Узо и автомат схема подключения: как правильно + схемы и варианты подключения

Авг 10, 1975 Разное

Узо и автомат схема подключения: как правильно + схемы и варианты подключения

Содержание

Подключение УЗО и автомата схема

УЗО является надежной защитой от поражения током, которая не требует рекламы. Это устройство отличается сложностью и высокой чувствительностью, а ошибки в подключении приводят к выводу его из строя.

Подключение главного УЗО после счетчика

Согласно этикету электромонтажа, контактные соединения ведутся снизу вверх, но УЗО это не касается. Вход устройства расположен сверху, а выход – снизу, так как подобное конструктивное исполнение обеспечивает повышение КПД. На изображении выше красными стрелками показано, где располагаются автомат и УЗО, а цветным проводом выделены фаза L и ноль N, присоединяемые к аппаратам. По цвету проводов видно, что каждый выход снизу расположен напротив входа сверху.

УЗО «видят» только неисправности, связанные с токами утечки. Они не заменяют автоматы, срабатывающие при коротком замыкании.

Новичку на первых порах трудно разобраться с тем, сколько и каких нужно УЗО и автоматов и как правильно составить схему их соединений.

Электрическая сеть в типовой квартире начинается с двухполюсного вводного автомата. Его нужно ставить впереди счетчика, который всегда есть на входе. Мощность автомата зависит от общей нагрузки домашней сети и обычно составляет 32-40 А. В однофазный счетчик на 5-60 А заводятся провода фазы и нуля. После счетчика на входе обычно стоит противопожарное защитное устройство на 100-300 мА. Оно предохраняет всю проводку, устраняя утечку тока.

Схема с общим УЗО в однофазной сети

Общая защита может использоваться для всей электрической схемы в квартире. Ее необходимо ставить между двухполюсным выключателем и отходящими автоматами. Схема обеспечивает защиту сразу всех линий.

На рисунке ниже красным проводом обозначена фаза L. Она идет на однополюсные автоматы, а после них – на нагрузки. Синим цветом обозначен ноль N. После УЗО он подключается на общую шину, а с нее делается разводка к нагрузкам. Желтый провод – это земля (РЕ), которая также имеет общую шину и никак не связана с электрической схемой однофазной сети. С шины земли провода идут на защиту розеток и электрооборудования.

Схема с общим УЗО в однофазной сети

Положительной стороной является простота и дешевизна устройства. Недостаток схемы заключается в трудности определения места утечки тока. Если фаза попадает на корпус какого-либо прибора, отключается электричество во всей квартире, после чего приходится тратить много времени на поиск и устранение неисправности. Это причиняет неудобства.

В отсутствие хозяев может отключиться нужная техника, например, холодильник или электроника. Тогда сразу становится ясно, зачем и сколько нужно устанавливать защитных средств.

Схемы с несколькими УЗО в однофазной сети

Другим популярным вариантом является схема, где на отдельных линиях есть защита.

Схема с несколькими УЗО с разводкой по линиям после счетчика

Многих устраивает схема, изображенная на рисунке выше, поскольку все линии защищены. При этом легко обнаружить неисправность при появлении утечки тока по отключению одной линии. Кроме того, другая сеть остается работоспособной, что создает преимущества. Подключения фазы L, ноля N к аппаратам и земли PE, идущей на защиту электроприборов, выделяются другими цветами:

  • синий – фаза;
  • черный – ноль;
  • зеленый – земля.

Ни в коем случае нельзя путать ноль и землю. Они выполняют разные функции, и при ошибочном подключении фаза может оказаться на корпусе прибора.

Следующая схема на рисунке ниже похожа на предыдущую, только здесь есть дополнительное УЗО на входе. При этом сразу возникает вопрос: зачем оно требуется? Общее устройство нужно преимущественно в тех случаях, когда не все линии защищены. Цвета проводов совпадают с предыдущей схемой.

Схема с общим и групповыми УЗО

Схема должна обеспечить селективность отключения, когда есть несколько защитных устройств и должно сработать только одно. Прежде всего, у входного устройства ток утечки должен быть больше и составлять не менее 100 мА. Еще селективность обеспечивается, когда есть устройства с разными задержками отключения.

Недостатком схемы является более высокая стоимость и необходимость размещения всего оборудования на большом распределительном щите.

Токовая защита не решает проблем с коротким замыканием. Если оно произойдет, устройство тут же выходит из строя. В связи с этим в одной линии с УЗО есть автоматический выключатель, который следует ставить с номиналом протекающего тока на одну ступень ниже.

Автоматы можно ставить последовательно: как перед защитным устройством, так и после него. Они не мешают друг другу и срабатывают, когда есть разные аварийные ситуации. Автоматы также срабатывают при очень больших токах утечки.

Подключение УЗО к трехфазной сети

Частные дома обычно питаются от трехфазной сети. Зачем это нужно? Многие приборы частного хозяйства работают по этой схеме, например, насосы, станки или система электрического отопления. Кроме того, удобно распределять нагрузки по фазам. Для защиты трехфазной сети есть четырехполюсное УЗО на 380 В. К его выходам подключаются групповые однофазные УЗО. Здесь важно правильно обеспечить соответствие между входом и выходом. У разных компаний подключение нулевой клеммы отличается. Она может располагаться с любой стороны: справа или слева.

Какое у прибора значение тока утечки, и какая применяется схема подключения – обозначено на корпусе. Зачем это нужно, вопрос риторический, поскольку в нужный момент при ремонте и обслуживании трудно найти необходимую документацию.

Четырехполюсники обычно применяются в качестве противопожарных устройств и рассчитаны на большие токи утечки.

Схема подключения трехфазного защитного устройства

В схемах применяются отдельные шины для проводов нейтрали и земли. На отходящих линиях следует ставить однофазные двухполюсные УЗО на слабые токи 30 мА. К ним подключаются отдельные фазы (провода коричневого, красного и черного цветов).

Во влажных помещениях должны стоять УЗО со слабым током утечки (10 мА). Зачем нужен такой маленький ток, когда большие значения также безопасны? Подключение на 30 мА также допускается, но в случае утечки во влажной среде удар током будет более ощутимым. Для больного человека это может представлять опасность.

Схема включения трехфазного и однофазных УЗО

В схеме подключения могут быть одновременно как трехфазные, так и однофазные нагрузки. Но при этом ноль каждой отдельной сети обязательно должен соединяться через шину с выходной нейтралью четырехполюсного УЗО (рисунок выше). Фазы обозначены красным, зеленым и желтым цветом, нейтраль – синим, а земля – зеленым.

При монтаже схем с УЗО необходимо уделять особое внимание следующему:

  • правильно подключать фазные и нулевые проводники, а также землю;
  • цветовая маркировка проводов должна выполняться по правилам;
  • схема подключений должна строго выполняться.

Ошибки в подключении УЗО

Не допускается установка УЗО в следующих случаях:

  • впереди счетчика или параллельно с ним;
  • без последовательно установленного автомата с соответствующими характеристиками;
  • в сеть с током утечки на 40 % выше, чем у УЗО;
  • существенно отличаются параметры сети и защиты.

Когда УЗО располагается впереди счетчика, это дает возможность воровать электроэнергию. Если контролеры обнаружат подключение, они наложат на хозяина квартиры штраф и пришлют счет на оплату потерь в сети. Параллельное подключение к прибору счетчика заставит его ошибаться в сторону снижения расхода электроэнергии из-за трансформатора, находящегося в схеме УЗО.

УЗО не реагирует на скачки тока в сети и может сгореть при коротком замыкании, если в цепи нет автомата, отключающего питание.

Если общие токи утечки в сети выше, чем у УЗО, устройство будет постоянно срабатывать и придется слишком часто его включать. При включении мощной лампы происходит бросок тока, который может обесточить электрическую цепь.

УЗО отличаются уровнями защиты. Если в квартире установить промышленное устройство, оно не будет «замечать» утечку тока, когда человек касается фазы.

Для замены и ремонта УЗО целесообразно предусмотреть резервное подключение в обход его, чтобы устройство можно было обесточить и демонтировать, не отключая питания в квартире.

Дифференциальный автомат

Дифференциальный автомат – это устройство, объединяющее функции автоматического выключателя и УЗО в одном корпусе. За счет этого экономится место на электрощите. Устройство срабатывает на токи перегрузки и короткие замыкания, а также защищает человека от токов утечки и предотвращает возгорание при нарушении изоляции проводов или токоведущих частей приборов.

Внутри двухполюсного дифавтомата установлен трансформатор, сравнивающий токи на входе и выходе. Разница сигналов поступает на вход усилителя и катушку отключения, срабатывающую даже при незначительном токе.

Подключение дифавтомата

Дифавтомат часто подключается по двум вариантам. В первом случае он защищает всю сеть, что может вызвать ее полное отключение. При этом ток утечки подбирается больше 30 мА и рассчитан на отключение сети для предупреждения возгорания проводки. Если выбрать ток меньше, начнутся постоянные ложные срабатывания. Другой вариант предусматривает защиту отдельных линий, что позволяет выбрать ток утечки не более 30 мА, безопасный для человека. Схема является самой затратной, но более безопасной (рисунок ниже). Как и на всех предыдущих схемах, фаза обозначена через L, а нейтраль – через N. Черно-коричневым проводом отмечена земля.

Схема подключения дифавтоматов в квартире

На схеме два автомата подключены без защиты от токов утечки (крайние справа). Поэтому защита от возгорания здесь не полная. Для ее обеспечения на входе можно ставить общее УЗО или дифференциальный автомат. Это будет дороже, но надежнее. Защитных устройств должно быть столько, сколько нужно для безопасности, а не насколько хочется сэкономить.

Провода питания к дифавтомату подводятся сверху. К нижним клеммам подключается нагрузка.

Установка УЗО

Если аккуратно ставить УЗО по инструкции, с этим справится даже новичок. Его подключение делается следующим образом:

  1. Отключить подачу в жилище электроэнергии, после чего дополнительно проверить ее отсутствие индикаторной отверткой или мультиметром.
  2. Выбрать схему подключения: сразу после счетчика или на отдельной линии. С каждым УЗО должен подключаться автоматический выключатель.
  3. Установить устройство в щитке и после выполнить необходимые соединения (сверху и снизу). У каждой модели на корпусе или в инструкции есть схема подключения. Соблюдать полярность нужно обязательно. При отсутствии цветовой маркировки для нахождения необходимого провода фазы есть индикаторная отвертка. Если нужно найти нулевой провод, можно использовать тестер.
  4. Подать напряжение в сеть и проверить работоспособность защиты. Это делается путем нажатия на тестирующую кнопку УЗО, выведенную на переднюю панель. Она имитирует ток утечки, на что устройство должно обязательно сработать и отключить цепь питания.

УЗО – это прибор высокой чувствительности, который всегда нужно подключать правильно. Агрегат не рассчитан на срабатывание при коротком замыкании, из-за которого можно вывести его из строя.

Коммутация электрощита. Видео

Как скоммутировать вводный электрощит рассказывает данное видео.

Установка УЗО и дифференциальных автоматов решает вопросы электробезопасности, которыми нельзя пренебрегать в связи с увеличением количества электроприборов и нагрузки на проводку. Если правильно собрать схему, она обеспечит необходимую безопасность и защиту оборудования в доме.

Оцените статью:

Схемы подключения узо и дифференциальных автоматов

Согласно требованиям современных норм и правил, функционирование домашней электропроводки подразумевает использование защитных устройств. И на сегодняшний день наиболее популярны дифференциальные автоматы и устройства защитного отключения. Они поставляются на отечественный рынок в различных конструктивных исполнениях, что позволяет подобрать устройство с оптимальными характеристиками для использования в однофазных и трехфазных схемах электроснабжения. Вместе с тем, все эти устройства функционируют по одному общему алгоритму.

Принцип работы УЗО и дифавтомата

Устройство защитного отключения работает по принципу, схожему с дифференциальным автоматом, за тем исключением, что в его схеме отсутствует автоматический выключатель, который реагирует на превышение токов нагрузки.

В связи с этим, при подключении одно- или трехфазного УЗО требуется установка дополнительной токовой защиты для обеспечения защиты от недопустимых нагрузок и коротких замыканий.

Этот момент, собственно, и отличает УЗО от дифавтомата.

Что касается элемента, конструктивно объединяющего эти устройства, то им является схема, которая основана на сравнении входящих в устройство и выходящих из него векторов токов. В обоих случаях схема отключает электрооборудование, как только будет зафиксировано отклонение от установленных предельных величин.

Набор элементов, обеспечивающих функциональность схемы, может быть разным и основываться на использовании электромагнитных реле или полупроводниковых устройств.

Для того чтобы иметь понятие о правильном подключении УЗО и дифавтомата, нужно рассмотреть один из вариантов конструкции, используемый в упрощенной однофазной сети.

Алгоритм работы внутренних элементов статических устройств аналогичен, поэтому способ подключения у них не отличается.

Работа в режиме нормального электроснабжения

Через тоководы УЗО, включенного под нагрузку, протекает ток нагрузки. При хорошем качестве изоляции в схеме возникновение токов утечки исключается. То есть, величина входящего по фазному проводу тока соответствует значению тока, выходящего из тороидального магнитопровода, в который вмонтированы тоководы УЗО. При этом входящий и выходящий токи противоположны по направлению.

В данном варианте рассмотрена работа идеального устройства, что возможно только теоретически. На практике же всегда имеет место небаланс соотношений магнитных потоков, образованных фазными токами. Однако отличия настолько незначительны, что не сказываются на нормальной работе схемы.

Несмотря на то, что устройства защиты на отключение, такие как УЗО и дифавтоматы, срабатывают в автоматическом режиме, их повторное включение требует выполнения ряд обязательных действий:

• анализ состояния микросхемы с целью определения причины отключения;• устранение выявленной неисправности;• включение УЗО или дифавтомата при помощи расположенного на их корпусе рычага.

Если устройство срабатывает повторно, в этом случае должен следовать вывод о вероятно плохой изоляции электрооборудования. Дальнейшие действия заключаются в описке поврежденного участка и восстановлении целостности изоляционного слоя.

В процессе первичного монтажа автоматической защиты в схему электропроводки требуется лишь правильное подключение входных и выходных фазных и нулевых проводников к соответствующим клеммам. Для этого на всех корпусах присутствует четкая маркировка.

Подключение однофазного УЗО

Входные и фазная и нулевая клеммы обозначаются надписями “1” и “N”, а выходные – “2” и “N”. Устройства, функционирующие на основе электронной базы, особенно требовательны к правильному подключению нейтрали, поскольку ошибка с ее полярностью может привести к повреждению электронной схемы.

Функциональный набор устройства позволяет периодически проводить тестирование с целью определения его технического состояния. При воздействии на соответствующую кнопку в конструкции создаются условия для отключения защиты. Если в этом случае отключения нет, это свидетельствует о неисправности УЗО.

Подключение трехфазного устройства дифференциальной защиты

Монтаж трехфазных УЗО проводится по принципу, аналогичному однофазным решениям. В этом случае также важно соблюдение полярности фазных и нулевых проводников.

Для того чтобы обеспечить это, входные цепи принято подключать к нечетным клеммам, а выходные – к четным.

Устройства защиты подобного рода срабатывают, как только возникнет небаланс от создаваемых токами всех четырех токопроводов магнитных потоков.

Трехфазное УЗО также может быть задействовано в трех однофазных сетях с общей нейтралью. Такое решение обеспечивает защиту одновременно трех однофазных электрических схем. Вся что требуется для реализации этого – выбор места установки с возможностью использования шины для подключения к выходу защиты нейтрали. Данная мера позволяет разделить ее одновременно по трем сетям.

Подключение трехфазного УЗО к трехпроводной сети без нейтрали

Подобные схемы имеют место при организации защиты трехфазных двигателей без нейтрали. В этом случае отпадает необходимость в использовании нулевых клемм УЗО.

При таком подключении более предпочтительно использование защитного устройства электромагнитной конструкции, оснащенного механическими расцепителями. Связана данная рекомендация с тем, что работа статических моделей требует подачи напряжения на блок питания, который может подключаться между фазой и нулем.

Помимо прочего, из-за отсутствия нулевого потенциала становится недоступной функция периодического тестирования прибора на предмет исправности. Поэтому подключение в таком виде сопряжено с проведением доработок прибора.

Чем отличаются схемы подключения УЗО и дифавтоматов

Как уже было отмечено выше, конструкция дифференциального устройства защиты лишена интегрированной защиты от токов коротких замыканий и перегрузки. Для того чтобы предотвратить выхода устройства из строя из-за короткого замыкания, следует принять соответствующие меры. Они заключаются в установке автоматического выключателя перед каждым УЗО.

Конструкция дифференциального автомата имеет встроенную защиту от КЗ и токов перегрузки, что является одним из факторов, увеличивающих стоимость устройств из этого разряда. При подключении дифавтомата отпадает необходимость в установке дополнительного автоматического выключателя.

В любом случае, УЗО и дифференциальный автомат способны долго и бесперебойно работать только в том случае, если их подключение выполнено правильно. Здесь необходимо учитывать конкретные условия схемы, а также требуется точное выставление уставок на срабатывание, что обеспечивает соответствующие защитные функции.

Монтаж Диф автоматов (дифференциальных автоматов) в квартире, доме, на предприятии

Появление огромного количества  посудомоечных, стиральных машин, бойлеров, гидромассажных ванн в квартирах, технологического оборудования на предприятиях работающего с водой, потребовали более ответственного отношения к безопасности.

Вода является проводником электричества, попадая на контакты электроприборов, поврежденную изоляцию проложенных кабелей представляет серьезную угрозу здоровью и жизни человека.

Монтаж диф автоматов (дифференциальный автомат) , наравне с УЗО (устройство защитного отключения) в монтажной схеме многократно уменьшают риск поражения электрическим током.

Смонтированные в распределительных щитах или специальных боксах приборы защищают групповые линии работающие во влажных помещениях от несанкционированных утечек тока, дифференциальные автоматы так же от перегрузок и короткого замыкания.

В компании ООО Ск «Элит-Сервис» Вы можете срочно вызвать электрика для монтажа щита и системы защиты и автоматики. . В кратчайшие сроки, удобное время специалист выедет на объект и окажет услуги в области электромонтажа, установит диф автоматы (дифференциальные автоматы) , смонтирует автоматические выключатели, УЗО (устройство защитного отключения) с соблюдением СНиПов (строительные нормы и правила) и ПУЭ (правила устройства  электроустановок).

Для чего устанавливать диф автоматов (дифференциальный автомат

Принцип действия ДИФа

В диф автомате как в обычном автоматическом выключателе есть два расцепителя. Тепловой, срабатывающий от перегрузки защищаемой группы и электромагнитный, отключающий линию при коротком замыкании. Аналогично УЗО в приборе используются  дифференциальный трансформатор в качестве датчика, срабатывающего при утечке тока. Принцип его работы основан на изменение дифференциального тока в проводниках, по которым электроэнергия подается на электроустановку, для которой организована защита. Без специального образования разобраться в хитросплетении терминов непросто. Упрощенная схема работы приведена на рисунке.  Монтируем  диф автомат (дифференциальный автомат) в электроцепь для защиты «Нагрузки». По линии обозначенной синим цветом ток протекает в нормальном режиме работы электрооборудования. Происходит нештатная ситуация, перегрузка — срабатывает тепловое. Короткое замыкание — приходит на помощь электромагнитный расцепитель. Самое опасное для человека утечка тока, возникающая от пробоя изоляции, попадания воды, касания оголенного провода.  Красной стрелкой на рисунке показана утечка, установленный  диф автомат (дифференциальный автомат) мгновенно отключит напряжение. Время срабатывания качественного ДИФа всего 25-30 м/секунд, ток утечки 10-30 миллиампер. Напомним, для жизни  человека опасными являются 50-100 миллиампер.

Технические характеристика наиболее популярных устанавливаемых в Санкт-Петербурге Диф автоматов

Дифференциальный автомат ABB

ABB, один из крупнейших мировых производителей электротехнического оборудования. Шведский концерн имеет производство и представительства во многих странах мира. Качество продукции очень высокое, цена вполне доступная.

Компания ООО Ск «Элит-Сервис» выполняет монтаж и установку Диф автоматов (дифференциальный автомат), других комплектующих фирмы более десяти лет.

За все время монтажа электропроводки нам не разу не попадалось некачественное оборудование.

Параметр Значение
Номинальное напряжение Un, B
220, 380
Рабочая частота fn, Гц 50
Номинальный ток нагрузки In, A 16
Номинальный отключающий дифференциальный ток IDn, мА 30
Максимальный условный ток короткого замыкания  А Inc 6000
Время отключения при номинальном дифференциальном токе Тn, не более, мс 25
Максимальное сечение подключаемых проводов, мм2 25
Количество циклов электрических 6000
Количество циклов механических 10000 

Дифференциальный автомат Legrand

Международный концерн Legrand является крупнейшим производителем электроустановочных изделий. Наша компания достаточно давно работает с комплектующими французского изготовителя.

Установка  Диф автоматов (дифференциальный автомат), наравне с монтажом другого электротехнического оборудования фирмы Legrand, является приоритетом обеспечения безопасности при проведении электромонтажных работ.

Хорошее соотношение цена – качество.

Параметр Значение
Номинальное напряжение Un, B 220, 380
Рабочая частота fn, Гц 50
Номинальный ток нагрузки In, A 16
Номинальный отключающий дифференциальный ток IDn, мА 30
Максимальный условный ток короткого замыкания  А Inc 6000
Время отключения при номинальном дифференциальном токе Тn, не более, мс 25
Максимальное сечение подключаемых проводов, мм2 25
Количество циклов электрических 4000
Количество циклов механических 10000

Дифференциальный автомат Schneider electric

Всемирно известный производитель Schneider electric  , выпускающий широкий ассортимент электрооборудования относительно недавно появился на рынке Санкт-Петербурга. Зарекомендовал себя с хорошей стороны. Монтаж и установку Диф автоматов (дифференциальный автомат) изготовителя ООО Ск «Элит-Сервис» проводит более пяти лет. Электротехническое оборудование Schneider electric очень доступно в недорогих сериях.

Параметр Значение
Номинальное напряжение Un, B 220, 380
Рабочая частота fn, Гц 50
Номинальный ток нагрузки In, A 16
Номинальный отключающий дифференциальный ток IDn, мА 30
Максимальный условный ток короткого замыкания  А Inc 6000
Время отключения при номинальном дифференциальном токе Тn, не более, мс 30
Максимальное сечение подключаемых проводов, мм2 25
Количество циклов электрических 4500
Количество циклов механических 10000

Дифференциальный автомат IEK

Компаний IEK – крупнейший российский производитель электротехнической продукции. Основным плюсом является невысокая стоимость.

Продукция сертифицирована по российским стандартам, очень распространена в новом строительстве массового жилья, бюджетных промышленных объектах.

Устанавливается Диф автоматы (дифференциальный автомат) на вводах в квартиры, влажные помещения, обеспечивают защиту недорогого производственного оборудования.

Параметр Значение
Номинальное напряжение Un, B 220, 380
Рабочая частота fn, Гц 50
Номинальный ток нагрузки In, A 16
Номинальный отключающий дифференциальный ток IDn, мА 30
Максимальный условный ток короткого замыкания  А Inc 6000
Время отключения при номинальном дифференциальном токе Тn, не более, мс 30
Максимальное сечение подключаемых проводов, мм2 25
Количество циклов электрических 4500
Количество циклов механических 10000

Дифференциальный автомат DEK

Компания DEKraft является очень молодым  российский производителем электротехнической продукции.

Оборудование сертифицирована по российским стандартам, очень распространена в новом строительстве массового жилья, бюджетных промышленных объектах.

Устанавливается Диф автоматы(дифференциальный автомат) на вводах в квартиры, влажные помещения, обеспечивают защиту недорогого промышленного оборудования. Основным плюсом является невысокая стоимость.

Параметр Значение
Номинальное напряжение Un, B 220, 380
Рабочая частота fn, Гц 50
Номинальный ток нагрузки In, A 16
Номинальный отключающий дифференциальный ток IDn, мА 30
Максимальный условный ток короткого замыкания  А Inc 6000
Время отключения при номинальном дифференциальном токе Тn, не более, мс 30
Максимальное сечение подключаемых проводов, мм2 25
Количество циклов электрических 4500
Количество циклов механических 10000

Монтаж и установка диф автоматов (дифференциальный автомат) Что выбрать?

Характеристики пяти наиболее популярных в Санкт-Петербурге диф автоматов (дифференциальный автомат) мы рассмотрели выше, кратко описали производителей. На рынке электромонтажных работ в Санкт-Петербурге ООО Ск «Элит-Сервис» не один год.

Многолетний опыт работы с оборудованием различных производителей позволяет делать определенные выводы, которыми готовы поделиться с коллегами и заказчиками. Установленные  диф автоматы и УЗО исчисляются сотнями. Когда был поставлен первый блок утечки тока вспомнить достаточно сложно.

Изначально выполнялась установка дифференциальных автоматов концерна ABB. В те времена это была диковинка, СНиПы (строительные нормы и правила) и ПУЭ (правила устройства  электроустановок)  установки блоков утечки не предусматривали.

  Проблем с ДИФами и устройствами защитного отключения ABB не возникало, однако цена была достаточно высока, не все клиенты выполняя  электромонтажные работы были готовы платить за безопасность.

В Санкт-Петербурге начала появляться электротехническая продукция концерна Legrand, диф автомат (дифференциальный автомат) и УЗО стоили процентов на двадцать дешевле. Компания переключилась на Legrand. Известный в Европе производитель,  французское  качество.

Каково было наше удивление, когда на третьем… или четвертом объекте из пяти установленных УЗО, два были неисправны, кнопка «Тест» не работала. Несколько лет мы не устанавливали эти блоки утечки. Время прошло, «обида» улеглась, сейчас монтируем Legrand  без опасений, наверное просто не повезло, может попалась подделка, однако осадок остался.

Сейчас появилось большое количество дифференциальных автоматов разных уважаемых производителей,  ABB, Legrand,  Schneider electric, Hager, Siemens, а есть такие, упоминать не хочется. Блоки утечки  Schneider electric устанавливаем достаточно недавно, нареканий нет, достойные приборы. Хочу остановиться на ДИФах IEK, DEKraft.

В принципе это одно и то же. За счет низкой стоимости и Российской сертификации приборы этих компаний получили широкое распространение. Процент брака достаточно большой, устройство может проработать много лет, а иногда вылетает в первый месяц эксплуатации. Компания ООО Ск «Элит-Сервис» не дает гарантию на системы защиты и автоматики собранных на комплектующих этих фирм. Господа!  Устанавливайте диф автоматы (дифференциальные автоматы) проверенных производителей, это сохранит время, нервы и деньги. Помните, скупой платит дважды! Качественное оборудование – это Ваша безопасность.

  • Оптимальное соотношение цены и качества — выбор умных людей.
  • Вам остается только позвонить и сделать заказ.
  • Т. +7 (812) 740-51-93
  • Заказать

Как подключить дифавтомат в однофазной сети — схема и порядок подключения

07.07.2017

Дифференциальный автоматический выключатель – это электромеханический прибор, обеспечивающий защиту электросети от повреждений в результате короткого замыкания или высоких нагрузок. Помимо этого, он обеспечивает безопасность людей, не допуская поражения электричеством при касании линии, в которой имеется утечка тока. Таким образом, он объединяет в себе функции двух аппаратов: защитного автомата и УЗО. Подключение дифавтомата – задача не из легких, и чтобы правильно выполнить ее, нужно соблюдать меры безопасности, а также выполнять правила монтажа. О том, как подключить дифавтомат, и пойдет речь в этой статье.

Конструктивные особенности дифференциальных автоматов

Как уже было сказано, установка в сеть дифавтомата позволяет обеспечить защиту от утечек электротока, перегрузок и сверхтоков КЗ. Этот прибор является комбинированным, и в его состав входят две основных составляющих:

  • Защитный автомат с электромагнитным (катушка) и тепловым (биметаллическая пластина) расцепителями. Первый отключает питание линии при возникновении в ней короткого замыкания, а второй обесточивает сеть при появлении нагрузки, превышающей расчетную. АВ в дифавтоматах могут иметь 2 или 4 полюса, в зависимости от того, какую сеть они защищают – однофазную или трёхфазную.

  • Устройство защитного отключения. В состав этого элемента входит реле, на которое при нормальном функционировании сети воздействуют магнитные потоки одинаковой силы, не давая разъединить линию. При возникновении утечки (ухода электричества в землю) равномерность потоков нарушается, в результате чего происходит переключение реле с обесточиванием линии.

Кроме АВ и УЗО, автомат имеет в своем составе дифференциальный трансформатор, а также электронный элемент усиления.

Установка дифавтомата в одно- и трехфазной сети

Прежде чем начать подключение дифференциального автомата, необходимо нажать на его корпусе кнопку «Тест». Таким образом, искусственно создается утечка тока, на которую прибор должен отреагировать отключением. Это позволит удостовериться в исправности устройства. Если при тестовом испытании аппарат не отключился, пользоваться им нельзя.

В бытовых однофазных сетях, где показатель рабочего напряжения составляет 220В, устанавливаются двухполюсные АВДТ.

Подключение дифавтомата в однофазной электрической сети требует правильного подсоединения нулевых проводов: ноль от нагрузки подключается с нижней части прибора, а от питания – с верхней.

Монтаж четырехполюсного диф. автомата, предназначенного для защиты трехфазной сети, рабочее напряжение в которой равно 380В, производится по аналогичному принципу. При этом нужно учитывать, что трехфазный (четырехполюсный) дифавтомат занимает в распределительном щите больше места, чем однофазный. Это обусловлено необходимостью установки блока дифференциальной защиты.

Корпус некоторых типов АВДТ маркируется обозначением 230/400V. Такое устройство может устанавливаться в сети как с одной, так и с тремя фазами. Во втором случае эти приборы монтируются на потребители, использующие только одну фазу – это может быть группа розеток или отдельные аппараты.

Схемы подключения

Основное правило, которое должна учитывать любая схема подключения дифференциального автомата, гласит: АВДТ нужно подсоединять к фазам и нулевому проводнику исключительно той линии или ответвления, для защиты которой предназначен этот прибор.

Вводной автомат

Дифференциальный автомат в щитке в этом случае устанавливается на вводном проводе. Такая схема подключения дифавтомата получила свое название потому, что устройство защищает все группы и ветки сети, к которой оно подсоединено.

При подборе АВДТ для этой схемы необходимо учитывать все рабочие параметры линии, в том числе и потребляемую мощность. Такой способ подключения защитного устройства имеет ряд плюсов, к которым относятся:

  • Экономия, поскольку на всю сеть устанавливается единственный автомат.
  • Компактность, так как одно устройство не занимает в щитке много места.

Минусы этой схемы таковы:

  • При возникновении нарушений в сети обесточивается вся квартира или дом.
  • При любой неисправности на ее поиск и устранение уйдет много времени, поскольку нужно будет найти ветку, на которой произошел сбой, а также установить конкретную причину неполадок.

Наглядные схемы подключения дифавтоматов на видео:

Отдельные автоматы

Этот метод подключения предусматривает установку нескольких дифференциальных АВ. Установка дифавтомата производится на каждую отдельную ветку или мощный потребитель. Кроме того, дополнительный АВДТ ставится перед группой самих защитных устройств. К примеру, на осветительные приборы устанавливается один аппарат, на розеточную группу – другой, а на электроплиту – третий.

Преимуществом этого способа является максимальный уровень обеспечения безопасности, а также достаточно легкий поиск возможных неисправностей. Недостаток его – большие затраты, связанные с покупкой нескольких дифференциальных автоматов.

Дифавтомат в схеме без заземления

Еще не так давно технология строительства любых зданий учитывала обязательное устройство заземляющего контура. Все имеющиеся в доме распределительные щиты подключались к нему. В современном строительстве оборудование заземления не является обязательным.

В таких зданиях и имеющихся в них квартирах дифференциальные АВ должны устанавливаться обязательно, чтобы обеспечить необходимый уровень электрической безопасности.

Дифавтомат в такой схеме не только защищает сеть от неполадок, но и играет роль заземляющего элемента, предотвращая утечку электротока.

Наглядно про подключение дифавтоматов на видео:

Что нужно помнить при подключении дифференциального автомата?

Независимо от того, в однофазную или трехфазную сеть подключается защитное устройство, при его установке должны соблюдаться нижеперечисленные правила:

  • Питающие кабели следует подсоединять к верхней части прибора, а провода, идущие на потребители – к нижней. На корпусной части большинства дифференциальных АВ имеется принципиальная схема, а также обозначение разъемов.

Очень важно правильно подключить дифавтомат, поскольку неверное подсоединение проводников с высокой долей вероятности станет причиной сгорания устройства. Если кабели недостаточно длинны, их нужно заменить или нарастить. Как вариант – аппарат можно перевернуть на ДИН-рейке, но в этом случае можно запутаться по ходу дальнейшей установки.

  • Необходимо соблюдать полярность контактов. Все защитные устройства в соответствии с международными стандартами имеют маркировку разъемов: для фазных – L, для нулевых – N. Подводящий кабель обозначается цифрой 1, а отводящий – 2. Если контакты будут подключены неправильно, то прибор, скорее всего, не сгорит, но при этом не будет реагировать на неполадки в сети.
  • Во многих аппаратах схема подключения предусматривает подсоединение всех нулевых проводников к общей перемычке. Но в случае с дифференциальным АВ этого делать нельзя, иначе питание будет постоянно отключаться. Чтобы не вызвать сбоев в работе, нулевой контакт каждого дифавтомата следует соединять только с той веткой, которую он защищает.

Порядок подключения

Теперь поговорим о том, как правильно подключить АВДТ. После того, как вы определились со схемой монтажа и приобрели все, что нужно для установки, переходим к подключению. Оно производится в следующем порядке:

  • Внимательно осмотрите корпус устройства. На нем не должно быть трещин и других дефектов, поскольку они могут стать причиной некорректной работы прибора.
  • Отключите питание в домашней сети рубильником в распределительном щитке.
  • Тестером или отверткой-индикатором проверьте контакты подключенных потребителей, чтобы убедиться, что к ним не поступает напряжение.
  • Прикрепите к DIN-рейке дифавтомат.
  • Снимите изоляционный слой с концов подключаемого провода (примерно по 5 мм). Для этого удобнее всего использовать бокорезы.
  • Подсоедините фазные и нулевые жилы: от провода питания – к верхним клеммам защитного устройства, а от защищаемой линии – к нижним.
  • После этого остается включить питание сети и удостовериться, что прибор работает правильно.
  • Порядок сборки распредщита на дифавтоматах на видео:

Наиболее распространенные ошибки при подключении АВДТ

Если после подсоединения дифференциального автомата он срабатывает при малейшей нагрузке или не включается вообще, значит, его установка была произведена неправильно.

Существует несколько ошибок, которые чаще всего допускают неопытные пользователи при самостоятельном подключении дифавтомата:

  • Соединение нейтрального провода с кабелем заземления. В этом случае включить АВДТ будет невозможно, так как не получится установить в верхнее положение рычажки устройства.
  • Подключение нуля к нагрузке с нулевой шины. При таком подсоединении рычажки прибора устанавливаются в верхнее положение, но отключаются при подаче малейшей нагрузки. Ноль следует брать только с выхода защитного аппарата.
  • Подсоединение нуля с выхода устройства вместо нагрузки к шине, а с последней – к нагрузке. Если подключение выполнено таким образом, рычажки прибора можно будет установить в исходное положение, но как только будет включена нагрузка, АВДТ вырубит. Кнопка «Тест» в этом случае также работать не будет. Такие же симптомы будут наблюдаться, если перепутать подключение нуля, подсоединив его с шины к нижней, а не к верхней клемме аппарата.
  • Перепутанное подключение нулевых проводов с двух разных АВДТ. В этом случае оба автомата будут включаться, кнопка «Тест» на каждом из них будет работать правильно, но как только будет подключена нагрузка, вырубятся сразу оба устройства.

  • Соединение нулевых проводов от двух АВДТ. Когда допущена эта ошибка, рычажки обоих аппаратов устанавливаются в рабочее положение, но при подключении нагрузки или нажатии кнопки «Тест» на любом дифавтомате отключатся оба одновременно.

Разбор основных ошибок подключения на видео:

Заключение

В этой статье мы рассказали, как правильно подключить дифавтомат, а также разобрались с основными ошибками, которые допускаются при этой процедуре. Учитывая это, вы сможете самостоятельно установить защитное устройство, а если при этом будет допущена ошибка – легко найдете и исправите ее.

Схема подключения дифавтомата

Если вы решили защитить своих близких и имущество с помощью дифавтомата (АВДТ), то правильно делаете, но только подключите его правильно.

Сначала изучите схему подключения автоматического выключателя дифференциального тока и только потом занимайтесь его монтажом.

Хотя тут ничего сложного нет, но если все равно сомневаетесь как подключить дифавтомат, то ниже я подробно рассказал как это сделать…

Подключение дифавтомата практически похоже на подключение УЗО, но только здесь в схеме отсутствует дополнительный автоматический выключатель. На что тут нужно обратить особое внимание при подключении дифавтомата:

  1. Подключение проводов. Приходящий провод всегда подключается только на верхние контакты, а отходящий всегда на нижние. Не меняйте их местами. От этого может сгореть АВДТ и тогда побежите в магазин за новым. Если вдруг у вас не хватает длины проводов до нужных контактов, то замените провод.
  2. Соблюдение полярности. На дифавтомат заводятся и фаза «L» и нуль «N». У одних производителей нулевой контакт может быть справа, а у других слева. Внимательно смотрите на корпус АВДТ, там все подписано. Буква N — это для подключения нулевого проводника. Цифра 1 — это для подключения приходящего фазного проводника. Цифра 2 — это для подключения отходящего проводника. Соблюдение полярности позволяет исправно выполнять все свои функции АВДТ. Модуль отвечающий за функции автоматического выключателя часто стоит только на фазном полюсе. Если мы перепутаем полярность, то тогда наш любимый дифавтомат не сможет защитить проводку от короткого замыкания и перегрузки.
  3. Следите за нулевыми проводниками. Как мы привыкли «нуль» должен быть везде общим и должен объединять все нулевые проводники. А вот  использование дифавтомата немного нарушает это правило. Запомните, что объединение нулей после АВДТ запрещено. После дифавтомата фаза и нуль ушли только в контролируемую данным АВДТ цепь и на всем ее протяжении ни с чем больше не объединяются.

Теперь ниже давайте рассмотрим несколько схем подключения дифавтомата, которые могут встретиться в обычных квартирах.

В варианте предложенным ниже предлагается установка общего входного автоматического выключателя дифференциального тока, который будет защищать всю квартиру. Рекомендованные параметры АВДТ приведены на схеме, но учтите что у каждого разная нагрузка и нужно ее считать индивидуально.

Плюсы такой схемы:

  • дешевизна, так как необходим только один АВДТ;
  • необходимо немного места в распределительном щитке.

Минусы:

  • при срабатывании дифавтомата обесточивается вся квартира;
  • затруднен поиск неисправности (В какой линии произошла утечка? А может было короткое замыкание?)

Следующая схема подключения дифавтомата состоит из общего входного АВДТ и дифавтоматов в каждой отходящей линии. Это самый безопасный и надежный вариант схемы распределительного щитка. Тут входной АВДТ контролирует всю сеть, а групповые дифавтоматы контролируют каждый свою цепь.

В данном варианте необходимо соблюсти селективность в выборе автоматических выключателей дифференциального тока. Групповые выбираем с током утечки 30мА, а входное с током утечки 100-300мА.

Это нужно чтобы при неисправности к какой-либо цепи не сработали сразу групповой и входной дифавтоматы. Также селективность может быть достигнута с помощью применения АВДТ типа «S» (селективного).

Оно имеет задержку в времени срабатывании, что дает возможность сработать только одному групповому АВДТ.

Плюсы такой схемы:

  • надежность и безопасность;
  • при аварии обесточивается только неисправная линия, что облегчает поиск места неисправности.

Минусы:

  • дороговизна, так как дифавтоматы стоят недешево;
  • необходимо много место в распределительном щитке, чтобы все это разместить;
  • сложность схемы (может это и не минус).

Последняя предлагаемая схема подключения дифавтомата является почти аналогичной предыдущей схемы, но только без применения общего входного АВДТ. Многие говорят, что зачем тратить лишние средства на входной дифавтомат, так как каждая цепь уже контролируется автоматическим выключателем дифференциального тока. Плюсы и минусы такой схемы такие же как и в предыдущем варианте.

Если у Вас остались вопросы, то задавайте их в х. Будем вместе разбираться что к чему.

Вот несколько фотографий, где показано наглядно подключение дифавтоматов. Это моя работа по сборке и подключению электрощитов.

Для заказа разработки схемы распределительного щита и его сборки пишите запрос в любой форме на адрес Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. .

Готовые электрощиты отправляю в любую точку России через транспортные компании. При заказе сборки схему разрабатываю бесплатно.

Специально для Елены ответ на комментарий №2. Схема подключения дифавтомата как делать НЕЛЬЗЯ.

Улыбнемся:

Тост: Висел на столбе электромонтер, сжимал зубами два куска провода. Бежала мимо лиса: — Монтер-монтер, а что это ты на проводах раскачиваешься, хоть бы лестницу поставил! Молчит монтер, сжимает провода пуще прежнего. А лиса не унимается: — Монтер, ты бы хоть паяльник взял, разве можно зубами? Молчит монтер.

А лиса снова: — Монтер, ты электричество-то выключи, ведь тебя сейчас током долбанет! Не выдержал монтер, разжал зубы да как гаркнет во все горло: — А ну вали отсюда, дура рыжая, ты еще будешь меня учить работать! А как разжал зубы — вниз брякнулся и ногу вывихнул.

А провода разомкнулись, и во всем городе свет погас.

Так выпьем за то, чтобы не обращать внимания на советы дилетантов.

Подключение дифавтомата своими руками

Проводка должна быть обеспечена защитой от ситуаций, связанных с перегрузками и утечками тока. При этом прибегают к помощи защитного автомата и УЗО. Данную задачу можно решить, если использовать дифференциальный защитный автомат. Он как бы объединяет два прибора в один. Они даже расположены в одном корпусе. Чтобы прибор функционировал полноценно, его следует правильно подключить.

Условия подбора дифавтомата

Немаловажным моментом является экономическая сторона вопроса. Купить один прибор обойдется дешевле, чем приобретать два устройства. Наконец, потребуется лишь определение номинала автоматы защиты. УЗО встраивается по умолчанию в соответствии с необходимыми характеристиками.

К сожалению, не обошлось и без недостатков. Если из строя выйдет лишь какая-то часть прибора, то замене будет подлежать автомат полностью. Понятно, что это сопряжено с дополнительными расходами.

Далеко не все подобные автоматы снабжаются флажком, с помощью которого определяется причина срабатывания прибора, выяснение которой принципиально важно.

статью ⇒ Как отличить узо от дифавтомата.

Характеристика и выбор дифференциального автомата

Поскольку прибор состоит из двух устройств, требуется вести учет характеристик каждого из них.

На схемах дифавтоматы обозначаются следующим образом:

Примеры обозначения дифференциальных автоматов, включенных в состав различных схем подключения

При выборе подходящей модели следует учитывать следующие характеристики:

Под ним следует понимать величину максимального тока, которую в течение определенного времени выдерживает автомат, не теряя при этом своей работоспособности. Эта величина указана на панели корпуса. Она носит стандартный характер и находится в диапазоне от 6 до 63 А.

Аппараты малого номинала (10-16 А) устанавливают на осветительных линиях. Приборы со средним номиналом связаны с серьезным потребителем и группами розеток. Использование мощных устройств (40 А и выше) применяются на линиях ввода.

Совет №1: Подбор прибора следует осуществлять в соответствии с сечением кабеля.

  1. Время и электромагнитный расцепитель.

Обозначение ведется латинскими буквами B, C, D. Определяет величину перегрузки, при которой отключится автомат.

На корпусе приборов указываются их основные технические характеристики и параметры работы

  1. Категорийность, обозначаемая буквами, имеет следующую градацию:
  • В – превышение тока в 3-5 раз;
  • С – номинал превышен в 5-10 раз;
  • D – превышение составляет 10-20 раз.
  1. Величина номинального напряжения и частоты сети

Имеется ввиду специфика сети, для которой предназначается конкретный аппарат, проще говоря, 220 либо 380 В, частотой 50 Гц. Иных вариантов в розничной продаже просто не бывает:

Устройство может иметь двойную маркировку — 230/400 V. Это является свидетельством того, что он применяется, как на сети 220, так и 380 В. Если сеть трехфазная, то установка подобных устройств имеет отношение к розеточным группам. При одной фазе они связаны с отдельными потребителями.

Вводные дифавтоматы в трехфазных сетях должны иметь четыре вывода. По причине своих приличных габаритов спутать их с чем-то другим весьма проблематично.

  1. Номинальный отключающий дифференциальный ток

Этот показатель связан с чувствительностью прибора по отношению к возникающим утечкам. Он определяет условия срабатывания защиты.

В бытовом плане проводят использование лишь двух номиналов:

  • линия с одним мощным устройством;
  • сочетание двух опасных факторов, связанных с электроэнергией и водой (посудомоечная машина).

Если речь идет о группе розеток и наружном освещении, то устанавливают дифавтоматы на 30 А. Местом их расположения является линия освещения. Они не монтируются внутри дома из соображений экономии.

Этот показатель характеризует тип тока утечки, от которого защищает устройство. Классность защиты определяется типом нагрузки. Техника, имеющая микропроцессоры подпадает под класс А.

Линии, идущие на освещение или питание обычных устройств, имеют классность АС.

Для частных домов и квартир установка устройств классности В проводится довольно редко, поскольку отсутствует потребность в «отлавливании» всех типов утечек тока.

Класыс S и G используются в многоуровневых схемах защиты. Их устанавливают на входах, если далее схема предполагает наличие других дифференциальных устройств.

Если сработает один из расположенных ниже по схеме приборов, входное устройство будет оставаться в работе.

  1. Величина номинальной отключающей способности.

Если возникнет короткое замыкание, этот показатель определит величину тока, которую сможет отключить автомат. Все номиналы носят стандартный характер. Их диапазон составляет от 3000 до 10 000 А.

Учитывая этот тип, подбор автомата проводят в соответствии с расстоянием, на котором расположена подстанция. Если она находится на значительном удалении, то в квартире или доме устанавливают автомат на 6000 А. При близком расположении подстанции используют аппарат на 10 000 А.

Корпус снабжен квадратиком, в который заключена цифра, характеризующая это значение.

Величина рабочего отключения нанесена на корпус прибора и заключено в квадрат

  1. Классность по токоограничению.

Ток становится максимальным при коротком замыкании через определенное время. Чем быстрее отключится питание, тем меньше шансов получить повреждение. Градация классности в этом плане выражается значениями от 1 до 3. Лучшим является третий класс. Он быстрее всех отключит линию. Несмотря на то, что цена на такие устройства самая высокая, они надежнее всех.

  1. Характеристика температурного режима.

Практически все автоматы предназначаются для работы в помещении. Температурный разброс составляет от -5 до +35 градусов. Корпус таких приборов не имеет никакой, связанной с этим маркировки. Но есть и такие устройства, которые устанавливаются в щитках на улице. Температурный диапазон у них немного шире и составляет от -25 до +40 градусов. На корпус таких приборов нанесен специальный знак.

Подключение автомата

Обычно с подключением не возникает никаких сложностей. Крепиться автомат может разными способами, но наиболее распространенным вариантом является крепление на DIN-рейку. На ней имеются специальные выступы, которые и удерживают устройство:

Совет №2: Автомат следует подключать с помощью проводов, имеющих изоляцию. Выбор сечения определяется номиналом. Схема нанесена на корпус.

Проверка работоспособности выполняется после установки автомата. На корпусе имеется кнопку «Тест». После ее нажатия должно произойти срабатывание. Если этого не случилось, проверяется точность подключения. Если все сделано правильно, но срабатывания не происходит, то это свидетельствует о неисправности прибора.

статью ⇒ Причины срабатывания дифавтомата.

Варианты схем

Схем существует достаточно много. Все они подходят для любых условий в плане удобства и безопасности. Наличие простых схем предполагает минимальные затраты. Они используются там, где присутствует минимум бытовой техники (дачный коттедж).

Самая простая схема

Используется тогда, когда нет необходимости в установке множества защитных устройств. Вполне достаточной будет установка лишь одного входного автомата. Другое устройство будет относиться к розеточным группам и осветительной линии.

Схема подключения дифференциального автомата, отличающаяся наибольшим удобством и простотой исполнения

Вариант с большей надежностью

Часто приходится ставить автомат применительно к помещениям «мокрой» группы (ванная). Здесь уже нужна большая безопасность.

Надежная схема, применяющаяся преимущественно для помещений с повышенным уровнем влажности

Селективный вариант

Разветвленная сеть предполагает еще более надежную дорогостоящую систему. Здесь устанавливаются автоматы с классностью S или G. В отношении каждой группы устанавливается отдельный автомат.

Подключение дифференциального автомата по селективной схеме для каждой группы нагрузок

Если отключится лишь одно какой-то один прибор, оставшиеся будут функционировать.

Ошибки при подключении и монтаже

  • Частой ошибкой является несоблюдение указанной в паспорте устройства схемы подключения.
  • Нередко встречается также и  ошибочное соединение нуля и защитного проводника за дифавтоматом.
  • Еще одной ошибкой является неполнофазное подключение, при котором фаза соединяется с устройством, а ноль подключается непосредственно к нулевой шине.
  • Также зачастую осуществляется подключение нулевой жилы к общей шине после автомата.
  • Ошибочным также является соединение нулей от различных автоматов в распределительной коробке.

Выбор и схемы подключения УЗО в однофазной сети

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В сегодняшней статье я расскажу Вам про различные варианты схем подключения УЗО (устройство защитного отключения) в однофазной сети, а также про выбор его номинального тока и дифференциального тока (тока утечки) в зависимости от схемы подключения.

Для более наглядного понимания материала, необходимо рассмотреть конкретные варианты, начиная с самых простых и стандартных схем и, заканчивая, частными случаями.

1. Вводное УЗО

Предположим, что у нас в квартире установлен вводной автоматический выключатель с номинальным током 40 (А) и мы хотим защитить всех потребителей квартиры одним общим УЗО. Оно же будет считаться и называться вводным УЗО.

И это правильно! Закрывать глаза на электробезопасность в своем доме, а также на требования ПУЭ (п.7.1.71), я считаю не правильным и даже опасным.

Кстати, прошу обратить внимание на электрический щит. Это очередная новинка от компании IEK — металлический распределительный щит ЩРн серии PRO. Про преимущества и выявленные недостатки данного щита я расскажу Вам в самое ближайшее время. Если не хотите пропустить новые выпуски статей, то подписывайтесь на рассылку сайта.

Поскольку разговор зашел о щитах, то напомню Вам, что не так давно я уже делал подробный обзор пластикового щита серии PRIME от IEK, который меня достаточно впечатлил.

Перейдем непосредственно к теме статьи.

Схема представленного выше щита достаточно простая. Питающая фаза приходит на клемму (1) счетчика электрической энергии, а ноль — на клемму (3). С клеммы (2) фаза уходит на верхнюю клемму вводного автомата, а с нижней клеммы — на верхнюю клемму среднего отходящего автомата, соединенного с соседними автоматами с помощью соединительной гребенки. С клеммы (4) счетчика электрической энергии ноль уходит на общую нулевую шину (N).

Вводное УЗО необходимо подключить сразу же после вводного автомата, а уже после него подключить групповые автоматы на отходящие линии (розетки, освещение, теплый пол и прочее электрооборудование). Выглядеть это будет следующим образом.

Питающая фаза приходит на клемму (1) счетчика электрической энергии, а ноль — на клемму (3). С клеммы (2) фаза уходит на верхнюю клемму вводного автоматического выключателя, а с нижней клеммы — на верхнюю клемму (1) вводного УЗО. С нижней клеммы (2) УЗО фаза уходит на верхнюю клемму среднего отходящего автомата, соединенного с соседними автоматами с помощью гребенчатой шины. С клеммы (4) счетчика электрической энергии ноль уходит на верхнюю клемму (N) УЗО, а с нижней клеммы (N) УЗО — на общую нулевую шину (N).

Внимание! Рекомендую ознакомиться со статьей про распространенные ошибки, возникающие при подключении УЗО и дифавтоматов.

Как выбрать номинальный ток УЗО?!

Номинальный ток вводного УЗО должен быть на одну ступень выше, чем номинальный ток вводного автоматического выключателя, т.е. нам необходимо установить УЗО с номинальным током не менее 50 (А) и током утечки 30 (мА). Таким образом, вводное УЗО у нас будет защищено от перегруза (сверхтока), как и требует от нас ПУЭ (п.7.1.75 и п.7.1.76).

Стандартный существующий ряд номинальных токов УЗО: 16, 25, 32, 40, 50, 63, 80, 100 (А).

Номинальный ток УЗО отображается на лицевой стороне его корпуса.

Зачем нам необходимо защищать УЗО от перегруза? И откуда может возникнуть этот самый перегруз?

Да все, элементарно! В щите установлен вводной автоматический выключатель с номинальным током 40 (А), что соответствует выделенной мощности 8,8 (кВт). В любое время Вы можете включить в сеть приборы с суммарной мощностью, превышающую 8,8 (кВт). Возьмем для примера, что потребляемая мощность у Вас составила около 10 (кВт), что равносильно току 45,4 (А).

При таком токе, согласно время-токовой характеристики (ВТХ) срабатывания теплового расцепителя, наш вводной автомат не отключится в течение целого часа.

Получается, что все это время через УЗО будет проходить ток величиной 45,4 (А), превышающий его номинальный ток, что может привести к нагреву его токоведущих частей, оплавлению корпуса и в конечном счете выходу его из строя.

Чтобы избежать подобной ситуации, я Вам всегда советую устанавливать УЗО с номинальным током на одну ступень больше, чем номинальный ток автомата. Но как показывает практика, токоведущие части УЗО выполнены с некоторым запасом по перегрузочной способности, но тем не менее я бы не рисковал и соблюдал данное требование!

Почему УЗО должно быть с током утечки именно на 30 (мА)?

Сначала приведу стандартный существующий ряд номинальных дифференциальных токов (токов утечки) УЗО: 10 (мА), 30 (мА), 100 (мА), 300 (мА) и 500 (мА).

Иногда эти значения могут отображаться не в миллиамперах, а в амперах, тогда стандартный ряд будет выглядеть следующим образом: 0,01 (А), 0,03 (А), 0,1 (А), 0,3 (А) и 0,5 (А).

Номинальный дифференциальный ток (ток утечки) УЗО отображается также на лицевой стороне его корпуса.

Итак, если у Вас вводной автоматический выключатель имеет номинальный ток до 40 (А) включительно, то вводное УЗО можно устанавливать с током утечки 30 (мА). Если же номинал вводного автомата больше 50 (А), то скорее всего УЗО придется устанавливать с током утечки 100 (мА).

Дело в том, что все зависит от общей фоновой (естественной) утечки в линиях электропроводки. Поэтому считается что, чем больше ток нагрузки, тем больше фоновая утечка, поэтому, чтобы избежать ложных срабатываний УЗО, приходится завышать его ток утечки с 30 (мА) до 100 (мА).

Согласно ПУЭ (п.7.1.83), существует норма по суммарной фоновой утечке в нормальном режиме, которая должна быть не больше 1/3 номинального тока утечки УЗО. Вот например, ток утечки УЗО составляет 30 (мА), а значит фоновая утечка в этой линии должна быть не больше 10 (мА).

Фоновую утечку можно измерить, правда для этого необходимы специальные приборы. Вот например, в нашей электротехнической лаборатории имеется прибор MRP-200

, правда основным его назначением все же является измерение отключающего дифференциального тока УЗО и измерение времени его срабатывания.

Также фоновую утечку можно приблизительно рассчитать. Условно принято, что ток утечки величиной 0,4 (мА) приходится на 1 (А) нагрузки или же ток утечки 10 (мкА) приходится на 1 метр длины фазного проводника.

Чтобы Вам не вникать в подробности определения фонового тока, я специально для Вас составил таблицу с рекомендуемыми уставками дифференциального тока (тока утечки) в зависимости от тока нагрузки.

Как видно по таблице, при номинальном токе нагрузки 40 (А) рекомендуется устанавливать УЗО с током утечки 30 (мА). В скобках указано значение 100 (мА), но это больше относится при эксплуатации старых электропроводок.

Если у Вас электропроводка не старая (не высохшая и не ветхая) и выполнена качественными кабелями и проводами, то даже при относительно больших токах нагрузки фоновая утечка будет незначительной (минимальной). Поэтому при номинальном токе вводного автомата даже 50 (А) и 63 (А) можно смело устанавливать вводное УЗО с током утечки 30 (мА).

Кстати, согласно ПУЭ (п.7.1.79, п.7.1.83 и п.7.1.85), требуется устанавливать на отходящие линии УЗО с током утечки 30 (мА). Если же защита всей электропроводки выполняется одним вводным УЗО, то ток утечки у него должен быть не более 30 (мА), естественно, что при выполнении условий по суммарной фоновой утечке.

Да, забыл уточнить, что я рассматриваю установку и подключение УЗО с целью защиты человека от поражения электрическим током и защиты линий от появления утечек в следствии старения и ухудшения изоляции, и прочих на нее воздействий.

2. УЗО на одну отходящую линию

Рассмотрим вариант, когда нам нужно с помощью УЗО защитить не все линии, а только одну отходящую (групповую). Для этого нам необходимо в этой линии установить УЗО. Предположим, что это будет линия освещения балкона или лоджии, защищенная автоматическим выключателем с номинальным током 10 (А).

Согласно вышеприведенным требованиям ПУЭ по защите УЗО от перегруза, нам необходимо после автомата 10 (А) установить УЗО с номинальным током 16 (А) или 25 (А) и током утечки 30 (мА). Ничего страшного не будет, если Вы здесь установите УЗО с номинальным током 40 (А) или 50 (А), как в моем примере.

В этой схеме питающая фаза приходит на клемму (1) счетчика электрической энергии, а ноль — на клемму (3). С клеммы (2) фаза уходит на верхнюю клемму вводного автомата, а с нижней клеммы — на верхнюю клемму среднего отходящего автомата, соединенного с соседними автоматами с помощью соединительной гребенки. Затем с нижней клеммы автоматического выключателя отходящей линии, защищенной с помощью УЗО (в моем примере это линия освещения лоджии), фаза уходит на верхнюю клемму (1) УЗО.

С клеммы (4) счетчика электрической энергии ноль уходит на общую нулевую шину (N). С общей нулевой шины (N) ноль уходит на верхнюю клемму (N) УЗО. К нижним клеммам (2) и (N) УЗО будет подключаться кабель отходящей линии освещения лоджии. Остальные линии, не защищенные УЗО, будут подключаться к соответствующим автоматам и общей нулевой шине (N).

Если же подобным образом защищать каждую отходящую линию с помощью УЗО, то при их большом количестве выйдет достаточно дорогим удовольствием в финансовом плане, поэтому существует еще один вариант, который рассмотрим ниже.

3. Групповое УЗО на несколько отходящих линий

Рассмотрим экономный вариант при защите с помощью одного УЗО нескольких отходящих линий.

Схема остается той же: вводной автомат и 5 отходящих автоматов. Мне необходимо защитить несколько отходящих линий с помощью одного УЗО. Для примера, разделю отходящие линии на 2 группы: два автомата в одной группе и три автомата в другой.

Отходящие линии первой группы у нас не будут защищены УЗО, а вот отходящие линии второй группы будут защищены с помощью одного общего (группового) УЗО.

В этой схеме питающая фаза приходит на клемму (1) счетчика электрической энергии, а ноль — на клемму (3). С клеммы (2) фаза уходит на верхнюю клемму вводного автомата. С нижней клеммы вводного автомата уходит два проводника. Один — на верхнюю клемму одного из автоматов 1-ой группы, соединенных между собой гребенкой. Второй проводник уходит на верхнюю клемму (1) общего (группового) УЗО, которое защищает 2-ую группу автоматов. С нижней клеммы (2) УЗО фаза уходит на верхнюю клемму среднего отходящего автомата 2-ой группы, соединенных между собой также с помощью гребенки.

С клеммы (4) счетчика электрической энергии ноль уходит на общую нулевую шину (N). С общей нулевой шины (N) ноль уходит на верхнюю клемму (N) УЗО.

Фазные проводники отходящих кабелей 1-ой группы будут подключаться непосредственно к автоматам 1-ой группы, а нули — к общей нулевой шине (N).

Фазные проводники отходящих кабелей 2-ой группы будут подключаться непосредственно к автоматам 2-ой группы, а нули — к нижней клемме (N) УЗО. Больше двух проводников подключать к одному зажиму запрещено, поэтому в таких случаях в щите устанавливают вторую нулевую шину (N1), которая соединяется с нижней клеммой (N) УЗО, а затем к этой самой шине (N1) и подключаются нули отходящих кабелей 2-ой группы.

Как выбрать номинальный ток УЗО в таком случае?!

Многие электрики начинают рассчитывать суммарный номинальный ток отходящих автоматов. Предположим, что отходящие автоматы имеют следующие номинальные токи: 6+10+10+16 = 42 (А). Таким образом, необходимо установить УЗО с номинальным током более 42 (А) и дополнительно учесть небольшой запас в случае перегруза. Для этого вполне подойдет УЗО с номинальным током 50 (А).

А если суммарный номинальный ток отходящих линий будет еще больше?! Например, 10+10+10+16+16+16+25+16=119 (А). Что делать в этом случае?! Устанавливать УЗО на 140-150 (А), которых даже нет в природе?!

На самом деле, не нужно заморачиваться и рассчитывать суммы номинальных токов отходящих автоматов, т.к. их может быть от нескольких штук до нескольких десятков. Все гораздо проще! Номинальный ток УЗО выбирается не по сумме номинальных токов автоматов на отходящих линиях, а на одну ступень больше, чем номинал вводного автомата. Все получается логично и правильно. Ведь в любом случае ток через УЗО не будет превышать ток, проходящий через вводной автомат и групповое УЗО будет защищено от перегруза.

Для нашего примера суммарный номинальный ток оставляет: 16+25+32 = 73 (А), что нам как бы предполагает установить здесь УЗО с номинальным током 80 (А) или вовсе 100 (А). Но это не совсем правильно, т.к. нам достаточно установить УЗО с номинальным током 50 (А), который будет на одну ступень выше, чем номинальный ток 40 (А) вводного автоматического выключателя.

В настоящее время это наиболее распространенный способ подключения УЗО, т.к. он более экономный, но в то же время в полном объеме соответствует требованиям ПУЭ и электробезопасности.

В данное время я как раз таки занимаюсь сборкой квартирного щита, в котором имеется 30 отходящих линий (с учетом резерва). По аналогии с описанным выше способом, каждые 10 отходящих линий будут защищены отдельным УЗО.

Вводной автомат в этом примере имеет номинал 32 (А), поэтому все УЗО имеют номинальный ток 40 (А), 30 (мА) независимо от суммы номинальных токов автоматов на защищаемых отходящих линиях.

О сборке этого щита я еще напишу отдельную подробную статью, так что кому интересно, то подписывайтесь на рассылку сайта.

Я рассказал Вам про самые основные схемы подключения УЗО в однофазной сети, а также про выбор УЗО по номинальному току и току утечки для каждого конкретного случая. На частных случаях подключения УЗО, а также на каких-то не стандартных решениях я останавливаться не стал, если вдруг возникнут вопросы, то смело задавайте их в комментариях под статьей.

Видео по материалам статьи:

Про принцип подключения УЗО в трехфазной сети почитайте в следующих моих статьях:

Если Вы не хотите заморачиваться вопросами куда и каким номиналом установить УЗО (устройство защитного отключения), то Вы всегда можете вместо пары «автомат+УЗО» применить дифференциальные автоматы с соответствующими параметрами. Читайте статью про преимущества и недостатки применения в схемах дифавтоматов. Надеюсь, что она прояснит Вам некоторые моменты.

P.S. На этом, пожалуй, все. Всем спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Узо до или после автомата. Где ставить узо перед автоматом или после

Друзья приветствую всех на сайте «Электрик в доме». Думаю, ни у кого не возникнет сомнений, что в нынешнее время нормальная и безопасная работа бытовой техники подразумевает использование современных устройств защитного отключения, автоматических выключателей, реле напряжения и т.п.

Сегодня я хочу разобрать один вопрос, который в последнее время часто задают читатели данного сайта. Вопрос заключается в правильной последовательности подключения УЗО и автоматического выключателя. Одни читатели убеждены, что УЗО необходимо подключать после автомата.

Другие наоборот, аргументируют свои убеждения проектными решениями, указывая схемы электроснабжения в которых четко видна установка УЗО перед автоматическим выключателем.

Так все-таки кто прав? Где ставить узо до или после автомата? С этим вопросом мы сегодня и разберемся. Я постараюсь подробно разобрать все варианты подключения.

Установка узо перед автоматом или после

На самом деле я считаю, что данный вопрос можно отнести к ряду вопросов «что появилось раньше яйцо или курица»?

Давайте разберем, в чем кроется опасность? Опасность заключается в том, что устройство защитного отключения не имеет защиты от сверхтока. При возникновении в цепи перегруза или короткого замыкания узо работать не будет, поэтому его и подключают в паре с автоматом.

Ток короткого замыкания может в сотни раз превышать номинальный ток. Несложно понять, что при прохождении таких больших токов через УЗО ничего хорошего ждать не следует. В таком режиме работы могут повредиться его внутренние детали и выгореть контакты, устройство может попросту утратить свою работоспособность.

А печаль во всем этом — стоимость УЗО, которая на порядок выше стоимости автоматического выключателя.

ПО МНЕНИЮ некоторых читателей в зависимости от того где будет установлено устройство защитного отключения будет зависеть и то повредится оно или нет. Да что там говорить я сам раньше считал, что последовательность имеет значение.

Схемы подключения УЗО с автоматическим выключателем

Друзья чтобы разобраться с данным вопросом, давайте рассмотрим несколько схем подключения УЗО и автоматического выключателя. И в каждом варианте подключения смоделируем аварийную ситуацию с протеканием тока короткого замыкания.

Вариант подключения №1. Одно УЗО на несколько групп автоматов

При такой схеме подключения одним УЗО защищается несколько групповых линий. В этом случае устройство защитного отключения устанавливается сверху, а после него устанавливаются автоматические выключатели на разные группы потребителей.

Такая схема очень популярна на сегодняшний день и позволяет существенно сэкономить бюджет.

Для тех, кто думает, что нельзя так подключать, правилами ПУЭ П.7.1.79 это вполне допустимо.

Кстати на сайте Электрик в доме я уже рассказывал, как выполнить такое подключения. Читайте статью подключение УЗО на группу автоматов. Теперь представим ситуацию, что в одной из групповых линий произошло короткое замыкание. Например в группе №2. На рисунке показано движение тока КЗ.

Вот несколько примеров использования таких схем в электрощитах:

В этом случае ток короткого замыкания будет проходить по такому пути: УЗО – автомат группы №2 – питающий кабель – потребитель.

Многим покажется такая схема подключения неправильной, так как автомат стоит после УЗО, он не способен устранить действие тока короткого замыкания. Через УЗО будет протекать огромный ток, и оно обязательно сгорит. А как вы считаете, сгорит УЗО или нет? Отвлекитесь и напишите в комментариях свое мнение, не дочитывая статью до конца. Разбираемся дальше с вопросом, где необходимо устанавливать узо до или после автомата.

Вариант подключения №2. Установка УЗО до автомата

Данная схема собрана таким образом: устройство защитного отключения – автоматический выключатель – питающий кабель – потребитель. То есть в данном случае УЗО установлено до автомата. И такие схемы далеко не редкость. Вот несколько примеров сборки.

Пример прохождения тока короткого замыкания при повреждении.

Если произойдет повреждение, отключится автоматический выключатель, но до этого момента ток короткого замыкания уже пройдет через УЗО. Для многих пользователей такой способ сборки также покажется неправильным.

Вариант подключения №3. Установка УЗО после автомата

При такой схеме подключения первым устанавливается автомат, а затем УЗО. Наглядный пример такой сборки.

При коротком замыкании ток будет проходить по такому пути: автоматический выключатель – УЗО – питающий кабель – потребитель. На рисунке это указано.

Опять же для многих такая схема покажется наиболее правильной так как по пути протекания ток КЗ первым делом проходит через автоматический выключатель, он в свою очередь отключится и УЗО в этом случае не пострадает.

Где ставить узо до или после автомата?

Друзья мы рассмотрели три варианта подключения, а теперь давайте разберем какой из них правильный и где все-таки необходимо устанавливать УЗО до или после автомата.

Какой из представленный вариантов подключения правильный? Все схемы правильны и каждый вариант подключения имеет право на жизнь! Пояснение к такому вердикту читайте ниже.

Из школьного курса физики мы знаем, что скорость распространения электромагнитного поля по проводнику равна скорости света и составляет порядка 300 000 км/с. То есть можно сказать, что электрический ток движется по проводам со скоростью света и за 1 сек. преодолевает 300 тыс. км. Много это или мало?

С какой скоростью отключается автоматический выключатель при возникновении тока короткого замыкания? Если для примера взять автомат С16, то при прохождении тока 5×In (80 А) автомат отключится за время примерно 0.02 сек. Для этого советую ознакомиться со статьей о время-токовых характеристиках автомата, там подробно расписано об этом.

Теперь берем калькулятор, считаем и получаем что за время 0.02 сек. электрический ток успевает преодолеть расстояние в 6000 км. Вот вам и скорость. А у Вас какой длины провода проложены? )))

Можно сделать заключение, что ток КЗ проходит всю цепочку, состоящую из автомата, УЗО, кабеля и розетки. При этом автомат моментально не срабатывает и не останавливает ток при появлении последнего.

Утверждать, что ток КЗ доходит до розетки можно на основании факта оплавления отвертки, с помощью которой были замкнуты подгоревшие розеточные контакты и провода в ней. Оплавление отвертки и подгорание розеточных контактов может происходить только при воздействии на них какой-то силы извне. Такой силой как раз и оказывается ток КЗ.

Почему же УЗО продолжает и дальше работать при прохождении через него тока КЗ? Это происходит по той же причине, по которой не выходят из строя такие элементы сети как рубильник, электросчетчик, реле напряжения, измерительные приборы, электрический кабель и др., установленные на пути тока короткого замыкания.

Такой ток приводит к появлению высокого температурного режима, плавящего изоляцию проводов и корпуса защитного оборудования. Данный процесс является инерционным и при этом автомат не дает требуемого времени на то, чтобы оплавилась и сгорела вся электропроводка и ее составляющие. Для оплавления изоляции на кабелях и сгорания УЗО явно недостаточно двух сотых секунды.

К тому же если ознакомиться с техническими характеристиками защитных устройств, здесь есть такая составляющая как отключающая способность. Об этом я подробно писал в прошлой статье.

Напрашивается вывод, что УЗО одинаково функционирует до автомата и после него. Тогда в чем отличие между автоматами, находящимися перед УЗО и после него?

На двух ниже представленных схемах показывается защита одной линии посредством автомата и УЗО. На первой схеме автоматический выключатель установлен перед УЗО, а на второй после.

Рассмотрим схему подключения тандема автомат — УЗО. Автомат всегда идет первым в паре с УЗО. Это делается лишь по вопросам удобства монтажа и подключения.

От него фазный провод проходит перемычкой на УЗО, подача «ноля» осуществляется непосредственно на УЗО. Подключение кабеля, отходящего на розетки, в данном случае производится только к УЗО и к шине РЕ (если таковая имеется).

При установке автомата после УЗО (что изображено на второй схеме), подключение провода на розетки осуществляется уже к различным устройствам – фазного провода к автомату, а нулевого к УЗО или к нулевой шине. Это неудобно и может привести к путанице. Поэтому необходимо грамотно собрать схему, которая бы стала максимально понятной для всех, кто будет ею пользоваться.

Если используется один автомат, одно УЗО и один кабель от нагрузки я стараюсь использовать первую схему подключения.

Друзья теперь вы точно будете знать, что нет никакой разницы, где устанавливать УЗО до или после автомата. Основная задача это правильно рассчитать устройство защитного отключения по номинальному току и защитить его от сверхтоков. А последовательность установки этих устройств значения не имеет.

Понравилась статья — поделись с друзьями!

 

Подключение ABB – схема подключения УЗО ABB

ABB – один из самых известных в мире производителей оборудования для электрощитов. Автоматические выключатели, УЗО, дифференциальные автоматы этого бренда широко используются на самых разных объектах, включая жилые и офисные помещения. Автоматика ABB – это сочетание высокой надежности и качества сборки с простотой эксплуатации и доступными ценами. Эти приборы будут функционировать надлежащим образом при условии правильного их подключения.

Автоматические выключатели

Автоматические выключатели ABB – устройства, обеспечивающие надежную защиту электропроводки от перегрузок. Этот вид электрооборудования выполнен в виде стандартизированных модулей, отвечающих за коммутацию электрических цепей и защиту кабелей от критических нагрузок и токов к/з, которые часто становятся причинами выхода из строя бытовой техники и возникновения пожаров. Согласно требованиям ПУЭ, выполнять разводку и эксплуатировать электросеть без автоматических выключателей запрещено. Для жилых помещений хорошо подходят выключатели серии ВА, оснащенные двумя видами защиты – тепловой и электромагнитной. Вначале, как правило, монтируется вводный автомат, после чего цепь распределяется на линии освещения, розетки, мощные электроприборы. Выключатель будет достаточно эффективным, если он выбран с учетом основных параметров – тока срабатывания, номинального тока, числа полюсов. Для осветительных приборов обычно выбирают автомат на 10 А, для розеток – 16 А, в качестве главного выключателя используют АВ на 40 А.

Как подключить автоматический выключатель ABB

Для подключения к сети двухполюсного автомата ABB необходимо выполнить следующее:

  • подготовить трехжильный кабель сечением 2,5 мм2 (ВВГнгП 3*2,5), для которого величина допустимого длительного тока составляет 25 А. Под слоем внешней изоляции кабеля скрываются три провода: черный – фаза, синий – ноль, желтый – земля;
  • изучить схему подключения устройства, изображенную на его корпусе;
  • отключить напряжение в сети и проверить его отсутствие с помощью мультиметра;
  • присоединить провода к входным контактам. Две верхние клеммы автомата – это неподвижные контакты, к которым, как правило, подключается питающий кабель: слева – фаза, справа – ноль;
  • подключить заземление и отходящие провода. Две нижние клеммы связаны с подвижными контактами, которые присоединяются к потребителям;
  • подать напряжение, перевести рычаг управления в активное положение и проверить работу.

УЗО

Устройства защитного отключения ABB реагируют на появление в сети тока утечки. Такой ток может возникать при замыкании на землю или корпус, а также при случайном прикосновении человека к токоведущим частям. То же самое происходит, когда пользователь касается корпуса неисправного электроприбора, который вследствие поломки находится под напряжением. В этом случае УЗО отключает питание в сети, т. е. устройства защитного отключения (которые называют еще выключателями дифференциального тока ВДТ или устройствами дифференциального тока УДТ) обеспечивают защиту не только от поломок и возгораний, но и от поражения электротоком. В отличие от автоматических выключателей, УЗО не реагирует на возрастание силы электротока и не защищает систему от перегрузок и коротких замыканий. В электрических схемах устройство защитного отключения используют в сочетании с автоматом, подключая эти модули последовательно.

Подключение УЗО

Устройства защитного отключения могут использоваться как в однофазных, так и в трехфазных сетях. Существует несколько вариантов схемы подключения средства защиты в однофазной сети.

С общим УЗО для всего объекта. Устройство размещают между электросчетчиком и выключателями, обслуживающими отдельные контуры. Такая схема привлекает экономичностью: один прибор стоит дешевле и занимает меньше места в электрощите. Но если происходит утечка тока и УЗО срабатывает, выявить причину отключения бывает непросто, т. к. напряжение пропадает во всей сети.

С общим УЗО и групповыми устройствами защиты. В этом случае каждый рабочий контур оснащен дополнительным прибором, благодаря чему защита от токов утечки становится двойной, т. е. эта схема обеспечивает более высокую степень безопасности. Чтобы не происходило одновременного срабатывания двух устройств (общего и частного), необходимо соблюдать селективность, учитывая время срабатывания и токовые характеристики приборов. Главный плюс такого подключения – в аварийной ситуации остается без напряжения только один контур.

Без общего УЗО. Практика показывает, что такая схема включения также способна обеспечить надежную защиту от токов утечки. Страховки от несрабатывания одного из приборов в данном случае нет, но этот минус легко компенсировать, установив надежные устройства от проверенного производителя, например УЗО ABB.

 

 Дифференциальные автоматы

Дифференциальный автомат (АВДТ) – это коммутационный аппарат, который совмещает в себе УЗО (устройство защитного отключения) и АВ (автоматический выключатель). Т. е. в конструкции дифавтомата имеются два разных по назначению модуля, по-разному реагирующих на нарушения в электрической цепи. Блок УЗО защищает человека от прямого или косвенного поражения током, а также контролирует текущее состояние электропроводки: при возникновении повреждений или утечек устройство отключает цепь. Блок АВ защищает элементы электрической схемы от коротких замыканий и перегрузок. Использование дифавтомата бывает особенно полезным, когда места в щитке не очень много и два отдельных устройства туда просто не помещаются. АВДТ может быть одно- или трехфазным, рассчитанным на напряжение 220 В или 380 В соответственно. При выборе дифавтомата обращают внимание прежде всего на номинальный ток и ток утечки, а также на тип УЗИ и наличие защиты от обрыва нуля. 

Схемы подключения дифференциальных автоматов

С единственным дифавтоматом. Такая схема предусматривает наличие только одного защитного устройства, которое монтируется сразу после счетчика электроэнергии. К выходу АВТД подключаются все электрические контуры, которые имеются в помещении. Это более бюджетный вариант, но и он может обеспечить вполне надежную защиту от поражения электрическим током. Если есть такая возможность, в начале каждой цепи нужно установить концевой выключатель. Это делается, для того чтобы можно было выполнять ремонт электропроводки в одной комнате без снятия напряжения во всем помещении. Максимальная токовая нагрузка АВДТ должна соответствовать суммарной мощности потребителей и характеристикам электросчетчика. Важно, чтобы в момент перегрузки защитное устройство срабатывало раньше, чем предохранители на счетчике. К недостаткам такого варианта подключения относят неудобство поиска причины выбивания дифавтомата. В этом случае без напряжения остается вся квартира, и нужно последовательно проверять все присоединения.

Двухуровневая система подключения. 2-уровневая система дифавтоматов более надежна и удобна в обслуживании. Под первым уровнем понимают АВДТ, который подключен сразу после электросчетчика. Через него проходит вся нагрузка. К выходу этого дифференциального автомата параллельно подключаются несколько АВДТ (число которых совпадает с количеством электрических контуров в квартире). Устанавливать защитные устройства второго уровня для каждого контура не всегда целесообразно. В большинстве случаев достаточно отдельных дифавтоматов для цепей с наиболее мощным электрооборудованием – стиральной машиной, духовым шкафом, варочной поверхностью и т. п. Главные плюсы такой схемы: надежность и безопасность, простой поиск причин аварийного отключения цепи, возможность обесточить отдельную комнату для проведения ремонтных работ. Использовать 2-уровневую схему имеет смысл для разветвленных сетей с несколькими контурами. Для однокомнатной квартиры с минимальным количеством техники, как правило, достаточно одного дифавтомата.

Одноуровневая система подключения. Такой вариант схемы имеет сходство с предыдущим, но в данном случае отсутствует общий дифференциальный автомат. При таком способе подключения обычно используется коммутирующая шина, которая позволяет упорядочить проводку и упростить монтаж. Т. е. с выхода электросчетчика фазный провод идет на шину и затем на каждый АВДТ. Преимущество одноуровневой системы – в возможности сэкономить на общем дифавтомате, недостаток – в отсутствии дублирующего защитного устройства. Порядок монтажа оборудования и область применения одно- и двухуровневых схем подключения идентичны.

Что следует знать

Для сборки автоматических устройств ABB и их подключения, как правило, используется электрический щиток этого же производителя. Приборы фиксируют на монтажных DIN-рейках, расположенных горизонтально. Модульная конструкция автоматов, дифавтоматов и УЗО позволяет монтировать на одной рейке несколько устройств. При выполнении монтажных работ важно соблюдать определенные правила: не забывать отключать входное напряжение, использовать провода с соответствующей маркировкой, не применять металлические трубы или арматуру в квартире для заземления, в первую очередь устанавливать автоматический выключатель на входе. Если есть возможность, рекомендуется использовать отдельные приборы для линий освещения, розеток, контура стиральной машины и т. д. Чрезвычайно важно соотносить технические характеристики используемых устройств с предполагаемой нагрузкой. Соединять провода между собой лучше с помощью клеммников, а для подключения к приборам использовать специально предназначенные промаркированные клеммы и схему на корпусе.

Если у вас возникли вопросы, вы можете задать их нашим специалистам по контактным телефонам или через онлайн-чат.

Особенности подключения УЗО — Блог о строительстве

Среди защитных устройств в домашней электропроводке все большей популярностью пользуются устройства защитного отключения (УЗО) и дифференциальные автоматы (дифавтоматы). Производители выпускают их с различными типами конструкций для использования в однофазных и трехфазных схемах электроснабжения. Все эти устройства имеют общий алгоритм работы.

Принципы работы

По большому счету отличие УЗО от дифференциального автоматасостоит в отсутствии в схеме автоматического выключателя, реагирующего на превышение токов нагрузки. Поэтому схема подключения однофазного или трехфазного УЗО от схемы подключения дифференциального автомата отличается только отсутствием данной функции. Для защиты от коротких замыканий и недопустимых нагрузок в ней требуется устанавливать дополнительную токовую защиту.

Общим же элементом этих защит является схема, основанная на сравнении векторов токов, входящих в устройство и выходящих из него, которая при отклонениях от установленных предельных величин отключает электрооборудование.

Элементная база, на которой работает эта схема, может быть разной, к примеру, на основе электромагнитных реле или полупроводниковых элементов.

Чтобы понять, как правильно подключить УЗО и дифференциальный автомат к электрической сети рассмотрим первый вариант конструкции для упрощенной однофазной сети. Внутренние элементы статических приборов работают по такому же алгоритму. Поэтому их подключение совершенно аналогичное.

Режим нормального электроснабжения

При включении УЗОпод нагрузку через его тоководы, вмонтированные внутрь тороидального магнитопровода, протекает ток нагрузки. Если качество изоляции в схеме хорошее, то через нее никаких токов утечки не будет. Ток I1, входящий по фазному тоководу L1 будет соответствовать по величине значению выходящего из магнитопровода тока I2 и одновременно направлен в противоположную сторону.При этом магнитные потоки ФL и ФN, образованные от токов фаз и нуля, тоже будут равны по величине и противоположны по направлению.

Во время прохождения по магнитопроводу магнитные потоки складываются в нем, взаимно уничтожая друг друга. Суммарный магнитный поток магнитопровода Фс равен нулю.Описанный вариант рассматривает работу идеального устройства, которые существуют только в теории. На практике же всегда проявляется какой-то небаланс соотношений Ф1 и Ф2, но он очень маленький и не оказывает влияния на работу схемы.Режим возникновения тока утечкиВ случае нарушения изоляции часть потенциала фазы станет стекать на землю, образуя ток утечкиIут.

На эту же величину снизится значение тока в нулевом проводнике I2.Он сформирует меньший магнитный поток ФN. При сложении магнитных потоков внутри магнитопровода возникнет превышение потока Ф1 над Ф2. Суммарный поток Фс сразу же увеличится и наведет в намотанной вокруг него катушки ЭДС.Под ее действием в замкнутом контуре катушки возникнет ток ΔI, пропорциональный току утечки.

В случае превышения им значения, выставленной пользователем уставки, произойдет срабатывание электромагнита, выводящего из зацепления защелку встроенного в устройство расцепителя, который сработает и снимет напряжение со всей защищаемой зоны.Режим отключения электроснабженияКак видим, вся работа защит на отключение происходит в автоматическом режиме. Но для того чтобы повторно включить УЗО в работу необходимо выполнить действия:1. проанализировать состояние электросхемы для выяснения причины отключения;2.

устранить выявленную неисправность;3. только после этого использовать рычаг ручного включения на корпусе УЗО или дифавтомата.Возникновение повторного срабатывания УЗО необходимо рассматривать как следствие плохой изоляции электрооборудования и незамедлительно принять меры к ее восстановлению. Загрубление уставок защиты, как и ее блокирование, недопустимо.При первичном монтаже УЗО или дифавтомата в схему электропроводки достаточно правильно подключить входные и выходные провода фазы и нуля на свои клеммы.

Они на всех корпусах четко промаркированы.Схема подключения однофазного УЗО к двухпроводной сетиДля обозначения входных клемм фазы и нуля делаются надписи «1» и «N», а выходных — «2» и «N». Для устройств, использующих электронную базу, важно правильно подключать нейтраль потому, что нельзя ошибаться с ее полярностью. В противном случае высока вероятность повреждения составляющих деталей электронной схемы.В конструкции прибора используется возможность периодического его тестирования во время работы для определения исправности.

С этой целью установлена кнопка «Т», при включении которой через токоограничиваюший резистор и замкнутый контакт создается цепочка для протекания части тока, влияющей на возникновение дисбаланса магнитных потоков, обеспечивающего отключение защиты. Если на УЗО под напряжением нажата кнопка тестирования Т, а отключения не произошло, то это однозначно указывает на то, что устройство неисправно.При ручном включении УЗО в этой схеме замыкаются сразу 3 контакта:1. токовода фазы;2.

токовода нуля;3. цепи тестирования электронной схемы.Во время возникновения токов утечек при срабатывании защиты эти же три контакта автоматически разрывают свои цепочки.Схема подключения трехфазного УЗО к четырехпроводной сети с общей нейтральюЗа основу монтажа трехфазных УЗО и дифавтоматов взята предыдущая схема. В ней тоже надо соблюдать полярность каждой фазы и нуля.

Для этого к нечетным клеммам подключают входные цепи, а к четным — выходные.Такое УЗО работает при возникновении небаланса магнитных потоков, создаваемых токами от всех четырех токопроводов.Схема подключения трехфазного УЗО к трем однофазным сетям с общей нейтральюЭта разработка позволяет одним устройством сразу защищать три однофазных электрических схемы.Для этого достаточно выбрать место установки, позволяющее использовать шинку для подключения к выходу защиты нейтрали для ее разделения по сетям №1, 2, 3.Схема подключения трехфазного УЗО к трехпроводной сети без нейтралиПри частном случае защит электродвигателей, работающих от трех фаз без нейтрали, нулевые клеммы на УЗО не задействуются.Однако при таком подключении лучше использовать электромагнитные конструкции с механическими расцепителями. У статических моделей для работы необходима подача напряжения на блок питания. Он может быть подключен между фазным и нулевым проводами.К тому же отсутствие нулевого потенциала исключает функцию периодического тестирования исправности прибора под напряжением, что не совсем удобно.

Поэтому такое подключение требует проведения доработок внутренней конструкции.Схема подключения трехфазного УЗО к однофазной сетиЭто не очень рациональный способ, но к нему прибегают при последовательном монтаже вначале однофазной сети с последующим добавлением к схеме еще двух электрических цепей для общей защиты, которые будут создаваться через определенное время.В этом случае важно, чтобы фаза была подключена строго на тот токовод, через который проводится тестирование УЗО в рабочем состоянии. Для этого достаточно при включенных силовых контактах с нажатой кнопкой тестирования «прозвонить» сопротивление между входом каждой фазы и нуля.Делать это необходимо на демонтированном УЗО без напряжения. На двух клеммах сопротивление будет соответствовать бесконечности благодаря разорванным контактам, а на одной покажет величину сопротивления токоограничивающего резистора.

К этой клемме и следует подключаться.Отличия схем подключения УЗО от дифференциальных автоматовВ самом начале статьи отмечалось, что УЗО не имеет встроенной защиты от перегрузки и токов коротких замыканий, которые могут возникнуть в любой момент и сжечь устройство. Его надо защищать. Поэтому перед каждым УЗО необходимо монтировать автоматический выключатель с уставкой, обеспечивающей работоспособность и сохранность УЗО.Кроме того, что автоматический выключатель спасает УЗО от токов перегрузки, он еще защищает от трех видов КЗ, которые могут возникнуть в схеме при нарушениях изоляции между:1.

выходным фазным проводом устройства 3 с входным нулевым проводом 2;2. выходным нулевым проводом 4 с входным фазным проводом 1;3. между выходными проводами 3 и 4.Если в первых двух случаях ток короткого замыкания проходит только по одному токопроводу, расположенному внутри корпуса УЗО, то при третьем нагружаются обе магистрали.

Этот вид замыкания самый опасный.Дифференциальные автоматыв такой защите не нуждаются, она у них встроена. Поэтому стоимость этих приборов выше. Схема подключения дифференциального автомата не требует дополнительной установки автоматического выключателя.Надежная и длительная работа УЗО и дифференциального автомата обеспечивается правильным подключением, учитывающим конкретные условия эксплуатируемой схемы, точным выставлением уставок на срабатывание, обеспечивающих защитные функции.УЗО – это средство, защищающее людей от поражения электротоком.

Кроме того, оно предназначено для предохранения квартиры или дома от пожара, который может произойти при воспламенении электропроводки. Схема подключения УЗО без заземления должна быть грамотно составлена, иначе она принесет только вред.Факторы, влияющие на правильное подключение УЗОПонимание принципа работы. От этого зависит способ подключения для определенных условий работы.Для конкретной сети следует правильно выбирать УЗО.УЗО отключает сеть при аварийной ситуации, когда ток утечки достигает заданного предельного значения.Подключение УЗО и автомата: схема без заземления

Для домашней электросети подбираются определенные приборы защиты и способы их подключения. Схема подключения УЗО без заземления предполагает установку аппаратов на отдельных линиях или общего на всю проводку, после главного автоматического выключателя и счетчика. Предпочтительно, когда устройство располагается как можно ближе к источнику электроэнергии.

Обычно на входе устанавливается УЗО с большим номиналом (не менее 100 мА).

Оно применяется преимущественно как противопожарное средство. После него должны быть установлены УЗО на отдельные линии с током отсечки не более 30 мА. Они обеспечивают защиту человека.

При их срабатывании можно легко обнаружить, на каком участке произошла утечка тока. Остальные участки будут работать в обычном режиме. Несмотря на затратный способ подключения, все положительные факторы налицо.

Для простой проводки с небольшим количеством разветвлений можно устанавливать на входе УЗО на 30 мА, выполняющее функции защиты человека и как противопожарное.

Защитные устройстваподключаются преимущественно в местах, представляющих наибольшую опасность. Их устанавливают для кухни, где больше всего электрических приборов, а также для ванной комнаты и других помещений с повышенной влажностью.

Важно! Схема подключения УЗО без заземления требует установки вместе с каждым аппаратом автоматического выключателя, поскольку аппараты не защищают от короткого замыкания и увеличения тока выше нормы. Выключатель приобретается отдельно, но можно купить дифференциальный автомат, совмещающий функции обоих приборов.

Не допускается подключение проводов не в те клеммы прибора. При ошибке он может выйти из строя.

Схема подключения однофазного УЗО без заземления допускает установку вместо него трехфазного прибора, но в этом случае используется только одна фаза.

Как работает УЗО при отсутствии заземления

Когда повреждается изоляция проводов или ослабевают крепления токоведущих контактов приборов, возникают утечки токов, приводящие к нагреву проводки или искрению, в результате чего создается опасность возгорания. При случайном касании человеком оголенного фазного провода, он может получить удар током, прохождение которого через тело в землю создает опасность для жизни.

Схема подключения УЗО без заземления в квартире или в доме предусматривает непрерывное измерение тока на входах и выходах защитных приборов.

Когда разница между ними превышает заданный предел, производится разрыв электрической цепи. Обычно на защищаемом объекте делается заземление. Но его может и не быть.

В старых домах советской постройки применяются УЗО в схемах, где отсутствует защитный проводник РЕ (заземление). От основной трехфазной домовой сети к квартирной проводке подключается фазный провод и нулевой, который совмещен с защитным проводником и обозначается PEN. В трехфазной квартирной сети имеются 3 фазы и PEN-проводник.

Система с объединением функций рабочего N и защитного PE проводников, называется TN-C.

От городской воздушной линии в дом вводится кабель с 4 проводами (3 фазы и нейтраль). На каждую квартиру поступает однофазное питание с межэтажного щита. Нулевой проводсовмещает функции защитного и рабочего проводника.

Схема подключения УЗО в однофазной сети без заземления отличается тем, что при пробое и попадании фазы на корпус защита не сработает. В связи с отсутствием заземления, ток отсечки протекать не будет, но на приборе появится потенциал, опасный для жизни.

При прикосновении к электропроводным частям корпуса электроприбора для прохождения тока создается электрическая цепь в землю через тело.

При токе утечки ниже порогового значения прибор не сработает, ток будет безопасным для жизни. При превышении предела УЗО быстро отключит линию от прикосновения к корпусу. При наличии на нем заземления отключение цепи может произойти до прикосновения человека к корпусу, как только произойдет пробой изоляции.

Особенности подключения дифференциальной защитыв трехфазных сетях

В соответствии с ПУЭ, установка УЗО в трехфазных сетях системы TN-C запрещена. Если электроприемник требуется защитить, заземляющий РЕ-проводник следует подключить к PEN-проводнику перед УЗО. Тогда система TN-C преобразуется в систему TN-C-S.

В любом случае УЗО нужно подключать для повышения электробезопасности, но делать это надо по правилам.

Выбор УЗО

Дифференциальный автомат выбирается с мощностью на одну ступень выше, чем у подключенного с ним в одну линию автоматического выключателя.

Последний рассчитан на работу с перегрузкой в течение нескольких секунд или минут. УЗО одинаковой с ним мощности на подобные нагрузки не рассчитано и может выйти из строя. Маломощные аппараты применяются при токе не более 10 А, а мощные – выше 40 А.

При напряжении в квартире 220 В выбирается двухполюсный аппарат, если 380 В – четырехполюсный.

Важной характеристикой УЗО является ток утечки. От его величины зависит, применять аппарат как противопожарный или для защиты от поражения током.

Устройства имеют разные скорости срабатывания. Если нужен быстродействующий аппарат, выбирается селективный. Здесь есть 2 класса – S и G, где у последнего самая высокая скорость.

Строение автомата может быть электромеханическим или электронным. Для первого не требуется дополнительное питание.

По маркировке можно различить тип тока утечки: АС – переменный, А – любой.

Ошибки при установке и эксплуатации УЗО

    Не допускается соединение выходного нулевого провода УЗО с открытым участком электроустановки или распределительного щита.Нулевой и фазный провода обязательно должны подключаться через защитное устройство. Если нейтраль минует УЗО, оно работать будет, но при этом могут происходить ложные срабатывания.Если подключать в розетке ноль и заземление к одной клемме, УЗО будет постоянно срабатывать при подключении нагрузки.Не допускается установка перемычки между нулевыми проводами нескольких групп потребителей, если к ним подключены отдельные защитные устройства.Фазы подключаются к клеммам, обозначенным “L”, а ноль – к “N”.Не допускается включение устройства сразу после срабатывания. Сначала нужно найти и устранить проблему, а затем производить подключение.

Подключение УЗО без заземления в квартире

Пробой изоляции при отсутствии заземления приводит к появлению на корпусе прибора потенциала, представляющего опасность для человека. Утечка здесь произойдет только после прикосновения. При этом весь ток утечки пройдет через тело, пока не достигнет порогового значения и защитный аппарат не отключит цепь.

При наличии системы TN-C корпус прибора иногда подключают к нулевому проводу.

Схема подключения УЗО без заземления для розеток предусматривает подключение нейтрали к боковой клемме 3. Тогда при пробое провода ток с корпуса прибора пойдет через нее. Подсоединение следует делать на входе в квартиру.

Это является нарушением правил, поскольку возрастает вероятность поражения током. При попадании напряжения на нейтраль во внешней сети оно окажется на корпусах заземленных подобным образом электроприборов. Еще одним недостатком данного способа является частое срабатывание защитного автомата при подключении нагрузок.

Данное подключение нельзя делать самостоятельно. Если все делать по стандарту, необходимо заказать проект изменения системы электроснабженияв соответствии с требованиями ПУЭ. Про сути это должно быть изменение системы на TN-C-S следующим образом:

    переход внутри квартиры от двухпроводной к трехпроводной сети;переход от внутридомовой четырехпроводной сети к пятипроводной;разделение PEN проводника в электроустановке.

Особенности электропроводки для подключения УЗО

Когда производится подключение УЗО в однофазной сети без заземления, разводка делается трехпроводным кабелем, но третий проводник к нулевым клеммам розеток и корпусам приборов не подключается, пока система не будет модернизирована под TN-C-S или TN-S. При подключенном проводе РЕ все токопроводящие корпуса приборов окажутся под напряжением, если фаза попадет на один из них, а заземление будет отсутствовать. Кроме того, суммируются емкостные и статические токи электроприборов, создавая опасность поражения человека.

Не имея опыта монтажа проводки и электрооборудования, проще всего приобрести переходник с УЗО на 30 мА и использовать его при подключении к розеткам электроприборов. Данный способ подключения значительно повышает электробезопасность.

Для электроприборов и розеток в ванной комнатеи других помещениях с повышенной влажностью необходимо установить УЗО на 10 мА.

Схема подключения УЗО в однофазной сети без заземления в частном доме

Домашняя сеть может быть такой же, как в квартире, но здесь у хозяина больше возможностей.

Проще всего установить на входе одно общее или несколько УЗО на основных линиях домашней сети. Для сложной сети подключается несколько уровней защитных устройств.

Вводное УЗО на 300 мА защищает всю проводку от пожара. Кроме того, оно может сработать по суммарному току утечки от всех линий, даже если на них утечки в пределах нормы.

Универсальные УЗО на срабатывание при 30 мА устанавливаются следом за противопожарным, а следующими линиями должны быть ванная и детская комната с Iу= 10 мА.

Как подключать заземление в частном доме

Можно сделать заземляющий контур и переоборудовать сеть в TN-C-S. Не рекомендуется самостоятельно подключать повторное заземление к нейтральному проводу.

При попадании напряжения на нейтраль от внешней сети это заземление может стать единственным для всех соседних домов. При некачественном исполнении оно может отгореть и вызвать пожар. Целесообразно делать повторное заземление в месте отвода от воздушной линии, что сводит к минимуму вероятность пожара в доме.

Подключение УЗО на даче

На даче схема проводки простая, а нагрузки – небольшие. Здесь подойдет схема подключения УЗО в однофазной сети (фото ниже). УЗО выбирается на 30 мА (универсальное), с защитой от пожара и от поражения электрическим током.

Схема подключения УЗО без заземления на даче требует установки главного ввода и пары автоматов на освещение и розетки. Если используется бойлер, его можно подключить через розетку или отдельный автомат.

Заключение

Схема подключения УЗО без заземления является распространенным способом защиты. Заземление также выполняет функцию защиты и его необходимо подключать правильно.

Важно обратить внимание на дополнительную защиту ванной комнаты и других помещений с повышенной влажностью. УЗО дорого стоит, но электробезопасность здесь важнее. В сложных схемах электропроводки целесообразно устанавливать несколько ступеней защиты с селективным срабатыванием УЗО меньшего номинала.

Важно понимать, что УЗО – это единственный тип аппарата, предназначенный для защиты человека от электротока.

УЗО как элемент защиты вошло в нашу техническую жизнь не так уж и недавно. Все нормальные электрики, которые сталкиваются с электромонтажными работами на практике, стараются обязательно устанавливать УЗО.

И не важно, какие это работы монтаж новых электрических щитков с полной заменой электропроводки или модернизация старых щитков с заменой одного автомата.

Не слушайте тех, кто говорит, что УЗО бесполезно ставить, что оно будет ложно срабатывать или что его бессмысленно устанавливать в двухпроводной сети (без заземления). Как показывает статистика при таком мнении остаются электрики старой школы (например, жэковские). Я не хочу наговаривать на жэковских электриков, так как и среди них встречаются нормальные и образованные люди, понимающие всю сущность и необходимость установки данного устройства.

Приветствую всех друзья на канале «Электрик в доме».Давно хотел написать эту статью, но в данный период года очень много работы навалилось, да еще и отпуска наступили.

Мало кому хочется работать в летнее время, включая и меня:). Сегодня рассмотрим вопрос, как подключить одно узо на группу автоматов.Надеюсь, данная статья получится разборчивой и несложной для понимания. Как всегда постараюсь преподнести информацию с графическим сопровождением мысли, то есть будут рисунки и фотографий, так как я считаю лучше один раз увидеть, чем сто раз услышать.

Зачем подключать узо на группу автоматов

Некоторые люди ошибочно считают, что одно узо может защищать только одну линию (потребителя). Это правило, несомненно, нужно соблюдать с автоматическими выключателями. С устройствами защитного отключения в этом плане есть небольшие особенности.

Вы обращали когда-нибудь внимание на шкалу номинальных токов УЗО. Я сейчас имею в виду устройства защитного отключения, рассчитанные для применения в бытовых условиях двухполюсного исполнения. Минимальное значение тока, на которое рассчитано УЗО является 16 Ампер.

Максимальное значение рабочего тока может достигать 63 Ампера, 80 Ампер и даже встречаются экземпляры на 100 Ампер. Причем дифференциальный ток утечки для таких экземпляров не превышает 30 мА.Зачем в квартире или доме ставить узо на 63 или 80 Ампер?

Вся стационарная проводка выполняется проводом сечением2.5 мм2 или 1.5 мм2. На такие токи она явно не рассчитана.Первое, что приходит на ум это использование защитного устройства такого номинала в качестве вводного (противопожарного). Но опять же таки вводное УЗО должно быть «селективного» исполнения помеченное буковкой «S», а ток утечки для него должен быть как минимум 100 мА и выше.Вернемся к нашему вопросу, зачем все эти извращения с подключением одного узо на несколько автоматов?Можно же просто взять и установить в каждую линию свое защитное устройство и не париться.

Зачем эти сложности? А связано все это вот с чем.Помните статью про то, что лучше дифавтомат или узо. Там был раздел, в котором сравнивали затраты на установку этих двух устройств.

Так вот наш сегодняшний вопрос также связан со стоимостью.Если Ваш бюджет ограничен и по проекту для всей квартиры в щитке установлена пара-тройка автоматов, то здесь можно обойтись установкой одного УЗО. Для тех, у кого щиток укомплектован больше чем тремя автоматами, схему можно разбить на несколько групп и на каждую группу установить свое УЗО. Поэтому в этой статье рассмотрим, как подключить узо на несколько автоматови какие здесь имеются подводные камни.

Схема подключения узо на группу автоматов

Коллеги по призванию мне часто задают один вопрос, на который я уже утомился отвечать, поэтому решил написать об этом в своем блоге. Характер вопроса примерно следующий «если для подключения использовать одно узо на несколько автоматических выключателей, каким должно быть это узо по номинальному току?

Какая схема подключения узо на группу автоматов при этом будет? Сколько автоматов можно подключить к одному узо?». В общем, все эти вопросы из серии правильности подключения узо, поэтому давайте разберем их подробно.

Всем известно, что устройство защитного отключения не имеет собственной защиты от перегрузов и коротких замыканий. В паре с УЗО обязательно ставится автомат. Работает этот дуэт примерно так: если по линии возникает утечка тока – срабатывает УЗО, если по линии возникают сверхтоки – срабатывает автомат.

Каким по номиналу должен быть автомат больше или меньше УЗО?

На каждом защитном устройстве указывается его номинальный ток (16А, 25А, 40А, 63А …). Это ток, который может длительно протекать через узо, не причинив ему никакого вреда.

Если реальный ток, протекающий через УЗО, будет больше номинала, это приведет к его повреждению (начнут перегреваться контакты, оплавится корпус, повредятся внутренности).

Поэтому УЗО всегда должно быть защищено автоматом по своему номиналу. Автомат по номиналу ОБЯЗАТЕЛЬНО должен быть меньше или равен номинальному току УЗО. Только в этом случае защита будет обеспечена.

Не важно, где будет размещен автомат до или после УЗО.

Главное чтобы он был. Какое количество автоматов будет подключено одни или несколько также значения не имеет. Для понимания вышеописанного давайте рассмотри несколько вариантов схем подключения узо на группу автоматов.

Пример 1. Нужен ли отдельный защитный автомат для УЗО?

В данном примере, хотел бы показать, в каких случаях нужен отдельный защитный автомат для УЗО.

Например есть схема вводной автомат 50 А, два УЗО по 40 А, по две пары отходящих автоматов от УЗО по 16А каждая. Получается, при максимальной загрузке линий через каждое УЗО будет протекать ток 32 А.

Нуждается УЗО в защите? В данном случае нет, потому что его нагрузочная способность позволяет длительно пропускать через себя такую нагрузку. Отсюда можно сделать вывод:

если суммарный ток номиналов автоматических выключателей подключенных к УЗО не превышает его номинала, защищать УЗО дополнительным автоматом не нужно.

Пример 2. Подключаем к УЗО автоматы не более чем его номинал

Схема, которая состоит из вводного автомата на 40 Ампер. Затем идет два УЗО на 25 А и 40 А. К каждому УЗО подключена своя группа автоматов.

К первому подключены два автомата с номиналом 6А и 16А. Ко второму подключены три автомата номиналом 16А и одни автомат на 10А. Что можно сказать о данной схеме?

Первое УЗО имеет номинал на 25А.Выше него установлен вводной автомат на 40 А, который не может быть использован как защитный для этого УЗО (40А > 25 А). Из этой ситуации есть два выхода.

Первый – установить дополнительный автомат перед ним номиналом не более 25 А.Это затратно, так как придется покупать дополнительный автомат. Второй – подключить к нему автоматы, суммарный ток которых будет не более 25 А. Что в принципе у нас и выполнено (6А + 16А = 22 А).Второе УЗО на этой схеме имеет номинал 40 А.

Защитным для него, является вводной автомат, номинал которого не превышает его собственный. От УЗО отходит четыре автомата, суммарный номинальный ток которых 58А (16А + 16А + 16А + 10А).Страшного в этом ничего нет. Защита УЗО ОБЕСПЕЧИВАЕТСЯ вводным автоматом.

В случае перегруза отключится вводной автомат.Еще один наглядный пример схема состоящая из вводного автомата на 32 А и двух устройств защитного отключения номинальным током 25 А каждое.К первому устройству защитного отключения подключено два автомата по 16 А, суммарный номинальный ток которых 32 А. Узо явно будет перегружено при таком подключении. Вводным автоматом защита данного узо также не обеспечивается (25 А > 32 А).Максимальная возможная нагрузка, которая будет проходить через второе узо, будет не более его номинала (25А >20 А), то есть перегружаться оно не будет.

Пример 3. Если вышестоящий автомат по номиналу выше, то УЗО по номиналу не должно быть меньше номиналов подключенных автоматов

Третья схема подключения узо на группу автоматовсостоит из вводного автомата на 50 А и двух УЗО по 40 А со своими отходящими автоматами.

От первого УЗО у нас подключены автоматы с суммарной нагрузкой 57А (16А + 16А + 25А), что НЕДОПУСТИМО. Защиты для УЗО в этом случае нет.

Как выйти из ситуации в этом случае?Нужно заменить УЗО номиналом на одну ступень выше. Ставим УЗО на 63 Ампера и все Ок. Сумма отходящих автоматов не превышает номинал УЗО.

По второму УЗО замечания аналогичные, три отходящих автомата по 16 А суммарный ток которых превышает его номинал 48 А > 40 А. Вводным автоматом защита УЗО тоже не обеспечивается 50 А > 40 А. Так делать ЗАПРЕЩЕНО!

Особенности подключения групповых узо

С выбором номиналов для УЗО думаю, разобрались. Если остались вопросы обращайтесь в комментариях.

Теперь хотел бы кратко напомнить об особенностях из серии ошибочного подключения узо, которые Вы все наверняка знаете. Как известно, через устройство защитного отключенияпроходит два полюса «фаза» и «ноль». На вход подключается фаза от вводного автомата, ноль берется от автомата или от общей нулевой шины (в зависимости от схемы).

Провода, которые прошли через УЗО, не должны смешиваться с другими проводами. Например, фаза после УЗО идет на автоматы определенной группы и не смешивается с другими. Ноль после УЗО также должен подключаться к потребителям только этой группы.

Для удобства лучше использовать на каждую группу свою нулевую шинку. Вышел ноль с УЗО и сразу подключается на эту шину. Так меньше вероятности запутаться с подключением.

Ошибочно новички собирают щит так, что нулевые провода смешиваются либо с нулевыми проводами других УЗО либо с общим нулевым проводом. Так делать нельзя иначе УЗО будет ложно срабатывать.

Например, имеется схема подключения узо на группу автоматов. Схема состоит из трех групп, две из которых, подключены через УЗО 40А.

Питание на вводные клеммы УЗО подается от вводного автомата (фаза) и от общей нулевой шины (ноль).После выхода с УЗО фаза идет на свою группу автоматов. Ноль после УЗО подключается уже на свою нулевую шину. Потребители каждой группы должны подключаться к автоматам и нулевой шине только своей группы.Если взять фазу от автомата одной группы, а ноль от другой, через УЗО начнет протекать ток небаланса, что приведет к его срабатыванию.

Источники:

  • electrik.info
  • fb.ru
  • electricvdome.ru

Схема подключения узо в однофазной сети с заземлением в частном доме и квартире

Развитие техники электроснабжения привело к появлению замечательного прибора – устройства защитного отключения, или УЗО. К сожалению, и сегодня его нет во многих домах и квартирах. В то время как сравнительно недорогое и небольшое устройство поможет сберечь и Вашу семью, и бытовую технику и жилье. Без сомнения, если в электрощите Вашего дома прибора защитного отключения еще нет, необходимо озаботиться его установкой.

Однофазное и трехфазное УЗО

Назначение устройства защитного отключения

Устройство защитного отключения предназначено для защиты людей от поражения электрическим током, а также электропроводки от возгорания. В случае прикосновения человека к токоведущим частям прибор фиксирует утечку тока и мгновенно разрывает цепь питания.

Для защиты людей устанавливают защитные приборы с током срабатывания 30мА. Для потребителей электроэнергии в ванной применяют прибор с током отсечки 10мА, так как в помещении с повышенной влажностью вероятность удара электричеством возрастает.

С целью предотвращения возгорания подключают условно называемое противопожарное УЗО. Такой прибор отключает нагрузку при токах 100-500мА. В домашней электропроводке практикуется применение прибора с током отсечки 100мА. При повреждении изоляции проводов может возникнуть короткое замыкание, искрение и возгорание. Защита фиксирует недопустимую утечку тока и отключает питание, предотвращая возникновение описанной ситуации.

УЗО в домашнем распределительном боксе

Если «выбивает» УЗО, для поиска неисправности необходимо выключить все автоматические выключатели, следующие по схеме после прибора защитного отключения. После этого сначала включают прибор защиты, а затем и автоматы — последовательно, по одному. Защита вновь сработает при попытке включения автоматического выключателя на неисправной линии.

Устройство и принцип работы УЗО

Внутренняя электрическая схема УЗО состоит из дифференциального трансформатора и реле. К одной обмотке трансформатора подключены провода фазы, к другой – нуля. В том случае, когда по проводникам линии и нуля протекает одинаковый ток, магнитные поля индуктивностей компенсируют друг друга.

Устройство защитного отключения изнутри

Принцип работы УЗО состоит в том, что при наличии утечки тока в электропроводке, его величина по проводникам фазы и нуля будет разной. В этом случае возникает разность потенциалов, которая включает внутреннее реле, контакты последнего разрывают цепь питания потребителей.

Следует отличать УЗО от дифференциального автомата. Принцип его работы состоит в том, что он выполняет функции УЗО и автоматического выключателя, то есть фиксирует не только токи утечки, но и предельный ток, протекающий через устройство.

Если в схеме электроснабжения предусмотрено несколько приборов защиты, работающих в паре с автоматическими выключателями, их выгодно заменить дифференциальными автоматами и сэкономить место в распределительном щите.

На практике чаще применяют ограниченное число относительно дорогих устройств защитного отключения при заметно большем количестве автоматов. Для контроля функционирования устройства защитного отключения на его корпусе предусмотрена кнопка ТЕСТ. Если ее нажать возникает принудительная утечка тока, что вызывает срабатывание защиты. Следует проверять эффективность защиты при контроле и обслуживании распределительного щитка.

Существует два вида УЗО: двухполюсное, для работы в однофазной сети 220 В и четырехполюсное, для применения в трехфазной сети 380 В. В последнем случае контроль утечек производится по каждой из трех фаз. При наличии проблемы даже на одной из них произойдет отключение всех линий нагрузки.

Общие правила подключения устройства защитного отключения

Существует немалое количество практических вариантов подключения УЗО, к сожалению, не все из них верные. Продумывая схему электроснабжения дома или квартиры, необходимо решить:

  • какое количество приборов защиты следует установить;
  • в каком месте подключить защиту;
  • как правильно провести электромонтаж.
Пример монтажа УЗО в электощите

Рассмотрим практические рекомендации, которые позволят принять правильное решение в Вашем случае. Проще всего установить отдельное устройство на каждый потребитель, но это достаточно дорого. Вероятно, так можно поступить в отношении газового котла, холодильника и компьютера. Во всяком случае, возможно подключение УЗО на три оговоренных потребителя. Чем более индивидуальную защиту Вы предусматриваете, тем меньше вероятность отключения важных потребителей по причине наличия проблем в каких-то других цепях.

Некоторые линии, например, сеть освещения, может быть защищена только противопожарным УЗО. Осветительные приборы не имеют металлических поверхностей, то есть опасность поражения людей электрическим током при касании маловероятна.

Наоборот, как мы уже отмечали, в ванной комнате складываются худшие условия для удара электричеством, так что для приборов в ванной разумно предусмотреть отдельное УЗО с током отсечки 10мА. В наиболее бюджетном варианте применяется одно общее устройство защитного отключения с параметром срабатывания 30мА.

Противопожарное или общее УЗО включается в схему сразу после счетчика электроэнергии. Устройство защитного отключения, установленное после входного автомата и электросчетчика, рассчитывается на номинальный рабочий ток на ступень выше значения у предшествующего автоматического выключателя. Например, если на входе имеется автоматический выключатель на 32А, модуль защиты выбирается на 40А.

Так делается для того, чтобы защитить от перегрузки контакты более дорогого устройства. Очевидно, это правило не работает при использовании нескольких УЗО. В этом случае его рабочий ток должен быть больше, чем номинал каждого из установленных после устройства защиты автоматов.

При монтаже модуля защиты сверху к нему подключаются проводники нуля и фазы, подводящие напряжение, а снизу подсоединяются одноименные провода нагрузки. Таковы правила монтажа большинства модульных устройств, о которых знает каждый электрик. Не следует вводить в заблуждение тех, кто будет работать с электрощитом.

Практические схемы монтажа в однофазной сети с заземлением

В рамках данной статьи рассматриваются примеры подключения УЗО в схеме электроснабжения с заземлением. При этом возможно применение защитного отключения в квартире при отсутствии заземляющего проводника, о чем рассказано в материале «Как можно подключить узо в однофазной сети без заземления: схемы подключения».

Наиболее простая схема подключения УЗО в квартире

На вышеприведенной схеме электромонтажа представлен простейший вариант подключения однофазного УЗО, возможный в квартире с потребляемой мощностью до 8,8кВт. Рабочий ток устройства 50А выбран на ступень выше номинала для входного автомата 40А. Предусмотренное УЗО срабатывает при токе утечки 30мА, что обеспечивает защиту от поражения электричеством людей. При этом для электроприборов ванной предпочтительна величина 10мА, так что защита во влажном помещении снижена.

Для контроля утечек в электропроводке достаточна чувствительность 100мА, однако при небольшой ее общей протяженности ложных срабатываний вводного УЗО с параметром 30мА не будет.

Провод фазы с выхода устройства защитного отключения подключен к входам всех автоматических выключателей. Нулевой проводник с его выхода соединен с шиной нуля. К шине заземления подключен защитный проводник с этажного щита. Трехжильный кабель от каждой группы потребителей (освещение, розетки и т. п.) подключается:

  • защитный желто-зеленый провод — к шине заземления;
  • нулевой провод синего цвета — к шине нуля;
  • провод фазы красного цвета (или любого другого) — к выходному контакту соответствующего автомата.
Схема подключения УЗО в квартире с энергопотреблением до 11 кВт

Данная схема подключения УЗО возможна в квартире с мощностью потребления до 11кВт. Для защиты проводки большой протяженности от возгорания предусмотрено противопожарное устройство с током утечки 100мА, и линия освещения подключается от него. В данном варианте нулевой провод кабеля, подающего питание на осветительные приборы, подключается к выходу вводного УЗО, а не к шине нуля.

Схема подключения УЗО и дифференциальных автоматов в доме

Приведенный вариант подключения двух однофазных УЗО и двух дифференциальных автоматов подходит для дома с потребляемой мощностью до 11кВт. Сеть ванной, как положено, контролирует устройство, рассчитанное на утечку 10мА. Шина защиты в данном случае соединена с индивидуальным контуром заземления. Для сети ванной и розеток предусмотрены дифференциальные автоматы, вместо пары УЗО плюс автомат.

Это уменьшило количество приборов на щите и позволило обойтись всего одной шиной нуля. Нулевые проводники ванной и розеток подключаются напрямую к выходам дифференциальных автоматов, а не к нулевой шине. Нулевой провод кабеля, подающего питание на осветительные приборы, подключается к выходу противопожарного УЗО, а не к шине зануления.

Схема подключение УЗО Легранд по французским стандартам

УЗО известной марки Legrand подключается по обычной схеме: сверху вход, снизу выход устройства. Чаще всего клеммы N находятся справа и помечаются на корпусе. Выше приведена схема электроснабжения, принятая во Франции.

В данном случае оба проводника, и нуля и фазы, проходят через двухполюсный автомат. Такой метод разводки обеспечивает безопасность в том случае, если нуль и фаза перепутаны на входе. Нулевая шина в таком варианте не требуется.

Схема подключения УЗО АВВ в паре с автоматами

УЗО марки ABB подключается по стандартным правилам. Приведенная выше схема демонстрирует применение однополюсных автоматов. Здесь каждое устройство защитного отключения имеет свою шину нуля и путать их нельзя.

Подключение вводного УЗО в сети 380 В

Схема подключения УЗО в сети 380 В

Трехфазное четырехполюсное УЗО подключается с соблюдением тех же общих правил, что и однофазное. В данном примере использованы устройства марки Legrand. Клеммы нуля у них находятся справа.

Для питания трехфазной плиты установлено отдельное четырехполюсное УЗО с током утечки 30мА. Ванная и розетки подключены на 3 фазы с применением дифференциальных автоматов. Ноль кабеля освещения подключается к выходу противопожарного прибора защиты.

Подключение трехфазной нагрузки без провода нуля

Вышеприведенная иллюстрация демонстрирует подключение трехфазного УЗО в случае применения асинхронного двигателя в сети 380 В. В данном варианте отсутствует нулевой провод соединяющий устройство защиты и нагрузку. Корпус электродвигателя необходимо подсоединить к шине заземления.

Возможные ошибки при подключении устройства защитного отключения

Ошибки при подключении УЗО приводят к его отказу, срабатыванию без видимых причин, либо к тому, что оно не будет выполнять защиту людей и электропроводки. В общем виде могут быть допущены три вида ошибок:

  • неправильно выбран рабочий ток и контролируемый ток утечки;
  • неверное место подключения в схеме электроснабжения помещения;
  • ошибки при выполнении электромонтажных работ.

Сначала разберем ошибки неправильного выбора параметров защиты. Если рабочий ток УЗО меньше или равен току срабатывания подключенного последовательно с ним автомата, его контакты могут не выдержать нагрузки и сгорят.

Аккуратный монтаж помогает выполнить подключение УЗО без ошибок

Ток утечки в сети, которую контролирует устройство защиты, должен составлять не более 40% данного параметра УЗО. В ином случае устройство защиты будет срабатывать без должной причины. Чем больше протяженность проводки, тем меньше ее общее сопротивление изоляции и больше токи утечки. Наоборот, при выборе устройства с завышенным током утечки не будет обеспечена защита человека от удара электричеством.

Касательно места подключения УЗО в схеме электроснабжения, его нельзя включать:

  1. Перед счетчиком электроэнергии. В этом случае ее возможно воровать.
  2. Параллельно счетчику электроэнергии. В такой ситуации счетчик будет занижать показания.
  3. Без последовательно подсоединенного автомата. В таком варианте УЗО выйдет из строя при повышенной нагрузке или коротком замыкании.

При выполнении электромонтажа в щитке существует немало вариантов ошибок:

  • подключение нулевых проводников к клеммам фазы, а фазных проводов — к нулевым зажимам;
  • подсоединение проводов, подающих питание снизу, а нагрузку — сверху;
  • подключение одного из проводов, подающих питание снизу, а второго — сверху;
  • объединение нулевых проводников на выходе разных приборов защиты;
  • объединение фазных проводов на выходе нескольких устройств защиты;
  • подключение нулевого провода нагрузки до УЗО;
  • соединение нулевого и защитного проводников в щитке;
  • соединение нулевого и защитного проводников в розетке;
  • подключение нулевого провода на корпус щита или нагрузки;
  • подсоединение заземления розеток к водопроводу и системе отопления.
Щит в стадии монтажа: нагрузка к УЗО еще не подключена

В случае одного из вышеперечисленных нарушений УЗО будет «выбивать» либо сразу при подаче питания, или при подключении нагрузки. Если защита сработала, его нельзя включать вновь сразу. Сначала необходимо устранить неисправность, а затем поднимать рычаг включения.

Удобно иметь выключатель, подсоединенный параллельно прибору защиты. Он обеспечит режим БАЙПАС, то есть электроснабжение частного дома при ремонте устройства защитного отключения. В заключение отметим, что прибор любой марки, будь то Легранд, АВВ или IEK, вполне реально установить правильно своими руками, если руководствоваться приведенными практическими примерами и правилами.

Видеоролик демонстрирует, как это делается на практике.

Установка узо в частном доме без заземления. Узо принцип работы и схема подключения в однофазной сети

Это электрическое оборудование используется в промышленных условиях. Подключение трехфазного УЗО на производственной площадке позволяет не только защитить рабочих от поражения электрическим током, но и служит средством предотвращения пожаров (это его основное предназначение). Обеспечить безопасные условия труда поможет устройство с подходящими характеристиками.

Правильно подобранное защитное устройство по назначению позволит избежать возникновения ряда аварийных ситуаций.

Разновидности УЗО и принцип действия

Доступны 2 типа защитных устройств. Это электромеханическое и электронное оборудование. По принципу действия они идентичны. Основное отличие и преимущество электромеханического устройства:

  • работают без подачи электроэнергии на устройство;
  • простота, надежность схемы изделия.

Ток утечки из-за повреждения изоляции и прикосновения к незащищенной области вызывает срабатывание защиты — это принцип работы каждого типа устройства.

Устройство с установленной электронной схемой и источником питания. Основа его работы — создать импульс к исполнению. Но при отключении питания на обслуживаемом участке цепи устройство работать не сможет, так как на него не подается ток. Возникают сбои в работе узо электронного типа в трехфазной сети в сильные морозы. Поэтому такие устройства используются редко, хотя их цена ниже, чем у электромеханического устройства защиты.

Алгоритм одинаков для всех типов устройств

В разных направлениях, фазный ток и нулевой поток по проводникам. При этом происходит возбуждение 2-х магнитных потоков в сердечнике защитного устройства. Потоки как бы поддерживают равновесие системы, обеспечивая нулевое значение ЭДС.

Когда человек касается оголенного провода или утечки из нарушенной части токовой развязки, соответствующей срабатыванию устройства, устройство размыкает трехфазную цепь.Возникающий в сердечнике магнитный поток приводит в действие защелку группы контактов. Так работает каждое предохранительное устройство.

Каждое трехфазное узо оснащено кнопкой «Тест». Не реже 1 раза в месяц необходимо проверять исправность устройства. Нажимая на нее, мы вызываем искусственную утечку тока. Устройство должно реагировать на угрозу. В случае неисправности ведутся работы по установке нового устройства.

Что такое УЗО, зачем оно установлено?

Начинающим электрикам необходимо понимать и знать ответы на эти вопросы перед выполнением работ:

Главное помнить, что трехфазные выключатели дифференциального тока используются для предотвращения возгораний на промышленных объектах.Сила тока для такого оборудования составляет 100 — 300 мА.

Схема трехфазного устройства без нулевого провода

Узкое подключение для трехфазной сети, для защиты от утечки тока на синхронном двигателе, может быть выполнено без нуля. В этом случае соединение обмоток осуществляется по схеме звезда или треугольник без нейтрали. Суммируя токи по фазам, видим, что они не могут вызвать включение УЗО в работу из-за их небольшого размера.

В случае аварии, когда происходит утечка фазы, ток течет на землю через шасси. В этом случае поток протекает через трансформатор устройства, и срабатывает защита.

Значение напряжения трехфазного тока составляет 380 В, а на однофазном устройстве 220. Разница немаленькая. Возможна ли установка трехфазного узо в однофазной сети? Если производитель предоставил такую ​​возможность, то да.

Самое главное, чтобы гарантировалась нормальная работа схемы проверки напряжения, величина которой соответствует принятым нормам.Это правило особенно важно соблюдать при установке устройства электронной защиты.

Какое устройство лучше установить и как подключить?

При установке дифференциальной машины ABB экономится место в экране и на проводах при электромонтаже. Защищает сразу от нескольких неисправностей. Значения короткого замыкания и пикового тока (срабатывание выключателя) и предотвращение возгорания и поражения электрическим током при утечке.

При этом качественный дифавтомат abb может стоить намного дороже, чем 2 отдельных качественных устройства (автомат и УЗО).

На трехфазных устройствах защиты имеется 4 клеммы для группы питания и тока, идущего к потребителям. Следовательно, при установке в электрическом щите будет не менее 7 монтажных ячеек. Устройство фиксируется с помощью специальных защелок, вставленных в пазы электрощита.

Закрепляем кабели, идущие к экрану, к верхним выводам питания. Снизу назначаем проводку к оборудованию. Провода в клеммах закреплены зажимными винтами. Самое главное подключить провода, чтобы не перепутать фазу и ноль.Это может привести к серьезным последствиям.
После проверки правильности установки можно выполнить пробное подключение к сети.

Достаточно просто. С этой работой справится новичок, но при выполнении работы лучше воспользоваться несколькими нашими советами.
В заключение необходимо напомнить основные моменты статьи.

Чтобы система защиты работала правильно, сразу после выключателя необходимо подключить УЗО.

Всегда следует помнить, что устройство защитного отключения никогда не может заменить землю и наоборот.При этом никакая машина, служащая для защиты от токов короткого замыкания, никогда не заменит УЗО и не защитит человека от последствий утечек тока.

Устройство с током выше 30 мА не может защитить человека от поражения электрическим током. Такое устройство устанавливается для защиты здания от возгорания при утечках тока.


Выбирайте защиту по следующим характеристикам:

  • Выбор определяется особенностями устройства.Следует напомнить, что оптимальным вариантом является устройство электромеханического типа.
  • Подбор, производимый по мощности устройства, учитывает время отключения электроэнергии.
  • Определенный ток нагрузки требует установки различных устройств.
  • Решите, готовы ли вы платить за возможности, которые вам не нужны. А также подумайте, стоит ли переплачивать за название компании производителя.

Больше всего брендовой продукции производится в Китае.Иногда производители известного бренда не догадываются, что его продукция запущена на рынок. А остальной ассортимент произведен в регионах мира с низким уровнем жизни. Но даже здесь можно попасть на некачественный товар.

Провод заземления не должен выходить в контур заземления за установленным устройством защитного отключения. Он не может находиться в зоне ответственности УЗО. Поэтому его включают в электрическую цепь до защиты.

Убедитесь, что провода подключены правильно в соответствии со схемой подключения.Как правило, он располагается на одной из поверхностей боковых сторон устройства.

Выполняя все эти требования и правила, вы получаете надежную и надежную защиту от утечки тока.

5 августа 2017

Начнем с анализа понятий. Сегодня, по большей части, УЗО используются для обозначения дифференциального автоматического выключателя.

Это устройство предназначено для измерения тока, входящего и выходящего из устройства, и когда между ними возникает разница, цепь размыкается.Собственно, дифференциал и указывает место утечки.

Предполагается, что объект имеет заземление. Но часто бывает, что как раз этой части не хватает. Как подключается УЗО без заземления?

Еще раз коротко о концепциях электрозащиты дома

В настоящее время для защиты электрической сети дома от различных эксцессов принято выделять следующее оборудование:

Внутри металлические кронштейны, на которых по плану электрификации квартиры навешиваются различные модули как конструктор.

Не путайте это понятие с распределительной коробкой, которая представляет собой просто коробку с несколькими резиновыми отрывными манжетами на концах, в которые встроены контактные площадки простых электрических соединений.

Для этого нужен распределительный щит, чтобы схема установки УЗО была предельно простой, понятной и удобной.

Когда вся техника собрана в одном месте и подписана, то любой хозяин радуется такой роскоши. Допустим, вам нужно отключить розетки в комнате — одно нажатие пальца, и дело в шляпе.

  • Прежде чем рассматривать УЗО, обсудим автоматический выключатель.

В простейшем случае это прибор всего с двумя выводами, куда цепляется фаза (коричневый или красный провод).

Суть в том, что при резком увеличении тока внутреннее реле автоматического выключателя автоматически размыкает цепь.

Время, необходимое для завершения операции, зависит от типа прибора.

И нет простого правила — чем быстрее, тем лучше.

Если нагрузка представляет собой асинхронный двигатель холодильника или кондиционера, то пусковой ток может быть кратковременно высоким.

Ложное срабатывание вряд ли порадует владельцев невозможностью запуска климатической системы или морозильной камеры.

В связи с этим нужно знать, что автоматический выключатель выбирается исходя из типа нагрузки. Кроме того, это устройство может разорвать цепь, если сила тока превысит указанную на корпусе.

С коэффициентом перегрузки 1.15 обычно это происходит за час, в 1.45 — в два раза дольше

Это предотвращает перегрев проводки и возгорание или потерю изоляции в результате циклов повышения и понижения температуры.

  • Вы обратили внимание, что автоматический выключатель защищает схему от перегрева, оборудование от короткого замыкания, но о безопасности нигде и речи не идет.

И тут на сцену выходит УЗО. Когда возникает наименьший ток утечки, возникает разница между входящим и исходящим токами.

Напомним один из законов Кирхгофа. В последовательной цепи ток постоянный.

Мы подключили друг за другом источник в виде трансформатора, бытовую технику и нулевой провод, заземленный обычно в районе одной и той же подстанции.

В результате того, что человек одной рукой берет токоведущую часть одной рукой, а другую промывает под краном, происходит утечка тока через электролиты в организме: кровь, лимфу, различные органоиды.

Благодаря этому в нашей последовательной схеме, описанной выше, в районе локализации аварии электроны начинают теряться, покидая канализацию через руку пострадавшего.

УЗО немедленно захватывает и размыкает цепь

В этом случае очень важна скорость отклика. И отличается минимальным рабочим током утечки. Но есть один подводный камень.

Если характеристики слишком чувствительны, возможны ложные срабатывания. В связи с этим полезно поставить на входе в квартиру хороший фильтр напряжения, например, фильтрующий высшие гармоники.

Итак, вывод: подключение УЗО без заземления возможно, но есть вероятность, что корпус под напряжением очень долго будет висеть, и кто-то его возьмет.

Но если бы все было по правилам, то сразу после выхода из строя изоляции возникла бы текущая дифференциация.

В результате можно было избежать неприятного электрошока.

То есть УЗО сработает, но результат контакта электричества и человека будет зависеть только от физического состояния последнего.

Например, пенсионер со слабым сердцем может умереть от такой шоковой терапии. Жизненный случай? Накопительный водонагреватель с нарушенной изоляцией водонагревателя.

Если трубы пластиковые и клапаны закрыты, то есть все шансы попасть в контур заземления, просто спустив воду из крана.

Зачем мне УЗО в квартире без заземления?

Существует специальный стандарт подключения бытовой техники в потенциально опасных зонах квартиры.

К ним относятся, прежде всего, сантехника.

Предусмотрены ровные зоны для установки стиральных машин и техники безопасности в цепи подсветки джакузи (ГОСТ Р 50571.11-96).

Итак, поехали! Строки этого смарт-документа говорят о том, что во взрывоопасных зонах (по терминологии стандарта) разрешается установка электрооборудования только в трех случаях:

  • При подключении через индивидуальный разделительный трансформатор по ГОСТ 3 / ГОСТ Р 50571.3 в соответствии с п. 413.5.1.

Суть в следующем. Изолирующий трансформатор не преобразует напряжение. На выходе его вторичной обмотки те же 220 В, а на входе ток равен за вычетом потерь (КПД

Однако, если одной рукой взять оголенный провод, а другой — кран подачи воды, то замкнутая цепь не образуется и не убьет человека.

Конечно, если кому-то удастся сразу ухватиться за оба конца вторичной катушки, то он получит свой, но на практике это сделать очень сложно.

А если сама порвется изоляция, то трансформатор перейдет в режим короткого замыкания, а свечи сгорят (или сработают автоматические выключатели).

Но! Конец вторичной обмотки ни в коем случае нельзя ставить на землю.

В этом случае теряется весь смысл установки такого устройства. И не забывайте про слово «индивидуальный»: нельзя подавать ток более чем на одно устройство из домашнего набора бытовой техники.

  • Сейф питается от SELV или PELV.

Что это за зверюшки, и как это связано с подключением УЗО без заземления? Терпение! Это так называемое безопасное сверхнизкое напряжение.

Например, по этому принципу работают все без исключения портативные электробритвы и эпиляторы.

Суть в том, что напряжение питания не превышает тех, которые считаются безопасными, 50 В. Электробритвы обычно имеют 9 или 12 В (до 15 В).

Честно говоря, для стиральных машин это обычно не вариант, как и для посудомоечных машин.

Поэтому снова возвращаемся к нашему УЗО без заземления. Да да! Третий момент — это именно они. Прочитай внимательно.

  • Допускается защита вашей бытовой техники с помощью УЗО, реагирующего на дифференциальный ток.

Напоминаем, что в этом разница между потребляемой мощностью на входе и на выходе. В связи с ранее написанным запрещается заземлять корпус прибора через нулевой провод.

В этом случае УЗО, реагирующее на дифференциальный ток, не сможет выполнять свои защитные функции.

Следовательно! Корпус стиральной машины может укусить душ.

Так как входной фильтр напряжения на землю обычно идет около 60 В.

Если не верите, возьмите тестер и убедитесь.

Поместите второй зонд на водопроводный кран. Но ток от корпуса обычно небольшой, даже ниже, чем от корпуса системного блока персонального компьютера.

Кроме того, есть еще одно требование. А именно, дифференциальный ток реакции устройства должен быть не более 30 мА.

В целом по стандарту санузел делится на три зоны:

Эти римские цифры обозначают степень электробезопасности. А они означают, что утеплитель усиленный или двойной.

  • Наконец, в третьей зоне, которая начинается не ближе 60 см от ванны, можно ставить первые розетки.

Требования, которые мы описали выше. Это обсуждаемый нами разделительный трансформатор, БСНН, или УЗО.

Т.е. стиральная машина должна быть подключена по всем правилам и удалена от ванны на 60 и более см. Это смешно, учитывая размеры домашних ванных комнат, но таковы реалии.

Можно ли подключить УЗО без заземления?

В стандарте четко указано, что использование местных систем выравнивания потенциалов без заземления не допускается.

Для большей наглядности допустим, что корпус каждого устройства находится под определенным напряжением.

И даже если они запитаны от одной сети, разница между устройствами может не быть равна нулю.

В этом случае можно легко получить поражение электрическим током, прихватив сразу обоих представителей бытовой техники.

Чтобы избежать такой возможности, выполняется электрическое соединение всех корпусов прибора единой токопроводящей шиной (медь, толстая сталь).

В свою очередь, по технике безопасности все (!) Устройства, находящиеся в зонах 0, 1, 2 и 3, должны быть подключены к системе выравнивания потенциалов.

И последний из них заканчивается на расстоянии примерно 2.4 метра от стен санузла. Получается, что даже при наличии УЗО без заземления не обойтись. И это правильно.

Как УЗО будет работать без заземления, даже если есть чувствительность к дифференциальному току?

Если изоляция порвется, дождется утечки.

Но заземления нет, так что перед грозой будет тишина, пока кто-то не решит пропустить ток утечки через свое тело, например, в канализацию (через струю воды из крана).

Хотите быть лабораторной мышкой? Но, наверное, выход есть?

В принципе, ограничение наших домов, подключенных по системе TN-C (без защитного заземления можно обойти).

Для этого нужно поставить корпус на нулевой провод, но (!) Снятый с подъезда в квартиру. То есть УЗО должно работать само, а ток утечки будет проходить мимо. Тогда все будет хорошо.

На всякий случай прилагаем примерную схему, как подключить УЗО без заземления (на рисунке справа).

Но учтите, что это все незначительные отклонения от стандарта.

По правилам, вам необходимо заказать полную реконструкцию системы электроснабжения согласно всем требованиям ПУЭ подъезда 7. На нашей схеме показано:

Буква N обозначает нейтральный провод, который в электротехнике называется нейтралью. Мы учли, что питание дома всегда трехфазное, поэтому логично обозначить эту жилу именно так.

Подключение трехфазного узо в основном используется на производстве. Принцип его действия аналогичен действию. Единственное отличие в том, что проходят не два, а четыре провода — три фазы и ноль.
Если трехфазная нагрузка симметрична, то есть все фазы нагружены равномерно, сумма токов трех фаз равна нулю, поэтому она практически отсутствует. Как только баланс токов нарушается в результате утечки в корпус, в магнитной цепи индуцируется электромагнитная индукция, создавая ток во вторичной цепи, подключенной к блоку сравнения тока.Узел сравнения дает команду на отключение силовых контактов устройства. Это, так сказать, краткий экскурс в устройство устройства.
Теперь рассмотрим на практике трехфазное соединение узо . К трехфазному узо можно подключить три независимые группы силовых приемников. Нулевой провод в этом случае служит для поддержания баланса нулевого тока. Нагрузка групп не всегда одинакова, чаще всего какая-то группа потребляет меньше тока, какая-то больше. Для выравнивания токов при такой нагрузке понадобится нейтральный провод.Пример такого подключения показан на рис. 1.

Когда нагрузка на всех фазах симметрична, нейтральный провод нельзя подключать. Примером может служить асинхронный двигатель. Здесь вполне достаточно заземлить корпус двигателя (рис. 2).

Трехфазное соединение типа «узо» также может использоваться в качестве защиты двигателя от обрыва фазы. Для этого звезду обмотки двигателя подключают к нулю, но этот проводник проходит не через прибор, а мимо.Когда фаза пропадает, в нулевой точке звезды создается напряжение, и это напряжение должно быть отправлено на нулевую шину, минуя контакты устройства. В этом случае ноль будет действовать как утечка (рис. 3),


Может случиться так, что для собственного дома не было однофазного устройства остаточного тока, а есть трехфазное. Нет проблем: подключаем то, что есть. На все три входных клеммы должна подаваться только фаза.
Выход можно разделить на три группы, если есть эти три группы (рис.4), либо можно подключить существующую одну группу ко всем трем выходным клеммам (рис. 5).

Среди защитных устройств в домашней электропроводке все большую популярность приобретают автоматические выключатели (дифференциальные автоматы) и дифференциальные автоматы (дифавтоматы). Производители выпускают их с различными типами конструкций для использования в однофазных и трехфазных схемах электроснабжения. У всех этих устройств единый алгоритм работы.

Принципы работы

По большому счету, заключается в отсутствии в цепи, реагирующей на токи превышения нагрузки.Поэтому схема подключения однофазного или трехфазного УЗО от схемы подключения дифференциального автомата отличается только отсутствием этой функции. Для защиты от коротких замыканий и недопустимых нагрузок в нем требуется дополнительная токовая защита.

Общим элементом этих защит является схема, основанная на сравнении векторов тока на входе и выходе из устройства, которая при отклонении от установленных предельных значений отключает электрооборудование.

Элементная база, на которой работает эта схема, может быть различной, например, на основе электромагнитных реле или полупроводниковых элементов. Чтобы понять, как правильно подключить УЗО и дифференциальный выключатель к электрической сети, рассмотрим первый вариант конструкции упрощенной однофазной сети. По такому же алгоритму работают внутренние элементы статических устройств. Поэтому их подключение полностью аналогично.

Нормальный режим мощности

При включении под нагрузкой через токопроводы, установленные внутри тороидальной магнитной цепи, течет ток нагрузки.Если качество изоляции в цепи хорошее, то по ней не будет токов утечки. Ток I1, поступающий через фазовый токоподвод L1, будет соответствовать значению тока I2, выходящего из магнитной цепи, и одновременно направлен в противоположном направлении.

В этом случае магнитные потоки ФL и ФN, сформированные из фазных токов и нуля, также будут равны по величине и противоположны по направлению. При прохождении через магнитопровод в нем складываются магнитные потоки, взаимно уничтожая друг друга.Полный магнитный поток магнитопровода Фс равен нулю.

Описанный вариант рассматривает работу идеального устройства, которое существует только теоретически. На практике всегда появляется какая-то неуравновешенность соотношений F1 и F2, но она очень небольшая и не влияет на работу схемы.

Режим тока утечки

В случае нарушения изоляции часть фазного потенциала начнет стекать на землю, Iout.Значение тока в нейтральном проводе I2 уменьшится на такую ​​же величину. Он будет формировать меньший магнитный поток ФN. При сложении магнитных потоков внутри магнитопровода возникает превышение потока F1 над Ф2. Общий поток FS немедленно увеличится и вызовет намотку на него катушки ЭДС.

Под его действием в замкнутом контуре катушки появится ток ΔI, пропорциональный току утечки. Если пользователь превышает значение, установленное пользователем, электромагнит сработает, отключив защелку расцепителя, встроенного в устройство, которое сработает и сбросит напряжение со всей защищаемой области.

Режим отключения питания

Как видите, вся работа защиты по отключению происходит в автоматическом режиме. Но для того, чтобы повторно включить УЗО в работу, необходимо выполнить следующие действия:

1. Анализировать состояние электрической цепи для определения причины отключения;

2. устранить выявленную неисправность;

3. Только после этого используйте рычаг ручного переключателя на УЗО или дифавтомате.

Возникновение повторного отключения УЗО следует рассматривать как следствие плохой изоляции электрооборудования и немедленно принимать меры по ее восстановлению.Приемлемо огрубление настроек защиты, а также ее блокировка.

При первоначальной установке УЗО или дифференциальной машины в схему подключения достаточно правильно подключить входные и выходные провода фазы и нуля к их клеммам. Они четко обозначены на всех постройках.

Схема подключения однофазного УЗО к двухпроводной сети

Для обозначения входных клемм фазы и нуля сделаны надписи «1» и «N», а на выходных — «2» и «N».Для устройств, использующих электронную базу, важно правильно подключить нейтраль, потому что вы не можете ошибиться с ее полярностью. В противном случае велика вероятность повреждения составных частей электронной схемы.


В конструкции устройства использована возможность периодических испытаний в процессе эксплуатации для определения исправности. Для этого установлена ​​кнопка «Т», при ее включении через токоограничивающий резистор и замкнутый контакт создается цепочка для протекания части тока, что влияет на возникновение дисбаланса магнитных потоки, обеспечивающие срабатывание защиты.Если на УЗО при подаче напряжения была нажата кнопка проверки Т, и выключение не произошло, то это однозначно свидетельствует о неисправности устройства.

При ручном включении УЗО в этой цепи замыкаются сразу 3 контакта:

1. фазный провод;

2. нулевой токоподвод;

3. Проверка электронных схем.

При возникновении токов утечки при срабатывании защиты эти же три контакта автоматически разрывают свои цепи.

Схема подключения трехфазного УЗО к четырехпроводной сети с общей нейтралью

Основой для установки трехфазных УЗО и дифлавтоматов является предыдущая схема. В нем тоже необходимо соблюдать полярность каждой фазы и нуля. Для этого подключите входные цепи к нечетным клеммам, а выходные цепи — к четным.


Такое УЗО работает, когда есть дисбаланс магнитного потока, создаваемый токами всех четырех проводников.

Схема подключения трехфазного УЗО к трем однофазным сетям с общей нейтралью

Эта разработка позволяет одному устройству сразу защищать три однофазные электрические цепи.

Для этого достаточно выбрать место установки, позволяющее использовать шину для подключения к выходу защиты нейтрали для ее разделения в сетях №1, 2, 3.

Схема подключения трехфазного УЗО к трехпроводной сети без нейтрали

В частном случае защиты электродвигателей, работающих от трех фаз без нейтрали, нулевые клеммы на УЗО не задействованы.

Однако при таком подключении лучше использовать электромагнитные конструкции с механическими расцепителями. Статические модели требуют подачи напряжения на источник питания для работы. Его можно подключать между фазным и нулевым проводами.

Кроме того, отсутствие нулевого потенциала исключает функцию периодической проверки исправности устройства под напряжением, что не очень удобно. Следовательно, такое соединение требует доработки внутренней конструкции.

Схема подключения трехфазного УЗО к однофазной сети

Это не очень рациональный метод, но к нему прибегают при последовательном монтаже в начале однофазной сети с последующим добавлением еще двух электрических цепей для общей защиты, которые будут созданы через определенное время.

В этом случае важно, чтобы фаза была подключена строго к токопроводу, через который УЗО проверяется в рабочем состоянии.Для этого при включении силовых контактов и нажатии кнопки тестирования «прозвонит» сопротивление между входом каждой фазы и нулем.

Это необходимо делать на демонтированном УЗО без напряжения. На двух выводах сопротивление будет соответствовать бесконечности из-за обрыва контактов, а на одном покажет значение сопротивления токоограничивающего резистора. Этот терминал должен быть подключен.

Отличия схем подключения УЗО от дифференциальных машин

В самом начале статьи было отмечено, что УЗО не имеет встроенной защиты от токов перегрузки и короткого замыкания, которые могут возникнуть в любой момент и сжечь устройство.Его надо беречь. Поэтому перед каждым УЗО необходимо монтировать автоматический выключатель с настройкой, обеспечивающей работоспособность и безопасность УЗО.


Помимо того, что автоматический выключатель предохраняет УЗО от токов перегрузки, он также защищает от того, что может произойти в цепи с нарушениями изоляции между:

1. выходной фазный провод устройства 3 с входным нулевым проводом 2;

2. выходной нейтральный провод 4 с входным фазным проводом 1;

3.между выходными проводами 3 и 4.

Если в первых двух случаях ток короткого замыкания проходит только по одному пути тока, расположенному внутри корпуса УЗО, то в третьем случае нагружаются обе линии. Схема такого типа наиболее опасна.

Им такая защита не нужна, она у них встроенная. Поэтому стоимость этих устройств выше. Схема подключения дифференциального автомата не требует дополнительной установки автоматического выключателя.

Надежная и длительная работа УЗО и дифференциальной машины обеспечивается правильным подключением с учетом конкретных условий рабочей цепи, точной настройкой параметров работы, обеспечением защитных функций.

Содержимое:

Распределение электроэнергии потребителям может осуществляться по однофазным или трехфазным сетям. Каждый из них отличается своими особенностями и требует особых схем подключения. Это касается и защитных устройств, которые устанавливаются в любой сети. В первую очередь, это автоматические выключатели, защищающие от коротких замыканий и скачков напряжения, а также другие устройства, в том числе трехфазные УЗО, устанавливаемые в трехфазных сетях и защищающие людей от токов утечки.

Назначение УЗО трехфазного

Трехфазные выключатели дифференциального тока, в соответствии с их наименованием, используются в аналогичных электрических сетях. Они защищают электронику и электрическое оборудование от возможных коротких замыканий во внутренней сети и предотвращают возгорания, которые могут возникнуть из-за утечки тока.

Принцип работы одинаков для всех устройств этого типа. Он заключается в определении и реагировании УЗО на разницу значений тока, проходящих через него.Стандартная схема подключения УЗО в трехфазной сети может выполняться в разных вариантах — с ним и без него. В первом случае задействованы все четыре провода, а во втором — только три.

Специалисты рекомендуют применять трехфазные УЗО в электрических сетях с электродвигателем, подключенным по схеме «треугольник». В этом случае обмотка перестанет приближаться к корпусу. Если электродвигатель подключается по схеме «звезда», активируются все четыре полюса, а нейтральный провод подключается к самому центру этой цепи.

Кроме того, схему подключения трехфазного УЗО при определенных условиях можно использовать для однофазных сетей. Особенно это актуально при подключении сварочных агрегатов, являющихся источниками повышенной опасности. В этих случаях возможная утечка тока имеет большое значение и может привести к серьезным негативным последствиям.

Параметры защитных устройств существенно различаются в зависимости от области применения и условий эксплуатации. Они работают с разным номинальным током и напряжением, рассчитаны на разные токи утечки.Например, если отключение происходит при токе 300 мА, такие УЗО используются в электрических сетях со сложной каскадной конструкцией. В жилых помещениях трехфазные УЗО применяются реже, а ток срабатывания будет величиной 30 мА.

Как подключить трехфазное УЗО

Трехфазные выключатели дифференциального тока очень редко используются в квартирах. Они предназначены для частных домов, гаражей и других объектов, где используются трехфазные электрические сети. Установка средств защиты осуществляется в распределительном щите.На DIN-рейке УЗО с четырьмя полюсами занимает 4 стандартных модуля. Основная функция — защита кабелей и проводов от возгорания и короткого замыкания. Трехфазные устройства рассчитаны на токи отключения с очень высоким порогом.


Подключение такого УЗО имеет свои особенности. Перед установкой следует разобраться в цветовой кодировке проводов. По стандартной маркировке нейтральный рабочий провод N обозначен синим цветом, нейтральный рабочий и защитный провод PEN также синего цвета с желто-зелеными полосами на концах.Для проводника защитного заземления PE используется желто-зеленый цвет. Фазовые провода A, B и C обозначены соответственно желтым, зеленым и красным. После того, как назначение каждого проводника определено, можно приступать к решению вопроса, как подключить трехфазное УЗО.

Прямое подключение осуществляется по установленной схеме, в которой могут быть задействованы 3 или 4 полюса. Очень редко используется двухполюсная схема. В будущем, исходя из конкретного варианта подключения, в защищенную сеть можно будет устанавливать не только трехфазное, но и однофазное оборудование.


Чаще всего в работе электродвигателей применяется трехполюсное УЗО. Эта опция позволяет полностью контролировать возможные утечки тока в корпус. В схеме «» задействованы только фазные проводники, а нулевой провод не используется. В общем, трехфазное УЗО работает точно так же, как однофазное защитное устройство.

УЗО четырехполюсное

Вариант подключения трехфазного УЗО с тремя полюсами применяется на объектах, где используется напряжение 380В.Этот тип подключения отличается от трехфазной схемы количеством проводов, задействованных на входе и выходе устройства. Предварительно следует также понимать цветовую маркировку и назначение каждого проводника. Отдельно подключается нейтральный или нейтральный провод, подключаемый к отдельной клемме.

Исходящие провода подключены к распределительной системе. Далее каждая отдельная фаза и нейтральный провод могут обеспечивать работу одной группы однофазных потребителей.Причем все такие линии имеют собственное дополнительное УЗО. Подключение устройств с четырьмя полюсами возможно только при помощи защитного и рабочего проводника. Во всех остальных случаях подключение четырехполюсного УЗО категорически запрещено.

Avdt 32 электромеханический или электронный. Электронное или электромеханическое узо. Внешний источник питания

Для защиты от утечек тока используются дифференциальные токовые выключатели или устройство защитного отключения (УЗО). В каждой новой квартире, новом доме это устройство становится необходимым оборудованием.

Однако устройства с принципиально иной внутренней конструкцией, определяющей надежность всего УЗО, могут продаваться под общим названием. Конструкция может иметь разное расположение рычагов и кнопок управления, иметь стандартные или расширенные варианты подключения шин и проводов, но принципиальное значение имеет конструкция Расцепитель УЗО … Он может быть электромеханическим или электронным. Только как сразу отличить электромеханическое УЗО от электронного? Этот вопрос требует подробного рассмотрения.

Чем отличается электромеханическое УЗО от электронного
УЗО и дифавтоматы

(это УЗО и автоматический выключатель в одном корпусе) по своему внутреннему устройству делятся на два типа: электромеханические и электронные … Это никак не влияет на рабочие параметры и характеристики. У многих сразу возникает вопрос: а чем они отличаются? И разница есть, и важная: УЗО электромеханического типа сработает в любом случае, если в поврежденном месте появится ток утечки, вне зависимости от напряжения в сети или нет… Основным рабочим модулем электромеханического УЗО является дифференциальный трансформатор (тороидальный сердечник с обмотками). Если в поврежденном участке происходит утечка, то во вторичной обмотке этого трансформатора появляется напряжение, которое включает поляризованное реле, что в свою очередь приводит к срабатыванию механизма отключения.

Электронные УЗО срабатывают при наличии утечки тока в зоне повреждения и только при наличии напряжения в сети. То есть для полноценной работы УЗО электронного типа требуется внешний источник питания.Это связано с тем, что основным рабочим модулем электронных УЗО является электронная плата с усилителем. И эта плата не будет работать без внешнего источника питания.

Откуда источник питания? Внутри УЗО нет батареек или аккумуляторов. А напряжение для питания электронной платы с усилителем идет от внешней сети. Есть сеть 220В, и появилась утечка тока, — УЗО сработает! Если в сети нет напряжения, защитное устройство не сработает.

Итак, для работы электромеханического УЗО нужна только утечка тока, для электронного УЗО необходима утечка тока и напряжения в сети.


На фото слева — УЗО Hager с электромеханическим расцепителем, справа — УЗО с электронным расцепителем.

Насколько важно, чтобы защитное устройство оставалось работоспособным при отсутствии напряжения? Уверен, многие пользователи ответят примерно так: если в сети есть напряжение, электронное УЗО сработает.Если в сети нет напряжения, то зачем ему вообще работать, ведь в сети нет напряжения, а значит, брать ток утечки негде. Какие вы знаете аварийные ситуации, когда в доме или квартире может исчезнуть напряжение или, как говорят в народе, «нет света»? Это может быть авария на линии, идущей к дому, это могут быть ремонтные работы в электроснабжении, а может быть другая очень распространенная проблема — перегорание нейтрального провода в доске пола.Все оборудование будет без признаков жизни, все сигнальные устройства (сигнальные лампы, если есть) укажут, что в сети нет напряжения. Однако фаза никуда не делась! Остается опасность поражения электрическим током. Представьте, что в такой ситуации произошло повреждение изоляции внутри стиральной машины, фаза попала в корпус. Если в этот момент прикоснуться к корпусу станка, произойдет течь и УЗО должно сработать. Но именно электронный УЗО не подойдет, так как на его электронную плату с усилителем приходит только «фаза» без нуля, питания нет, поэтому электронная плата не зафиксирует результирующий ток утечки, отключение импульс на механизм отключения не поступит, и УЗО не выключится.Для человека такая ситуация крайне опасна. Поэтому, как ни печально, при появлении тока утечки в этой ситуации электронное УЗО не сработает.

Еще одна распространенная проблема — скачки напряжения. Конечно, сейчас многие устанавливают реле напряжения для защиты, но не у всех они есть. Что такое скачки напряжения — это отклонение от номинала. То есть вместо 220 Вольт в вашей розетке может появиться 170 Вольт или 260 Вольт, а еще хуже — 380 Вольт.Повышенное напряжение опасно для электронного оборудования, которым фактически оснащены электронные УЗО и электронные дифференциальные автоматические устройства. Скачки напряжения могут повредить электронную плату с усилителем. Внешне все будет выглядеть целым и невредимым, но при возникновении утечки тока ситуация может стать плачевной для человека — из-за поврежденных электронных компонентов УЗО не отреагирует на утечку.

Вы можете не знать, что внутренняя начинка защитного устройства вышла из строя.Поэтому необходимо периодически проверять работу УЗО с помощью кнопки «ТЕСТ». Специалисты рекомендуют проводить эту проверку не реже одного раза в месяц.

Итак, в электросети могут возникать различные аварийные ситуации, при которых электронные УЗО или диффавтоматика могут потерять свои защитные функции. Для электромеханических защитных устройств вышеперечисленные проблемы не представляют опасности. , поскольку для работы им не требуется внешний источник питания. Будет ли напряжение в сети или нет, электромеханическое УЗО (RCBO) сработает в любом случае при наличии утечки тока в сети.

Как отличить электромеханическое УЗО от электронного

Внешне эти два устройства очень похожи и многие пользователи, не задумываясь, покупают их без разбора в магазине, даже не зная об особенностях. Чтобы понять, какое устройство дифференциального тока перед вами является электронным или электромеханическим, необходимо уметь различать их. Вы думаете, что это под силу только профессионалам? Но уверяю, это не так, ничего сложного здесь нет.

Обратите внимание на схему на корпусе УЗО

Самый простой и надежный способ — изучить схему, изображенную на корпусе УЗО. Электрическая схема применяется к любому защитному устройству. Между показанными схемами электромеханического УЗО и электронного есть небольшие различия.

На схеме электромеханического УЗО или дифавтомата изображен дифференциальный трансформатор (через который проходит фаза и ноль), вторичная обмотка этого трансформатора, а также поляризованное реле, подключенное к вторичной обмотке.Поляризованное реле уже действует непосредственно на механизм отключения. Все это показано на схеме. Вам просто нужно понять, какой цифрой обозначается каждый из описанных выше элементов. Например, электромеханическое УЗО европейского производителя HAGER:

.

Дифференциальный трансформатор маркируется в виде прямоугольника (иногда овала) вокруг фазного и нулевого проводов. От него отходит виток вторичной обмотки, которая подключена к поляризованному реле.На схеме поляризованное реле обозначено прямоугольником или квадратом. Реле механически связано с триггером отключения.


Здесь также указана кнопка ТЕСТ с собственным сопротивлением (сопротивление позволяет создать утечку в 30 мА, безопасный порог для жизни человека). Как видите, в электромеханическом УЗО нет электронных плат и усилителей. Конструкция состоит из одного механика.

Теперь рассмотрим электронное УЗО. Например, электронный дифавтомат 16А, 220В, с током утечки 30 мА.


Как видно из схемы, на корпусе электронного дифавтомата практически все обозначено как на электромеханическом защитном устройстве.


Но, если присмотреться, можно увидеть, что между дифференциальным трансформатором и поляризованным реле есть дополнительный элемент в виде прямоугольника с буквой «А», обозначение I>. Это такая же электронная плата с усилителем. Кроме того, вы можете видеть, что к этой плате подходят два провода «фаза» и «ноль» (обозначены на рисунке зеленым цветом ниже).Это как раз тот внешний источник питания, который необходим для полноценной работы данного типа УЗО. Не будет блока питания, и УЗО работать не будет. Независимо от того, есть утечка или нет.


Итак, для работы электромеханического УЗО нужна только утечка тока, для электронного УЗО необходима утечка тока и напряжения в сети. Настоятельно рекомендуем приобрести УЗО или диффузионный автомат электромеханического типа.

Устройства защитного отключения (УЗО) — одно из самых популярных устройств, используемых как строительными корпорациями, так и частными пользователями.Но как можно быть уверенным в правильности выбора? Надеюсь, эта статья позволит вам более легко ориентироваться на рынке УЗО, насыщенном различными моделями.

Устройство остаточного тока. Основы

Устройства защитного отключения (УЗО) или, иначе, устройства дифференциальной защиты, предназначены для защиты людей от поражения электрическим током в случае электрических неисправностей или при контакте с токоведущими частями электроустановки, а также для предотвращения пожаров и пожаров, вызванных: токи утечки и замыкания на землю… Эти функции не присущи обычным автоматическим выключателям, которые реагируют только на перегрузку или.

В чем причина потребности в этих устройствах для пожаротушения?

По статистике причиной около 40% всех возгораний является «замыкание электропроводки».

Во многих случаях общая фраза «короткие замыкания» часто скрывает электрические утечки, которые возникают из-за старения или повреждения изоляции. В этом случае ток утечки может достигать 500 мА. Экспериментально установлено, что при протекании тока утечки именно такой силы (а что такое полампера? Ни тепловые, ни электромагнитные расцепители на ток такой силы просто не реагируют — хотя бы по той причине, что они не предназначенные для этого) максимум на полчаса сквозь влажные опилки самовозгораются.(И это касается не только опилок, но вообще любой пыли.)

А как устройства дифференциальной защиты защищают вас и меня от поражения электрическим током?

Если человек прикоснется к токоведущей части, по его телу будет протекать ток, величина которого является частным от деления фазного напряжения (220 В) на сумму сопротивлений проводов, заземления и самого тела человека: Ipers = Uph / (Rpr + Rz + Rp). В этом случае сопротивлениями заземления и проводки по сравнению с сопротивлением человеческого тела можно пренебречь, последнее можно принять равным 1000 Ом.Следовательно, величина тока, о которой идет речь, будет 0,22 А, или 220 мА.

Из нормативной и справочной литературы по охране труда и технике безопасности известно, что минимальный ток, протекание которого уже ощущается человеческим организмом, составляет 5 мА. Следующее стандартизованное значение — это так называемый ток без отключения, равный 10 мА. Когда по телу человека протекает ток такой силы, происходит спонтанное сокращение мышц. Электрический ток 30 мА уже может вызвать паралич дыхания.Необратимые процессы, связанные с кровотечением и сердечной аритмией, начинаются в организме человека после того, как по его телу протекает ток 50 мА. Возможен летальный исход при воздействии тока 100 мА. Очевидно, что надо уже быть защищенным от тока равного 10 мА.

Так, своевременная реакция автоматики на ток менее 500 мА защищает объект от возгорания, а на ток менее 10 мА — защищает человека от последствий случайного прикосновения к токоведущим частям.

Также известно, что за токоведущую часть, находящуюся под напряжением 220 В, можно спокойно продержаться 0,17 с. Если токоведущая часть находится под напряжением 380 В, время безопасного прикосновения сокращается до 0,08 с.

Проблема в том, что такой небольшой ток и даже за ничтожно малое время не способен исправить (и, конечно же, выключить) обычные защитные устройства.

Таким образом, родилось такое техническое решение, как ферромагнитный сердечник с тремя обмотками: — «токоподвод», «токоподвод», «управление».Ток, соответствующий фазному напряжению, приложенному к нагрузке, и ток, протекающий от нагрузки в нейтральный проводник, индуцируют магнитные потоки противоположных знаков в сердечнике. При отсутствии утечек в нагрузке и в защищаемом участке проводки общий расход будет равен нулю. В противном случае (прикосновение, повреждение изоляции и т. Д.) Сумма двух потоков станет ненулевой.

Поток, возникающий в сердечнике, индуцирует электродвижущую силу в обмотке управления. Реле подключено к обмотке управления через прецизионное устройство фильтрации всех видов помех.Под действием ЭДС, возникающей в обмотке управления, реле размыкает фазную и нулевую цепи.

Во многих странах использование УЗО в электроустановках регулируется нормами и стандартами. Так, например, в РФ — принят в 1994-96 гг. ГОСТ Р 50571.3-94, ГОСТ Р 50807-95 и др. Согласно ГОСТ Р 50669-94 УЗО в обязательном порядке устанавливается в электросетях мобильных зданий из металла или с металлическим каркасом для уличной торговли и бытового обслуживания. для населения.В последние годы администрацией крупных городов в соответствии с государственными стандартами и рекомендациями Главгосэнергонадзора были приняты решения по оснащению фонда жилых и общественных зданий данными устройствами (в Москве — Распоряжение Правительства Москвы от 20.05.2019 No 868-РП). 94).

УЗО бывают разные …. Трехфазные и однофазные …

Но на этом деление УЗО на подклассы не заканчивается …

В настоящее время на российском рынке представлены 2 принципиально разные категории УЗО.

1. Электромеханический (независимый от сети)

2. Электронный (зависит от сети)

Рассмотрим отдельно принцип работы каждой из категорий:

УЗО электромеханические

Создатели УЗО электромеханики. В его основе лежит принцип точной механики, т.е. заглянув внутрь такого УЗО, вы не увидите компараторов операционных усилителей, логики и тому подобного.

Состоит из нескольких основных компонентов:

1) Так называемый трансформатор тока нулевой последовательности, его назначение — отслеживать ток утечки и передавать его с определенным Ktr на вторичную обмотку (I 2), I ut = I 2 * Ktr (очень идеализированная формула, но отражающие суть процесса).

2) Чувствительный магнитоэлектрический элемент (запираемый, т.е. при срабатывании без внешнего вмешательства не может вернуться в исходное состояние — защелка) — играет роль порогового элемента.

3) Реле — обеспечивает отключение при срабатывании защелки.

Этот тип УЗО требует высокоточной механики чувствительного магнитоэлектрического элемента. В настоящее время только несколько мировых компаний продают электромеханические УЗО. Их стоимость намного выше, чем цена электронных УЗО.

Почему электромеханические УЗО получили широкое распространение в большинстве стран мира? Все очень просто — этот тип УЗО сработает при обнаружении тока утечки на любом уровне напряжения в сети.

Почему этот фактор (независимость от уровня сетевого напряжения) так важен?

Это связано с тем, что при использовании исправного (исправного) электромеханического УЗО мы гарантируем в 100% случаев срабатывание реле и, соответственно, отключение питания потребителя.

У электронных УЗО этот параметр тоже большой, но не равен 100% (как будет показано ниже, это связано с тем, что при определенном уровне сетевого напряжения не будет работать электронная цепь УЗО), а в В нашем случае каждый процент возможен для человеческих жизней (будь то прямая угроза жизни человека при прикосновении к проводам или косвенная угроза в случае пожара из-за выгорания изоляции).

В большинстве так называемых «развитых» стран электромеханические УЗО являются стандартом и устройством, обязательным для широкого использования.В нашей стране постепенно происходят сдвиги в сторону обязательного использования УЗО, однако в большинстве случаев потребителю не предоставляется информация о типе УЗО, что влечет за собой использование дешевых электронных УЗО.

Электронные УЗО

Любой строительный рынок наводнен такими УЗО. Стоимость электронных УЗО местами ниже электромеханических до 10 раз.

Недостатком таких УЗО, как уже было сказано выше, является отсутствие 100% гарантии при исправном состоянии УЗО срабатывания его в результате появления тока утечки.Преимущество — дешевизна и доступность.

В принципе, электронное УЗО устроено так же, как и электромеханическое (рис. 1). Отличие заключается в том, что место чувствительного магнитоэлектрического элемента занимает элемент сравнения (компаратор, стабилитрон). Чтобы такая схема работала, вам понадобится выпрямитель, небольшой фильтр (возможно, даже КРЕН). Поскольку трансформатор тока нулевой последовательности является понижающим (в десятки раз), тогда также необходима схема усиления сигнала, которая, помимо полезного сигнала, также будет усиливать помехи (или сигнал дисбаланса, присутствующий при нулевой утечке). Текущий).Из вышесказанного очевидно, что момент срабатывания реле в этом типе УЗО определяется не только током утечки, но и напряжением сети.

Если вам не по карману электромеханическое УЗО, то все же стоит взять УЗО электронное, ведь оно работает в большинстве случаев.

Бывают и случаи, когда нет смысла покупать дорогое электромеханическое УЗО. Один из таких случаев — использование стабилизатора или источника бесперебойного питания (ИБП) при питании квартиры / дома.В этом случае нет смысла брать электромеханическое УЗО.

Сразу отмечу, что я говорю о категориях УЗО, их плюсах и минусах, а не о конкретных моделях. Вы можете купить некачественные УЗО как электромеханического, так и электронного типов. При покупке запрашивайте сертификат соответствия, ведь многие электронные УЗО на нашем рынке не сертифицированы.

Трансформатор тока нулевой последовательности (ТТНП)

Обычно это ферритовое кольцо, через которое (внутри) проходят фазный и нейтральный провод, они играют роль первичной обмотки.Вторичная обмотка равномерно намотана на поверхность кольца.

Идеально:

Пусть ток утечки равен нулю. Ток, протекающий через фазовый провод, создает по величине магнитное поле, создаваемое током, протекающим через нейтральный провод, и в противоположном направлении. Таким образом, общий поток муфты равен нулю, а ток, индуцированный во вторичной обмотке, равен нулю.

В момент протекания тока утечки в проводах (ноль, фаза) возникает неравенство токов в результате протекания муфты и индукции тока, пропорционального току утечки, во вторичную обмотку.

На практике через вторичную обмотку протекает ток небаланса, который определяется используемым трансформатором. Требование к ТТНП следующее: ток небаланса должен быть значительно меньше тока утечки, приведенного во вторичную обмотку.

Выбор УЗО

Допустим, вы определились с типом УЗО (электромеханическое, электронное). Но что выбрать из огромного списка предлагаемых товаров?

Выбрать УЗО с достаточной точностью можно по двум параметрам:

Номинальный ток и ток утечки (ток отключения).

Номинальный ток — это максимальный ток, который проходит через фазовый провод. Этот ток легко найти, зная максимальную потребляемую мощность. Просто разделите потребляемую мощность в наихудшем случае (максимальная мощность при минимальном Cos (?)) На фазное напряжение. Нет смысла ставить перед УЗО УЗО на ток больше номинального тока автомата. В идеале с запасом берем УЗО на номинальный ток равный номинальному току автомата.

Часто встречаются УЗО

с номинальными токами 10,16,25,40 (А).

Ток утечки (ток срабатывания) обычно составляет 10 мА, если УЗО установлено в квартире / доме для защиты жизни человека, и 100–300 мА на предприятии для предотвращения пожаров, если провода сгорели.

Есть и другие параметры УЗО, но они специфические и не интересны рядовому потребителю.

Выход

В этой статье были рассмотрены основы понимания принципов работы УЗО, а также методы построения различных типов устройств защитного отключения.И электромеханическое, и электронное УЗО, безусловно, имеют право на существование, поскольку имеют свои выразительные достоинства и недостатки.

УЗО (устройство защитного отключения) — Это электроустановочное изделие, предназначенное для отключения подачи электричества в проводку в случае утечки тока в случае нарушения изоляции в проводах или электроприборах.

УЗО, в отличие от автоматического выключателя, предназначено исключительно для защиты человека от поражения электрическим током, предотвращения возгорания и не принимает непосредственного участия в работе электроприборов.УЗО не защищает от короткого замыкания в проводке и в случае прикосновения человека к фазному и нулевому проводам.

На фото показано двухпроводное устройство защитного отключения типа ВД1-63, предназначенное для работы в однофазной сети переменного напряжения 220 В и рассчитанное на ток защиты 30 мА. УЗО с такими характеристиками подходит для установки в подъезде практически любой квартирной электропроводки.

Ассортимент монтажных изделий включает комбинированные, в одном корпусе которых встроены УЗО и автоматический выключатель.Такое устройство называется выключателем дифференциального тока со встроенной максимальной токовой защитой. На фото представлен внешний вид модели RCBO32, рассчитанной на ток защиты электропроводки 16 А и защиту человека на 30 мА. Но такие устройства защиты не получили широкого распространения из-за их дороговизны.

К тому же в случае отключения сложно выяснить, в чем неисправность — короткое замыкание или утечка тока.

Как выбрать УЗО

Выбрать УЗО для квартирной проводки или дома для домашнего электрика не составит труда. Подходит любое однофазное УЗО, рассчитанное на рабочий ток равный току защиты автоматического выключателя и ток утечки 30 мА … Фотография такого УЗО дана в начале статьи.

Какой тип УЗО лучше всего подходит для квартиры


электромеханическое или электронное УЗО

выпускаются в двух исполнениях — электромеханическом и электронном. Для правильного выбора нужно сравнить их технические характеристики.

Сравнительная таблица характеристик электромеханического и электронного УЗО
Характеристика УЗО электромеханическое УЗО электронное
Цена низкая высокая
Конструкция сложная простая
Надежность высокая низкая
Точность рабочего тока высокая низкая
КПД при обрыве нейтрального провода или при падении напряжения сети ниже допустимого сохраняется не работает
Устойчивость к скачкам перенапряжения в сети высокая низкая
размеры большой во много раз меньше

Как видно из таблицы, при отсутствии ограничений по габаритным размерам необходимо выбирать УЗО электромеханическое.Электронное УЗО незаменимо при установке на отдельный электроприбор, например, в розетку или удлинитель.

Основные технические характеристики УЗО

Требования к техническим характеристикам УЗО установлены ГОСТ Р 51326.1-99 (МЭК 61008-1-96) «Автоматические выключатели дифференциального тока бытового и аналогичного назначения без встроенной максимальной токовой защиты».

Для тех, кто хочет сделать более осознанный выбор, я свел в таблицу все основные технические характеристики УЗО.

Таблица основных технических характеристик УЗО
Признак Обозначение Количество Примечание
Рабочее напряжение В 220, 380 Для однофазной домашней сети УЗО устанавливается на напряжение 220 В, для трехфазной сети — на 380 В
Количество фаз 1, 3 Указывается в паспорте
Ток утечки срабатывания, I∆n мА 5 Инструкции по установке в ПУЭ нет, но можно найти в рекомендациях по применению электроприборов, например, теплый пол
10 Предназначен для подключения розеток, установленных в ванных, кухнях, детских комнатах и ​​бытовой техники, установленной на земле
30 Универсальный, подходит для любого дома или квартиры
100, 300 Применяется в промышленности, иногда устанавливается на вводе электропроводки в корпус для повышения пожарной безопасности
Максимальный ток нагрузки, In A 6-125 Должен быть равен или превышать ток автоматического выключателя, установленного после УЗО
Максимальный коммутируемый ток, Im A 500 Должен быть в 10 раз больше максимального тока нагрузки
Ток короткого замыкания, Inc кА 3-10 Максимальный ток, который может выдержать УЗО кратковременно в случае короткого замыкания в проводке
Время отключения мс Время, по истечении которого при превышении допустимого тока утечки УЗО должно отключить нагрузку
Периодичность проверок месяц 1 Чтобы выполнить простую проверку, просто нажмите кнопку «Проверка УЗО».Для диагностики времени отклика потребуется специальный прибор.
Рабочая температура ° C минус 25 — +40 Рабочая температура, при которой разрешена работа УЗО
Конструктивное исполнение Электромеханическое Надежнее, дешевле, но более крупные электронные УЗО
Электронные Современные УЗО, дорогие, малогабаритные
Тип в соответствии с формой рабочего тока AS Отключение при медленном или резком нарастании синусоидального тока утечки
A Отключение при медленном или резком увеличении синусоидального или пульсирующего постоянного тока утечки
В Отключение при медленном или резком нарастании синусоидального, пульсирующего постоянного или постоянного тока утечки
Способ установки Предназначен для монтажа на DIN-рейку в щите Предназначен для установки в электрощиты квартир и домов
Устанавливается в розетку Устанавливается для защиты отдельного электроприбора или, в случае старой электропроводки, для предотвращения ложных срабатываний из-за естественных токов утечки
В виде переходника, вставляемого в розетку
Удлинитель
Устанавливается на шнур питания электроприбора

Устройство защитного отключения всегда маркируется на лицевой стороне устройства с основными техническими характеристиками… Расшифровка буквенно-цифрового обозначения показана на чертеже.

При выборе УЗО главное обращать внимание на напряжение, рабочий ток и ток утечки. Остальные параметры имеют второстепенное значение.

Схема подключения УЗО в панели приборов

УЗО в щите четвертной разводки подключают сразу после счетчика в промежуток между нулевым и фазным проводами, идущими к выключателям.

Провода от счетчика подключаются поверх УЗО. Фазный провод L идет к левому контакту, а ноль N к правому контакту. Провода, идущие к машинам, подключаются к нижним клеммам в такой же последовательности. Желто-зеленый заземлитель прокладывается в обход УЗО.

Устройство и принцип работы УЗО

Когда УЗО находится во включенном состоянии (рычаг поднят вверх), через него подается напряжение питания на выключатели в проводке.Если включен потребитель электроэнергии, то по нейтральному и фазному проводам течет ток.

В УЗО провода проходят через дифференциальный кольцевой трансформатор, и когда через них протекает ток, в его магнитной цепи возбуждается магнитное поле. Если утечки нет, то токи в фазном и нулевом проводах равны и текут в противоположных направлениях. Следовательно, создаваемые ими магнитные поля имеют противоположную полярность и взаимно аннигилируют. В этом случае по закону Кирхгофа ЭДС не возникает в дополнительной обмотке трансформатора, независимо от тока, протекающего по ней в нагрузку.

Принцип работы УЗО электромеханического

В том случае, если из-за нарушения изоляции бытового электроприбора по фазовому проводу протекает ток, больший, чем через фазный провод, в магнитопроводе трансформатора возникает магнитное поле. Если разность токов превышает I∆n, то в дополнительной обмотке индуцируется ЭДС достаточной величины для отключения УЗО и отключения питания проводки.

В электромеханическом УЗО к дополнительной обмотке трансформатора подключен электромагнит, соленоид которого механически связан с механизмом расцепления. Когда в обмотке возникает заданное значение ЭДС, соленоид втягивается и тем самым, воздействуя на механизм расцепления, размыкает контакты. Подача питания на проводку прекращается.

Принцип работы УЗО электронного

По внешнему виду стандартное электронное УЗО не отличается от электромеханического и отличить его можно только по маркировке или схеме на корпусе.Принцип действия обоих типов УЗО одинаков, разница заключается в измерительном приборе. В электронике вместо электромагнита электронная схема в виде порогового компаратора с усилителем и реле.

При превышении разницы токов I∆n, протекающих по фазному и нулевому проводам, напряжение подается с усилителя на реле. Он срабатывает и УЗО перестает подавать напряжение на проводку.

Крепление УЗО в щитке на DIN-рейке

В стеновых панелях или коробках УЗО, как и другие монтажные электрические устройства, монтируются на DIN-рейку, ее также часто называют монтажной рейкой.Это металлическая пластина шириной 35 мм, изогнутая таким образом, что ее продольные края приподняты. Согласно ГОСТ Р МЭК 60715-2003 «Аппаратура распределения и управления низковольтная. Установка и крепление на рельсах электрооборудования в низковольтных комплектных распределительных и управляющих устройствах », обозначение Т35 .


Этот способ крепления не требует дополнительных креплений и позволяет быстро как установить УЗО, так и снять его для профилактики, проверки или замены.На фотографии показана DIN-рейка старого образца, когда она была профилем из алюминиевого сплава.


DIN-рейки устанавливаются в панели горизонтально. На тыльной стороне УЗО есть два зажима — стационарный (на фото слева) и подпружиненный подвижный (справа). Таким образом, чтобы установить УЗО на рейку, нужно надеть верхнюю фиксированную защелку на край DIN-рейки, а затем прижать к ней нижнюю часть. Подвижная защелка погрузится в корпус УЗО и выйдет из него при прижатии УЗО к DIN-рейке всей плоскостью.

Для снятия УЗО с DIN-рейки достаточно вставить конец плоской отвертки, расположенный под отходящим проводом, в проушину подвижного фиксатора и надавить на него. Защелка выйдет из зацепления, и нижняя часть УЗО свободно отойдет от DIN-рейки.

Подключенное УЗО находится под фазным напряжением и перед демонтажем необходимо отключить питание.

Как правильно подключить провода к УЗО

Бесперебойная работа всей электропроводки определяется не только правильным выбором сечения проводов и электроприборов, но и надежностью их соединения между собой.Несмотря на простоту этой операции, часто допускаются ошибки, что впоследствии приводит к подгоранию контактов и выходу из строя УЗО.

Основная особенность электромеханических устройств в том, что они работают независимо от того, есть напряжение в сети или нет.

Тока утечки будет вполне достаточно для работы оборудования, в это время во вторичной обмотке трансформатора возникает ток, который является причиной срабатывания реле, а соответственно и триггера.

Для работы электронного УЗО без напряжения не обойтись, в силу совершенно других принципов работы.

Внутри них есть усилитель и плата для него, срабатывающая при наличии даже небольшого тока во вторичной обмотке. Плата увеличивает доступный ток и передает импульс, достаточно сильный, чтобы активировать реле.

Именно поэтому в конструкции таких УЗО присутствует трансформатор меньшего размера.

Электромеханические агрегаты

имеют простую, но в то же время более надежную конструкцию, поэтому они реже ломаются в процессе эксплуатации.Но вывести из строя электронное устройство можно с помощью небольшого импульса в сети.

В этом случае потребуется замена микросхемы или полупроводников. Несмотря на это, большая популярность электронных УЗО обусловлена ​​их более низкой стоимостью.

Более того, современные разработки позволили оснастить такое оборудование дополнительной защитой от скачков напряжения. Как только произойдет скачок, он отключится.

Есть несколько других способов отличить эти два типа УЗО.

Самое сложное — посмотреть на схему внутри. Если это электромеханическое устройство, то на его схеме будет показан трансформатор дифференциального типа, у которого вторая обмотка подключена непосредственно к реле.

Реле схематично можно представить в виде квадрата, иногда прямоугольника. Связь с сетью, питающей узел, не следует показывать схематично.

Если рассматривать схематическое изображение УЗО электрического типа, то плата на нем будет изображена в виде треугольника.На схеме показаны линии от блока питания.

Можно использовать простую батарею, чтобы отличить одно устройство от другого. Включаем оборудование и двумя проводами подключаем к нему его столбы.

Таким образом, мы провоцируем скачок тока, в результате которого, если это УЗО электромеханическое, то реле выключится. Соответственно, если отключения не произошло, то у нас электронный вариант.

Если у вас под рукой нет аккумулятора, найдите постоянный магнит среднего размера и поднесите его к корпусу рассматриваемого оборудования.При этом предварительным условием является состояние ВКЛ. Проведите магнитом по боковой и передней панели. Если реле не работает, перед вами электронное оборудование, а если работает — электромеханическое.

Пишите комментарии, дополнения к статье, может я что то упустил. Загляните, буду рад, если найдете на моем еще что-нибудь полезное.

Устройства дифференциального тока бывают двух типов по принципу внутреннего устройства. Это электромеханические и электронные.Это касается и дифавтоматов, поскольку в их состав входят УЗО … Различный принцип внутреннего устройства этих устройств не влияет на их рабочие параметры. Однако есть нюансы, при которых один вид УЗО исправно выполняет свои функции, а другой — не может, что может привести к плачевным последствиям. Поэтому еще до покупки нужно знать, как их различать.

Существует три способа отличить электромеханическое УЗО от электронного.Это соответствует схеме подключения, которая изображена на корпусе устройства, с использованием обычной батареи и постоянного магнита. Давайте подробнее рассмотрим каждый метод ниже.

1. Используя схему подключения, которая изображена на корпусе устройства.

Я считаю, что это самый простой способ их различить, так как для этого не нужны никакие дополнительные элементы и инструменты. Здесь главное запомнить отличия схем и все.

Если вы возьмете в руки УЗО или дифавтомат, то на его корпусе вы обязательно найдете схему их внутреннего устройства. На самом деле существует два типа схем. Это один тип для электромеханического типа и второй тип для электронного типа. Хотя у каждого типа схемы есть небольшие отличия, они не столь значительны.

В двух словах: электромеханическое УЗО или дифавтомат состоит из дифференциального трансформатора и поляризованного реле. Если в управляемой цепи возникает ток утечки, то он генерирует ток во вторичной обмотке дифференциального трансформатора.Этот дифференциальный ток запускает реле, которое воздействует на триггер, вызывая срабатывание устройства.

Итак, на схеме нам нужно найти дифференциальный трансформатор и поляризованное реле. Первый обозначается овалом вокруг фазного и нейтрального проводников, а реле обозначается квадратом или прямоугольником. Реле с трансформатором соединены посредством вторичной обмотки, которая показана сплошной линией. Пунктирной линией обозначена механическая связь со спусковым крючком. Также на схеме часто изображена кнопка «Тест», а на изображенном на фото дифавтомате ее нет.

На фото ниже я подписал необходимые элементы на схеме.

Электронные УЗО и дифавтоматы

имеют немного другую схему подключения на корпусе. Из названия можно понять, что работой таких устройств управляет электронная плата.

В двух словах: Если в управляемой цепи возникает ток утечки, то он поражает ток во вторичной обмотке дифференциального трансформатора. Этот дифференциальный ток улавливается электронной платой, усиливает его и создает импульс, по которому срабатывает реле.Реле уже воздействует на курок, тем самым выводя из строя устройство.

Электронные элементы намного компактнее, поэтому такие УЗО и дифавтоматы зачастую меньше. Существуют коммерчески доступные электронные одномодульные защитные устройства, размером с однополюсный автоматический выключатель.

Здесь на схеме нам нужно найти, помимо дифференциального трансформатора и реле, плату электронного усилителя. Обозначается треугольником. Также ни одна плата не работает без питания, поэтому на схеме есть дополнительные линии для ее питания.На фото ниже я подписала все необходимые элементы.

В результате получаем:

  • Если на схеме над нейтралью и фазой проводов (дифференциальный трансформатор) изображен овал и квадрат (реле), соединенные сплошной линией, то перед вами УЗО электромеханическое или дифавтомат.
  • Если на схеме изображен овал над нулевым и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенный сплошной линией через треугольник (плата усилителя), к которому подключены две силовые линии, то перед вами электронное УЗО или дифавтомат.

2. Второй способ отличить электромеханическое УЗО от электронного — с помощью аккумулятора.

Хотя этот вариант и надежен, мне он кажется более сложным, так как с собой нужно иметь заряженный аккумулятор, два провода и отвертку. Также в магазине, думаю, вам в руки не дадут устройство, чтобы вы к нему что-то подключили и поэкспериментировали. Еще много защитных устройств продаются в запечатанной упаковке (коробке), вскрыть которую в магазине тоже не разрешат.

Однако этот метод имеет право на жизнь и я вам об этом расскажу. Например, на фото я использую RCBO Schneider Electric.

Здесь все просто. Надо один провод сверху прикрутить к одному, например к нулевому полюсу. Второй провод прикрутите к нижнему нулевому полюсу. Затем взвести ручку управления, т.е. включить УЗО или дифавтомат. Теперь нужно замкнуть другие концы проводов на любую заряженную батарею. Если устройство отключается, значит, оно электромеханическое.Если он не выключается, то переверните аккумулятор (поменяйте полярность) и попробуйте снова замкнуть провода. Если устройство отключается, то однозначно электромеханическое.

Почему электромеханические УЗО и дифавтоматы работают от аккумуляторов? Потому что аккумулятор начинает разряжаться через замкнутый полюс, т.е. на одном полюсе появляется ток, который, в свою очередь, влияет на дифференциальный ток во вторичной обмотке трансформатора. Достаточно сработать поляризованное реле.

Если прибор не выключается, значит он электронный. Почему не выключается УЗО этого типа? Потому что для работы платы усилителя нужна мощность, которой нет. Следовательно, усилитель не подает импульс на реле, которое не влияет на триггер.

Эта операция может выполняться на любом полюсе, нуле и фазе. Электромеханическое защитное устройство сработает в любом случае.

3. Третий способ отличить электромеханическое УЗО от электронного — с помощью постоянного магнита.

Здесь тоже нет ничего сложного. Просто нужно где-то найти постоянный магнит средних размеров (1 / 4-1 / 3 УЗО).

Последовательность действий следующая:

  • берем в руки УЗО или дифавтомат;
  • взведение рычага, т.е. включение;
  • вращайте магнит круговыми движениями рядом с передней и боковой частью устройства.

Если при таких движениях прибор отключается, значит, он электромеханический, а если нет, то электронный.Этот способ не стопроцентный, так как силы вашего магнита может не хватить для появления дифференциального тока.

Итак, мы проанализировали все три доступных способа определения типов УЗО и дифавтоматов.

Вы когда-нибудь использовали такие варианты, чтобы отличить электромеханическое УЗО от электронного?

Давайте улыбнемся:

«Да будет свет!» — сказал электрик и полез за спичками.

Обозначение узо на чертеже. Текущие буквенные и графические обозначения на электрических схемах

1. Введение и область применения. 3

2. Устройство и принцип работы УЗО. четыре

2.1 Нормальная работа УЗО. четыре

2.2 Отключение УЗО. четыре

2.3 Электронное УЗО. 5

2.4 Параметры УЗО. 5

2.5 Обозначение УЗО на электрических цепях. 6

3. Проверить УЗО. 6

3.1 проверка постоянного тока. 6

3.2 Тест переменного тока. 7

4. Назначение УЗО. 7

4.1 Электробезопасность. 8

4.1.1 Защита от контакта с токоведущими частями. 8

4.1.2 Быстрое отключение при замыкании на корпус. 8

4.2 Пожарная безопасность. 9

5. Установка УЗО в схему. 9

5.1 Разделение комбинированного нейтрального (PEN) проводника. 9

5.1.1 Для распределительных щитов с металлическим (токопроводящим) корпусом. 10

5.1.2 Типичные ошибки разделения PEN-проводника в платах с металлическим кожухом. одиннадцать

5.1.3 Для устройств с непроводящим корпусом. 13

5.2 Нулевые защитные и нулевые рабочие проводники. четырнадцать

5.3 Выбор размера болтового соединения для нулевой сети по току нагрузки. пятнадцать

6. Искать причины срабатывания УЗО. пятнадцать

6.1 Неправильное подключение потребителей электроэнергии. 16

6.1.1 Ошибки установки. 16

6.1.2 Ошибки проектирования. восемнадцать

6.2 Неисправность сети или силовых приемников. 21

6.3 Алгоритм поиска причин срабатывания УЗО. 23

7. Приложение 1. Универсальный тестер УЗО. 24

7.1 Назначение прибора. 24

7.2 Принцип работы. 24

7.3 Инструкция по эксплуатации. 25

7.3.1 Проверка УЗО под напряжением. 25

7.3.2 Проверка снятого УЗО.25

7.3.3 «Прядение» цепей. 26

7.3.4 Меры безопасности при использовании устройства. 26

8. Приложение 2. Контрольные лампы. 27

8.1 Проверить работу УЗО. 27

8.2 Проверка типа УЗО. 28

Введение и сфера применения.

Прежде всего, следует отметить, что существует несколько типов устройств защитного отключения, причем они реагируют на различные параметры электросети и защищают от различных повреждающих факторов.В этой методике будут рассматриваться только электромеханические УЗО, которые реагируют на дифференциальный ток (автоматические выключатели дифференциального тока), в последующем тексте только они обозначаются аббревиатурой «УЗО».

Весь материал методики относится к электрическим сетям стандарта TN-C и TN-C-S.

Устройство и принцип работы УЗО.

Устройство УЗО показано на Рисунке 1.

Рисунок 1. Устройство электромеханического дифференциального УЗО.

Нормальный режим работы УЗО.

Характеризуется тем, что результирующий магнитный поток 4-х проводов электросети, пропущенных через магнитопровод 1, равен нулю или недостаточен для срабатывания электромагнитной защелки 2. Это условие выполняется при любом распределении нагрузки (одно-, двух-, трехфазное), так как любой ток, пропущенный слева направо по схеме, будет возвращаться и обратно — на магнитной цепи ничего не индуцируется (магнитный ток течет «туда»). »И« назад »взаимно уничтожаются, ток I 2 равен нулю).

Отключение УЗО.

Возникает, если появляется ток утечки (I UT) , то есть возникает электрическое соединение между защищенной цепью УЗО и любой другой цепью . В результате такого подключения некоторая часть тока, проходящего через УЗО, вернется к источнику тока (на рисунке — «трансформаторная подстанция») в дополнение к УЗО. В этом случае на магнитной цепи 1 формируется магнитный поток, который пропорционален току утечки, который, в свою очередь, индуцирует ток I 2 , который срабатывает электромагнитную защелку 2, которая с помощью расцепителя механизм 3 отключит защищаемый участок сети (который на рисунке справа) от источника тока («трансформаторная подстанция»).

Ток утечки (I UT) также называется дифференциал (дифференциал, I D или I ∆ ) ток.

Электронное УЗО.

Самой дорогой частью УЗО является магнитопровод 1, так как для работы электромагнитной защелки 2 магнитопровод должен иметь очень хорошее качество (или большие габариты). Уменьшить стоимость магнитопровода стало возможным, если на электромагнитную защелку подавался ток не I 2 , а напрямую от сети, а от I 2 запитать только электронный ключ, управляющий защелкой.Таким образом, электронные УЗО имеют существенный конструктивный недостаток — при ухудшении качества питающей сети (нулевые потери, падение напряжения) они не отключаются даже при возникновении тока утечки.

Параметры УЗО.

УЗО

делятся по следующим основным параметрам:

· Количество полюсов — два для однофазной (трехпроводной) сети, четыре — для трехфазной (пятипроводной) сети;

· Номинальный ток нагрузки — 16, 20, 25, 32, 40, 63, 80, 100 Ампер;

· Номинальный отключающий дифференциальный ток — 10, 30, 100, 300 мА

· В зависимости от типа дифференциального тока — AC (переменный синусоидальный ток, возникающий внезапно или медленно нарастающий), A (то же, что и переменный ток, плюс выпрямленный пульсирующий ток), B (переменный и постоянный), S (время задержки срабатывания для обеспечения селективности ), G (то же, что и S, но время задержки меньше).

Следует отметить, что ток нагрузки УЗО не может быть ограничен и необходимо защитить его (УЗО) от токовых перегрузок и токов короткого замыкания (токов короткого замыкания) с помощью устройств защиты (автоматических выключателей, обеспечивающих как защиту от перегрузки по току, так и от короткого замыкания). -схемные токи, например серии ВА-47-29, ВА-101 и др.). Ток нагрузки УЗО следует выбирать так, чтобы он был на одну ступень (диапазон номинального тока) больше номинального тока автоматического выключателя защищаемой линии.То есть, если есть нагрузка, защищенная автоматическим выключателем на ток 16 Ампер, то УЗО следует выбирать на ток нагрузки 25 Ампер.

Обозначение УЗО на электрических цепях.

Рисунок 2. Обозначение УЗО на принципиальных схемах. Слева однофазное УЗО с током отключения 30 мА, справа трехфазное УЗО на 100 мА. Увеличенное изображение вверху, однострочное изображение внизу. Количество полюсов в однолинейном представлении может быть представлено как числом (вверху), так и количеством тире.

Проверка УЗО.

Это срочно необходимо, так как их высокая стоимость вдохновляет злоумышленников выпускать и продавать различные имитации УЗО. Особенно актуальной стала проверка после введения новых ПУЭ, требующих в некоторых случаях обязательной установки УЗО, что расширяет рынок подделок.

Установка УЗО

значительно повышает уровень безопасности при работе с электроустановками. Если УЗО имеет высокую чувствительность (30 мА), то предусмотрена защита от прямого прикосновения (касания).

Однако установка УЗО не означает, что при работе с электрическими установками принимаются обычные меры предосторожности.

Кнопку проверки необходимо нажимать регулярно, по крайней мере, один раз в 6 месяцев. Если проверка не дала результата, то нужно подумать о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО в панель или корпус. Подключите оборудование точно так, как показано. Включите все нагрузки, подключенные к защищаемой сети.

срабатываний УЗО.

При срабатывании УЗО выясняем, какое устройство вызывает отключение, последовательно отключая нагрузку (по очереди выключаем электрооборудование и смотрим результат). Если такое устройство обнаружено, его необходимо отключить от сети и проверить. Если электрическая линия очень длинная, обычные токи утечки могут быть довольно большими. В этом случае есть вероятность ложных срабатываний. Чтобы этого не произошло, необходимо разделить систему как минимум на две цепи, каждая из которых будет защищена собственным УЗО.Вы можете рассчитать длину ЛЭП.

Если невозможно задокументировать сумму токов утечки электропроводки и нагрузок, можно воспользоваться приблизительным расчетом (согласно СП 31-110-2003), приняв ток утечки нагрузки равным 0,4 мА на 1А потребляемой мощности нагрузки и ток утечки сети равный 10 мкА на метр длины фазного провода разводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты мощностью 5 кВт, установленной на кухне малогабаритной квартиры.

Примерное расстояние от панели до кухни может составлять 11 метров, соответственно расчетная утечка проводки 0,11 мА. Электрическая плита на полной мощности потребляет (приблизительно) 22,7 А и имеет расчетный ток утечки 9,1 мА. Таким образом, сумма токов утечки этой электроустановки составляет 9,21 мА. Для защиты от токов утечки можно использовать УЗО с номинальным током утечки 27,63 мА, который округляется до ближайшего большего значения из существующих значений дифференциала.ток, а именно УЗО 30мА.

Следующим шагом является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемом электроплитой, можно использовать номинал (с небольшим запасом) УЗО 25А, либо с большим запасом — УЗО 32А.

Таким образом, мы рассчитали значение УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (мы не должны забывать защищать УЗО автоматическим выключателем 25А для первого номинала УЗО и 25А или 32А для второго номинала).

Обозначение

УЗО.

На схеме УЗО обозначено следующим образом рис. 1 однофазное УЗО, рис. 2-х трехфазное УЗО.

Рассмотрим схему подключения УЗО на примере. На рисунке. 1 показан фрагмент шкафа управления.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото №1 — УЗО, 2 — автоматический выключатель) и однофазным УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому устанавливается совместно с автоматическим выключателем.Что ставить перед УЗО или автоматом защиты в этом случае не важно. Номинал УЗО должен быть равен или немного больше номинала автоматического выключателя. Например, автоматический выключатель на 16 А, это означает, что УЗО установлено на 16 или 25 А.

Как видно на фото. 1 для трехфазного УЗО (рисунок 1) подходят трехфазный и нейтральный проводник, а после УЗО подключается автоматический выключатель (рисунок 2). Потребитель подключит: фазные провода (красные стрелки) с автоматом защиты; нулевой провод (синяя стрелка) — с УЗО.

Под цифрой 3 на фото изображены дифференциальные машины, соединенные шиной, принцип работы дифференциала. автомат аналогичен УЗО, но дополнительно защищает от токов короткого замыкания и не требует дополнительной защиты от короткого замыкания.

И соединение — это соединение УЗО, соединение дифференциала. автоматы такие же.

Подключаем к клемме L фазу к нулю N (обозначения напечатаны на корпусе УЗО).Потребители тоже подключаются.

Ниже представлена ​​схема использования УЗО в квартире, для дополнительной защиты от поражения электрическим током.

Рис. 1 Схема УЗО в квартире.

В этом случае УЗО подключается к счетчику, ко всей группе автоматических выключателей, что обеспечивает дополнительную защиту от поражения электрическим током и возгорания.

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов.Большинство из них стандартизированы и описаны в нормативных документах. Большинство из них были опубликованы еще в прошлом веке, а в 2011 году был принят только один новый стандарт (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), поэтому иногда новую элементную базу обозначают на основу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, символы в электрических схемах описаны и многим хорошо известны.

На схемах часто используются два типа обозначений: графические и буквенные, а также часто наносятся номиналы.По этим данным многие сразу могут сказать, как работает схема. Этот навык развивался за годы практики, но сначала вам нужно понять и запомнить условные обозначения в электрических цепях. Затем, зная работу каждого элемента, можно представить конечный результат работы устройства.

Для составления и чтения различных диаграмм обычно требуются различные элементы. Типов цепей много, но в электротехнике обычно используются:


Есть много других типов электрических цепей, но они не используются в бытовой практике.Исключение — кабельная трасса по участку, подача электричества в дом. Этот тип документа обязательно понадобится и будет полезен, но это скорее план, чем схема.

Основные изображения и функциональные возможности

Коммутационные аппараты (переключатели, контакторы и др.) Построены на контактах различной механики. Есть замыкающие, размыкающие, переключающие контакты. Нормально замкнутый контакт открыт; при вводе в эксплуатацию цепь замыкается. Нормально разомкнутый контакт замкнут и при определенных условиях срабатывает, размыкая цепь.

Переключающий контакт двух- и трехпозиционный. В первом случае работает одна схема, потом другая. Вторая — нейтральная позиция.

Кроме того, контакты могут выполнять разные функции: контактор, разъединитель, автоматический выключатель и т. Д. Все они также имеют символ и наносятся на соответствующие контакты. Есть функции, которые выполняют только мобильные контакты. Они показаны на фото ниже.

Основные функции могут выполняться только фиксированными контактами.

Условные обозначения однолинейных схем

Как уже было сказано, на однолинейных схемах указывается только силовой агрегат: УЗО, автоматы, дифлаттоматы, розетки, рубильники, выключатели и т.д. и соединения между ними. Обозначения этих условных элементов могут использоваться в электрических распределительных щитах.

Главной особенностью графических обозначений в электрических схемах является то, что устройства, близкие по принципу действия, отличаются некоторыми небольшими деталями.Например, автомат (автоматический выключатель) и автоматический выключатель различаются всего двумя небольшими деталями — наличием / отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, отображающего функции этих контактов. Контактор из обозначения выключателя отличается только формой значка на неподвижном контакте. Разница небольшая, но устройство и его функции разные. Все эти мелочи нужно смотреть и запоминать.

Также есть небольшая разница между обозначениями УЗО и дифференциального автомата. Так же только в функциях подвижных и неподвижных контактов.

Примерно такая же ситуация с катушками реле и контакторами. Они выглядят как прямоугольник с небольшими графическими дополнениями.

В этом случае запоминание проще, так как есть довольно серьезные отличия во внешнем виде дополнительных иконок. С фотоэлементом все просто — лучи солнца ассоциируются со стрелками.Импульсное реле также довольно легко отличить по характерной форме знака.

Немного проще с лампами и подключениями. У них разные «картинки». Разъемное соединение (например, розетка / вилка или розетка / вилка) выглядит как две скобки, а разборное (например, клеммная колодка) выглядит как круги. Причем количество пар галочек или кружков указывает на количество проводов.

Изображение шин и проводов

В любой цепи связь уместна и по большей части осуществляется по проводам.Некоторые соединения представляют собой автобусы — более мощные токопроводящие элементы, от которых могут выходить изгибы. Провода обозначены тонкой линией, а точки ответвлений / соединений обозначены точками. Если точек нет, это не соединение, а перекресток (без электрического соединения).

Есть отдельные изображения для шин, но они используются, если вам нужно графически отделить их от линий связи, проводов и кабелей.

На схемах подключения часто необходимо указывать не только то, как проходит кабель или провод, но и его характеристики или способ монтажа.Все это тоже отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображено выключателями, выключателями, розетками

Для некоторых типов этого оборудования нет изображений, утвержденных стандартами. Итак, без обозначения остались диммеры (диммеры) и кнопочные переключатели.

Но все остальные типы переключателей имеют свои символы в электрических схемах. Они бывают открытой и скрытой установки, соответственно группы иконок тоже две.Разница заключается в положении штриха на ключевом изображении. Чтобы точно понимать, о каком именно виде автоматического выключателя идет речь, необходимо помнить о нем.

Есть отдельные обозначения для двухклавишных и трехклавишных переключателей. В документации они называются «двойными» и «встроенными» соответственно. Есть отличия для корпусов с разной степенью защиты. В помещениях с нормальными условиями эксплуатации ставят переключатели с IP20, может быть, до IP23. Во влажных помещениях (ванная, бассейн) или на открытом воздухе степень защиты не должна быть ниже IP44.Их изображения отличаются тем, что кружки закрашены. Так что их легко отличить.

Есть отдельные изображения для переключателей. Это переключатели, позволяющие управлять включением / выключением света с двух точек (их тоже три, но без стандартных изображений).

Такая же тенденция наблюдается в обозначении розеток и групп розеток: розетки одиночные, розетки сдвоенные, есть группы по несколько штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных — с корпусом повышенной защиты (IP44 и выше) середину тонированную в темный цвет.

Обозначения в электрических цепях: розетки различного типа установки (открытые, скрытые)

Разобравшись в логике обозначения и запомнив некоторые исходные данные (чем, например, отличается условное изображение розетки для открытой и скрытой установки), через некоторое время можно уверенно ориентироваться в чертежах и схемах.

Светильники по схемам

В этом разделе описаны условные обозначения в электрических цепях различных ламп и светильников.Здесь лучше обстоят дела с обозначениями новой элементной базы: есть даже вывески для светодиодных ламп и ламп, компактных люминесцентных ламп (домработниц). Еще хорошо, что изображения ламп разных типов существенно различаются — сложно перепутать. Например, лампы с лампами накаливания изображаются в виде круга, с длинными линейными люминесцентными — длинным узким прямоугольником. Разница в изображении линейной лампы люминесцентного типа и светодиода не очень большая — только штрихи на концах — но тут можно вспомнить.

В стандарте есть даже условности в электрических схемах для потолочных и подвесных светильников (патронов). Также они имеют довольно необычную форму — кружочки небольшого диаметра со штрихами. В целом в этом разделе легче ориентироваться, чем в других.

Элементы принципиальных схем

Принципиальные схемы устройств содержат другую элементную базу. Также показаны линии связи, клеммы, разъемы, лампочки, но помимо этого присутствует большое количество радиоэлементов: резисторы, конденсаторы, предохранители, диоды, тиристоры, светодиоды.Большинство условных обозначений в электрических схемах этой элементной базы показано на рисунках ниже.

Более редкие придется искать отдельно. Но большинство схем содержат эти элементы.

Буквенные обозначения в электрических цепях

Помимо графических изображений подписываются элементы на схемах. Это также помогает читать диаграммы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того, чтобы потом можно было легко найти тип и параметры в спецификации.

В приведенной выше таблице показаны международные обозначения. Есть еще отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблицей ниже.

Защита электропроводки от скачков напряжения требует использования определенных устройств. Дифференциальная машина является примером того, как могут быть совмещены функции управления и защиты от перенапряжения и утечки тока.

Что это такое

Дифференциальная трехфазная или однофазная машина — это устройство, предназначенное для защиты проводки от «потери» превышения максимально допустимой производительности сети.В зависимости от необходимости может работать в режиме УЗО (защищает от поражения электрическим током) или как обычный выключатель (в данном случае отключает сетевое напряжение).

Устройство состоит из двух конструктивных частей: контрольной и защитной. Управляющая или рабочая часть — это простой выключатель напряжения. В зависимости от типа устройства он может быть двухполюсным или четырехполюсным. В некоторых моделях используется однополюсный переключатель.

Блок управления работает от системы УЗО. В случае утечки, чтобы обезопасить бытовую и другую технику и работника при устранении неисправностей, необходимо полностью отключить питание.Этот модуль работает совместно с воркером. Происходит последовательное отключение рабочей и управляющей частей дифференциальной машины.

Разница между дифференциальной машиной и УЗО заключается в том, что защитное устройство не предназначено для защиты оборудования от перенапряжения или других сетевых проблем. В то же время 1-, 2- или 4-полюсная версия помогает защитить не только рабочих от дифференциального тока, но и оборудование от коротких замыканий.


Принцип действия

Для того, чтобы электрический дифференциальный защитный автоматический выключатель мог контролировать и распознавать ток, в него встроен специальный мини-трансформатор.Эта часть срабатывает, если входящий и исходящий ток по питающим проводам имеют разные показатели. Если показатели равны, то с проводниками проблем нет.


Фото — принцип работы

В сердечнике трансформатора эти токи образуют направленные магнитные потоки. Вторичный ток зависит соответственно от их направления. Если проводники «пропускают» электричество, то ток в этой катушке не будет нулевым, и магнитоэлектрический переключатель сработает.

Принцип работы дифференциального автомата основан на постоянном сравнении входящих и исходящих направленных потоков, поэтому его очень легко проверить. Если прикоснуться к фазовому проводу, баланс магнитного поля будет нарушен, и сразу сработает защелка на отключение напряжения.

Видео: устройство защитного отключения

Как подключить машину

Очень удобно, что схема подключения дифференциальной машины очень похожа на установку защитного устройства.Причем многие электрики рекомендуют устанавливать УЗО и в сети, но только после дифференциала, чтобы обеспечить максимальную безопасность.


Фото — пример подключения

Перед подключением дифференциального выключателя необходимо знать самое важное правило: к устройству подключаются фаза и нейтраль только той электрической цепи, которую необходимо защитить. В противном случае работа устройства будет некорректной. Это очень важно, потому что ноль после не может быть объединен с другими нейтральными кабелями.

Пошаговые инструкции по установке и подключению дифференциальной машины Schneider Electric, IEK и др .:

  1. Установка немного выше линии электропроводки. В большинстве случаев для этого используется DIN-рейка;
  2. Провода подключаются последовательно, при этом будьте осторожны, чтобы не подключать кабели разных цепей. В противном случае работа селективной схемы будет невозможна;
  3. Все металлические выводы должны быть заземлены;
  4. После завершения установки выполняется контрольная проверка.

Чем отличается выборочная схема от неселективной? Для селективного дифференциального автомата (скажем, Schneider Electric, Legrand, IEK или ABB) обозначение на схеме обозначается буквой S (C). Это говорит о том, что если проблема возникает в одной управляемой цепи, она только отключает ее.

В то же время неизбирательный автоматический выключатель (DPN N Vigi, EKF и некоторые модели Dekraft) отключит все цепи, независимо от утечки.

Как выбрать прибор

Перед тем, как купить дифференциальный автомат, необходимо обязательно сделать выбор модели, подходящей по всем параметрам вашей сети.В первую очередь нужно рассчитать количество ампер. Для этого нужно посчитать общую мощность всех устройств в одной конкретной цепи, а затем полученное число разделить на сетевое напряжение. Например, если у вас есть устройства мощностью 5 кВт, включенные в схему, уравнение будет выглядеть так:

5 кВт = 5000 Вт / 220 В = 22, 7 А.

Далее нужно выбрать прибор, ближайший к большей стороне по номиналу. В нашем случае это 25 А.Аналогично рассчитывается дифференциальная машина на 16А (скажем, Elcds C 16 или DS-16), 12 (AD12), 28 (AD-30) и т.д. дополнительная защита.

Маркировка автомата тоже очень важна, она помогает отличить дифференциальное устройство от УЗО, определить его назначение и спектр действия. Обозначение может отличаться в зависимости от производителя, но основные данные должны быть указаны на устройстве.Это номинальное напряжение, ток и максимальный ток короткого замыкания для отключения электричества. К таким же характеристикам обязательно относятся паспорт и сертификат качества.


Чаще всего условное обозначение дифференциального автомата выглядит так (на примере модели ABB):

AC-C 6P 60A / 40mA тип 6M:

  1. AC-C — автоматическая селективная;
  2. 6П — выключатель трехфазный четырехполюсный;
  3. Максимальный ток 40 Ампер;
  4. Может обнаруживать ток утечки до 40 ампер;
  5. 6М — размер устройства.Этот элемент позволяет установить устройство на DIN-рейку.

Следует отметить, что маркировка на российских машинах немного отличается. Сразу указывается максимально допустимый ток без шифрования. Допустим, СВДТ-60 — это значит, что разрешено максимум 60 ампер.

Цена на дифференциальные машины зависит от марки и номинальных характеристик. Чем выше показатели — тем дороже будет стоить устройство. Сейчас популярными моделями являются Hager ACA (Германия), Siemens, Moeller и Legrand.Из отечественных аналогов это АВДТ и СВДТ. Стоимость устройств варьируется от нескольких сотен до тысячи, на нее влияет номинальная производительность.

В данной статье вы найдете 15 схем установки УЗО (устройств защитного отключения). При проектировании электропроводки УЗО располагаются в зонах защиты электрических цепей потребителей, с наибольшей вероятностью поражения токами малых замыканий. В этих условиях вся бытовая техника, контактирующая с водой, размещается во влажных и влажных помещениях, а также в детских комнатах для повышения безопасности.

При проектировании (установке) УЗО ранжирование опасности учитывается в различных схемах, количество УЗО, равное планируемому помещению, может быть разным. От наиболее опасных, в смысле поражения электрическим током, бытовая техника защищена УЗО отдельно.

В какие цепи помещается УЗО?

По своему основному назначению УЗО защищает человека от малых токов, закорачивая фазные провода на токопроводящие кожухи приборов. Второе назначение УЗО — косвенный контроль состояния проводки и плотности проводов.Это позволяет использовать его как средство защиты от пожаров.

15 Схемы установки УЗО, выключатели дифференциального тока

Для начала разберемся, как обозначаются УЗО в принципиальных электрических схемах. Под УЗО и дифференциальные автоматические выключатели обозначаются следующим образом.

Буквенно-цифровое обозначение УЗО, согласно, выглядит так.

УЗО и групповые цепи

Согласно нормам УЗО размещаются в групповых цепях (функциональных группах) розеток, осветительного, силового оборудования, а также в электрических цепях одиночных установок (устройств).

Схема 3, подключение УЗО 380 В, 11 кВт

По данной схеме УЗО подключаются к электрической сети, напряжением 380 вольт, с номинальной нагрузкой до 11 кВт. Это может быть частный дом или квартира. По схеме УЗО общей противопожарной защиты (25 А / 100 мА) ставится вместе со счетчиком в УЭРМ (многоэтажное распределительное устройство — современный напольный щит). Сеть электроснабжения помещения разделена на 5 групп, три из которых защищены УЗО 16 А / 30 мА, а цепь ванны — УЗО 25 А / 10 мА.

Схема 4, 8 групповых цепей

По схеме 4 УЗО подключаются в электрическую сеть напряжением 380 вольт, с номинальной нагрузкой до 11 кВт. Эта схема предусматривает 8 групповых цепей, 6 из которых защищены УЗО. (4 узо 16 А / 30 мА и 1 узо 25 А / 10 мА)

Примечание. По нормам УЗО размещают в распределительных, квартирных щитах и ​​других электрошкафах. Открытая установка УЗО запрещена.

Схема 5, подключение УЗО в частном доме

Установка УЗО в частном доме с.Напряжение питания 220 вольт.

Противопожарный УЗО (32А / 100мА) размещается на вводе силового кабеля в ЩКВ (встроенный квартирный щит со стеклом) вместе со счетчиком. Щит ЩКВС может быть полностью заменен щитом ЩКН (навесным квартирным щитом) или Щитом ЩВУ (вводно-учетным щитом).

Схема подключения большой квартиры или дома. Вводное защитное устройство доставляется к прилавку, вопрос — зачем? Если речь идет об установке УЗО как такового, то такая установка УЗО до счетчика некорректна. Можно установить защитное устройство до счетчика, если это дифференциальный выключатель, но выключатель уже есть.

Примечание. Номинальное значение УЗО автоматического выключателя, установленного после автоматического выключателя, должно быть на одну ступень выше номинального значения автоматического выключателя.

Схема 7, УЗО в сети тн-с

Выключатель дифференциального тока в квартире, без противопожарной защиты, в сети тн-с.

Примечание: Сеть TN-S предполагает разделение нулевого рабочего (N) и защитного проводника (PE).

Если рассматривать данную схему как схему только квартиры, то вполне допустимо, чтобы провод PEN был разделен на проводники PE и N в плате пола, а сама сеть была типа: tn-c-s.

Схемы 9 и 10, правильное и неправильное подключение ouzo

Это простые концепции для правильного и неправильного подключения УЗО. Стоит обратить внимание на неправильное подключение УЗО.

Примечание: К сожалению, на принципиальных схемах не показаны особенности подключения нескольких узлов для разных групповых схем.Здесь важно, что для каждой группы, на которой стоит УЗО, нужно установить свою, независимую шину заземления и розетки этой группы должны подключаться только к этой шине.

Рисунок 10

  • (1) это соединение дифференциального автомата,
  • (2) и (3) это соединение УЗО с автоматическими выключателями.

Схема 11 и схема 12, узко на принципиальных схемах

Простые понятия, 220 вольт. Прекрасно и правильно показывают подключение УЗО в сборке: вводный автоматический счетчик-метр-УЗО противопожарный.

Схема 13, Схема подключения коммунальной квартиры

Схема подключения коммунальной квартиры. Пожарное УЗО (50А / 100мА) в плате пола и полное УЗО в квартирной панели (40А / 30мА). Название говорит само за себя, схема экономичная.

Схема 14, Минимальная схема подключения квартиры

Обозначение узо на схеме по ГОСТ. Современные буквенные и графические обозначения на электрических схемах

Если у обычного человека восприятие информации происходит при чтении слов и букв, то у слесаря ​​и сборщика они заменяются буквенными, цифровыми или графическими обозначениями.Сложность в том, что пока электрик заканчивает учебу, устраивается на работу, на практике что-то узнает, как появляются новые СНиПы и ГОСТы, по которым вносятся корректировки. Поэтому не стоит сразу пытаться изучить всю документацию. Достаточно получить базовые знания и добавлять актуальные данные в течение рабочих дней.

Введение

Для проектировщиков схем, механиков КИП, электриков умение читать электрические схемы является ключевым качеством и показателем квалификации.Без специальных знаний невозможно сразу разобраться в тонкостях проектирования устройств, схем и способов соединения электрических узлов.

Типы и типы электрических схем

Прежде чем приступить к изучению существующих обозначений электрооборудования и его подключений, необходимо разобраться в типологии схем. На территории нашей страны внедрена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 г. согласно «ЕСКД.Схемы. Виды и виды. Общие требования ».


Исходя из этого стандарта, все схемы делятся на 8 типов:

  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные подключения.
  6. Полный принцип.
  7. Функциональные.
  8. Структурные
  9. Среди существующих 10 типов, указанных в этом документе, есть:

    1. Комбинированные
    2. Подразделения
    3. Энергетические.
    4. Оптический.
    5. Вакуум.
    6. Кинематика.
    7. Газ.
    8. Пневматический.
    9. Гидравлический.
    10. Электрооборудование.

    Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и типов цепей, а также наиболее востребованная и часто применяемая в работе — электрическая цепь.

    Последний вышедший ГОСТ дополнился множеством новых обозначений, актуальным сегодня является код 2.702-2011 от 1.01.2012. Документ называется «ЕСКД. Правила выполнения электрических схем », относится к другим ГОСТам, в том числе к упомянутому выше.

    В тексте регламента подробно изложены четкие требования ко всем типам схем подключения. Поэтому именно этим документом следует руководствоваться. при электромонтажных работах с электрическими цепями. Определение понятия «электрическая цепь» по ГОСТ 2.702-2011 следующее:

    «Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия. и / или отдельные детали с описанием взаимосвязи между ними, принципов работы от электрической энергии.»

    После определения документ содержит правила для реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического представления электрических элементов.

    Следует отметить, что чаще в бытовой практике применяют всего три типа электрических схем:

  • Крепление — для устройства изображается печатная плата с расположением элементов с четким указанием расположение, рейтинг, принцип крепления и подключения к другим частям.На схемах подключения жилых помещений указано количество, расположение, номинал, способ подключения и другие точные инструкции по установке проводов, выключателей, светильников, розеток и т. Д.
  • Principal — в них подробно указаны подключения, контакты и характеристики каждого элемент для сетей или устройств. Различайте полные и линейные концепции. В первом случае изображены управление, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только схемой с изображением остальных элементов на отдельных листах.
  • Функциональный — здесь без детализации физических размеров и других параметров указаны основные узлы устройства или схемы. Любую деталь можно отобразить в виде блока с буквенным обозначением, дополненного ссылками на другие элементы устройства.

Графические обозначения в электрических схемах


Документация, в которой указаны правила и способы графического обозначения элементов схем, представлена ​​тремя ГОСТами:

  • 2.755-87 — графические обозначения контактных и коммутационных соединений.
  • 2.721-74 — графические обозначения деталей и узлов общего назначения.
  • 2.709-89 — графические обозначения в схемах подключения участков цепей, оборудования, контактных соединений проводов, электрических элементов.

В стандарте с кодом 2.755-87 применяется для однолинейных схем электрощитов, условных графических изображений (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей и другого коммутационного оборудования.Обозначения в стандартах на дифавтоматы и УЗО нет.

На страницах ГОСТ 2.702-2011 допускается отображение этих элементов в произвольном порядке, с пояснениями, расшифровкой УГО и самой схемы дифавтоматов и УЗО.
ГОСТ 2.721-74 содержит УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существуют:

4 базовых изображения УГО

9 функциональных признаков УГО

УГО Имя
Дуговое тушение
Без самовозврата
Самовозврат
Концевой выключатель или выключатель хода
С автоматическим срабатыванием
Выключатель нагрузки
Разъединитель
Переключатель
Контактор

ВАЖНО: Обозначения 1-3 и 6-9 применяются к неподвижным контактам, 4 и 5 — к подвижным контактам.

Базовое УГО для однолинейных цепей электрощитов

УГО Имя
Тепловое реле
Контакт контактора
Выключатель — выключатель нагрузки
Автоматический выключатель
Предохранитель
Дифференциальный выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Выключатель (выключатель нагрузки) с предохранителем
Автоматический выключатель двигателя (со встроенным тепловым реле)
Преобразователь частоты
Счетчик электроэнергии
Замыкающий контакт с кнопкой «сброс» или другим кнопочным переключателем, с возвратом и размыканием с помощью специального привода элемента управления
замыкающий контакт с кнопочным переключателем, с возвратом и размыканием нажатием кнопки управления
Замыкающий контакт с кнопочным переключателем, с возвратом и размыканием повторным нажатием кнопки элемента управления
Замыкающий контакт с кнопочным переключателем, с автоматическим возвратом и размыканием элемента управления
Замыкающий контакт с задержкой, срабатывающий при возврате и отключении
Замыкающий контакт с задержкой действия, который срабатывает только при срабатывании
Замыкающий контакт с задержкой, срабатывающий при возврате и отключении
Замыкающий контакт с задержкой срабатывания, срабатывающий только при возврате
Замыкающий контакт с задержкой срабатывания, который включается только при срабатывании
Катушка реле времени
Катушка фото реле
Катушка импульсного реле
Общее обозначение катушки реле или катушки контактора
Контрольная лампа (свет), освещение
Моторный привод
Терминал (разъемное соединение)
Варистор, ограничитель перенапряжения (ограничитель перенапряжения)
Разрядник
Розетка (штекерное соединение):
Нагревательный элемент

Обозначение измерительных электрических устройств для определения параметров цепей

ГОСТ 2.271-74 в электрических щитах для шин и проводов приняты следующие обозначения:

Буквенные обозначения в электрических схемах

Нормы буквенного обозначения элементов электрических цепей описаны в ГОСТ 2.710-81 с указанием название текста «ЕСКД. Буквенно-цифровые обозначения в электрических цепях ». Знак для дифавтоматов и УЗО здесь не указывается, что прописано в п. 2.2.12 настоящего стандарта как обозначение с многобуквенными кодами.Для основных элементов электрощитов принята следующая буквенная кодировка:

Наименование Обозначение
Автоматический выключатель в силовой цепи QF
Автоматический выключатель в цепи управления SF
Автоматический выключатель с дифференциальной защитой или дифавтоматом QFD
Выключатель или выключатель нагрузки QS
УЗО (устройство защитного отключения) QSD
Контактор KM
Тепловое реле F, KK
Реле времени KT
Реле напряжения KV
Импульсное реле КИ
Фотореле KL
Ограничитель перенапряжения, разрядник FV
Предохранитель FU
Трансформатор напряжения TV
Трансформатор тока TA
Преобразователь частоты А UZ
Амперметр PA
Ваттметр PW
Частотомер PF
Вольтметр PV
Счетчик активной энергии PI
Счетчик реактивной энергии ПК
Нагревательный элемент EK
Фотоэлемент BL
Лампа освещения EL
Лампочка или индикатор HL
Штекерный соединитель XS
Переключатель или переключатель в цепях управления SA
Кнопочный переключатель в цепях управления SB
Клеммы XT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывают такой вид электрической схемы как «макет» при проектировании конструкций и зданий, необходимо руководствоваться стандартами ГОСТ 21.210-2014, в которых указано «СПДС.

».

Изображения на схемах условной графической проводки и электрооборудования ». Документ установил УГО на планах прокладки электрических сетей для электрооборудования (лампы, выключатели, розетки, электрические щиты, трансформаторы), кабельных линий, шинопроводов, автобусов.

Эти символы используются для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование этих обозначений также используется в основных однолинейных схемах электрических щитов.

Условные графические изображения электрооборудования, электроприборов и электроприемников

Контуры всех изображаемых устройств в зависимости от информативности и сложности конфигурации взяты по ГОСТ 2.302 в масштабе чертежа согласно действительным размерам.

Условные графические обозначения линий проводов и проводов

Условные графические изображения шин и шин

ВАЖНО: Расчетное положение шинопровода должно точно совпадать на схеме с местом его вложения.

Условные графические изображения ящиков, шкафов, плат и пультов

Условные графические обозначения выключателей, выключателей

На страницах ГОСТ 21.210-2014, отдельного обозначения кнопочных выключателей, диммеров (диммеров) нет. В некоторых схемах в соответствии с п. 4.7. нормативного акта используются произвольные обозначения.

Условные обозначения и графические обозначения розеток

Условные графические обозначения ламп и прожекторов

В обновленной версии ГОСТа представлены изображения светильников с люминесцентными и светодиодными лампами.

Условные графические обозначения устройств контроля и управления

Заключение

Приведенные выше графические и буквенные изображения электрических компонентов и электрических цепей не являются полным списком, поскольку стандарты содержат много специальных символов и цифр, которых практически нет. используется в быту.Чтобы прочитать электрические схемы, вам нужно будет учесть множество факторов, в первую очередь — страну производителя устройства или электрооборудования, проводки и кабелей. На схемах есть разница в маркировке и условных обозначениях, что может сбивать с толку.

Во-вторых, следует внимательно рассмотреть такие области, как пересечение или отсутствие общей сети для проводов, расположенных с патчем. На сторонних схемах, если шина или кабель не имеют общего источника питания с пересекающимися объектами, в точке соприкосновения рисуется полукруглое продолжение.В отечественных схемах это не используется.

Если схема изображена без соблюдения норм, установленных ГОСТом, то она называется эскизом. Но для этой категории также существуют определенные требования, согласно которым по данному эскизу должно быть составлено примерное представление о будущей разводке или конструкции устройства. Рисунки можно использовать для составления на их основе более точных чертежей и схем, с необходимыми обозначениями, разметками и соблюдением масштабов.

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большинство из них стандартизированы и описаны в нормативных документах. Большинство из них было опубликовано в прошлом веке, а в 2011 году был принят только один новый стандарт (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), поэтому иногда новую элементную базу обозначают по принципу «как кто это придумал». И в этом сложность чтения схем новых устройств.Но, в целом, символы в электрических схемах описаны и многим хорошо известны.

На схемах часто используются два типа обозначений: графические и буквенные, также часто наносятся номиналы. По этим данным многие сразу могут сказать, как работает схема. Этот навык развивается за годы практики, но сначала вам нужно понять и запомнить символы в электрических цепях. Затем, зная работу каждого элемента, можно представить конечный результат устройства.

Для составления и чтения разных диаграмм обычно требуются разные элементы. Типов цепей много, но в электротехнике обычно используются:


Есть много других типов электрических цепей, но они не используются в бытовой практике. Исключение составляет трасса прохождения кабелей по участку, подача электричества в дом. Этот тип документа определенно будет нужен и полезен, но это скорее план, чем диаграмма.

Основные изображения и функциональные знаки

Коммутационные аппараты (переключатели, контакторы и др.) основаны на контактах разной механики. Есть замыкающие, размыкающие, переключающие контакты. Замыкающий контакт в нормальном состоянии разомкнут; когда он переведен в рабочее состояние, цепь замкнута. Нормально разомкнутый контакт замкнут, и при определенных условиях срабатывает, чтобы разомкнуть цепь.

Переключающий контакт доступен с двумя или тремя позициями. В первом случае работает одна схема, потом другая. Второй занимает нейтральную позицию.

Кроме того, контакты могут выполнять разные функции: контактор, разъединитель, автоматический выключатель и т. Д.Все они также имеют условное обозначение и нанесены на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они показаны на фото ниже.

Основные функции могут выполняться только фиксированными контактами.

Обозначения однолинейных схем

Как уже было сказано, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, выключатели, выключатели и т. Д.и связи между ними. Обозначения этих условных элементов можно использовать на схемах электрических щитов.

Основная особенность графических обозначений в электрических схемах состоит в том, что схожие по принципу действия устройства отличаются некоторой мелочью. Например, автоматический выключатель и автоматический выключатель отличаются только двумя небольшими деталями — наличием / отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, отображающего функции этих контактов.Контактор отличается от обозначения выключателя только формой значка на неподвижном контакте. Разница очень небольшая, но устройство и его функции разные. Все эти мелочи нужно смотреть и запоминать.

Также есть небольшая разница между обозначениями УЗО и дифференциального автомата. Так же только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело с катушками реле и контакторами.Они выглядят как прямоугольник с небольшими графическими дополнениями.

В данном случае его легче запомнить, так как есть довольно серьезные отличия во внешнем виде дополнительных иконок. С фотоэлементом все просто — лучи солнца ассоциируются со стрелками. Импульсное реле также довольно легко отличить по характерной форме знака.

Немного проще с лампочками и соединениями. У них разные «картинки». Разъемное соединение (например, розетка / вилка или розетка / вилка) выглядит как два кронштейна, а разборное (например, клеммная колодка) выглядит как круги.Причем количество пар галочек или кружков указывает на количество проводов.

Изображение шин и проводов

В любой схеме подходят подключения и в большинстве своем они проводные. Некоторые соединения представляют собой шины — более мощные токопроводящие элементы, от которых могут выходить отводы. Провода обозначены тонкой линией, а места ответвлений / соединений обозначены точками. Если точек нет, это не соединение, а перекресток (нет электрического соединения).

Есть отдельные изображения для автобусов, но они используются, если вам нужно графически отделить их от линий связи, проводов и кабелей.

На схемах подключения часто бывает необходимо указать не только то, как проходит кабель или провод, но и его характеристики или способ прокладки. Все это тоже отображается графически. Это также необходимая информация для чтения чертежей.

Как изображены выключатели, выключатели, розетки

Некоторые типы этого оборудования не имеют изображений, утвержденных стандартами.Так, диммеры (диммеры) и кнопочные переключатели остались без обозначения.

Но все остальные типы переключателей имеют свои символы в электрических схемах. Они бывают в открытых и скрытых установках, соответственно также есть две группы иконок. Отличие заключается в положении линии на изображении ключа. Чтобы понять на схеме, что это за переключатель, это необходимо помнить.

Есть отдельные обозначения для двухкнопочных и трехкнопочных переключателей.В документации они называются «двойными» и «тройными» соответственно. Есть отличия для корпусов с разной степенью защиты. В помещениях с нормальными условиями эксплуатации устанавливаются выключатели с IP20, возможно, до IP23. Во влажных помещениях (ванная, бассейн) или на открытом воздухе степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их легко отличить.

Есть отдельные изображения для переключателей.Это переключатели, позволяющие управлять включением / выключением света с двух точек (их тоже три, но без стандартных изображений).

Такая же тенденция наблюдается в обозначении розеток и групп розеток: розетки одинарные, розетки двойные, есть группы по несколько штук. Продукция для помещений с нормальными условиями эксплуатации (IP 20–23) имеет неокрашенный центр, для влажных помещений с корпусом повышенной защиты (IP44 и выше) центр окрашен в темный цвет.

Обозначения в электрических схемах: розетки разного типа установки (открытые, скрытые)

Разобравшись в логике обозначения и запомнив некоторые исходные данные (в чем разница между условным изображением розетки открытого и скрытого монтажа, например), через некоторое время можно уверенно ориентироваться в чертежах и схемах.

Лампы на схемах

В этом разделе описаны условные обозначения на электрических схемах различных ламп и светильников. Здесь лучше обстоят дела с обозначением новой элементной базы: есть даже вывески для светодиодных ламп и ламп, компактных люминесцентных ламп (домработниц). Также хорошо, что изображения ламп разных типов существенно различаются — их сложно спутать. Например, лампы с лампами накаливания изображают в виде круга, с длинными линейными люминесцентными лампами — длинным узким прямоугольником.Разница в изображении линейной люминесцентной лампы и светодиодной не очень большая — только штрихи на концах — но тут можно вспомнить.

Стандарт даже содержит символы в электрических схемах потолочного и подвесного светильника (держателя). Также они имеют довольно необычную форму — круги небольшого диаметра с черточками. В целом, в этом разделе легче ориентироваться, чем в других.

Элементы основных электрических цепей

На принципиальных схемах устройств разная элементная база.Также изображены линии связи, клеммы, разъемы, лампочки, но, кроме того, присутствует большое количество радиоэлементов: резисторы, конденсаторы, предохранители, диоды, тиристоры, светодиоды. Большинство условных обозначений в электрических схемах этой элементной базы показано на рисунках ниже.

Более редкие придется искать отдельно. Но большинство схем содержат эти элементы.

Буквенные обозначения на электрических схемах

Помимо графических изображений подписываются элементы на схемах.Это также помогает читать диаграммы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того, чтобы потом можно было легко найти тип и параметры в спецификации.

В приведенной выше таблице показаны международные обозначения. Есть еще отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблицей ниже.

Устройство защитного отключения (УЗО) относится к типу автоматического выключателя, работа которого основана на автоматическом отключении сети или ее части при достижении или превышении определенного уровня дифференциального тока.Его использование значительно повышает электробезопасность потребителя, а также предотвращает возникновение аварийных ситуаций как дома, так и на работе.
Тем не менее, несмотря на то, что схема включения УЗО на первый взгляд кажется простой, даже малейшие изъяны в подключении могут стать причиной довольно серьезных поломок. Как не превратить вашу безопасность в источник неприятностей? Вы можете найти ответ на этот вопрос в этой статье.

Прежде чем углубляться в вопросы, связанные со схемой установки УЗО, рассмотрим особенности этих устройств, а также основные требования к ним, на основании которых они выбираются.В этой статье мы не будем касаться индексации, так как для ее углубления требуются серьезные знания в области электротехники, и эта необходимость отпадает еще и в связи с тем, что выбор защитного устройства будет производиться исключительно на основании исходные данные. Для этого нужно выполнить несколько пунктов:

  • Рассмотрим необходимость подключения отдельного УЗО с автоматом или дифавтоматом.
  • Определите номинальный ток устройства. Для машины фактическое значение этого тока должно быть выбрано на одну ступень выше, чем данные тока отсечки, в том же случае, если используется дифавтомат, то указанное значение должно быть равно току отсечки.
  • Рассчитайте отсечку по дополнительному току (перегрузке), используя простой расчет. Для его расчета нужно знать максимально допустимый ток потребления, а затем полученное значение умножить на 1,25. Далее необходимо отталкиваться от таблицы значений стандартных серий токов. Если результат отличается от указанных параметров, он округляется в большую сторону.
  • Определите допустимый ток утечки. В обычных устройствах он равен 30 или 100 мА, но есть исключения.Выбор будет зависеть от типа проводки.

Если необходимо использовать «пожарное» УЗО, то следует определить тип и расположение вторичных «жизненно важных» устройств.

Устройство УЗО

Обозначение УЗО на однолинейной схеме

Когда речь идет о схемах и проектах, очень важно уметь их правильно читать. Как правило, изображение УЗО на графической и конструкторской документации часто выполняется условно вместе с другими элементами.Это несколько затрудняет понимание принципов работы схемы и, в частности, ее отдельных компонентов. Обычный образ защитного устройства можно сравнить с изображением обычного выключателя с той лишь разницей, что элемент в нелинейной схеме представлен в виде двух параллельных автоматических выключателей. На однолинейной схеме полюса, провода и элементы не изображаются визуально, а изображаются символически.

Эта точка подробно показана на рисунке ниже.На нем изображено двухполюсное УЗО с током утечки 30 мА. На это указывает цифра «2» вверху. Рядом с ним можно увидеть косую черту, пересекающую линию электропередачи. Биполярность устройства также продублирована в нижней части схематического изображения элемента в виде двух наклонных линий.

Обозначение УЗО на однолинейной схеме

Разберем типовую схему «квартирного» подключения защитного устройства с учетом наличия счетчика на примере, представленном на рисунке ниже.Ознакомившись более подробно с принципом подключения, можно сделать вывод об оптимальном расположении УЗО, которое должно быть максимально близко к входу. Делать это нужно таким образом, чтобы между ними располагались счетчик и основная машина. Однако есть несколько ограничительных нюансов. Так, например, устройство общей защиты не может быть подключено к системе типа TN-C из-за его основных характеристик. Устаревший образец советских времен имеет защитный провод, подключенный напрямую к нейтрали, что становится причиной «несовместимости».

Устройство защитного отключения, являющееся устаревшей моделью советских времен с защитным проводом, подключенным к нейтрали, не позволяет подключить к нему устройство общей защиты.

Это лучший пример того, как подключить заземленное УЗО. На схеме также есть желтые полосы, демонстрирующие принцип подключения дополнительных устройств защиты групп потребителей, которые схематично должны быть расположены за соответствующими им автоматическими выключателями. В этом случае номинальный ток каждого вторичного устройства на пару футов выше, чем показатель назначенного ему автомата.

Но все это типично для современной электропроводки с учетом наличия «земли».

Типовая схема УЗО на примере «квартирной» электросети

Для того, чтобы в дальнейшем более подробно ознакомиться с основами УЗО, обозначение на схеме необходимо выучить или по мере изучения статьи возвращаться к нему.

Подключение УЗО без заземления. Схема и особенности

Отсутствие заземляющих шлейфов в домах — обычная ситуация, требующая больших усилий и знаний, потому что нужно помнить основы электродинамики, но это не приговор.Главное, соблюдать четыре общих правила:

  • TN-C проводка не допускает установку дифавтомата или общего УЗО.
  • Потенциально опасные потребители должны быть идентифицированы и защищены дополнительным отдельным устройством.
  • Следует выбирать кратчайший «электрический» путь от защитных проводов розеток и групп розеток к входной нулевой клемме УЗО.
  • Допускается каскадное подключение защитных устройств при условии, что ближайшие к электрическому вводу УЗО менее чувствительны, чем оконечные.

Многие, даже сертифицированные электрики, забыв или просто не зная принципов электродинамики, не задумываются о том, как подключить УЗО без заземления. Предлагаемая ими схема обычно выглядит так: устанавливается устройство общей защиты, а затем все PE (нулевые защитные проводники) подводятся к входному нулю УЗО. С одной стороны, здесь несомненно видна разумная логическая цепочка, ведь включения защитного проводника не будет.Но все намного сложнее.

  • В обмотке может возникнуть кратковременный скачок тока для компенсации дисбаланса тока между фазой и нулем, называемого «антидифференциальным» эффектом. Встречается довольно редко.
  • Более распространенным вариантом является неконтролируемое усиление дисбаланса токов, называемое «супердифференциальным» эффектом. Возникновение такой ситуации заставляет защитное устройство работать без присущей ему утечки. Тем не менее, серьезных поломок или поломок это не вызовет, а лишь принесет некоторый дискомфорт при постоянном «выбивании».

Сила «воздействия» зависит от длины ПЭ. Если его длина превышает два метра, то вероятность выхода из строя УЗО достигает 1 из 10 000. Числовой показатель довольно маленький, однако теория вероятностей — вещь практически непредсказуемая.

Схема подключения УЗО

в однофазной сети

Так как в квартирах часто используется однофазное сетевое подключение. В этом случае оптимально в качестве защиты выбрать однофазные двухполюсные УЗО.Существует несколько вариантов схемы подключения для этого устройства, но мы рассмотрим наиболее распространенные, представленные на рисунке ниже.

Подключить устройство довольно просто. В паспорте и на приборе указаны основные точки маркировки и подключения фазы (L) и нуля (N). На схеме показаны вторичные машины, но их установка не является обязательной. Они нужны для распределения подключенной бытовой техники и освещения по группам. Таким образом, проблемная зона никак не повлияет на остальные части или комнаты квартиры.Важно учитывать, что установка максимально допустимых токов на машинах не должна превышать уставки УЗО. Это связано с отсутствием ограничения тока в устройстве. Также следует обратить внимание на соединение фазы с нулем. Невнимательность может привести не только к отключению питания микросхемы, но и к поломке устройства защиты.

Схема включения УЗО в однофазной сети, по мнению специалистов, должна располагаться в непосредственной близости от счетчика электроэнергии (рядом с источником питания)

Схема подключения УЗО в однофазной сети

Ошибки и их последствия при подключении УЗО

Как и любую электрическую схему, схематическое изображение подключения защитного устройства к общей сети должно быть составлено, как прочитано позже, без малейших изъянов.Даже самый скромный дефект может привести к выходу из строя системы в целом или самого УЗО, а серьезные отклонения могут вызвать довольно серьезные поломки. Ошибки могут быть разные, но среди них можно выделить ряд наиболее распространенных:

  • Нейтраль и земля подключаются после УЗО. В этом случае можно неверно истолковать схему, соединив нулевой рабочий проводник, с разомкнутой частью электроустановки или с нулевым защитным проводом.В обоих случаях сумма будет одинаковой.
  • УЗО можно подключить с частичной фазой. Допуск такой ошибки приведет к ложному срабатыванию, возникающему из-за того, что нагрузка была подключена к нулевому рабочему проводнику перед УЗО.
  • Пренебрежение правилами подключения в выводах нулевого и заземляющего проводов. Проблема заключается в процессе установки розеток, в которых допускается соединение защитного и нулевого рабочих проводов.В этом случае устройство будет работать даже тогда, когда к розетке ничего не подключено.
  • Объединение нулей в цепи с двумя устройствами защиты. Распространенная ошибка — неправильное соединение в зоне защиты нулевых проводов обоих УЗО. Допускается из-за неаккуратности и неудобства разводки внутри стеновой панели. Недосмотр приведет к неконтролируемым отключениям устройств.
  • Использование двух и более УЗО усложняет работу по подключению нулевых проводов.Последствия невнимательности могут быть довольно серьезными. Тестирование тоже не поможет, так как работа устройства с ним не вызовет никаких нареканий. Но самое первое подключение электроприборов может вызвать ошибку и срабатывание всех УЗО.
  • Невнимательность при подключении фазы и нуля, если они сняты с разных УЗО. Проблема возникает, когда нагрузка подключена к нейтральному проводу, принадлежащему другому устройству защиты.
  • Несоблюдение полярности подключения, выражающееся в подключении фазы и нуля соответственно сверху и снизу.Это спровоцирует движение токов в одном направлении, в результате чего создаются условия для невозможности взаимной компенсации магнитных потоков. Это говорит о том, что перед покупкой нового УЗО следует внимательно изучить принцип подключения старого, так как расположение клемм может быть другим.
  • Не обращайте внимания на подробности при подключении трехфазного УЗО. Распространенная ошибка при подключении четырехполюсного УЗО — использование клемм одной фазы. Однако работа однофазных потребителей никак не повлияет на работу такого защитного устройства.

Пример расчета УЗО.

Обозначение

УЗО.

Схема подключения УЗО

.

Подключаем к клемме L фаза , к N

Схема УЗО в квартире.

Рис. 1 цепь УЗО в квартире.

Установка УЗО значительно повышает уровень безопасности при работе с электроустановками. Если УЗО имеет высокую чувствительность (30 мА), то предусмотрена защита от прямого прикосновения (касания).

Однако установка УЗО не означает, что соблюдаются обычные меры предосторожности при работе с электрическими установками.

Кнопку проверки необходимо нажимать регулярно, не реже одного раза в 6 месяцев. Если проверка не дала результата, то нужно подумать о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панель или корпус. Подключите оборудование точно так, как показано на схеме. Включите все нагрузки, подключенные к защищаемой сети.

УЗО срабатывает.

Если срабатывает УЗО, выясните, какое устройство вызывает отключение, последовательно отключив нагрузку (выключите электрооборудование по очереди и посмотрите результат). Если такое устройство обнаружено, его необходимо отключить от сети и проверить. Если электрическая линия очень длинная, нормальные токи утечки могут быть довольно большими. В этом случае есть вероятность ложных срабатываний. Чтобы этого не произошло, необходимо разделить систему как минимум на две цепи, каждая из которых будет защищена собственным УЗО.Длину электрической линии можно рассчитать.

Если невозможно документально определить сумму токов утечки электропроводки и нагрузок, можно воспользоваться приблизительным расчетом (согласно СП 31-110-2003), приняв ток утечки нагрузки равным 0,4 мА. на 1А мощности, потребляемой нагрузкой, и ток утечки в сеть, равный 10мкА на один метр длины фазного провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты мощностью 5 кВт, установленной на кухне малогабаритной квартиры.

Примерное расстояние от панели до кухни может составлять 11 метров, соответственно расчетная утечка проводки 0,11 мА. Электрическая плита на полной мощности потребляет (приблизительно) 22,7 А, а расчетный ток утечки составляет 9,1 мА. Таким образом, сумма токов утечки этой электроустановки составляет 9,21 мА. Для защиты от токов утечки можно использовать УЗО с номинальным током утечки 27,63 мА, который округляется до ближайшего большего значения из существующих номинальных значений для дифференциала.ток, а именно УЗО 30мА.

Следующим шагом является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемом электроплитой, можно использовать номинальное (с небольшим запасом) УЗО 25А, либо с большим запасом — УЗО 32А.

Таким образом, мы рассчитали номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (мы не должны забывать защищать УЗО автоматическим выключателем на 25 А для первого номинала УЗО и 25 А или 32 А для второго номинала).

Обозначение

УЗО.

На схеме УЗО обозначено следующим образом Рис. 1 однофазное УЗО, рис. 2 — трехфазное УЗО.

Схема подключения УЗО

.

Рассмотрим схему подключения УЗО на примере. На рисунке. 1 показывает деталь распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото № 1 УЗО, 2 — автоматический выключатель) и однофазным УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому устанавливается в тандеме с автоматическим выключателем.Что ставить перед УЗО или автоматом в данном случае не важно. Номинал УЗО должен быть равен или немного выше номинала автоматического выключателя. Например, автоматический выключатель на 16 Ампер, значит, мы ставим УЗО на 16 или 25 А.

Как видно на фото. 1 для трехфазного УЗО (цифра 1) подходят трехфазный и нейтральный проводники, а после УЗО подключается автоматический выключатель (цифра 2). Потребитель подключит: фазные провода (красные стрелки) от выключателя; нулевой провод (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны подключенные шиной дифференциальные автоматы, принцип работы дифференциала. автомат аналогичен УЗО, но дополнительно защищает от токов короткого замыкания и не требует дополнительной защиты от короткого замыкания.

И соединение УЗО и дифференциала. машины такие же.

Подключаем к клемме L фаза , к нулю N (обозначения напечатаны на корпусе УЗО).Потребители тоже подключаются.

Схема УЗО в квартире.

Ниже представлена ​​схема использования УЗО в квартире для дополнительной защиты от поражения электрическим током.

Рис. 1 цепь УЗО в квартире.

В этом случае УЗО устанавливается перед счетчиком, на всей группе автоматических выключателей, что обеспечивает дополнительную защиту от поражения электрическим током и возгорания.

Установка УЗО значительно повышает уровень безопасности при работе с электроустановками.Если УЗО имеет высокую чувствительность (30 мА), то предусмотрена защита от прямого прикосновения (касания).

Однако установка УЗО не означает, что соблюдаются обычные меры предосторожности при работе с электрическими установками.

Кнопку проверки необходимо нажимать регулярно, не реже одного раза в 6 месяцев. Если проверка не дала результата, то нужно подумать о замене УЗО, так как уровень электробезопасности снизился.

Установите УЗО на панель или корпус.Подключите оборудование точно так, как показано на схеме. Включите все нагрузки, подключенные к защищаемой сети.

УЗО срабатывает.

Если срабатывает УЗО, выясните, какое устройство стало причиной срабатывания, последовательно отключив нагрузку (выключите электрооборудование по очереди и посмотрите результат).

Умение отличить УЗО от дифференциального автомата — 4 внешних признака

Если такое устройство обнаружено, его необходимо отключить от сети и проверить.Если электрическая линия очень длинная, нормальные токи утечки могут быть довольно большими. В этом случае есть вероятность ложных срабатываний. Чтобы этого не произошло, необходимо разделить систему как минимум на две цепи, каждая из которых будет защищена собственным УЗО. Длину электрической линии можно рассчитать.

Если невозможно документально определить сумму токов утечки электропроводки и нагрузок, можно воспользоваться приблизительным расчетом (согласно СП 31-110-2003), приняв ток утечки нагрузки равным 0.4 мА на 1 А мощности, потребляемой нагрузкой, и ток утечки сети, равный 10 мкА на один метр длины фазного провода электропроводки.

Пример расчета УЗО.

Для примера рассчитаем УЗО для электроплиты мощностью 5 кВт, установленной на кухне малогабаритной квартиры.

Примерное расстояние от панели до кухни может составлять 11 метров, соответственно расчетная утечка проводки 0,11 мА. Электроплита на полную мощность потребляет (примерно) 22.7A и имеет расчетный ток утечки 9,1 мА. Таким образом, сумма токов утечки этой электроустановки составляет 9,21 мА. Для защиты от токов утечки можно использовать УЗО с номинальным током утечки 27,63 мА, который округляется до ближайшего большего значения из существующих номинальных значений для дифференциала. ток, а именно УЗО 30мА.

Следующим шагом является определение рабочего тока УЗО. При указанном выше максимальном токе, потребляемом электроплитой, можно использовать номинальное (с небольшим запасом) УЗО 25А, либо с большим запасом — УЗО 32А.

Таким образом, мы рассчитали номинал УЗО, которое можно использовать для защиты электроплиты: УЗО 25А 30мА или УЗО 32А 30мА. (мы не должны забывать защищать УЗО автоматическим выключателем на 25 А для первого номинала УЗО и 25 А или 32 А для второго номинала).

Обозначение

УЗО.

На схеме УЗО обозначено следующим образом Рис. 1 однофазное УЗО, рис. 2 — трехфазное УЗО.

Схема подключения УЗО

.

Рассмотрим схему подключения УЗО на примере.На рисунке. 1 показывает деталь распределительного шкафа.

Фото. 1 Схема подключения трехфазного УЗО с автоматическим выключателем (на фото № 1 УЗО, 2 — автоматический выключатель) и однофазным УЗО (3).

УЗО не защищает от токов короткого замыкания, поэтому устанавливается в тандеме с автоматическим выключателем. Что ставить перед УЗО или автоматом в данном случае не важно. Номинал УЗО должен быть равен или немного выше номинала автоматического выключателя.Например, автоматический выключатель на 16 Ампер, значит, мы ставим УЗО на 16 или 25 А.

Как видно на фото. 1 для трехфазного УЗО (цифра 1) подходят трехфазный и нейтральный проводники, а после УЗО подключается автоматический выключатель (цифра 2). Потребитель подключит: фазные провода (красные стрелки) от выключателя; нулевой провод (синяя стрелка) — с УЗО.

Под цифрой 3 на фото показаны подключенные шиной дифференциальные автоматы, принцип работы дифференциала.автомат аналогичен УЗО, но дополнительно защищает от токов короткого замыкания и не требует дополнительной защиты от короткого замыкания.

И соединение УЗО и дифференциала. машины такие же.

Подключаем к клемме L фаза , к нулю N (обозначения напечатаны на корпусе УЗО). Потребители тоже подключаются.

Схема УЗО в квартире.

Ниже представлена ​​схема использования УЗО в квартире для дополнительной защиты от поражения электрическим током.

Рис. 1 цепь УЗО в квартире.

В этом случае УЗО устанавливается перед счетчиком, на всей группе автоматических выключателей, что обеспечивает дополнительную защиту от поражения электрическим током и возгорания.

Обозначение узо на схеме по ГОСТ

Очень часто неопытные электрики и домашние мастера не знают, как определить, что в панели приборов — УЗО или дифавтомат. В результате можно ошибочно подумать, что электропроводка защищена от перегрузок и утечки тока, хотя на самом деле защиты от первой небезопасной ситуации нет, потому что на приборной панели установлено обычное устройство защитного отключения.В этой статье мы не только рассмотрим функциональную разницу между этими двумя устройствами, но и расскажем, как визуально отличить УЗО от дифавтомата.

  • Разница по функциям
  • Визуальная разница

Разница по функциям

Вкратце расскажем, чем УЗО отличается от дифференциального выключателя. Все достаточно просто:

  • УЗО срабатывает только при обнаружении тока утечки в цепи.
  • Дифавтомат включает в себя функции устройства защитного отключения + автоматический выключатель. Всего дифференциальная машина срабатывает не только при утечке тока, но и при коротком замыкании, а также при перегрузке сети.
  • Это основное функциональное различие между двумя устройствами. О том, что лучше поставить УЗО или дифавтомат, вы можете узнать в нашей соответствующей статье. Теперь мы расскажем, как их отличить по внешнему виду.

    Визуальная разница

    Теперь на примерах фото мы наглядно покажем, как определить, что именно установлено в приборной панели.Всего мы расскажем вам о 4 очевидных признаках, которые нужно запомнить.

  • Посмотрите, что написано на корпусе. Если, конечно, вы купили дешевую китайскую продукцию, вряд ли на боковой стенке или спереди будет написано, что это такое. Однако все отечественные устройства и даже некоторые зарубежные изделия имеют четкое обозначение на корпусе — «дифференциальный выключатель» (он же УЗО) или «выключатель дифференциального тока» (он же дифавтомат). Этот способ неудобен тем, что для различения продуктов, которые устанавливаются рядом друг с другом, придется снимать их с DIN-рейки, иначе название будет закрыто.
  • Обратите внимание на заголовок еще раз. Да, маркировка также дает четкое представление о том, что установлено в приборной панели. По полному названию устройств, написанному в пункте 1, можно понять, что такое «ВД», а что — «АВДТ». Недостатком такого способа определения является то, что на зарубежных устройствах может не быть отечественной аббревиатуры, как, например, на продукции Legrand.
  • Смотрим характеристики. Как на УЗО, так и на дифференциальном автомате технические характеристики указаны в виде цифр и букв.Итак, если вы видите цифру, а после нее букву «А», например 16А или 25А, это означает, что в щите установлено УЗО, которое указывает номинальный ток. Если на корпусе указана буква, а затем цифра, например, С16, то это АВДТ. Буква «С» в данном случае обозначает тип время-токовой характеристики. Подробнее о технических характеристиках автоматических выключателей вы можете узнать в соответствующей статье. Таким методом можно легко различать устройства.На фото ниже мы еще раз дублируем это правило:
  • Смотрим схему. Ну и последний, так сказать, способ управления, позволяющий отличить УЗО от дифавтомата, — это посмотреть на схему.

    На схеме дифференциального выключателя дополнительно будут указаны тепловой и электромагнитный расцепители, отсутствующие в цепи дифференциального выключателя. Эта разница также имеет значение при определении устройства.

  • Основные отличия

    Итак, мы подготовили инструкции для юных электриков и домашних мастеров.Как видите, на самом деле ничего сложного нет, а разница между устройством защитного отключения и дифференциальным выключателем довольно существенная. Надеемся, теперь вы знаете, как визуально отличить УЗО от дифавтомата!

    Как работает Узо. Что такое УЗО и как оно работает? Что такое RCD

    При проведении электромонтажных работ, когда специалисты проводят новую электропроводку, устанавливаются специальные контрольно-защитные устройства — УЗО. В старых домах такие устройства не предусмотрены.Поэтому у владельцев квартир возникает резонный вопрос, что это за квартира и для чего она используется.

    Цель и специфика приложения

    В процессе эксплуатации бытовой техники, а также электрических механизмов разного типа со временем происходит износ, в результате чего изоляция проводов перестает выполнять свою роль. Причем ток пойдет не по установленной цепи, а на землю, когда факт соединения с ней обеспечен.

    Гидом, как правило, является сам человек, касающийся, например, корпуса стиральной машины или бойлера.Ток, действующий на корпус, делает его аналогом неизолированного провода.

    Конечно, эффективным методом устранения предпосылок для такой ситуации является создание контура заземления, т.е. искусственно сформированного проводящего контакта с землей корпусов, проводящих ток, или отдельных блоков электрических блоков. Но такая система создается далеко не во всех домах. Поэтому на помощь могут прийти устройства защитного отключения.

    Принцип работы УЗО основан на его способности четко воспринимать малейшие изменения в электросети, несоответствие входных и выходных токов, а также обеспечивать отключение сети в аварийных ситуациях.

    Здесь необходимо помнить, что ток, который движется по фазному проводу (или во всех фазах трехфазной цепи), должен быть равен току в нейтральном проводе.

    Во время работы схемы возможна ситуация, когда человек касается неизолированной проводки или корпуса бытового прибора, находящегося под напряжением. Затем создается новая цепь тока утечки. В исходной схеме входящий ток не будет равен исходящему.Это отклонение будет записано УЗО с последующей командой на размыкание цепи.

    Когда срабатывает УЗО

    Чтобы понять, как работает УЗО, необходимо определить его основные составляющие. В увеличенном виде он будет выглядеть так:

    • Дифференциальный трансформатор тока с тремя обмотками. Для первых двух обмоток есть замыкание на ноль и фазу, но третья связана с пусковым механизмом — реле или электронным узлом.
    • Ударно-спусковой механизм, который представлен блоком силового пуска, а также контактными элементами.
    • Тестовый переключатель — позволяет проверить работу устройства путем тестирования всей сети.

    Благодаря действию цепи устройства защитного отключения обеспечивается защита в таких случаях:

    • при замыкании фазного провода на корпус бытовой техники;
    • , когда была произведена неправильная разводка, например, забыли установить заднюю коробку;
    • при нарушениях в устройстве и подключении щита;
    • из-за утечки тока по другим бытовым причинам — заземление у соседей на водопровод, подключение стиральной машины с помощью шланга с металлическим покрытием и т. Д.


    Варианты выбора

    Емкостные УЗО считаются первыми бытовыми моделями. Их принцип действия аналогичен принципу действия емкостного реле, которое реагирует на реактивный ток смещения. Чувствительность у них чрезвычайно высока — доли мкА, срабатывают практически мгновенно и не реагируют на факторы заземления. Но при этом они очень сильно реагируют на помехи и не могут различить причины аварийной ситуации.

    Рассматривая типы УЗО, нельзя не отметить модификации, которые сейчас стали прототипами наиболее распространенных моделей.Это дифференциальные УЗО-D, которые работают на основе оценки дисбаланса полных токов, возникающих в силовом кабеле.

    Дифференциальные электромеханические модели сейчас популярны при проведении электромеханических работ различного уровня сложности. Когда происходит утечка, один из токов увеличивается, в результате чего возникает магнитный поток. Он создан на феррите, что приводит к наведению ЭДС во второй обмотке. Электромагнит отодвигает защелку, размыкающую контакты.

    Известны также УЗО-ДЭ, относящиеся к электронным модификациям. Они имеют сенсор и встроены непосредственно в операционную систему. Такие изделия отличаются высокой чувствительностью и возможностью размыкания цепи в ответ на токи смещения.

    И, конечно же, у них высокая скорость реакции. Но при этом их стоимость на порядок выше аналогов, а электроника может выйти из строя.

    Если вы хотите знать, как выбрать УЗО, то желательно решить несколько вопросов:

    • поставить комплект УЗО и автомат или отдельно дифавтомат;
    • оценить расчетным путем требуемый ток отключения в момент перегрузки;
    • рассчитать рабочий ток устройства;
    • установить требуемый ток утечки.

    Особенности подключения

    Необходимо помнить, что штатное УЗО срабатывает для защиты человека, не реагируя на короткое замыкание или чрезмерную нагрузку. Но дифавтомат рассчитан на любые нарушения в работе схемы. УЗО можно установить параллельно с обычными машинами, попросив их работать попарно, или выбрать дифавтомат.

    Первый вариант подходит для ситуации, когда проводка уже активна и в цепи уже установлены машины.Второй подход целесообразно применить с новым расположением проводки и экрана.

    Чтобы понять, как правильно подключить УЗО, вам необходимо рассмотреть несколько вариантов:

    • Базовый подход заключается в подключении после счетчика, который, в свою очередь, следует за центральной машиной.
    • Предпочтительная последовательность следующая: счетчик следует за центральной машиной, после чего устанавливается селективное УЗО. Затем выходит из строя групповая машина, за ней следуют групповые защитные устройства.

    Итак, устройство вылетает максимально близко к счетчику, что видно по фото УЗО в приборной панели. Но ставить обычное защитное устройство на старую проводку TN-C недопустимо. Но есть ли необходимость в установке устройства для обеспечения безопасности? Потом нужно ставить после машин, идущих к приборам.

    Также следует учитывать некоторые правила установки:

    • , чтобы исключить возможность совмещения «нулевого» провода с клеммой заземления после УЗО;
    • избегать неполного подключения фаз;
    • не подключайте нагрузочный провод защитного устройства к рабочему проводнику;
    • не закрепляйте ноль защитным проводом при установке розеток;
    • исключить непреднамеренную ошибку при выборе полярности в момент подключения УЗО;
    • не соединяйте нейтраль и фазу, прошедшую через защитное устройство, с другими нейтральными и фазными проводниками.

    Сложнее обстоит дело в квартирах без заземления. В этом случае действует другая инструкция по подключению:

    • Во-первых, нельзя поставить общий прибор.
    • Во-вторых, для каждого потребителя необходимо предусмотреть защиту индивидуальных УЗО.
    • В-третьих, проводники защитного типа от розеток нужно как можно быстрее наматывать на защитный зажим.
    • В-четвертых, при каскадном подключении верхние защитные устройства должны быть менее чувствительными, чем устройства, следующие за ними.

    Устройства защитного отключения позволяют существенно защитить человека, исключая получение электротравм из-за утечек тока. Самостоятельно устанавливать данное устройство не рекомендуется. Для качественной и безопасной работы электросети желательно привлекать к работе специалистов.

    Фото УЗО

    Можно услышать мнение, в котором оспаривается необходимость установки устройств защитного отключения (далее УЗО).Чтобы его опровергнуть или подтвердить, необходимо понимать функциональное назначение этих устройств, принцип их действия, конструктивные особенности и схему подключения. Также немаловажным фактором является правильное подключение в зависимости от конкретной задачи. Мы постараемся максимально широко ответить на все вопросы по этой теме.

    Функциональное назначение

    Согласно официальному определению, этот тип устройства играет роль быстродействующего защитного выключателя, реагирующего на ток утечки.То есть срабатывает при образовании цепи между фазой и «землей» (провод PE).

    Рассмотрим классический пример, в ванной установлен электрический водонагреватель. Работает без проблем, гарантийный срок и даже больше, потом наступает момент, когда корпус одного из ТЭНов трескается и фаза разрывается на воду.

    Если в этом случае образуется цепь фаза — человек — земля, то тока нагрузки будет недостаточно для срабатывания электромагнитной защиты, она рассчитана на короткое замыкание.Что касается тепловой защиты, время ее отклика намного больше, чем сопротивление человеческого тела разрушительному воздействию электрического тока. Результат не поддается описанию, самое страшное, что в многоквартирном доме такой котел может представлять угрозу для соседей.

    В таких случаях представленное устройство — единственный действенный способ обеспечить надежную защиту. Пришло время рассмотреть его концепцию, конструкцию и принцип действия.

    Схема устройства

    В первую очередь представим принципиальную схему устройства с указанием его основных элементов.


    Обозначение:

    • A — Реле, управляющее контактной группой.
    • B — Дифференциальный ТТ (трансформатор тока).
    • C — Фазная обмотка на ДТТ.
    • D — Нулевая обмотка на ДТТ.
    • E — Контактная группа.
    • F — Сопротивление нагрузки.
    • G — Кнопка, запускающая тестирование устройства.
    • 1 — Фазовый вход.
    • 2 — фазный выход.
    • N — Контакты нейтрального провода.

    Теперь объясним, как это работает.

    Принцип действия

    Допустим, некое устройство с внутренним сопротивлением R n питается от нашего защитного устройства, а корпус подключенного устройства заземлен. В этом случае при нормальной работе токи одинаковой величины, но разные по направлению будут течь через обмотки I и II DGT.


    Таким образом, суммарное значение i 0 и i 1 будет равно нулю. Соответственно, магнитные потоки, вызванные токами в DTT, также будут противоположными, поэтому их общее значение также будет равно нулю.С учетом вышеперечисленных условий во вторичной обмотке ДДТ не будет генерироваться ток, поэтому реле, управляющее контактной группой, не срабатывает. То есть защитное устройство останется включенным.

    Теперь рассмотрим ситуацию, когда на корпусе подключенного оборудования произошла поломка.


    В результате появления тока утечки (i y) на «землю» баланс токов, протекающих через первичные обмотки I и II, будет нарушен.Это приведет к тому, что величина магнитного потока также станет отличной от нуля, что вызовет образование тока (i 2) на вторичной обмотке ДПТ (III), на который реле, управляющее контактной группой подключен. Он будет работать, и подключенное оборудование будет обесточено.

    Кнопка тестирования на устройстве имитирует утечку тока через резистор R t, что позволяет проверить, что устройство работает. Эта проверка должна выполняться не реже одного раза в месяц.

    Конструктивные характеристики

    На рисунке ниже показано типичное защитное устройство со снятой верхней крышкой, которая позволяет видеть основные компоненты конструкции.


    Условные обозначения:

    • A — Механизм кнопки запуска тестирования устройства.
    • B — Контактные площадки для подключения фазового входа и нулевого провода.
    • C — Дифференциальный TT.
    • D — Электронная плата усилителя тока, питаемая от вторичной обмотки до уровня, необходимого для срабатывания реле.
    • E — Нижняя часть пластикового корпуса со стандартной установкой на DIN-рейку.
    • F — Дугогасительные камеры на группу размыкания контактов.
    • G — Контактные площадки для подключения фазового вывода и нулевого провода.
    • H — Механизм разблокировки (реле срабатывает или вручную).

    Перечень основных характеристик

    Разобравшись с устройством устройств и принципом их работы, перейдем к основным параметрам. К ним относятся:

    • Тип защищаемой электропроводки, она может быть однофазной или трехфазной.Этот параметр влияет на количество полюсов (2 или 4).
    • Значение номинального напряжения для двухполюсных устройств составляет 220-240 Вольт, для четырехполюсных — 380-400 Вольт.
    • Значение номинального тока нагрузки, этот параметр соответствует таковому у автоматических выключателей (далее AB), но имеет несколько иное назначение (будет подробно рассмотрено ниже), измеряется в амперах.
    • Номинальное значение дифференциального (отключающего) тока, типовые значения: 10, 30, 100 и 300 мА.
    • Вид отключающего тока, принятых обозначений:
    1. AC — соответствует синусоидальному переменному току. Допускаются как медленный его рост, так и внезапное проявление.
    2. A — Добавлена ​​к предыдущим характеристикам (AC) возможность отслеживать утечку выпрямленного пульсирующего тока.
    3. S — Обозначение селективных устройств, они отличаются относительно большой задержкой срабатывания.
    4. G — То же, что и предыдущий тип (S), но с меньшей задержкой.

    Теперь необходимо пояснить значение параметра номинального тока, так как это вызывает некоторые вопросы. Это значение указывает максимально допустимый ток для этого защитного электромеханического устройства.

    При выборе этого параметра необходимо учитывать, что он должен быть на одну ступень выше, чем у AB на этой линии. Например, если АКБ рассчитана на 25 А, то необходимо установить защитные устройства с номинальным током 32 А.

    Обратите внимание, что этот тип устройства не предназначен для работы от короткого замыкания и перегрузки.Если такая авария произойдет, то вся проводка сгорит и произойдет пожар, но прибор останется включенным. Именно поэтому такие защитные устройства необходимо использовать совместно с АВ. Как вариант, можно установить диффузавтомат, по сути, это тоже устройство защитного отключения, но снабженное механизмом защиты от короткого замыкания и перегрузки.

    Маркировка

    Маркировка нанесена на лицевую панель устройства, что это означает, мы расскажем на примере двухполюсного устройства.


    Условные обозначения:

    • A — Аббревиатура или логотип производителя.
    • B — обозначение серии.
    • C — значение номинального напряжения.
    • D — Параметр номинального тока.
    • E — значение тока отключения.
    • F — Графическое обозначение типа тока отключения, может дублироваться буквами (в нашем случае показана синусоида, указывающая на тип переменного тока).
    • G — Графическое обозначение устройства на принципиальных схемах.
    • Н — значение условного тока короткого замыкания.
    • I — Схема устройства.
    • Дж — минимальное значение рабочей температуры (в нашем случае — 25 ° C).

    Мы привели типичную маркировку, которая используется в большинстве устройств этого класса.

    Варианты подключения

    Прежде чем перейти к типовым схемам подключения, необходимо сказать о нескольких общих правилах:

    1. Устройства этого типа должны быть сопряжены с AB, как мы уже упоминали выше, это связано с тем, что защитные устройства не оснащены защитой от короткого замыкания.
    2. Значение номинального тока защитного устройства, оно должно быть на одну ступень выше, чем у АКБ, стоящих с ним в паре.
    3. Входные и выходные контакты не следует путать. То есть фаза должна применяться ко входу, отмеченному, как правило, «1», а ноль — к «N». Соответственно, «2» — это фазовый выход, а «N» — ноль.
    4. Ноль после аппарата не должен подключаться к нулю перед ним.

    Теперь рассмотрим простейшую схему, в которой защита от КЗ и тока утечки установлена ​​на каждой линии.


    В этом случае все просто, на вводе устанавливается АВ (А на рис. 7) с номинальным током 40 А. После него идет общий прибор (В), его еще называют противопожарным. устройство. Это устройство должно иметь ток утечки не менее 100 мА и номинальный ток не менее 50 А (см. Пункт 2 общих правил выше). Далее идут две связки УЗО-АВ (C-E и D-F). Параметр номинального тока для «C» и «D» составляет 16 А. Для «E» и «F» этот параметр должен быть на одну ступень выше, в нашем случае это 20 А.Что касается величины тока отключения, то для влажных помещений этот показатель должен составлять 10 мА, для других групп потребителей — 30 мА.

    Этот вариант подключения самый простой и надежный, но и более дорогой. Его по-прежнему можно использовать для двух внутренних линий, но когда их количество от 4 и более, имеет смысл поставить по одному устройству защиты на группу АВ. Пример такой схемы показан ниже.


    Как видно на этой схеме, у нас установлено одно общее (противопожарное) защитное устройство и четыре групповых для освещения, кухни, розеток и санузла.Такой вариант подключения позволяет значительно снизить затраты по сравнению со схемой, когда жгут RCD-AB подключается к каждой линии. Кроме того, обеспечивается необходимый уровень защиты.

    В заключение несколько слов о необходимости защитного заземления. Для нормального функционирования УЗО это необходимо. В Интернете можно найти схему переключения без PE (по сути, она ничем не отличается от обычной), но следует учесть, что срабатывание будет только при контакте с батареями, трубами холодной или горячей воды, и т.п.

    Введение

    Разработаны специальные электрические устройства для защиты людей и животных. Их называют УЗО, сокращенно УЗО. УЗО защищает от поражения электрическим током при прикосновении к находящемуся под напряжением оборудованию. Защита происходит как при прямом, так и косвенном контакте с оборудованием, находящимся под напряжением. Помимо этой задачи, УЗО используется для контроля состояния изоляции электропроводки. Это обеспечивает дополнительную защиту помещения от огня.Разберем подробнее функции устройства защитного отключения (УЗО).

    Функции УЗО

    УЗО защищает людей и животных от поражения электрическим током при прикосновении к корпусам электроприборов, находящихся под напряжением.

    Токопроводящие корпуса и отдельные элементы оборудования и устройств могут находиться под напряжением. Это определенно чрезвычайная ситуация, и она может возникнуть в двух случаях.

    1. Если фазный провод электропроводки замкнуть на корпус устройства, то при заземлении корпуса происходит так называемое короткое замыкание.Для отключения сети при коротком замыкании предназначены автоматические выключатели. Но корпус может быть не заземлен или сопротивление короткого замыкания очень велико и автоматические выключатели не сработают. Решит проблему защиты, в данном случае установка УЗО в электрической цепи.
    2. Или контакт с фазным проводом корпуса оборудования не полный. То есть можно только повредить изоляцию на токоведущих проводах, и тогда появятся так называемые токи утечки.Ток утечки может не только неприятно «укусить», но и быть смертельным, особенно во влажных помещениях. Правильно подобранное и установленное УЗО защитит от токов утечки.

    выводы

    Основных функций УЗО две:

    • Обнаружение тока утечки и автоматическое отключение электрической цепи. Время отключения цепи УЗО составляет 200 миллисекунд (1 миллисекунда = 0,001 секунды).
    • Защищайте не только от непрямого, но и от прямого контакта.Прямой контакт — это прикосновение человека или животного к токоведущим частям устройств под напряжением.

    Дополнительная функция УЗО

    УЗО, установленное на вводе электросети в дом, обеспечивает дополнительную пожарную безопасность помещения. В некоторых странах установка УЗО с чувствительностью 500 мА является обязательной. В нашей стране (в РФ) установка УЗО на 300 мА на входе в дом, для противопожарной защиты, носит рекомендательный характер.

    Давайте посмотрим, как УЗО контролирует токи утечки и как это работает в целом.

    Принцип действия УЗО

    Рассмотрим принцип работы УЗО, по объяснению принципа действия реле тока повреждения (Схема 1, Схема 2)

    УЗО имеет магнитную цепь из круглого сердечника. Вокруг сердечника протекают ток потребителя INPUT (I1) и потребителя OUT (I2). При нормальной работе эти токи равны, и система находится в равновесии.

    Схема 1.

    class = «eliadunit»>

    При возникновении тока утечки на стороне потребителя (Id) баланс токов нарушается и через измерительную обмотку начинает течь ток, пропорциональный току утечки сердечника УЗО.Реле в УЗО срабатывает, потому что реле питается от этой измерительной обмотки. «Реле сработало» означает, что цепь разомкнута, и ток не течет к поврежденному потребителю и, как следствие, УЗО защищает человека от тока утечки.

    Разность токов называется дифференциальным током, поэтому говорят, что УЗО реагирует на дифференциальные токи в цепи.

    Автоматический выключатель в сочетании с УЗО называется дифференциальным выключателем.То есть он реагирует как на ток короткого замыкания, так и на дифференциальный ток, возникающий из-за утечки тока.

    Схема 2: Принцип работы УЗО в схеме с системой питания TN-S.

    Схема 2.

    Легенда:

    • I 1 — ток потребителя INPUT
    • I2 — ток потребителя ВЫХОД
    • Id — ток утечки
    • Ic — ток через корпус при прикосновении к корпусу под напряжением
    • RA — сопротивление заземления

    Прочтите и посмотрите визуальную схему работы УЗО в системе TN-S… Формат схемы 750 × 1120 точек. Статья с формулами и таблицами.

    Аббревиатура УЗО образована от словосочетания «Устройство защитного отключения», которое определяет назначение устройства, заключающееся в снятии напряжения с подключенной к нему цепи в случае случайных пробоев изоляции и образования через них токов утечки.

    Принцип действия

    Для работы УЗО используется принцип сравнения токов, входящих в управляемую часть цепи, и токов, выходящих из нее на основе дифференциального трансформатора, преобразующего первичные значения каждого вектора во вторичные значения. Строго пропорциональна по углу и направлению геометрического сложения.

    Метод сравнения может быть представлен обычным балансом или балансиром.


    При соблюдении баланса то все работает нормально, а при его нарушении меняется качественное состояние всей системы.

    В однофазной цепи сравнивается вектор фазного тока, приближающийся к измерительному элементу, и нуль, выходящий из него. При нормальной работе с надежной интегральной изоляцией они равны, уравновешивают друг друга.При возникновении неисправности в цепи и появлении тока утечки баланс между рассматриваемыми векторами нарушается его величиной, которая измеряется одной из обмоток трансформатора и передается на логический блок.

    Сравнение токов в трехфазной цепи проводится по такому же принципу, только токи всех трех фаз пропускаются через дифференциальный трансформатор, и на основе их сравнения создается дисбаланс. При нормальной работе токи трех фаз уравновешиваются геометрическим сложением, и в случае нарушения изоляции в любой фазе в ней возникает ток утечки.Его значение определяется суммированием векторов в трансформаторе.


    Структурная схема

    Упрощенная работа устройства защитного отключения может быть представлена ​​блоками на блок-схеме.


    Неуравновешенность токов от измерительного прибора направлена ​​в логическую часть, которая работает по принципу реле:

    1. электромеханический;

    2. или в электронном виде.

    Важно понимать разницу между ними.Электронные системы сейчас переживают бум и становятся все более популярными по многим причинам. У них широкий функционал, большие возможности, но для логики и исполнительного органа требуется электрическое питание, которое обеспечивает специальный блок, подключенный к главной цепи. Если по разным причинам отключится электричество, то такое УЗО, как правило, не подойдет. Исключение составляют редкие электронные модели, оснащенные этой функцией.

    В электромеханических реле

    используется механическая энергия взведенной пружины, что в принципе напоминает обычную мышеловку.Минимального механического усилия на активированный исполнительный элемент достаточно для срабатывания реле.

    Когда мышь касается приманки приготовленной мышеловки, ток утечки, возникающий в случае дисбаланса в дифференциальном трансформаторе, приводит к срабатыванию исполнительного механизма и отключению напряжения от цепи. Для этого реле имеет встроенные силовые контакты в каждой фазе и контакт подготовки тестера.

    Реле любого типа имеет определенные достоинства и недостатки.Электромеханические конструкции надежно работают многие десятилетия и хорошо себя зарекомендовали. Для них не требуется внешний источник питания, и электронные модели полностью от него зависят.

    В настоящее время принято считать, что наиболее эффективной мерой защиты от поражения электрическим током в электроустановках с напряжением до 1000 В является устройство защитного отключения (УЗО) для тока утечки.

    Не возражая против важности данной меры защиты, большинство специалистов много лет спорят о значениях основных параметров УЗО — тока установки, времени срабатывания и надежности.Объясняется это тем, что параметры УЗО тесно связаны с его стоимостью и условиями эксплуатации.

    Действительно, чем меньше ток уставки и меньше время срабатывания, тем выше надежность УЗО, тем дороже его стоимость.

    Кроме того, чем ниже ток уставки и чем короче время срабатывания УЗО, тем строже требования к изоляции защищаемой зоны, так как даже незначительное ее ухудшение в условиях эксплуатации может привести к частому, а в некоторых случаи длительных ложных отключений электроустановки, что делает невозможной нормальную работу.

    С другой стороны, чем выше ток уставки УЗО и больше время его срабатывания, тем хуже его защитные свойства.

    Конструкция УЗО

    Схема однофазного УЗО показана на рисунке ниже.


    В нем на входные клеммы подается напряжение, а к выходным клеммам подключается управляемая цепь.

    Устройство трехфазного дифференциального тока выполнено таким же образом, но оно контролирует токи всех фаз.


    На рисунке показано четырехпроводное УЗО, хотя трехпроводные конструкции доступны в продаже.

    Как проверить УЗО

    Функциональная проверка встроена в любую проектную модель. Для этого используется блок «Тестер», представляющий собой разомкнутый контакт — пружинную кнопку самовозврата и токоограничивающий резистор R. Его величина подбирается так, чтобы создать минимально достаточный ток, который искусственно имитирует утечку.

    При нажатии кнопки «Тест» подключенное к операции УЗО должно отключиться.Если этого не произошло, то его следует забраковать, поискать неисправность и отремонтировать или заменить на исправный. Ежемесячная проверка устройства защитного отключения (УЗО) повышает надежность его работы.

    Кстати, исправность электромеханических и отдельных электронных конструкций несложно проверить в магазине перед покупкой. Для этого при включенном реле достаточно кратковременно подать ток в цепь фазы или нуля от аккумулятора с любой полярностью подключения по вариантам 1 и 2.


    Работающее УЗО с электромеханическим реле будет работать, а электронные изделия в подавляющем большинстве случаев не могут быть проверены таким образом. Им нужна сила для работы логики.

    Как подключить УЗО к нагрузке

    Устройства защитного отключения предназначены для использования в цепях питания по системе TN-S или TN-C-S с подключением в проводке шины защитной нейтрали PE, к которой подключаются корпуса всех электрических устройств.

    В этой ситуации, если изоляция нарушена, потенциал, возникающий на теле, немедленно проходит через провод заземления на землю, и компаратор вычисляет неисправность.

    В обычном режиме питания УЗО не отключает нагрузку, поэтому все электроприборы работают оптимально. Из тока каждой фазы в магнитной цепи трансформатора индуцируется собственный магнитный поток F. Поскольку они равны по величине, но разнонаправлены, они взаимно уничтожают друг друга.Полный магнитный поток отсутствует и не может вызвать ЭДС в обмотке реле.

    В случае утечки опасный потенциал переходит на землю через шину PE. ЭДС индуцируется в обмотке реле из-за возникающего дисбаланса магнитных потоков (токов в фазе и нуле).

    УЗО мгновенно таким образом вычисляет неисправность и за доли секунды обесточивает цепь с силовыми контактами.

    Особенности УЗО с электромеханическим реле

    Использование механической энергии заряженной пружины в некоторых случаях может быть более выгодным, чем использование специального блока для электропитания логической схемы. Рассмотрим это на примере, когда отключен ноль питающей сети, и наступает фаза.

    В такой ситуации статические электронные реле не получат питание и, следовательно, не смогут работать.В то же время в этой ситуации трехфазная система имеет разбаланс фаз и повышение напряжения.

    Если пробой изоляции происходит в ослабленном месте, то потенциал появится на корпусе и уйдет через проводник защитного заземления.

    В УЗО с электромеханическим реле защиты нормально работают от энергии заряженной пружины.

    Как работает УЗО по двухпроводной схеме

    Неоспоримые преимущества защиты от токов утечки в электрооборудовании, выполненном по системе TN-S за счет использования УЗО, обусловили их популярность и желание отдельных владельцев квартир устанавливать УЗО по двухпроводной схеме, не оснащенной УЗО. провод PE.

    В этой ситуации корпус электроприбора изолирован от земли, не взаимодействуя с ней. Если происходит пробой изоляции, то на корпусе появляется фазный потенциал, не сливается с него. На человека, который контактирует с землей и случайно касается устройства, действует ток утечки так же, как и в ситуации без УЗО.

    Однако в цепи без УЗО ток может протекать через тело в течение длительного времени.Когда УЗО установлено, оно обнаружит неисправность и отключит напряжение во время настройки за доли секунды, что также снизит степень поражения электрическим током.

    Таким образом, защита облегчает спасение человека, находящегося под напряжением в зданиях, оборудованных схемой TN-C.

    Многие домашние мастера пытаются самостоятельно установить УЗО в старых домах, ожидающих реконструкции, с целью перехода на систему TN-C-S. При этом в лучшем случае выполняют самодельный контур заземления или просто подключают корпуса электроприборов к водопроводной сети, батареям отопления, железным частям фундамента.

    Такие соединения могут создавать критические ситуации, когда возникают неисправности и причиняют серьезный ущерб. Работы по созданию контура заземления должны проводиться качественно и контролироваться электрическими измерениями. Поэтому их выполняют обученные специалисты.

    Типы монтажа

    Большинство УЗО выполнены в стационарном исполнении для установки на общую DIN-рейку в распределительном щите. Однако в продаже можно найти переносные конструкции, которые подключаются к обычной электрической розетке, а защищаемое устройство дополнительно питается от них.Стоят они немного дороже.

    Что делает УЗО? УЗО — выключатель дифференциального тока. Он сравнивает ток, который прошел в квартиру, с током, который вернулся из квартиры. Если эти токи разные, УЗО отключает напряжение.

    В каких случаях полезно это свойство УЗО? При повреждении изоляции проводов в электроприборах. Например, внутри стиральной машины повреждается изоляция на фазном проводе, в результате чего он касается корпуса.УЗО сразу отключит электричество, потому что ток, который прошел в квартиру по фазному проводу, не вернулся на УЗО (из корпуса машины он вернулся в экран по «заземляющему» проводу, минуя УЗО, а значит , входящий и исходящий токи через УЗО оказались разными) …

    При неаккуратном обращении с электропроводкой. Вот классический пример. Мужчина сверлит стену, упираясь босой ногой в батарею, и попадает в фазовый провод.Ток, проходящий по цепи «тело сверла по металлу — рука — грудь — нога — батарея», вызывает паралич сердца и / или остановку дыхания. Но если есть УЗО, то сразу «почувствует», что часть тока не вернулась (та часть, которая прошла через человека и ушла в аккумулятор). Напряжение будет отключено так быстро, что неприятностей не будет. Конечно, человек будет шокирован, но не более того.

    В случае неосторожного обращения с электроприборами.Вот классический пример. Мужчина сидит на краю ванны, и в ней его жена хорошо застрахована. И он случайно роняет подключенный к розетке радиоприемник в воду … Думаю, принцип ясен — ток не вернулся в УЗО, а пошел по трубам в землю и т. Д. Обратите внимание, что ситуация, когда часть ток не возвращается в УЗО, это называется «утечка тока».

    Когда УЗО не помогает

    Увы, но УЗО не настолько умен, чтобы различать, что именно входит в электрическую цепь — человека или лампочку.Если утечки тока нет, все в порядке. Почему же тогда считается, что УЗО значительно повышают безопасность? Да, потому что подавляющее большинство случаев поражения электрическим током так или иначе связано с током утечки — ситуация, которую распознает УЗО. Вероятность опасной для жизни ситуации (например, когда ток проходит через грудную клетку) без утечки намного ниже.

    Сколько УЗО вам нужно?

    Для защиты от поражения электрическим током достаточно одного на всю квартиру.Другое дело удобство. Конечно, лучше, если при возникновении проблем с электропроводкой или электроприборами отключалась только соответствующая линия, а не обесточивалась вся квартира. Более одного УЗО, как правило, можно установить только в индивидуальной собственной приборной панели, специально предназначенной для этого. В «родном» торпеде на лендинге для этого места обычно не хватает.

    Когда УЗО используется для одной линии и ток течет от него непосредственно к потребителю, он должен иметь встроенный ограничитель максимального тока.Если поставить простое УЗО, то в случае короткого замыкания может выйти из строя. Или при длительной перегрузке по току он будет постоянно нагреваться и в конце концов тоже выйдет из строя (например, начнет отключаться без особой причины). Такое устройство, т.е. УЗО и «автомат» в одном случае, стоит в 2 раза дороже простого УЗО. Например, фирменные устройства стоят около 50 и 100 долларов соответственно.

    Таким образом, если вы видите на простом УЗО надпись «40А», это не значит, что оно отключится при 60А, а значит, при 60А через какое-то время сгорит.

    В каких случаях установка УЗО нецелесообразна?

    Например, в случае старой ветхой проводки. Способность УЗО обнаруживать утечку тока может вызвать больше проблем, чем пользы, если оно начнет непредсказуемо срабатывать. А со старой проводкой это может запуститься в любой момент (даже при первом включении УЗО). Поэтому в данной ситуации лучшим выбором может быть не установка УЗО в цепи электроснабжения всей квартиры, а в местах с повышенной опасностью использовать розетки со встроенным УЗО.

    УЗО

    делятся на типы:

    AC — реагирует на дифференциальный синусоидальный переменный ток;
    А — реагирует на синусоидальный переменный и пульсирующий постоянный дифференциальный ток;
    B — реагирует на синусоидальные переменные, пульсирующие постоянные и прямые дифференциальные токи.

    Пункт 7.1.78 ПУЭ 7-го издания гласит: «В зданиях могут использоваться УЗО типа А, реагирующие как на переменные, так и на пульсирующие токи повреждения, или« переменный ток », реагирующие только на переменные токи утечки.Источником пульсирующего тока являются, например, стиральные машины с регуляторами скорости, регулируемые источники света, телевизоры, видеомагнитофоны, персональные компьютеры и т. Д. »

    Во Временной инструкции по применению УЗО в электроустановках жилых домов (I. стр. От 29.04.97 № 42-6 / 9-ET, п. 4.10) указано:

    «В жилых домах, как правило, следует применять УЗО типа А, которые реагируют не только на переменные, но и на пульсирующие токи короткого замыкания. В обоснованных случаях допускается использование УЗО типа «АС», реагирующих только на переменные токи утечки.«

    Следует отметить, что в последние годы резко увеличилось количество электроприборов с бестрансформаторным питанием.

    Практически все персональные компьютеры, телевизоры, видеорегистраторы имеют импульсные блоки питания, все последние модели электроинструментов, стиральные, швейные машины, бытовая техника для кухни оснащены тиристорными регуляторами без изолирующего трансформатора. Широко используются различные лампы — торшеры, бра с тиристорными диммерами.

    Это означает, что вероятность утечки пульсирующего постоянного тока и, соответственно, ущерба для человека значительно возросла, что послужило основанием для внедрения УЗО типа А в широкую практику.
    В европейских странах в соответствии с требованиями электротехнических стандартов последние несколько лет происходит повсеместная замена УЗО типа АС на тип А.
    В нашей стране также началось повсеместное внедрение УЗО типа А. Опытные конструкторы, при выполнении важных заказов включать в проекты только УЗО типа А.

    В таблице приведены осциллограммы токов в цепях, содержащих различные регулируемые и неуправляемые вентильные элементы, и отмечена возможность использования в этих цепях УЗО типа А или переменного тока.

    УЗО типа В встречаются крайне редко; Применяются в специальных промышленных электроустановках со смешанным питанием — переменного, выпрямленного и постоянного тока.

    Схемы подключения УЗО в электроустановках зданий

    По ГОСТ Р 50571.3-94 (п. 413.1.3.2) обязательным условием нормального функционирования УЗО в электроустановке здания является отсутствие в зоне срабатывания УЗО каких-либо соединений нулевого рабочего проводника N с заземленными элементами электроустановки. и нейтральный защитный провод PE.

    В распределительных щитах электроустановок с системой заземления TN-C-S в точках разъединения PEN-проводника необходимо предусмотреть отдельные клеммы или шины нулевого рабочего N и нулевого защитного PE-проводника.

    Поскольку повреждение и старение изоляции возможно как в фазных, так и в нейтральных рабочих проводниках, а УЗО реагирует на утечку на землю от любого из них, на отходящих линиях следует устанавливать двух- и четырехполюсные автоматические выключатели. Только в этом случае можно найти неисправную цепь, поочередно подключив линии, в том числе цепь с утечкой из нулевого проводника без демонтажа вводного распределительного устройства, а также возможно отключение неисправной цепи для обеспечения работы остальной части электроустановки.

    В ГОСТ Р 50571.9-94 «Электроустановки зданий. Часть 4. Требования безопасности. Применение мер защиты от сверхтоков »содержит инструкции по установке и защите нулевого рабочего и нулевого защитных проводов.

    Пункт 473.3.2 «Защита нейтрального рабочего проводника» регулирует порядок защиты нейтрального рабочего проводника от тока короткого замыкания.

    Пункт 473.3.2.1. Системы TT и TN:

    а) в случаях, когда поперечное сечение нулевого рабочего проводника, по крайней мере, равно или эквивалентно поперечному сечению фазных проводов, не требуется предусматривать устройство для обнаружения тока короткого замыкания в этом проводе. или устройство для его отключения;

    б) в случаях, когда поперечное сечение нулевого рабочего проводника меньше поперечного сечения фазных проводов, необходимо обеспечить обнаружение тока короткого замыкания в нейтральном рабочем проводнике, соответствующем его поперечному сечению, с помощью влияние на отключение фазных проводов.В этом случае отключение нулевого рабочего проводника обязательно.

    Однако обнаружение тока короткого замыкания в нейтральном проводе не требуется, если одновременно выполняются следующие условия:

    нейтральный рабочий провод защищен от короткого замыкания устройством защиты фазных проводов цепи;

    максимальный ожидаемый ток, который может протекать через нулевой рабочий проводник в нормальном режиме, значительно меньше, чем значение длительно допустимого тока этого проводника.

    Примечание. Второе условие выполняется, если передаваемая мощность распределяется между рабочими фазами по возможности равномерно. Например, если сумма мощностей электрических потребителей, подключенных между фазой и нулевым рабочим проводом (освещение, розетки), намного меньше суммарной мощности рассматриваемой цепи. Сечение нулевого рабочего проводника должно составлять не менее 50% сечения фазного проводника.

    Пункт 473.3.2.2. IT-система.

    Системы

    IT обычно не нуждаются в нейтральном проводе. Однако в случаях использования системы IT с нейтральным рабочим проводом необходимо предусмотреть устройства обнаружения перегрузки по току в нейтральном проводе каждой цепи с эффектом отключения всех токоведущих проводов соответствующей цепи, включая нулевой рабочий провод.

    Такие меры не требуются, если:

    нейтральный рабочий проводник надежно защищен от короткого замыкания с помощью устройства, установленного на стороне питания, например, на вводе в установку, в соответствии с правилами, указанными в п. 434.3 ГОСТ 50571.5;

    рассматриваемая цепь защищена устройством защитного отключения, которое реагирует на дифференциальный дифференциальный ток с установочным током не более 0,15 от максимально допустимого тока нейтрального рабочего проводника.

    Такое устройство должно отключать все токоведущие проводники соответствующей цепи, включая нулевой провод.

    Если требуется отключить нулевой рабочий провод, то он должен быть отключен после отключения фазных проводов, и включен одновременно с фазными проводами или ранее.

    ГОСТ Р 50571.3-94 в пункте 413 «Защита от непрямого прикосновения» формулирует требования к реализации защитного заземления в системе ТТ.

    Пункт 413.1.4. Система ТТ.

    Пункт 413.1.4.1. Все открытые токопроводящие части, защищенные одним защитным устройством, должны быть соединены защитным проводом с одним заземляющим устройством. Если несколько защитных устройств устанавливаются последовательно, это требование применяется отдельно к каждой группе открытых токопроводящих частей, защищаемых каждым устройством.

    Нейтральная точка или, если ее нет, фаза питающего генератора или трансформатора должна быть заземлена.

    Пункт 413.1.4.2. Должно быть выполнено следующее условие:

    РАИа — 50 В, где: РА — суммарное сопротивление заземляющего электрода и заземляющего проводника; Ia — ток срабатывания защитного устройства.

    Если защитное устройство является устройством остаточного тока и реагирует на остаточный ток, то Ia означает настройку остаточного тока защитного устройства IDn.

    Если защитное устройство является устройством защиты от перегрузки по току, оно должно быть:

    или устройство с обратно зависимой время-токовой характеристикой, где Ia — значение тока, обеспечивающее время срабатывания устройства не более 5 с;

    или устройство с отсечкой по току, и тогда Ia — уставка тока отсечки.

    На рис. 1-11 приведены примеры схем подключения зданий, отвечающих требованиям современных нормативных документов, с использованием УЗО (для примера взята линейка УЗО ASTRO *).

    По эффективности действия до сих пор нет реальной альтернативы защитному отключению, о чем наглядно свидетельствуют результаты научных исследований и успешная практика использования УЗО по всему миру.

    В ближайшие годы УЗО станут основным и наиболее радикальным средством электрозащиты, а это означает, что нормативная база должна развиваться и улучшаться, чтобы соответствовать требованиям времени.

    Базовое электрическое проектирование панели ПЛК (электрические схемы)

    Создание панели ПЛК

    Инженеры редко создают свои собственные конструкции панелей ПЛК (но, конечно, не невозможно).Например, после завершения проектирования электрических систем их должен выполнить электрик. Таким образом, вы обязаны эффективно сообщить электрикам о своих конструктивных намерениях с помощью чертежей.

    Базовая электрическая конструкция панели ПЛК — Схемы подключения (на фото: Современная панель промышленной автоматизации; кредит: plctrg.com)

    На некоторых предприятиях электрики также вводят релейную логику и выполняют отладку. В этой статье обсуждаются вопросы проектирования при реализации, которые должен учитывать дизайнер.


    Схемы электрических соединений панели ПЛК

    В промышленных условиях ПЛК не просто «вставляют в розетку». Электрическая конструкция каждой машины должна включать как минимум следующие компоненты.

    1. Трансформаторы — для понижения напряжения питания переменного тока до более низких уровней
    2. Силовые контакты — для ручного включения / выключения питания машины с помощью кнопок аварийного останова
    3. Клеммы — для подключения устройств
    4. Предохранители или автоматические выключатели — вызовут сбой питания, если потребляется слишком большой ток. случайный контакт

    Система управления панели ПЛК обычно использует питание переменного и постоянного тока на разных уровнях напряжения.Шкафы управления часто поставляются с однофазным переменным током 220/440/550 В, , или двухфазным переменным током 220/440 В переменного тока или трехфазным переменным током 330/550 В .

    Эта мощность должна быть понижена до более низкого уровня для органов управления и источников питания постоянного тока . 110 В переменного тока распространено в Северной Америке, а 220 В переменного тока распространено в Европе и странах Содружества. Также шкаф управления может подавать более высокое напряжение на другое оборудование, такое как двигатели.


    Пример контроллера мотора

    Пример схемы подключения для контроллера мотора показан на рисунке 1. Обратите внимание, что символы подробно обсуждаются позже).

    Пунктирными линиями обозначен один купленный компонент. Эта система использует 3-фазное питание переменного тока (L1, L2 и L3) , подключенное к клеммам. Затем три фазы подключаются к прерывателю питания. Затем все три фазы подаются на пускатель двигателя, который содержит три контакта M и три тепловых реле перегрузки (прерыватели).

    Рисунок 1. Схема контроллера двигателя

    Контакты M будут управляться катушкой M. Выход пускателя двигателя поступает на трехфазный двигатель переменного тока. Питание осуществляется путем подключения понижающего трансформатора к управляющей электронике путем подключения к фазам L2 и L3. Затем более низкое напряжение используется для подачи питания на левую и правую направляющие лестницы внизу. Нейтральная шина также заземлена.

    Логика состоит из двух кнопок:

    • Кнопка пуска нормально разомкнута, поэтому в случае отказа двигатель не может быть запущен.
    • Кнопка остановки обычно замкнута, поэтому в случае отказа провода или соединения система безопасно останавливается.

    Система управляет катушкой стартера двигателя M и использует запасной контакт на стартере M для уплотнения пускателя двигателя .

    Кроме того: напряжение понижающего трансформатора подается между фазами L2 и L3. Это увеличит эффективное напряжение на 50% от величины напряжения на одной фазе.

    На схеме также показана нумерация проводов в устройстве.Это важно для промышленных систем управления, которые могут содержать сотни или тысячи проводов. Эти схемы нумерации часто являются индивидуальными для каждого объекта, но есть инструменты, которые помогут сделать маркировку проводов, которая появится в окончательном шкафу управления.

    Рисунок 2 — Физическая компоновка шкафа управления
    После завершения электрического проектирования разрабатывается компоновка шкафа управления, как показано на рисунке 2. Необходимо учитывать физические размеры устройств, и для требуется достаточное пространство. для прокладки проводов между компонентами .

    В шкафу питание переменного тока должно поступать на клеммную колодку и подключаться к главному выключателю.

    Затем он будет подключен к контакторам и реле перегрузки, которые составляют пускатель двигателя. Две фазы также подключены к трансформатору для питания логики. Кнопки запуска и остановки находятся слева от поля (примечание: обычно они устанавливаются в другом месте, и потребуется отдельный чертеж компоновки).

    Окончательная компоновка шкафа может выглядеть так, как показано на Рисунке 1.

    Рисунок 3 — Окончательная разводка панели ПЛК

    При создании система будет соответствовать определенным стандартам, которые могут быть политикой компании или требованиями законодательства. Это часто включает такие элементы, как;

    • Прижимы — они фиксируют провод, чтобы они не двигались
    • Этикетки — этикетки для проводов помогают в поиске и устранении неисправностей
    • Устройства снятия натяжения — они удерживают провод, чтобы его нельзя было вытащить из винтовые клеммы
    • Заземление — в целях безопасности на каждой металлической детали могут потребоваться заземляющие провода

    Фотография шкафа промышленного управления показана на рисунке 4:

    Рисунок 4 — Промышленный шкаф управления с проводами, клемма полоса, кнопки на передней панели ПЛК и т.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *