержать достаточно водорода, чтобы удовлетворить потребности клиентов. С этой целью водород хранится в резервуарах низкого давления, в настоящее время от 20 до 200 бар (в будущем до 500 бар), в течение нескольких дней. Если водород доставляется в прицепе со сжатым водородом, его можно использовать на месте в качестве резервуара для хранения низкого давления.Сохраняемые количества рассчитываются на основе количества предполагаемых операций по заправке в день и могут быть адаптированы за счет модульного расширения заправочной станции.

Резервуары среднего и высокого давления со ступенями давления от 200 до 450 бар и от 800 до 1000 бар соответственно используются для заправки автомобиля клиента. Водород из резервуара для хранения низкого давления может быть передан через компрессор высокого давления в резервуар для хранения высокого давления. Давление там достаточно высокое, чтобы заправить автомобиль.Другая возможность — использовать резервуар среднего давления. Оттуда бак транспортного средства клиента может быть заполнен до достижения баланса давления. Чтобы полностью заполнить бак, дозаправку можно продолжить либо из бака-хранилища высокого давления (каскадная заправка), либо водород из бака-хранилища среднего давления можно сжать до необходимого давления с помощью дожимного компрессора.

Компрессоры

Для достижения необходимого уровня сжатия можно использовать несколько различных компрессоров.Обычными типами являются поршневые, компрессоры сжатого воздуха, диафрагменные или ионные компрессоры, которые выбираются в соответствии с конструкцией заправочной станции (использование мощности, потребление энергии, экономичность и т. Д.). Сжатие водорода — это способ преодоления разницы давлений между хранением (от 50 до 200 бар) и заправкой (до 1000 бар). Процесс заправки не должен превышать целевое время от трех до пяти минут.

Поскольку топливный элемент в автомобиле работает на чистом водороде, важно, чтобы во время сжатия не происходило загрязнения смазочными материалами.

Система предварительного охлаждения

Протокол заправки топливом SAE J2601, который касается заправки водородных транспортных средств, направлен на то, чтобы водородный бак транспортного средства не нагревался выше 85 ° C даже во время быстрой заправки. Поскольку при заправке водород сжимается, он нагревается. В зависимости от температуры окружающей среды, температуры подачи топлива и целевого давления в баке транспортного средства предварительное охлаждение (обычно) необходимо, чтобы оставаться в пределах (избыточное давление / перегрев) системы хранения топлива транспортного средства.Для заправки топливом при давлении 700 бар водород обычно предварительно охлаждается до –40 ° C (согласно SAE J2601). Возможны более высокие температуры предварительного охлаждения, но это может привести к увеличению времени заправки.

Требуемая низкая температура обычно достигается с помощью компрессионной холодильной машины и подходящего теплообменника. Предварительное охлаждение усложняет станцию ​​и увеличивает потребление энергии. Дальнейшая оптимизация процесса в настоящее время является областью развития.

В случае заправки жидким водородом криогенный водород (Lh3) доставляется и хранится в резервуаре для жидкости.Если электромобиль на топливных элементах должен заправляться газообразным водородом, жидкий водород передается через жидкостной насос в испаритель, откуда он может быть введен непосредственно в транспортное средство без охлаждения.

Диспенсер

Сама заправка осуществляется с помощью заправочной колонки, устройства или машины для закачки жидкого или газообразного топлива в транспортное средство. Диспенсер включает в себя заправочную форсунку, которая подает сжатый водород в напорный бак автомобиля.Он рассчитан на давление в баллоне с водородом, то есть 350 или 700 бар. Еще одним важным элементом является пользовательский интерфейс, который содержит различные дисплеи, показывающие давление, уровень заполнения или измеренное количество.

Наконец, водород можно производить либо локально на заправочной станции, либо централизованно в другом месте, а затем доставлять. В случае децентрализованного производства водорода на заправочной станции необходимо определить производственную концепцию. Возможны следующие варианты: установка риформинга для производства водорода из природного газа (или биометана) или электролизер для производства водорода из (возобновляемой) электроэнергии.

.

По

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *