Ветряной генератор как сделать: Как самому сделать ветрогенератор?

Ноя 1, 1973 Разное

Ветряной генератор как сделать: Как самому сделать ветрогенератор?

Содержание

Самодельные ветрогенераторы из авто-генераторов

>

Ветряк из авто-генератора с двойным статором

Ветрогенератор от «Мото26», сделан из автомобильного генератора с двойным статором. Ветряк сделан для работы на акб 24 вольт, мощность в итоге 300ватт при ветре 9м/с. Подробности и фото в статье. >

Ветрогенератор своими руками

Практически полностью самодельный ветрогенератор, генератор которого изначально должен был быть из автомобильного генератора, но после того как корпус был сломан от генератора остался только статор, а корпус пришлось делать новый. >

Ветрогенератор из авто-генератора от Бычка

Генератор этого ветряка сделан из автомобильного генератора от гзузовика Бычек. Статор перемотан проводом 0,6 мм. Ротор полностью новый, был выточен у токоря по нужным размерам под купленные магниты 30*10*5мм. >

Простая передлка автомобильного генератора

Самая простая переделка автомобильного генератора на постоянные магниты. Генератор для этого ветряка делался из автогенератора, статор которого не подвергался изменениям, а вот ротор был оснащен неодимовыми магнитами. >

Генератор для ветряка из авто-генератора

Как просто и без особых усилий переделать автогенератор для самодельного ветрогенератора. Для переделки не-надо ни перематывать статор, не точить роторе под магниты. Вся переделка сводится к переключению фаз генератора, и оснащению ротора маленькими магнитиками для самовозбуждения ротора. >

Однолопастной винт для ветрогенератора

В продолжении усовершенствования ветрогенератора на этот раз было решено попробовать изготовить однолопастной винт и посмотреть какие приимущества он дает и какие недостатки присущи однолопастным винтам. Лопасть с противовесом имеет не жесткое крепление и может откланяться от оси вращения до 15 градусов. >

Ветрогенератор из тракторного генератора Г700

В этом ветрогенераторе в качестве генератора использован тракторный генератор с электровозбуждением. Генератор подвергся существенным изменениям, был перемотан статор более тонким проводом, а так-же домотала катушка ротора. Для этого ветряка винт был сделан из дюралюминия. Винт двухлопастной размахом 1,3м. >

Самодельный ветрогенератор для яхты

Самодельный ветрогенератор, генератор которого сделан из генератора мотоцикла ИЖ юпитер, Этот ветрогенератор специально создавался для эксплуатации на небольшой яхте, где должен был обеспечивать питанием навигационные приборы и мелкую электронику. >

Новый-второй ветрогенератор для яхты

В новом ветрогенераторе использовался статор от
автомобильного генератора
. Мощность нового ветряка теперь больше, диаметр винта также увеличился. Теперь ветрогенератор имеет новую защиту от сильного ветра , теперь винт не уходит в сторону, а опрокидывается, и хвост теперь не складывается, в общем подробности в статье. >

Ветряки цветы из велосипедных динамок

Иньтересные и красивые ветряки, генераторы которых это велосипедные динамо втулки. Сделаны они в виде всяких цветов, подсолнухов, ромашек, и окрашены в соответствующие цвета, красиво смотрятся как элемент дизайна.

Ветрогенератор своими руками | Как сделать самому?

Сергей Васильевич, вложив в дело всего 300 долларов, качает электричество из ветра.

Мы познакомились с Сергеем Васильевичем, когда его ветроэлектростанция была только в проекте.

Ветрогенератор своими руками

«Линия электропередач рядом, – говорит Сергей Васильевич, – но «свободной мощности» нет. Предложили ставить свой трансформатор по цене легкового автомобиля».

«Незачем тратить такие деньги», – резонно решил хозяин. Задачу для себя Сергей Васильевич поставил так: получать достаточное количество энергии в доме площадью 80 квадратных метров зимой и летом.

Вначале хозяин приобрел солнечную батарею общей мощностью 120Вт. Через импульсную схему она заряжает кислотную аккумуляторную батарею на 200 Ампер-часов.  Летом этого хватает, однако зимой одной лишь солнечной энергии недостаточно.

На хозяйстве есть бензиновый генератор мощностью 2 киловатта. Но он предназначен для особых случаев: работы болгаркой, дрелью или аварийной подзарядки аккумуляторной батареи. Зимой использовать бензин невыгодно.

Решению сделать ветрогенератор самому альтернативы не было.

Участок Сергея Васильевича расположен в Киево-Святошинском районе. Здесь, по данным Укргидрометцентра среднегодовая скорость ветра меньше 4,5 метров в секунду. Достаточно ли такого слабого ветра для того, чтобы покрыть нужды хозяйства изобретателя?

Инженер по образованию и профессии, Сергей Васильевич подошел к процессу постройки ветряка с особой тщательностью. Вначале сделал уменьшенный макет, на котором тестировал силу ветра, действующую на лопасти. Остановился на вертикальной схеме ветрогенератора. Ее основное преимущество –ветрогенератор будет давать ток уже при скорости ветра от 1-2 метров в секунду. Кроме того, вертикальный ветрогенератор значительно менее малошумный, чем ветряк, построенный по горизонтальной схеме.

«Фундамент построил со значительным запасом, – говорит Сергей Васильевич, – для обустройства опор вполне достаточно 2-4 мешков цемента, 10 ведер песка и 30 ведер щебня. Каждый «куб» фундамента, в который помещается опора, получится размером почти с кухонную плиту. Этого более чем достаточно».

Крутящий момент лопастей ветряка передает на редуктор шестерня от болгарки:

Конечно, копать фундамент нужно на глубину, большую, чем глубина промерзания для вашего региона (в Украине это 80 сантиметров – округленно метр).

В цементный раствор замурованы уголки-сороковка. Изобретатель советует вначале собрать основу конструкции – прямоугольник на болтах – а затем уже заливать опоры бетоном. Так удастся избежать перекосов.

Итак, основание ветрогенератора – металлическая конструкция из уголка-сороковки, скрепленная болтами, высотой 5 метров. Лопасти ветрогенератора занимают в ней 2 метра высоты.

Через месяц на этом надежном основании изобретатель установил самодельные лопасти ветряка и подключенный к ним через планетарный редуктор от старой болгарки генератор мощностью 370 Ватт.

Редуктор с генератором в сборе:

Верхнее крепление лопастей:

Датчик ветра из донышек пивных жестянок (впоследствии Сергей Васильевич усовершенствовал его, добавив еще пару лопастей):

На данном этапе стоимость всех материалов конструкции ветрогенератора составила:

  1. Цемент – 4 мешка по 50 грн – 200 грн ($25 ).
  2. Песок, щебень – бесплатно.
  3. Редуктор – бесплатно, запчасть от старой болгарки.
  4. Генератор – около 250 грн ($30), это обычный б/у электродвигатель во всепогодном исполнении мощностью 370 ватт.
  5. Металлический уголок – 50 м. х 20 грн/м – около 1000 грн ($125).
  6. Болты с шайбами и гайками – 200 грн ($25).
  7. Доски (50-ка), 0,5 м. куб (идут на настил и на создание козырька) – 200 грн ($25).
  8. Бляха (4 листа) – 400 грн ($50).
  9. Электрокабель – 50 грн ($6).
  10. Краска – 30 грн ($4).

Итого: 2300 грн  (приблизительно $290).

Продолжительность работ для одного человека: 

  1. выкапывание ям фундамента — 1 день;
  2. создание конструкции опоры (порезка уголков, сверление отверстий под болты) – 2 дня;
  3. покраска – 0,5 дня;
  4. заливка четырех блоков фундамента – 0,5 дня;
  5. создание лопастей ветрогенератора (каркас, порезка оцинкованной бляхи, укрепление дисков и редуктора) – 4 дня;
  6. создание деревянного настила на высоте 3 метра – 0,5 дня;
  7. монтаж конструкции ветряка (заносится на высоту в разобранном состоянии) – 1 день;

Однако, ветряк и генератор – далеко не полный комплект устройства для превращения в электричество энергии ветра. Как эффективно снимать с ветрогенератора мощность? Ответ на этот вопрос читайте в продолжении НАМТЕПЛО.

Про интересную конструкцию самодельного ветрогенератора, созданного британскими энтузиастами, можно узнать в следующем материале НАМТЕПЛО.

Как сделать ветрогенератор своими руками

Ветряные генераторы с давних пор использовались людьми в качестве недорогих и удобных источников электроэнергии, отличающихся простотой своего изготовления и высокой экологичностью. Ряды так называемых «ветряков», картинно раскинувших свои лопасти на фоне природных ландшафтов, украсили в своё время многие уголки нашей планеты, а их промышленное производство было налажено в кратчайшие сроки. И в наши дни ветрогенераторы промышленного изготовления широко применяются в тех регионах России, где эффект от их использования вполне оправдан.

Конечно же, самодельным ветряным генератором сегодня никого не удивишь. Но перед тем как сделать ветрогенератор своими руками, следует тщательного изучить данную инструкцию.

Конструкция

Конструкция ветрогенератора

Предполагается, что рассматриваемая нами конструкция генератора будет состоять из следующих основных частей:

  • собственно ветрогенератор, собранный на базе двигателя промышленного изготовления;
  • электронный блок управления зарядкой;
  • комплект соединительных проводов;
  • крепёжная мачта;
  • растяжки.

В качестве электрического привода в рассматриваемой конструкции используется двигатель постоянного тока, которым комплектуются некоторые модели так называемых «бегущих дорожек» (260V, 5A). При этом обратный (генераторный) эффект мы получим за счёт того, что любое устройство подобного типа в отношении формируемого им электромагнитного поля является обратимым. При наличии вращательного усилия на валу двигатель автоматически превращается в генератор.

Используемые материалы

Материалы для ветряка Большую часть материалов, используемых в этом изделии, вы сможете приобрести в любом хозяйственном магазине. Помимо двигателя от дорожки вам потребуется следующий набор комплектующих изделий и расходных материалов:
  • специальная нарезная втулка;
  • мост диодный на токи 30-50A;
  • кусок полихлорвиниловой трубки.

Кроме того, для изготовления хвостовика и корпуса генератора необходимо подготовить следующие детали и расходный материал:

  • Труба квадратная 25х25 мм;
  • Фланец маскирующий;
  • Патрубок;
  • Саморезы;
  • Болты;
  • Шайбы;
  • Скотч.

Сборка

Сборка ветрогенератора

Изготовление ветрогенератора начинаем с подготовки лопастей, которые можно вырезать из тонких полосок дюралюминия. Примерная форма лопастей генератора приведена ниже.

Перед креплением заготовки следует тщательно обработать шкуркой до получения необходимого профиля, таким образом, чтобы передняя кромка была закруглена, а задняя – оставалась заостренной.

Хвостовик делаем из жести, причём его размер и форма не играют решающей роли – главное, чтобы он был достаточно жёстким.
Затем берём снятый с беговой дорожки двигатель с прикрепленной к нему втулкой и отмечаем на нём места расположения трёх отверстий на расстоянии примерно 10 см от центра (на равном удалении друг от друга). Затем просверливаем по получившейся разметке отверстия и нарезаем резьбу под крепёжные болты.

Рекомендуем пометить место крепления каждой лопасти к втулке, что позволит вам не спутать их при сборке.

Монтаж

Монтаж ветрогенератора

Окончательную сборку ветрогенератора проводим в следующей последовательности:

  1. Разрежьте трубку ПВХ на две части и проложите полученным материалом то место на квадратной трубе, куда вы собираетесь крепить ваш двигатель. Расположите диодный мостик неподалёку от двигателя и закрепите его при помощи саморезов.
  2. Соедините выходящий из двигателя провод черного цвета с «плюсом» диодного моста.
  3. Присоедините выходящий от двигателя провод красного цвета к «минусу» моста.
  4. Положение хвостовика настройте таким образом, чтобы плоскость всей системы была параллельна земле. Прилаживаем хвостовик к трубе и крепим его на ней при помощи заранее приготовленных саморезов.
  5. Размещаем помеченные ранее лопасти на свои места и крепим их болтами с шайбами на втулку, причём на ближние к оси отверстия устанавливаем по две шайбы (с каждой стороны основания лопасти). Для трех наружных отверстий устанавливаем по одной шайбе (со стороны болта). После этого основательно затягиваем полученные соединения.
  6. Надёжно зафиксировав вал двигателя, надеваем на него втулку с лопастями и с помощью плоскогубцев заворачиваем ее до упора, против хода часовой стрелки.
  7. Затем проворачиваем патрубок к маскирующему фланцу с помощью газового ключа.
  8. После этого проводим балансировку основания трубы с закреплённым на ней двигателем и хвостовиком и отмечаем точку равновесного положения.
  9. В этой точке производим крепление несущего основания к мачте (для удобства вам, возможно, придется открутить для этого втулку и хвостовик).
  10. Закрепляем основание на саморезы и восстанавливаем убранные ранее узлы.
Форма лопастей Ветряной генератор может прослужить вам значительно дольше, если вы покрасите не только его лопасти, но также основание, хвостовик и защитный кожух двигателя.

Для включения ветряного устройства в рабочую электрическую сеть вам обязательно понадобится комплект проводов, контроллер зарядки батарей, амперметр и нагрузка (аккумуляторная батарея).

Что касается несущей мачты, то сразу отметим её особое значение для надёжного крепления генератора, что гарантирует его долгую и бесперебойную эксплуатацию. Этот элемент конструкции не только должен быть достаточно прочным, но ещё и обязан иметь хорошую устойчивость. Кроме того, совсем не помешает, если мачта будет оборудована простейшим механизмом опускания и подъёма основания с двигателем.

Отметим также и тот факт, что чем выше мачта – тем более сильные воздушные потоки будут доступны вашей импровизированной электростанции. Используемые для крепления мачты проволочные растяжки можно установить через каждые 5,0-5,5 м по её высоте.

Делаем для дачи вертикальный ветрогенератор своими руками

Пожалуй, ни один дачник не будет спорить с тем, что сегодня необходимо иметь какой-либо альтернативный источник электроэнергии, ведь свет могут отключить в любую минуту. Большую популярность, как источник бесплатной энергии, сегодня получили самодельные ветрогенераторы. Разнообразные модели таких устройств предлагаются на рынке, а в интернете можно увидеть схемы, чертежи и видео, позволяющие собрать их своими руками.

Стоит отметить, что самодельный ветрогенератор будет очень полезен даже при его небольшой мощности. Уже одно то, что среди кромешной тьмы дача будет освещена, и можно будет без проблем посмотреть телевизор или зарядить мобильное устройство, подстрахует от неприятностей и поднимет престиж перед соседями.

к содержанию ↑

Три маленьких секрета

Первый секрет заключается в том, на какую высоту будет установлен самодельный ветрогенератор. Понятно, что проще смонтировать его на высоте нескольких метров от земли, но и толку от него тогда будет не особенно много. Следует учитывать, что чем выше ветрогенератор, тем сильнее ветер, быстрее крутятся его лопасти, и тем больше энергии можно получить от сделанной своими руками электростанции.

Второй секрет заключается в выборе АКБ. В интернете советуют не мудрить и ставить автомобильный аккумулятор. Да, это проще и, на первый взгляд, дешевле. Но, необходимо знать, что автомобильные аккумуляторы следует устанавливать в хорошо проветриваемом помещении, они требуют ухода, а их срок службы не превышает 3-х лет. Будет лучше приобрести специальный аккумулятор. Хотя он и стоит дороже, но это себя оправдает.

Третий секрет, какой ветрогенератор лучше подходит для изготовления своими руками — горизонтальный или вертикальный? У каждого варианта свои достоинства и недостатки. Мы рассмотрим ветрогенераторы вертикального типа, принцип работы которых показан на рис.2.

Сначала о недостатках: вертикальный ветрогенератор имеет низкий КПД по сравнению с горизонтальными моделями, на его сборку уходит больше материалов, что, соответственно, ведёт к удорожанию конструкции. С другой стороны, вертикальные ветряки могут работать при более слабом ветре, чем их горизонтальные аналоги, что компенсирует их невысокий КПД. Их не требуется поднимать на слишком большую высоту, они проще и дешевле при монтаже и установке, что сводит на нет разницу в стоимости материалов.

Немаловажным фактором является и то, что вертикальный ветрогенератор надёжнее при резких порывах ветра и ураганах, так как его устойчивость растёт с повышением скорости вращения. Кроме того, вертикальные конструкции практически бесшумны, что позволяет устанавливать их в любом месте, вплоть до крыши жилого дома. Всё вышеперечисленное ведёт к тому, что эти установки пользуются растущим спросом и выпускаются в различных модификациях, применительно к требуемой мощности и ветрам, преобладающим в определённых регионах, с чем, кстати, можно ознакомиться на видео ниже.

к содержанию ↑

Простейшая конструкция

Маломощный вертикальный ветрогенератор нетрудно собрать своими руками из, без преувеличения, бросовых материалов: большой пластиковой бутылки или жестяной банки, стальной оси и старого электромотора. Достаточно пополам разрезать банку или бутылку и закрепить эти половины на связанной с генератором оси вращения (рис.3). Такой вертикальный ветряк несложно сделать разборным и брать его с собой на рыбалку или в поход, где он не только осветит место ночлега, но и позволит подзарядить телефон или другое мобильное устройство.

к содержанию ↑

Собственная электростанция для дачи

А вот изготовление более мощного ветрогенератора придётся начать с покупки ведра и это не розыгрыш. Да, для начала, придётся купить обычное оцинкованное ведро. Это, конечно, в том случае, если такое прохудившееся ведро не завалялось где-либо в сарае. Размечаем его на четыре части и делаем ножницами по металлу прорези, так, как это показано на рис.4.

Ведро крепится за днище к шкиву генератора. Крепить следует четырьмя болтами, расположив их строго симметрично и на одном расстоянии от оси вращения, что позволит избежать дисбаланса.

Итак, практически всё готово, осталось выполнить следующие действия:

  1. Отогнуть металл на прорезях, чтобы получить лопасти. Если чаще всего господствует сильный ветер, достаточно слегка отогнуть бока. Если ветер слабый, отогнуть можно и посильнее. В любом случае, величину изгиба можно отрегулировать позднее;
  2. Соединить все необходимые приборы (кроме генератора) так, как это показано на рис.5;
  3. Закрепить генератор с идущими от него проводами на мачте;
  4. Укрепить мачту;
  5. Подсоединить провода, идущие от генератора, к контроллеру.

Всё. Изготовленный своими руками ветрогенератор готов к работе.

к содержанию ↑

Электрическая схема

Рассмотрим подробнее электрическую схему. Понятно, что ветер может в любую минуту прекратиться. Поэтому ветрогенераторы не подключают напрямую к бытовым приборам, а вначале заряжают от них аккумуляторные батареи, для обеспечения сохранности которых, применяется контроллер заряда. Далее, учитывая то, что АКБ дают постоянный ток малого напряжения, в то время как практически все бытовые приборы потребляют переменный ток напряжением 220 вольт, устанавливается преобразователь напряжения или, как его ещё называют, инвертор и только потом подключают всех потребителей.

Для того чтобы ветрогенератор обеспечивал работу персонального компьютера, телевизора, сигнализации и нескольких энергосберегающих ламп достаточно установить аккумулятор ёмкостью 75 ампер/час, преобразователь напряжения (инвертор) мощностью 1,0 кВт, плюс генератор соответствующей мощности. А что ещё нужно, когда отдыхаешь на даче?

к содержанию ↑

Подведём итоги

Вертикальный ветрогенератор, который можно сделать по приведённым выше инструкциям, может работать при довольно слабом ветре и независимо от его направления. Его конструкция упрощается за счёт того, что в ней отсутствует флюгер, разворачивающий по ветру винт горизонтального ветрогенератора.

Основным недостатком вертикально-осевых ветряных турбин является небольшой КПД, но это искупается рядом других преимуществ:

  • Скорость и простота сборки;
  • Отсутствие ультразвуковой вибрации, характерной для горизонтальных ветрогенераторов;
  • Нетребовательность к техническому обслуживанию;
  • Достаточно тихая работа, позволяющая установить вертикальный ветряк практически в любом месте.

Конечно, сделанный своими руками ветряк может не выдержать излишне сильного ветра, который окажется способным сорвать ведро. Но это не проблема, просто придётся купить новое или приберечь где-либо в сарае отслужившее свой срок старое.

На видео ниже можно посмотреть как запитываются бытовые приборы на даче. Правда, ветрогенератор здесь сделан не из ведра, но тоже своими руками.

Как сделать ветрогенератор — правила изготовления домашнего ветрогенератора своими руками

Если у вас нет доступа к общей электрической сети, либо вы решили обзавестись автономным источником энергии, то целесообразно установить домашний ветрогенератор. Сила потока воздушных масс позволит вам своими руками наладить поступление электроэнергии для бытовых нужд.

Как работает ветрогенератор?

Прежде, чем самому собирать и устанавливать ветрогенератор, необходимо определить, имеет ли это смысл. Для этого необходимо измерить скорость ветра в той местности, где вы решили выполнить установку.  Если окажется, что ветровой силы недостаточно, то устанавливать генератор невыгодно.

Помимо скорости ветра, нужно определить, какой уровень мощности генератора необходим. Конечно же, не стоит полагать, что генератор данного типа будет функционировать круглосуточно без перебоев, ведь скорость ветра может сильно меняться в течении дня, и это повлияет на возникновение энергетических проблем.

Возможную мощность генератора вы сможете определить с помощью расчета коэффициента использования энергии ветра. Он позволяет оценить часть энергии воздушного потока, которая будет использоваться ветроколесом.  Данный показатель зависит от различных внешних параметров.

Если вы делаете ветрогенератор своими руками, то следует знать его основные составляющие:

  • ветроколесо с определенным количеством лопастей
  • редуктор, который отвечает за круговое движение колеса
  • мачта, при помощи которой ветряные потоки поступают в инвертор, чтобы превратиться в ток

Само электричество берется из энергии ветра, которая приводит в движение лопасти с колесом. Круговые манипуляции передаются с помощью редуктора в генераторный вал. Именно там происходит превращение энергии механического типа в электрическую.

Из каких элементов состоит домашний ветрогенератор?

Чтобы сделать генератор в домашних условиях, необходимо приобрести все его комплектующие:

  • аккумулятор на кислотной или гелиевой основе
  • ротор
  • генератор
  • ведро или бочка из металла большого размера
  • полугерметичная кнопка (выполняет роль выключателя)
  • специальные болты
  • реле для подзарядки аккумулятора
  • реле лампы заряда
  • вольтметр
  • мачта
  • нержавеющая проволока
  • провода
  • специальная коробка для наружных проводов

С помощью данного оборудования и запчастей у вас получится сделать ветрогенератор своими руками.

Сколько лопастей должно быть у ветрогенератора?

Одним из самых важных этапов в создании ветрогенератора является этап подбора и прикрепления лопастей. Количество, качество и габариты каждой лопасти оказывают сильное влияние на будущую работу всего устройства. Существует несколько основных принципов, которые необходимо учитывать при сборке конструкции данного типа:

  • при установке двух-трех лопастей большого размера неправильно считать, что мощность генератора равна показателю с пятью-шестью небольшими лопастями
  • при устройстве генератора с малым количеством лопастей необходимо уделять большое внимание балансу, лопасти большей площади дают сильную вибрацию
  • от размеров лопастей напрямую зависит уровень шума, издаваемого установкой, чем больше будет скорость и окружность вращения лопастей, тем сильнее вы будете это слышать, а при установке такого генератора в частном доме вы будете часто просыпаться по ночам
  • если вы создаете быстроходные лопасти, то необходимо учитывать особые требования к их конструкции, лучше всего сделать лопасти из разрезанной трубы КИЭВ

При использовании габаритных лопастей достаточно много нагрузки приходится на ось генератора, мачту и все его составляющие. Использование такой установки небезопасно, поскольку при сильном ветре лопасти разгоняются до огромной скорости, а мачта или крепления, скорее всего, этого не выдержат. Если же вы все-таки решили сделать ветрогенератор именно такого типа, то лучше всего использовать дерево в качестве материала лопастей. Однако, их изготовление из этого материала является достаточно затруднительным.

Мощность ветрогенератора напрямую зависит от размера колеса с лопастями, скорости воздушных масс и высоты мачты. Нужно понимать, что энергии будет больше того после того, как вы найдете идеальный баланс для всей конструкции. Если устанавливать две-три лопасти большого размера, то мощность будет небольшой, а сама конструкция будет достаточно хрупкой.  Наиболее удобным и правильным вариантом является установить своими руками пять или шесть лопастей умеренного размера.

Этапы создания ветрогенератора своими руками

После того, как большая часть конструктивных элементов мелкого типа подобрана, можно приступать к сборке ветрогенератора:

  • сначала необходимо выбрать тип генератора, нужно опередить, будет у вас горизонтальный или вертикальный тип двигателя, сделать своими руками проще ветрогенератор вертикального типа, поскольку в нем значительно легче налаживать балансировку
  • при покупке генератора нужно смотреть на его мощность
  • после проведения всех расчетов нужно выбрать аккумулятор, он должен быть герметического типа и предназначаться специально для энергетических установок
  • прежде, чем устанавливать все устройство, нужно залить фундамент, он должен соответствовать особенностям внешней среды
  • мачта устанавливается после полного затвердевания фундамента
  • собирается ротор — предварительно ротор необходимо подбирать в зависимости от средней скорости ветра, скорость влияет на диаметр данного элемента
  • к ротору приделывается шкив
  • лопасти можно сделать, как из трубы, так и из бочки, расчет их площади сугубо индивидуален
  • провода из алюминия присоединяются к генератору
  • необходимо собрать цепь в дозе
  • осуществляется крепление генератора к мачте, а после и проводов
  • генератор и аккумулятор собираются в единую цепь, и к ним подключается нагрузка через провода

Хороший запуск генератора получается выполнить только в условиях высокой скорости ветра. Чтобы увеличить выработку энергии, можно сделать своими руками трансформатор с регулятором. Это обеспечит большую силу тока.

Основные условия эксплуатации самодельного ветрогенератора

Как и за любым прибором, за ветряным генератором требуется регулярный уход. Благодаря грамотному уходу за самодельной станцией вы сможете эксплуатировать генератор очень долго. Существуют ключевые виды работ, которые необходимо выполнять каждый год:

  • уход за всеми подвижными элементами системы путем их смазывания
  • проверка лопастей и подшипников с целью своевременного обнаружения их повреждений
  • регулировка всех электрических соединений
  • проверка механизмов ветрогенератора на отсутствие коррозии
  • регулировка ослабленных растяжек и подкрутка расшатанных болтов
  • осуществление покраски металлических деталей генератора
  • проверка щетки токоприемника

При оптимальных условиях эксплуатации и качественной сборке самодельный ветрогенератор может прослужить более 10-15 лет. Нужно понимать, что для создания прибора такого типа очень важны первоначальные исследования и расчеты. Ведь именно по ним будет создаваться вся установка.

Ветрогенератор своими руками — как сделать роторный, аксиальный, трехфазного и однофазного типа, особенности монтажа, инструкции +видео

В современных реалиях каждый домовладелец хорошо знаком с постоянным ростом стоимости коммунальных услуг – это касается и электрической энергии. Поэтому для создания комфортных условий обитания в загородном домостроении, как летом, так и зимой, придётся или оплачивать услуги по энергоснабжению, или найти альтернативный выход из сложившейся ситуации, благо природные источники энергии бесплатны.

Как сделать ветрогенератор своими руками — пошаговое руководство

Территория нашего государства – это по большей части равнины. Несмотря на то, что в городах доступ ветра перекрыт высотными постройками, за городом буйствуют сильные воздушные потоки. Поэтому самостоятельное изготовление ветряного генератора — единственно правильное решение для обеспечения загородного дома электричеством. Но для начала нужно разобраться, какая модель подходит для самостоятельного изготовления.

Роторный

Роторный ветряк – несложное преобразовательное устройство, которое просто сделать своими руками. Естественно, такое изделие не сможет обеспечить электроэнергией загородный особняк, но для дачного домика вполне сгодится. Он позволит осветить не только жиле домостроение а, и хозяйственные постройки и даже дорожки в саду. Для самостоятельной сборки агрегата мощностью до 1500 ватт нужно подготовить расходные материалы и комплектующие из следующего перечня:

  • автомобильный 12 вольтовый генератор;
  • аккумуляторная батарея соответствующего номинального напряжения;
  • преобразовательное устройство с 12 на 220В и мощностью 1,2 кВт;
  • габаритный алюминиевый или стальной резервуар – небольшая бочка или ведро;
  • зарядное реле и контрольная лампа от автомобиля;
  • выключатель номиналом 12В качественно, защищённый от влаги;
  • устройство контроля напряжения – старый вольтметр;
  • крепёж в виде болтов, гаек и шайб;
  • медные провода сечением не меньше 2 мм;
  • крепёжные хомуты.

Естественно, нужно иметь и минимальный комплект инструмента: ножницы для резки металла, болгарка, измерительная рулетка, карандаш, набор гаечных ключей и отвёрток, дрель со свёрлами и пассатижи.

Пошаговые действия

Сборку начинают с изготовления ротора и переделки шкива для чего придерживаются определённой последовательности работ.

  1. С помощью рулетки и маркера выполняется деление ёмкости на 4 абсолютно одинаковые части. При резке металла ножницами нужно подготовить отверстия для закладки инструмента. Для упрощения работ можно воспользоваться болгаркой. Вырезать лопасти нужно не до конца.
  2. В дне ёмкости и на шкиве высверливаются отверстия под болты. Данный этап требует особой осторожности, чтобы отверстия располагались симметрично.
  3. Лопасти, прорезанные не до конца, немного отгибаются. При выполнении данного мероприятия важно учитывать, в каком направлении будет вращаться ветрогенератор. В большинстве случаев вращение происходит в сторону движения часовой стрелки. От угла изгиба лопастей напрямую зависит скорость вращения ветряка.
  4. Заготовка из ведра с лопастями закрепляется на шкиве при помощи болтов. Агрегат закрепляется на мачте посредством хомутов и выполняется подсоединение проводки в соответствии со схемой.
  5. Важно придерживаться цветовой разметки проводки, чтобы не перепутать положительные и отрицательные контакты. Проводку также нужно закрепить на мачте.

Для подсоединения аккумуляторной батареи используются проводники с 4 мм сечением и длиной не более 100 см. Потребители подключаются проводниками с сечением в 2 мм. Важно в разрыв цепи включить преобразователь постоянного напряжения в переменное значение 220В согласно схеме клеммных контактов.

Плюсы и минусы конструкции

Если все манипуляции проделаны, верно, то аппарат прослужит достаточно долго. При использовании достаточно мощной аккумуляторной батареи и подходящего инвертора до 1,5 кВт можно обеспечить питанием уличное и внутридомовое освещение, холодильник и телевизор. Сделать такой ветряк очень просто и экономически выгодно. Такое изделие легко ремонтируется и неприхотливо в использовании. Оно очень надёжно в плане работы и не шумит, надоедая обитателям дома. Однако роторный ветряк имеет низкую производительность, и его работа зависит от наличия ветра.

Аксиальный ветряк на магнитах

Аксиальная конструкция с без железным статором на основе неодимовых постоянных магнитов, на территории нашего государства появились не так давно из-за недоступности комплектующих частей. Но на сегодняшний день, мощные магниты не являются редкостью, да и стоимость на них значительно упала по сравнению с несколькими годами тому назад.

Основой такого генератора является ступица с тормозными дисками от легковой машины. Если это будет не новая деталь, то целесообразно её перебрать и сменить смазочные материалы и подшипники.

Размещение и установка неодимовых магнитов

Работы начинают с наклеивания магнитов на диск ротора. С этой целью используются магниты в количестве 20 шт. и размерами 2,5 на 0,8 см. Для изменения количества полюсов нужно придерживаться следующих правил:

  • однофазный генератор подразумевает количество магнитов соответствующе числу полюсов;
  • в случае с трёхфазным прибором соблюдается соотношение в 2/3 полюсов и катушек соответственно;
  • размещение магнитов должно происходить с чередованием полюсов, для упрощения их распределения лучше пользоваться готовым шаблоном, сделанным из картона.

По возможности целесообразно использовать магниты прямоугольной формы, так как в круглых аналогах сосредоточение магнитных полей идёт в центре, а не по всей поверхности. Важно соблюсти условие, чтобы стоящие друг напротив друга магниты имели противоположные полюса. С целью определения полюсов магниты подносятся друг к другу, и притягивающиеся стороны являются положительными, следовательно, отталкивающиеся края отрицательными.

Для крепления магнитов используется специальный клеевой состав, после чего для увеличения прочности выполняют усиление посредством эпоксидной смолы. С этой целью, ею заливают магнитные элементы. Для предотвращения растекания смолы делают бортики при помощи обычного пластилина.

Агрегат трёхфазного и однофазного типа

Однофазные статоры по своим параметрам уступают трёхфазным аналогам, так как при увеличении нагрузки возрастает вибрация. Это обусловлено разницей амплитуды тока возникающей в результате непостоянности его отдачи за определённый промежуток времени. В свою очередь, в трёхфазном аналоге такой проблемы нет. Это позволило увеличить отдачу трёхфазного генератора почти на 50% в сравнении с однофазной моделью. Плюс ко всему из-за отсутствия дополнительной вибрации во время работы устройства не создаются посторонние шумы.

Намотка катушек

Каждый электрик в курсе, что прежде чем начинать намотку катушки, важно выполнить предварительные расчёты. Самодельный ветрогенератор на 220В – устройство, работающее на малых скоростях. Необходимо добиться, чтобы зарядка аккумуляторной батареи стартовала со 100 оборотов в минуту.

Если исходить из таких параметров, то для намотки всех катушек потребуется не более 1200 витков. Для определения витков для одной катушки нужно выполнить простое деление общих показателей на число отдельных элементов.

Для поднятия мощности ветряка с низкими оборотами увеличивается число полюсов. При этом будет происходить увеличение частоты тока в катушках. Намотка катушек должна, выполнятся толстыми медными проводами. Это позволит уменьшить величину сопротивления а, следовательно, увеличить силу тока. Важно учитывать, что с резким увеличением напряжения ток может полностью расходоваться на сопротивление обмоток. Для упрощения намотки можно использовать специальный станок.

В соответствии с числом и толщиной магнитов, закреплённых на дисках, изменяются рабочие характеристики аппарата. Чтобы выяснить, какие показатели мощности получатся в конечном счёте, достаточно выполнить намотку одного элемента и прокрутить его в агрегате. Для определения мощностных характеристик замеряется напряжение при определённых оборотах.

Зачастую катушка выполняется круглой, но целесообразно её слегка вытянуть. В таком случае меди в каждом секторе будет больше, а расположение витков становится плотнее. По диаметру внутреннее отверстие катушки должно равняться габаритам магнита. При изготовлении статора важно учитывать, что он по толщине должен равняться параметрам магнитов.

Обычно в качестве заготовки для статора используется фанера, но, вполне возможно, выполнить разметку на бумажном листе расчертив сектора для катушек, а для бордюров использовать обычный пластилин. Для придания прочности изделию используется стеклоткань, располагаемая на дне формы сверху катушек. Важно чтобы не происходило прилипания эпоксидной смолы к форме. Для этого её покрывают сверху воском. Катушки неподвижно фиксируются друг с другом, а концы фаз выводятся наружу. После чего выполняется соединение всех проводов по схеме звезда или треугольник. Для тестирования готового устройства его вращают вручную.

Изготовление мачты и винта

Обычно конечная высота мачты составляет 6 метров, но по возможности лучше её увеличить в 2 раза. Из-за этого для её крепления используется бетонное основание. Крепление должно быть таким, чтобы труба легко поднималась и опускалась с помощью лебёдки. На верхнем конце трубы выполняется фиксация винта.

Чтобы сделать винт, понадобиться ПВХ труба, сечение которой должно составлять 16 см. Из трубы вырезается винт двухметровой длины с шестью лопастями. Оптимальная форма лопастей определяется экспериментальным путём, что позволяет увеличить крутящий момент при минимальных оборотах. Для отвода винта от сильных порывов ветра используется хвост складной конструкции. Вырабатываемая электроэнергия накапливается в аккумуляторных батареях.

Видео: самодельный ветряной генератор

После рассмотрения доступных вариантов ветрогенераторов каждый домовладелец сможет определиться с подходящим для его целей устройством. Каждый из них имеет как свои положительные стороны, так и отрицательные качества. Особенно прочувствовать эффективность ветряка можно за городом, где происходит постоянное движение воздушных масс.

Ветряк своими руками: о реальностях самостоятельного изготовления

Оглавление:
Ветряк своими руками: составные части и принцип изготовления
Ветряки для дома своими руками: устройство системы

По большому счету, самостоятельно изготовить ветряную электростанцию не так уж и сложно – по крайней мере, намного легче, чем соорудить гидроэлектростанцию. Система эта не сложная, и самая ее проблематичная часть – это сам генератор. Если найдете его, то все остальное, как говорится, пустяки. Сразу хочу отметить тот факт, что обойдется такая установка не дешево, и срок ее окупаемости довольно большой. Она выгодна только в том случае, когда поблизости вообще отсутствуют другие источники электроэнергии. Либо когда добытое электричество будет продаваться. Да, такое возможно тоже, но речь не об этом – в данной статье мы поговорим о том, как сделать ветряк своими руками. Вместе с сайтом stroisovety.org мы разберемся с его устройством, технологией изготовления и сборкой системы независимого энергоснабжения.

Как сделать ветряк своими руками фото

Ветряк своими руками: основные части и принцип изготовления

Как и говорилось выше, ветряной электрогенератор имеет довольно простую конструкцию, и решить вопрос, как сделать ветряк своими руками, не очень сложно. Если разбираться в его конструкции, то условно этот агрегат можно разделить на четыре основных узла.

  1. Генератор. Это сердце данной установки – именно оно ответственно за выработку электрической энергии. Как правило, в ветряных установках используются генераторы, способные вырабатывать либо 12, либо 24 вольта – сами понимаете, что таким током современную бытовую технику не порадуешь. Именно по этой причине ветряк является всего лишь частью независимой электростанции – о том, как поднять вырабатываемое им напряжение до привычного для наших электроприборов 220 вольт, мы поговорим отдельно. Делать генератор своими руками очень сложно – во всех отношениях его лучше приобрести в готовом виде. Сейчас это не проблема – с одинаковым успехом можно купить как специальный генератор, предназначенный для ветряных установок, так и найти ему альтернативу (например, автомобильный генератор). Проблема последнего заключается в малой мощности – больше чем на сто ватт рассчитывать здесь не приходится. В отличие от него, специальные генераторы могут вырабатывать более 500Вт энергии – а это означает возможность использовать добытую энергию, так сказать, напрямую, без ее аккумулирования в емкостях.

    Ветряк своими руками фото

  2. Лопасти. По большому счету, эту часть ветряка также можно приобрести, что будет лучше всего – дело в том, что именно от них зависит эффективность работы самого генератора. Правильно изготовленные лопасти способны вращать его даже при слабом ветре. Лопасти могут быть двух типов – вертикальные и горизонтальные. В зависимости от этого, и ветряки классифицируются на два типа – вертикальный ветрогенератор своими руками сделать несколько сложнее, но зато он считается более эффективным, а главное, компактным. Он не занимает большого количества места, и его достаточно просто смонтировать даже на крыше дома – именно такой генератор является оптимальным решением для дома, расположенного в густонаселенных городах. Лопасти для него изготовить очень сложно – их лучше купить. Связано это с балансировкой, от которой во многом зависит эффективность работы ветряка.
  3. Мачта. По сути, она нужно исключительно для горизонтального ветрогенератора, хотя и вертикальные также могут устанавливаться на нее. Если в первых установках она является неотъемлемой частью конструкции, то во втором необходимость в ее наличии появляется только при наземной установке. Этот элемент ветряка можно сделать и самостоятельно – по сути, это труба, установленная вертикально и оборудованная специальным креплением для генератора.

    Ветрогенераторы для дома своими руками фото

И четвертый элемент, который, по сути, является частью мачты, это подвижная платформа с флюгером – она отвечает за движение лопастей за ветром, который довольно часто меняет свое направление. Платформа является связующим звеном между генератором и мачтой и монтируется она на подвижном соединении, легкий ход которого обеспечивает подшипник. Сделать такое устройство своими руками также не сложно.

Получается так, что о полном изготовлении эффективной ветроэлектростанции не может быть и речи. В принципе, сделать ее можно, но эффективность работы такой установки остается под большим вопросом – в качестве эксперимента она подойдет, но вот для полноценного электроснабжения, увы, нет. Большую часть ветряка придется приобретать по частям, которые потом собирать в единое изделие. В общем, вопрос, как сделать ветрогенератор своими руками, решается только так – мало того, дополнительно придется решить вопрос передачи электроэнергии через подвижную платформу, что не так уж и просто. Опять же, в этом отношении намного привлекательнее выглядят ветрогенераторы с вертикальной осью вращения – здесь эта проблема снимается автоматически, что в значительной мере упрощает решение вопроса изготовления ветряка своими руками.

Ветряки для дома своими руками: устройство системы

Теперь, когда мы разобрались с устройством и возможностью решения вопроса изготовления ветрогенератора для дома своими руками, самое время рассмотреть и общий принцип построения независимой системы электроснабжения. Как вы понимаете, собрать генератор – это только полдела. Сама система потребует от вас дополнительных затрат на оборудование, изготовить которое самостоятельно практически невозможно, если не сказать, что совсем невозможно. В целом, если говорить об устройстве ветряной электростанции для дома, то ее можно разделить также на четыре части.

  1. Ветрогенератор, о котором мы уже говорили. Добавить здесь можно только то, что вырабатываемая им энергия напрямую не используется – все электричество собирается в аккумуляторы, откуда и идет дальнейший его разбор.

    Ветряки для дома своими руками фото

  2. Аккумуляторы. Именно они, наравне с мощность самого генератора, обеспечивают ваш дом необходимым количеством энергии – здесь важна их емкость, способность вмещать тот или иной объем электричества. Обычным автомобильным аккумулятором здесь не обойтись – речь идет о десятке аккумуляторов емкостью от 100 до 150А/часов. Их количество рассчитывается исходя из мощности ветряка, используемого в доме электрооборудования интенсивности его работы. В таких системах применяются, как правило, гелиевые аккумуляторы, которые лучше всех приспособлены к частым циклам зарядки и разрядки.
  3. Контроллер зарядки аккумуляторных батарей – это небольшое устройство, которое является связующим звеном между ветряком и батареями. Оно контролирует цикл зарядки последних и не дает им, так сказать, перезаряжаться.
  4. Есть еще один небольшой элемент, связывающий генератор и батареи – это так называемый диод Шоттки, в задачи которого входит не выпускать электричество назад в генератор во время его бездействия – в противном случае без этого диода ваш генератор может превратиться в электромотор, который очень быстро съест весь накопленный в аккумуляторах запас энергии.
  5. И самая главная часть, отвечающая за повышение напряжения до отметки в 220 вольт, это инвертор. Преобразователь, который повышает напряжение – они бывают разные, и далеко не все подходят для использования в независимых электростанциях. Здесь нужен инвертор с чистой синусоидой на выходе – модифицированная синусоида плохо сказывается на работе большинства современных электрических потребителей. Мало того, огромное значение имеет и мощность подобных устройств – она тоже рассчитывается исходя из суммарной мощности одновременно работающих потребителей. После генератора это самая дорогостоящая часть системы ветряной энергетической установки.

    Ветрогенераторы с вертикальной осью вращения своими руками фото

Кроме всего прочего, не стоит сбрасывать со счетов и провода, используемые в подобных системах – если после инвертора можно применять любые, то вот до него нужны специальные, изготовленные с учетом минимальных потерь при транспортировке электрического тока малого напряжения.

По большому счету, система не сложная, и имея в наличии все необходимые элементы, собрать ветряную электростанцию не так уж и сложно – важнее всего правильно рассчитать ее с учетом всех, даже, казалось бы, незначительных факторов. Особое внимание здесь нужно уделить количеству ветряных дней в году – может случиться так, что в тихих и спокойных регионах ветряк может оказаться практически бесполезным. Именно по этой причине системы независимого электроснабжения делают комбинированным способом, который предусматривает использование не только ветрогенератора, но и солнечных панелей. Они как бы дополняют друг друга, обеспечивая постоянную добычу электроэнергии из неиссякаемых природных ресурсов.

Мы описали, как можно сделать ветряк своими руками. В заключение остается добавить не так уж и много – в частности, рассказать о тонкостях изготовления лопастей. Вернее не о тонкостях, а о трудностях – обосновать утверждение того, что их лучше не изготавливать своими руками, а приобретать в готовом виде или заказывать их изготовление на заводе. Дело в том, что есть такие понятия, как смещение оси и балансировка – первое вызывает биение, а второе неравномерное вращение. И то и другое приводит к замедлению вращения генератора, что само по себе сказывается на эффективности работы установки в целом. Проще говоря, вместо положенных 500Вт вы будете получать 250Вт энергии в час – вместо 18В тока – 14вольт, что, опять таки, скажется на темпах зарядки аккумуляторов.

Автор статьи Александр Куликов

Основы ветроэнергетики | NREL

Ветер возникает, когда поверхность земли неравномерно нагревается солнцем. Энергия ветра можно использовать для выработки электроэнергии.

Ветряные турбины

Ветряные турбины, как и ветряные мельницы, устанавливаются на башне, чтобы улавливать как можно больше энергии. На высоте 100 футов (30 метров) и более они могут воспользоваться более быстрым и менее бурный ветер.Турбины улавливают энергию ветра своим пропеллером. лезвия. Обычно на валу устанавливаются две или три лопасти, образующие ротор .

Лезвие действует как крыло самолета. Когда дует ветер, карман низкого давления воздух образуется на подветренной стороне лопасти. Затем воздушный карман низкого давления вытягивает лезвие к нему, заставляя ротор вращаться. Это называется лифт .Сила подъема на самом деле намного сильнее, чем сила ветра, направленная против ветра. передняя сторона клинка, которая называется , драг . Комбинация подъемной силы и сопротивления заставляет ротор вращаться, как пропеллер, и вращающийся вал вращает генератор, чтобы вырабатывать электричество.

Исследования ветроэнергетики

NREL в основном проводятся в кампусе Флэтайронс, отдельном месте недалеко от Боулдера, Колорадо.

Ветряные турбины коммунального назначения на ветряной электростанции Сидар-Крик в Гровере, штат Колорадо. Фото Денниса Шредера / NREL

Плавающая морская ветряная турбина VolturnUS с полупогружной плавучей ветроэнергетической установкой Платформа, Университет штата Мэн, часть консорциума DeepCWind. Фотография из Университета штата Мэн

Наземная ветроэнергетика

Ветровые турбины могут использоваться как автономные приложения или их можно подключать к электросети или даже в сочетании с фотоэлектрической системой (солнечными элементами).Для коммунальные (мегаваттные) источники энергии ветра, большое количество ветряных турбин обычно строятся близко друг к другу, образуя ветряную электростанцию ​​ , также называемую ветровой электростанцией . Некоторые поставщики электроэнергии сегодня используют ветряные электростанции для снабжения электроэнергией своих потребителей.

Автономные ветряные турбины обычно используются для перекачки воды или связи. Однако домовладельцы, фермеры и владельцы ранчо в ветреных районах также могут использовать ветряные турбины. как способ сократить свои счета за электричество.

Распределенная энергия ветра

Малые ветровые системы также обладают потенциалом в качестве распределенных энергоресурсов. Распространено энергоресурсы относятся к множеству небольших модульных технологий производства энергии. которые могут быть объединены для улучшения работы системы подачи электроэнергии. Для получения дополнительной информации о распределенном ветре посетите Отдел ветроэнергетических технологий Министерства энергетики США.

Морская ветроэнергетика

Оффшорная ветроэнергетика — относительно новая отрасль в США. Америки первая оффшорная ветряная электростанция, расположенная в Род-Айленде, у побережья острова Блок, был запущен в декабре 2016 года. В отчете Wind Vision Министерства энергетики США показано, что к 2050 году морской ветер будет доступен во всех прибрежных регионах по всей стране.

Дополнительные ресурсы

Для получения дополнительной информации о ветровой энергии посетите следующие ресурсы:

Основы ветроэнергетики
Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики США

Карты и данные по ветроэнергетике
DOE’s WINDExchange

Как работают ветряные турбины
U.S. Управление энергоэффективности и возобновляемых источников энергии Министерства энергетики.

Малые ветряные электрические системы
Программа энергосбережения Министерства энергетики США

Американская ассоциация ветроэнергетики

Energy Kids Wind Basics
Управление энергетической информации США Energy Kids

Ветроэнергетика на крыше может взлетать, используя ключевой принцип полета

Эта статья изначально была опубликована в Scientific American и переиздана здесь как часть проекта «Покрытие климата сейчас», глобального журналистского сотрудничества, направленного на усиление освещения истории о климате.

Солнечные панели, расположенные на крышах домов и других зданий, становятся все более распространенным явлением в Соединенных Штатах, но ветряные системы на крышах никогда не прижились. Предыдущие попытки уменьшить количество возвышающихся турбин, генерирующих энергию ветра, до чего-то, что могло бы находиться в доме, сопровождались слишком многими техническими проблемами, чтобы сделать такие устройства практичными. Однако теперь новая конструкция может обойти эти проблемы, используя тот же принцип, который создает подъемную силу для крыльев самолета.

В целом за последние годы в США выросло производство электроэнергии из возобновляемых источников, и ветроэнергетика была основным двигателем этой тенденции. На его долю приходится более 40 процентов электроэнергии из возобновляемых источников в США (хотя только 7 процентов от всего производства электроэнергии).

В отличие от солнечных батарей, которые ограничены сбором энергии в светлое время суток, ветряные турбины могут работать всю ночь в любом месте с подходящими условиями, а именно на открытых равнинах или пологих холмах с постоянно достаточной скоростью ветра.Но помимо этих требований, для больших турбин требуется открытое пространство, которое не всегда доступно вблизи больших и больших городов. Установка ветряных систем на крышах домов и городских зданий может помочь использовать больше этого ресурса.

Когда дело доходит до энергии ветра, размер имеет значение. Количество энергии, которое может генерировать отдельная турбина, пропорционально области движения ее лопастей, поэтому устройства, которые достаточно малы, чтобы поместиться на крыше, менее мощны.

«От успеха распределенного ветра мешает то, что большинство систем представляют собой миниатюрные ветряные турбины», — говорит Брент Хоученс, инженер-механик из Sandia National Laboratories.

Устройства меньшего размера не производят достаточно энергии, чтобы быть рентабельными. Кроме того, их быстро вращающиеся лезвия создают шумную вибрацию, а их многие движущиеся части более склонны к поломке. По сравнению с пассивными солнечными панелями на крыше ветряные турбины могут потребовать довольно больших затрат на техническое обслуживание.

Хоученс и его коллеги думают, что они разработали решение, которое преодолевает эти препятствия, заимствуя фундаментальный принцип полета по воздуху. Изогнутая форма крыла самолета, называемая аэродинамическим профилем, изменяет давление воздуха по обе стороны от него и в конечном итоге создает подъемную силу.

Коллега

Хоученса Карстен Вестергаард, президент Westergaard Solutions и инженер-механик из Техасского технологического университета, говорит, что он соединил два аэродинамических профиля вместе, так что «поток от одного профиля усиливает другой профиль, и они становятся более мощными». Расположенные как два крыла самолета, стоящие вертикально на боку, пара аэродинамических профилей обращена прямо к ветру. По мере прохождения ветра между пленками создается низкое давление, которое всасывает воздух через щели в их частично полых телах.Это движение воздуха вращает небольшую турбину, заключенную в трубку, и вырабатывает электричество.

Устройство, которое исследователи назвали AeroMINE, может отбирать энергию ветра с большей площади, чем лопасти турбины сами по себе.

Благодаря такой конструкции устройство, которое исследователи называют AeroMINE («MINE» означает «Неподвижная, интегрированная экстракция»), может извлекать энергию ветра из большей площади (по сути, прямоугольной поверхности AeroMINE), чем лопасти турбины могли бы сами по себе. в традиционной установке.Хушенс сравнивает такие стандартные турбины с формочками для печенья, которые оставляют потраченное впустую тесто. Новое устройство использует весь доступный ветер, позволяя извлекать больше энергии.

AeroMINE также не создают таких же вибраций и шума, как обычные турбины; По словам Вестергаарда, они «менее шумны, чем вентиляторы». Относительная простота их конструкции означает, что меньше движущихся частей выходит из строя. К турбине, которая находится внутри здания, будет легче получить доступ, если она действительно нуждается в ремонте.Такое расположение также защищает лезвия от любого контакта с людьми или дикими животными. Команда разрабатывает систему так, чтобы ее можно было использовать вместе с солнечными панелями на крыше, подключаясь к существующей инфраструктуре для сбора энергии, которую они генерируют.

«Я действительно думаю, что эта технология может быть новаторской» для районов с хорошими ветровыми условиями, — говорит Лучано Кастильо, инженер-механик из Университета Пердью, который не участвует в проекте, но в прошлом работал с Вестергардом.

Он также считает, что простота AeroMINE может сделать их хорошим вариантом для развивающихся стран, поскольку новые устройства не требуют специальных деталей или инструментов и их относительно легко исправить. И Кастильо, и Вестергард видят потенциал использования этой конструкции под водой, чтобы использовать приливную энергию.

Джей Апт, содиректор Центра электроэнергетики Карнеги-Меллона, который также не участвует в проекте, согласен с тем, что простота конструкции привлекательна.Но он не уверен, можно ли масштабировать систему для эффективного производства энергии с достаточно низкими затратами в реальных условиях. Хушенс говорит, что при подходящих ветровых условиях он и его коллеги думают, что AeroMINE могут быть конкурентоспособными с нынешней стоимостью солнечной энергии на крышах.

Команда, получившая финансирование от Sandia и Министерства энергетики, протестировала уменьшенные модели в аэродинамических трубах для точной настройки конструкции. В июне исследователи планируют испытать версию устройства высотой 13,1 фута на одноэтажном макете здания на объекте Scaled Wind Farm Technology (SWiFT), входящем в Национальный институт ветра Техасского технологического института.

Как работает ветряная турбина?

Что такое ветряк?

Ветряная турбина — это самая современная версия ветряной мельницы. Проще говоря, он использует силу ветра для производства электричества. Наиболее заметны большие ветряные турбины, но вы также можете купить небольшую ветряную турбину для индивидуального использования, например, для обеспечения энергией каравана или лодки.

Что такое ветряная электростанция?

Ветряная электростанция — это группа ветряных турбин. Довольно впечатляюще думать, что электричество, которое так сильно влияет на нашу жизнь — от зарядки наших телефонов до того, чтобы мы могли приготовить чашку кофе и, все чаще, заправлять наши автомобили — могло начаться с простого порыва ветра. .

Как работает ветряная турбина?

Сначала давайте начнем с видимых частей ветряной электростанции, которые мы все привыкли видеть — этих высоких белых или бледно-серых турбин. Каждая из этих турбин состоит из набора лопаток, коробки рядом с ними, называемой гондолой, и вала. Ветер — а это может быть просто легкий ветерок — заставляет лопасти вращаться, создавая кинетическую энергию. Вращающиеся таким образом лопасти также заставляют вращаться вал в гондоле, а генератор в гондоле преобразует эту кинетическую энергию в электрическую.

Что происходит с электричеством, вырабатываемым ветряной турбиной?

Для подключения к национальной сети электрическая энергия затем пропускается через трансформатор на объекте, который увеличивает напряжение до уровня, используемого в национальной электроэнергетической системе. Именно на этом этапе электричество обычно направляется в передающую сеть National Grid, готовую к передаче, чтобы в конечном итоге ее можно было использовать в домах и на предприятиях. В качестве альтернативы, ветряная электростанция или отдельная ветряная турбина могут вырабатывать электроэнергию, которая используется частным образом отдельным лицом или небольшой группой домов или предприятий.


Почему ветряки обычно белые или бледно-серые?

Ветряки обычно бывают белыми или очень бледно-серыми — идея состоит в том, чтобы сделать их визуально ненавязчивыми, насколько это возможно. Обсуждается вопрос о том, следует ли их перекрашивать в другие цвета, особенно в зеленый, в некоторых условиях, чтобы они лучше гармонировали с окружающей средой.

Насколько сильным должен быть ветер для работы ветряной турбины?

Ветровые турбины могут работать при любых скоростях ветра — от очень слабого до очень сильного.Они генерируют около 80% времени, но не всегда на полную мощность. При очень сильном ветре они отключаются, чтобы предотвратить повреждение.

Где расположены ветряные электростанции?

Ветряные электростанции, как правило, располагаются в самых ветреных местах, чтобы максимально использовать энергию, которую они могут производить — вот почему вы с большей вероятностью увидите их на склонах холмов или на побережье. Ветряные электростанции, расположенные в море, называются оффшорными ветряными электростанциями, а расположенные на суше — наземными ветряными фермами.

Где была первая ветряная турбина и первая ветряная электростанция?

Самая первая ветряная турбина, вырабатывающая электричество, была создана профессором Джеймсом Блайтом в своем доме отдыха в Шотландии в 1887 году.Он был 10 метров в высоту и имел парусину.

Первая в мире ветряная электростанция открылась в Нью-Гэмпшире в США в 1980 году.

Вредны ли ветряные электростанции для птиц?

Дело в том, что изменение климата представляет собой самую серьезную долгосрочную угрозу для птиц и других диких животных. А возобновляемые источники энергии, ключевым компонентом которых являются ветряные турбины, необходимы для сокращения парниковых газов .

Королевское общество защиты птиц Великобритании ( RSPB ) признает эту более широкую картину, заявляя: «Переход на возобновляемые источники энергии сейчас, а не через 10 или 20 лет, необходим, если мы хотим стабилизировать выбросы парниковых газов в атмосфера на безопасном уровне.

Разработчики ветряных электростанций работают в тесном сотрудничестве с RSPB и местными экологическими группами в рамках процесса консультаций по выбору ветровых электростанций, чтобы продолжить рост наземной и морской ветроэнергетики, одновременно компенсируя любой потенциальный вред птицам из-за потери среды обитания, нарушения и столкновение.

В отчете США сделан вывод о том, что влияние энергии ветра на популяции птиц относительно невелико по сравнению с падением жертвой кошек и столкновениями с высотными зданиями.

Сколько энергии в Великобритании вырабатывается ветром?

Узнайте, сколько энергии в Великобритании вырабатывается ветром, с помощью приложения National Grid ESO для Google Play или Apple iOS .

Making-wind-power-how-choose-right-motor — Web

Очевидно, что двигатель, который вы используете, является наиболее важной частью вашего ветрогенератора. Если вы новичок в создании небольших ветряных турбин, то обнаружите, что это может быть одним из самых запутанных (и спорных) аспектов процесса.Моторы, генераторы, генераторы, о боже !? Вы найдете много слов, которые, кажется, относятся к одним и тем же вещам.

Так почему он называется мотором?

Из многих промышленных двигателей получаются отличные и очень доступные ветряные генераторы. В ветряной турбине двигатель используется для выработки электричества. Технически «мотор» больше не будет называться «мотором»; это будет «генератор» или «генератор переменного тока». В этой статье рассматриваются потенциальные двигатели, которые можно недорого купить в Интернете в качестве излишков и использовать для создания собственного ветрогенератора.

Очевидно, что важно выбрать подходящий двигатель для своего генератора. Выберите неправильный, и вы можете обнаружить, что:

  • Ваш ветрогенератор не производит электричества.
  • Ваш ветрогенератор будет вырабатывать электричество, но никогда не достигнет напряжения, достаточно высокого для производства электричества, пригодного для использования.
  • Ваш ветрогенератор изначально будет работать, но через несколько дней или недель он перегреется и перестанет работать.

Но не расстраивайтесь.Существуют сотни двигателей, которые будут производить несколько сотен или даже тысяч ватт полезной энергии. И что еще лучше, мы дадим несколько советов, как их найти по разумной цене.

Есть три способа, которыми генераторы производят электричество: либо с помощью индукции; с помощью возбудителя; или с помощью ПОСТОЯННЫХ МАГНИТОВ.

Магниты, магниты, магниты!

Самоделы строят ветряные генераторы почти исключительно с двигателями с постоянными магнитами, потому что они широко доступны, надежны в силу своей конструкции и начинают вырабатывать электричество практически при любых оборотах в минуту.Чего нельзя сказать о некоторых других типах двигателей.

Внутри двигателя с постоянными магнитами находится катушка из намотанной меди, окруженная постоянными магнитами. Эти двигатели вращаются с помощью электромагнитной индукции, что означает, что электричество подается на намотанный медный провод, который создает магнитное поле. Магнитное поле, создаваемое электричеством, протекающим по медному проводу, противодействует постоянным магнитам в корпусе двигателя. В результате медный провод, прикрепленный к валу двигателя, пытается «оттолкнуться» от постоянных магнитов.Итак, ваш мотор начинает крутиться!

Те же рассуждения применяются при рассмотрении двигателя с постоянными магнитами в качестве генератора. Прядение медной проволоки с использованием энергии ветра в присутствии магнитов создает разницу напряжений между двумя концами медной проволоки. Разница в напряжении заставляет электрические заряды (электроны) течь по медному проводу, генерируя электрический ток.
Итак, теперь вы понимаете основные принципы работы генератора.

Итак, на что следует обратить внимание при выборе двигателя?

Отношение вольт к оборотам в минуту

Отношение вольт к оборотам в минуту — одна из наиболее важных характеристик, на которые следует обращать внимание при выборе двигателя.Большинство домашних мастеров используют свой двигатель для зарядки 12-вольтовой батареи из-за их стоимости и широкой доступности. Для зарядки 12-вольтовой батареи необходимо, чтобы двигатель с постоянными магнитами вырабатывал не менее 12 вольт. В противном случае он не сможет преодолеть сопротивление батареи 12 В, и двигатель никогда не будет заряжать батарею. Как узнать, способен ли ваш двигатель вырабатывать более 12 вольт при работе от ветра? Читать дальше.

Отношение напряжения к числу оборотов двигателя с постоянными магнитами определяется как вольты, необходимые для вращения двигателя при заданных оборотах в минуту (оборотов в минуту).Итак, предположим, что у вас есть двигатель с постоянными магнитами, на этикетке которого написано: «100 вольт, 2500 об / мин». Это просто означает, что если вы запитаете двигатель напряжением 100 вольт, он будет вращаться со скоростью 2500 об / мин. Его соотношение вольт к оборотам составляет 0,040 В / об / мин (100 делить на 2500).

Это число дает приблизительную оценку того, сколько вольт будет генерировать двигатель при данной частоте вращения. Теперь предположим, что наш 100-вольтный двигатель с частотой вращения 2500 об / мин вращается со скоростью 450 об / мин. Какое напряжение он будет выдавать на этой скорости? Расчет выглядит следующим образом:

(450 об / мин) x (0.04 Вольт / об / мин) = 18 Вольт

Теперь нужно сделать еще один шаг. Мы должны умножить 18 Вольт на 80%. Почему? Потому что 18 Вольт — это число, только если мотор используется как мотор. Этот мотор не используется в качестве мотора. Он используется как генератор, но не на 100% эффективен как генератор. В качестве генератора его КПД составляет примерно 80-85%.

Следовательно, 18 В x 0,8 = 14,4 В

Мы знаем, сколько Вольт будет выдавать наш двигатель при 450 об / мин: 14,4 Вольт. Затем мы должны рассмотреть реалистичные обороты ветряного генератора.Скорее всего, вы строите «небольшой» ветрогенератор мощностью 100-500 Вт. Если установить на этот двигатель несколько хорошо сконструированных лопастей диаметром от 50 до 60 дюймов, то при скорости ветра 8-10 миль в час, когда двигатель находится под нагрузкой, легко будет развиваться скорость 450 об / мин (под нагрузкой двигатель подключен к блоку батарей. A Генератор должен работать больше, когда он находится под нагрузкой, и поэтому он будет вращаться немного медленнее по сравнению с тем, когда он не находится под нагрузкой). Таким образом, этот двигатель начнет заряжать аккумуляторную батарею 12 В при скорости ветра около 8-10 миль в час.

Это именно то, к чему вы стремитесь, и поэтому мы можем сделать вывод, что этот двигатель с постоянными магнитами может хорошо работать с ветрогенератором.

Отношение напряжения к частоте вращения НЕ МЕНЬШЕ 0,035 является минимальным требованием при поиске двигателя с постоянными магнитами. Если число больше 0,035, это прекрасно. Если число меньше 0,035, этого, скорее всего, будет недостаточно, если только он не расположен в районе с сильными ветрами.

Номинальная сила тока

Следующий пункт — номинальная сила тока двигателя.Это дает информацию о том, какой ток будет выдавать двигатель в качестве генератора. Исходя из нашего опыта, очень сложно предсказать, какой ток будет выдавать ваш двигатель в качестве генератора. Мы видели двигатели, которые вырабатывают больше ампер, чем те, на которые они рассчитаны. Однако одно остается верным: чем выше номинальная сила тока, тем лучше. Вам следует искать двигатель с минимальной номинальной силой тока не менее 5 А. Что-нибудь выше 5 ампер, и все готово.
Мощность, которую производит ветрогенератор, прямо пропорциональна току и напряжению:

Фактически, мощность = вольт x сила тока

Помните, что чем больше ампер и вольт создает ветрогенератор, тем больше мощности он производит!

Так что запомните эти три критических момента:

  • Будьте проще: покупайте только двигатель с постоянными магнитами
  • Ищите минимальное отношение напряжения к оборотам, равное 0.035
  • Ищите минимальный номинальный ток 5
  • Эта статья является всего лишь введением, и мы упускаем из виду некоторые детали, чтобы все было просто и лаконично. Но эта информация — все, что вам нужно для уверенной покупки двигателя ветрогенератора.

    Если у вас есть более конкретные вопросы о моторе или моторах, которые вы нашли, напишите нам по электронной почте или задайте вопросы на наших форумах пользователей. Наши сотрудники или один из участников нашего форума будут рады ответить на ваши конкретные вопросы.

    И, пожалуйста, ознакомьтесь с ассортиментом качественных продуктов WindyNation, доступных прямо здесь, на нашем веб-сайте. Сравните их с конкурентами и посмотрите, сможет ли кто-нибудь превзойти нашу 90-дневную гарантию возврата денег!

    Национальные ветряные часы | Выход промышленной ветряной электростанции

    См. Также Wind Watch Wiki: Energy, Capacity factor

    Что такое мегаватт или мегаватт-час?

    Производители измеряют максимальную или номинальную мощность своих ветряных турбин по выработке электроэнергии в мегаваттах (МВт).Один МВт эквивалентен одному миллиону ватт.

    Производство электроэнергии с течением времени измеряется в мегаватт-часах (МВтч) или киловатт-часах (кВтч) энергии. Киловатт — это тысяча ватт. Производство электроэнергии из расчета 1 МВт за 1 час составляет 1 МВтч энергии.

    Какова мощность ветряных турбин?

    General Electric (GE) выпускает когда-то широко использовавшуюся модель мощностью 1,5 мегаватта. 1,5 МВт — это его номинальная или максимальная мощность, при которой он будет вырабатывать мощность, когда скорость ветра находится в идеальном диапазоне для этой модели, от 27 до 56 миль в час.Турбины сейчас обычно в пределах 2-3 МВт.

    От чего зависит, сколько энергии может производить ветровая турбина?

    Энергия вырабатывается за счет энергии ветра, поэтому мощность турбины определяется ее способностью улавливать эту энергию и преобразовывать ее во вращающий момент, который может повернуть генератор и подтолкнуть электроны к сети. Более высокая башня обеспечивает доступ к более устойчивым ветрам, а более крупные лопасти улавливают больше энергии ветра. Для более крупного генератора требуются большие лопасти и / или более сильный ветер.

    Сколько энергии вырабатывают ветряные турбины?

    Каждая ветряная турбина имеет диапазон скоростей ветра, обычно от 30 до 55 миль в час, при котором она будет работать с номинальной или максимальной мощностью. При более низких скоростях ветра производительность резко падает. Если скорость ветра уменьшается вдвое, выработка электроэнергии снижается в восемь раз. Поэтому в среднем ветряные турбины не вырабатывают почти своей мощности. По оценкам отрасли, годовой объем производства составляет 30-40%, но реальный опыт показывает, что годовой объем производства в размере 15-30% от мощности является более типичным.

    При коэффициенте мощности 25% турбина мощностью 2 МВт будет производить

    2 МВт × 365 дней × 24 часа × 25% = 4380 МВтч = 4380000 кВтч

    в год.

    Что такое «коэффициент мощности»?

    Коэффициент мощности — это фактическая выработка за период времени как доля от максимальной мощности ветряной турбины или установки. Например, если турбина мощностью 1,5 МВт вырабатывает электроэнергию в течение одного года со средней мощностью 0,5 МВт, ее коэффициент мощности составляет 33% для этого года.

    Каков типичный коэффициент мощности промышленных ветряных турбин?

    Средний коэффициент использования для 137 U.Отчетность по проектам S. wind Энергетическому информационному агентству в 2003 г. составила 26,9%. В 2012 году он составил 30,4%. По данным EIA, общий коэффициент использования мощности для стран ЕС-27 в 2007 году составлял 13%.

    В чем разница между коэффициентом мощности и доступностью?

    Ветряная турбина может быть «доступной» 90% или более времени, по крайней мере, в первые годы эксплуатации, но ее мощность зависит только от ветра. Без ветра это как велосипед, на котором никто не ездит: доступен, но не крутится.

    «Коэффициент мощности» турбины — это ее фактическая средняя мощность как часть ее полной мощности. Обычно это от 15% до 35%.

    Ветровые турбины работают 30% времени или 90%?

    Ни то, ни другое. Первая цифра — это теоретический коэффициент мощности, количество энергии, фактически произведенной за год, как часть максимальной мощности турбин. Вторая цифра — это доступность, количество времени, в течение которого турбина не останавливается. Ни одна из цифр не отражает количество времени, в течение которого ветряная турбина фактически вырабатывает электричество.

    Сколько времени ветряные турбины вырабатывают энергию?

    Ветровые турбины вырабатывают электроэнергию, когда они не отключены для обслуживания, ремонта или поездок, а скорость ветра составляет от 8 до 55 миль в час. Однако ниже скорости ветра около 30 миль в час количество вырабатываемой энергии очень мало. Ветровые турбины производят со средней скоростью около 40% времени или выше. И наоборот, примерно в 60% случаев они производят мало энергии или не производят ее совсем.

    Одинаковы ли коэффициент мощности и эффективность?

    №Эффективность — это мера того, какая часть кинетической энергии ветра преобразуется в электрическую. В процессе преобразования неизбежна потеря некоторой энергии. Даже когда ветряная турбина вырабатывает электроэнергию на максимальной мощности, вырабатываемая электрическая энергия составляет лишь часть энергии ветра. (В лучшем случае это около 50%, что обычно достигается до выработки на полную мощность.) Эффективность — это вопрос инженерии и ограничений физики и обычно не имеет отношения к нормальному обсуждению.

    Коэффициент мощности — это мера фактической мощности ветряной турбины, которая изменяется в зависимости от скорости ветра в течение определенного периода времени.

    Сколько домов может приводить в действие ветряная турбина?

    Сторонники

    часто выражают прогнозируемую мощность как «достаточно для питания домов размером x ». По данным Агентства энергетической информации, среднее домашнее хозяйство в США использует 888 кВтч в месяц или 10 656 кВтч в год. Средняя турбина мощностью 1,5 МВт (коэффициент мощности 26,9%) будет производить столько же электроэнергии, сколько используется почти 332 домохозяйствами в течение года.

    Однако следует помнить, что энергия ветра непостоянна и изменчива, поэтому ветряная турбина вырабатывает мощность со среднегодовой скоростью или выше ее только в 40% случаев. То есть в большинстве случаев это , а не , обеспечивая среднюю мощность для среднего количества домов. И времена сильного ветра редко совпадают со временем фактического спроса в сети.

    Следует также помнить, что на бытовое использование приходится только треть нашего общего потребления электроэнергии.

    Как изменчивость ветра влияет на надежность ветроэнергетики?

    Производство ветряной турбины обычно выражается как среднегодовое значение, что скрывает ее весьма изменчивую мощность. Но поскольку производство резко падает при падении скорости ветра (в восемь раз на каждое уменьшение скорости ветра вдвое), большую часть времени ветряная турбина производит значительно ниже своего среднего уровня. Средняя скорость вывода или более наблюдается только около 40% времени.

    Как переменная мощность ветра влияет на сеть?

    Ветряная турбина вырабатывает энергию в ответ на ветер, который даже на «лучших» участках резко меняется от часа к часу и от минуты к минуте.Однако сетка должна отвечать требованиям пользователей. Поскольку сетевые диспетчеры не могут контролировать производство энергии ветра больше, чем они могут контролировать спрос пользователей, ветровые турбины в сети не способствуют удовлетворению спроса. Подавая мощность в сеть, они просто добавляют еще один источник колебаний, который сеть должна уравновесить.

    См. Также периодичность в FAQ по сетке.

    Что такое кредит мощности ветроэнергетики?

    Ветровая энергия имеет очень низкий «кредит мощности», то есть ее способность заменять другие источники энергии.Например, в Великобритании, которая может похвастаться самой ветреной страной в Европе, Королевская инженерная академия прогнозирует, что 25000 МВт ветровой энергии сократят потребность в обычной мощности на 4000 МВт, что составляет 16% кредита на мощность. Два исследования в Германии показали, что 48 000 МВт ветровой энергии позволят снизить обычную мощность всего на 2 000 МВт, что составляет 4% кредита (как описано в «Wind Report 2005», Eon Netz). Аналогичным образом Irish Grid подсчитала, что 3500 МВт ветровой энергии могут заменить 496 МВт обычной энергии, что составляет 14% кредита, и что по мере добавления новых ветряных турбин их кредит мощности приближается к нулю.В марте 2005 года Управление энергетических исследований и разработок штата Нью-Йорк обнаружило, что береговая ветроэнергетика будет иметь скидку на мощность 10%, исходя из теоретического коэффициента мощности 30%. (См. Некоторые из этих и других документов здесь, в Национальной службе ветра.)

    Сколько резервной мощности требуется для ветровой энергии?

    По словам Эона Нетца, одного из четырех управляющих сетью в Германии, с установленной на его территории ветроэнергетической мощностью 7 050 МВт в конце 2004 г., объем необходимого резервного питания составил более 80%, что являлось максимальной наблюдаемой мощностью. от всех их ветроэнергетических установок вместе.То есть на каждые 10 МВт ветровой энергии, добавленной к системе, в этом случае также должно быть выделено не менее 8 МВт резервной мощности.

    Другими словами, ветру требуется 100% резервирование максимальной мощности.

    Разве единица электроэнергии, произведенной ветряными турбинами, не уменьшает единицу электроэнергии из другого источника?

    Поскольку сеть должна постоянно уравновешивать спрос и предложение, да, она должна сокращать предложение откуда-то еще, когда усиливается ветер, достаточный для начала выработки электроэнергии.

    Если в системе есть гидроэлектроэнергия, то это наиболее вероятный источник, который будет сокращен, потому что он может быть включен и выключен наиболее легко.Некоторые газовые установки также могут быстро включаться и выключаться (хотя и за счет повышения эффективности, т. Е. Сжигания большего количества топлива). В противном случае мощность установок сжигания топлива снижается или она переключается с генерации на резерв. В любом случае он по-прежнему сжигает топливо.

    Могут ли ветряные турбины помочь избежать отключений электроэнергии?

    Нет. Сами ветровые турбины для работы нуждаются в электроэнергии. Их тоже вырубает затемнение. Если они обеспечивали электроэнергию в то время, эта потеря усугубляет эффект затемнения.

    В чем разница между большими и маленькими турбинами?

    Малые турбины предназначены для непосредственного питания дома или другого здания. Их регулируемая мощность уравновешивается аккумуляторной батареей и дополняется сетью или резервным генератором на месте.

    Большие турбины предназначены для питания самой сети. Переменная мощность больших ветряных турбин усложняет балансирование спроса и предложения, поскольку в сети нет крупномасштабного хранилища.

    Энергия ветра | Национальное географическое общество

    Все, что движется, обладает кинетической энергией, а ученые и инженеры используют кинетическую энергию ветра для выработки электроэнергии.Энергия ветра, или энергия ветра, создается с помощью ветряной турбины, устройства, которое направляет энергию ветра для выработки электроэнергии.

    Ветер обдувает лопатки турбины, прикрепленные к ротору. Затем ротор вращает генератор для выработки электричества. Есть два типа ветряных турбин: ветряные турбины с горизонтальной осью (HAWT) и ветровые турбины с вертикальной осью (VAWT). HAWT — наиболее распространенный тип ветряных турбин. У них обычно есть две или три длинных тонких лопасти, которые похожи на пропеллер самолета.Лопасти расположены так, чтобы они смотрели прямо против ветра. VAWT имеют более короткие и широкие изогнутые лопасти, которые напоминают лопасти, используемые в электрическом миксере.

    Небольшие индивидуальные ветряные турбины могут производить 100 киловатт энергии, достаточной для питания дома. Небольшие ветряные турбины также используются в таких местах, как водонасосные станции. Чуть более крупные ветряные турбины расположены на башнях высотой до 80 метров (260 футов) с лопастями ротора, длина которых составляет примерно 40 метров (130 футов).Эти турбины могут генерировать 1,8 мегаватт энергии. Еще более крупные ветряные турбины можно найти на башнях высотой 240 метров (787 футов) с лопастями ротора длиной более 162 метров (531 фут). Эти большие турбины могут генерировать от 4,8 до 9,5 мегаватт энергии.

    После выработки электроэнергии ее можно использовать, подключать к электросети или хранить для будущего использования. Министерство энергетики США работает с национальными лабораториями над разработкой и улучшением технологий, таких как батареи и гидроаккумулирующие установки, чтобы их можно было использовать для хранения избыточной энергии ветра.Такие компании, как General Electric, устанавливают батареи вместе со своими ветряными турбинами, чтобы электричество, вырабатываемое за счет энергии ветра, можно было сразу же хранить.

    По данным Геологической службы США, в США имеется 57 000 ветряных турбин как на суше, так и на море. Ветровые турбины могут быть автономными конструкциями или они могут быть объединены в так называемую ветряную электростанцию. В то время как одна турбина может генерировать достаточно электроэнергии для удовлетворения потребностей в энергии одного дома, ветряная электростанция может вырабатывать гораздо больше электроэнергии, достаточной для снабжения энергией тысяч домов.Ветряные электростанции обычно располагаются на вершине горы или в другом месте, где ветрено, чтобы использовать преимущества естественного ветра.

    Самая большая оффшорная ветряная электростанция в мире называется Walney Extension. Эта ветряная электростанция расположена в Ирландском море примерно в 19 километрах (11 милях) к западу от северо-западного побережья Англии. Расширение Уолни занимает огромную территорию в 149 квадратных километров (56 квадратных миль), что делает ветряную электростанцию ​​больше, чем город Сан-Франциско, Калифорния, или остров Манхэттен в Нью-Йорке.Сеть из 87 ветряных турбин имеет высоту 195 метров (640 футов), что делает эти морские ветряные турбины одними из самых больших ветряных турбин в мире. Walney Extension имеет потенциал для выработки 659 мегаватт электроэнергии, чего достаточно для снабжения электричеством 600 000 домов в Соединенном Королевстве.

    Сколько энергии вырабатывает ветряная турбина?

    Обновлено 9 ноября 2020 г.

    Кевин Ли

    Ветровые турбины способны вращать свои лопасти на склонах холмов, в океане, рядом с заводами и над домами.Идея о том, чтобы позволить природе обеспечить ваш дом бесплатной электроэнергией, может показаться привлекательной, но важно научиться рассчитывать мощность ветряной турбины перед ее покупкой — и особенно важно понимать разницу между номинальной мощностью машины и фактической мощностью, которую вы можно ожидать от этого. Проверьте карты ветров, предоставленные Национальной лабораторией возобновляемой энергии, чтобы узнать, делает ли ветровая энергия хорошим выбором для вашего дома скорость ветра и его наличие в вашем районе.

    Скорость ветра

    Большинство ветряных турбин состоит из установленных на роторе лопастей, которые напоминают воздушные винты самолета.Когда через них проходит воздух, они заставляют ротор вращать вал, приводящий в действие электрический генератор. Большинство турбин автоматически отключаются, когда скорость ветра достигает 88,5 километров в час (55 миль в час), чтобы предотвратить механическое повреждение. Это снижает выработку электроэнергии, когда возникает сильный ветер, и людям требуется постоянная энергия ветра. Они также не производят электричество, если ветер дует слишком медленно. Если скорость ветра уменьшается вдвое, выработка электроэнергии снижается в восемь раз.Время, в течение которого ветровые условия являются оптимальными в данном регионе, определяет доступность ветряной турбины. Турбины, расположенные на более высоких позициях, получают больше ветра, что приводит к большей мощности. У каждого есть диапазон скорости ветра — от 30 до 50 миль в час — при котором он работает оптимально.

    Рейтинг эффективности

    В современных ветряных турбинах используются различные конструкции, предназначенные для более эффективного улавливания ветра. Эффективность — важная ценность, которую нужно знать при оценке ветряной турбины.3} {2}

    Площадь указывается в квадратных метрах, плотность воздуха — в килограммах на кубический метр, а скорость ветра — в метрах в секунду.

    Критические отличия

    Тот факт, что ветряная турбина имеет номинальную мощность 1,5 мегаватт, не означает, что на практике она будет производить такую ​​большую мощность. Ветряные турбины обычно производят значительно меньше номинальной мощности, что является максимальным количеством энергии, которое они могли бы производить, если бы работали все время. Например, ветряная турбина мощностью 1,5 мегаватта с коэффициентом полезного действия 33 процента может производить только пол мегаватта в год — меньше, если ветер не дует надежно.Турбины промышленного масштаба обычно имеют номинальную мощность от 2 до 3 мегаватт. Однако количество фактически произведенной энергии снижается из-за эффективности и наличия ветра — процента времени, в течение которого объект имеет достаточно ветра для движения.

    Советы по покупке ветряных турбин

    Если вам известны мощность и коэффициенты эффективности установки, вы можете рассчитать ее расчетный годовой объем производства по следующей формуле:

    365 \ frac {\ text {days}} {\ text {year} } \ times 24 \ frac {\ text {hours}} {\ text {days}} \ times \ text {максимальная мощность} \ times \ text {capacity factor} = \ text {киловатт-часов в год}

    Например, турбина с номинальной мощностью 1.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *